

FCC Measurement/Technical Report on

WLAN and Bluetooth module JODY-W2

FCC ID: XPYJODYW263 IC: 8595A-JODYW263

Test Report Reference: MDE_UBLOX_2315_FCC_01

Test Laboratory:

7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH

Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Sebastian Doose Bernhard Retka

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

		Coi	

1 A	pplied Standards and Test Summary	3
1.1	Applied Standards	3
1.2	FCC-IC Correlation Table	4
1.3	Measurement Summary	4
2 R	evision History / Signatures	7
3 A	dministrative Data	8
3.1	Testing Laboratory	8
3.2	Project Data	8
3.3	Applicant Data	8
3.4	Manufacturer Data	9
4 T	est object Data	10
4.1	General EUT Description	10
4.2	EUT Main components	10
4.3	Ancillary Equipment	11
4.4	Auxiliary Equipment	11
4.5	EUT Setups	12
4.6	Operating Modes / Test Channels	12
4.7	Product labelling	12
5 T	est Results	13
5.1	Peak Power Output	13
5.2	Transmitter Spurious Radiated Emissions	17
5.3	Band Edge Compliance Radiated	25
5.4	Power Density	32
6 T	est Equipment	36
6.1	Test Equipment Hardware	36
6.2	Test Equipment Software	39
7 A	ntenna Factors, Cable Loss and Sample Calculations	40
7.1	LISN R&S ESH3-Z5 (150 kHz - 30 MHz)	40
7.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	41
7.3	Antenna R&S HL562 (30 MHz – 1 GHz)	42
7.4	Antenna R&S HF907 (1 GHz – 18 GHz)	43
7.5	Antenna EMCO 3160-09 (18 GHz - 26.5 GHz)	44
7.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	45
8 M	leasurement Uncertainties	46
9 P	hoto Report	47

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-22 Edition). The following subparts are applicable to the results in this test report.

- Part 2, Subpart J Equipment Authorization Procedures, Certification
- Part 15, Subpart C Intentional Radiators
- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note:

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of the FCC Rules, 558074 D01 15.247 Meas Guidance v05r02, 2019-04-02". ANSI C63.10-2013 is applied.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for DTS (e.g. WLAN 2.4 GHz, BT LE) equipment from FCC and IC

DTS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 5 & AMD 1 & AMD 2: 8.8
Occupied bandwidth	§ 15.247 (a) (2)	RSS-247 Issue 3: 5.2 (a)
Peak conducted output power	§ 15.247 (b) (3), (4)	RSS-247 Issue 3: 5.4 (d)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 5 & AMD 1 & AMD 2: 6.13 / 8.9/8.10; RSS-247 Issue 3: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 5 & AMD 1 & AMD 2: 6.13 / 8.9/8.10; RSS-247 Issue 3: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 3: 5.5
Power density	§ 15.247 (e)	RSS-247 Issue 3: 5.2 (b)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 5 & AMD 1 & AMD 2: 8.3
Receiver spurious emissions	_	_

1.3 MEASUREMENT SUMMARY

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (b) (3)				
Peak Power Output The measurement was performed accordin 11.9.1.3	g to ANSI C63.1	.0, chapter	Final Re	esult	
OP-Mode Radio Technology, Operating Frequency, Measurement method	Setup	Date	FCC	IC	
WLAN b, high, conducted	S01_AA01	2024-02-26	Passed	Passed	
WLAN b, low, conducted	S01_AA01	2024-02-26	Passed	Passed	
WLAN b, mid, conducted	S01_AA01	2024-02-26	Passed	Passed	
WLAN g, mid, conducted	S01_AA01	2024-02-26	Passed	Passed	
WLAN n 20 MHz, high, conducted	S01_AA01	2024-02-26	Passed	Passed	
WLAN n 20 MHz, mid, conducted	S01_AA01	2024-02-26	Passed	Passed	
WLAN n 40 MHz, mid, conducted	S01_AA01	2024-02-26	Passed	Passed	
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d)				
Transmitter Spurious Radiated Emissions The measurement was performed accordin 6.4, 6.5, 6.6.5	g to ANSI C63.1	.0, chapter	Final Re	esult	
OP-Mode Radio Technology, Operating Frequency, Measurement range	Setup	Date	FCC	IC	
WLAN b, mid, 1 GHz - 26 GHz	S02_AA01	2024-03-25	Passed	Passed	
WLAN b, mid, 30 MHz - 1 GHz	S02_AA01	2024-03-06	Passed	Passed	
WLAN b, mid, 9 kHz - 30 MHz	S02_AA01	2024-03-06	Passed	Passed	
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d)				
Band Edge Compliance Radiated The measurement was performed accordin 6.6.5	g to ANSI C63.1	.0, chapter	Final Re	esult	
OP-Mode Radio Technology, Operating Frequency, Band Edge	Setup	Date	FCC	IC	
WLAN n 20 MHz, low/high, low/high	S02_AA01	2024-03-25	Passed	Passed	
WLAN n 40 MHz, low/high, low/high	S02_AA01	2024-03-25	Passed	Passed	

47 CFR CHAPTER I FCC PART 15 § 15.247 (e) Subpart C §15.247

Power Density

The measurement was performed according to ANSI C63.10, chapter Final Result

11.10.2

OP-ModeSetupDateFCCICRadio Technology, Operating FrequencyS01_AA012024-02-26PassedPassed

N/A: Not applicable N/P: Not performed

2 REVISION HISTORY / SIGNATURES

Report version control				
Version	Release date	Change Description	Version validity	
initial	2024-06-03		valid	

COMMENT: This report is a spot check report for a different antenna in the WLAN antenna path using the M.2 variant of JODY-W2. Comparison of results is performed based on the results of the non M.2 variant used for the original certification: MDE_UBLOX_2008_FCC_02.

(responsible for accreditation scope)
Dipl.-Ing. Marco Kullik

(responsible for testing and report)
Dipl.-Ing. Daniel Gall

7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

3 ADMINISTRATIVE DATA

3.1 TESTING LABORATORY

Company Name: 7layers GmbH

Address: Borsigstr. 11

40880 Ratingen

Germany

The test facility is accredited by the following accreditation organisation:

Laboratory accreditation no: DAkkS D-PL-12140-01-01| -02 | -03

FCC Designation Number: DE0015

FCC Test Firm Registration: 929146

ISED CAB Identifier DE0007; ISED#: 3699A

Responsible for accreditation scope: Dipl.-Ing. Marco Kullik

Report Template Version: 2023-09-29

3.2 PROJECT DATA

Responsible for testing and report: Dipl.-Ing. Daniel Gall

Employees who performed the tests: documented internally at 7Layers

Date of Report: 2024-06-03

Testing Period: 2024-02-26 to 2024-03-25

3.3 APPLICANT DATA

Company Name: u-blox AG

Address: Zürcherstrasse 68

> 8800 Thalwil Switzerland

Contact Person: Filip Kruzela

3.4 MANUFACTURER DATA

Company Name:	please see Applicant Data
Address:	
Contact Person:	

4 TEST OBJECT DATA

4.1 GENERAL EUT DESCRIPTION

Kind of Device product description	Host-based module with Wi-Fi and Bluetooth 5.0		
Product name	JODY-W263-00B		
Туре	JODY-W263-00B		
Declared EUT data by	the supplier		
Voltage Type	DC		
Voltage Level	3.3 V		
Antenna / Gain	External 50 Ohm single band antenna with 2.2 dBi max. gain in the relevant 2.4 GHz ISM band for Bluetooth and external dual band antenna with 2.2 dBi max. gain in the relevant 2.4 GHz ISM band for WLAN		
Tested Modulation Type	WLAN: WLANb: DSSS, WLANg,n: OFDM		
Specific product	The EUT is a Bluetooth and WLAN module.		
description for the EUT	In the 2.4 GHz band it supports SISO Mode only.		
	Supported technologies are Bluetooth Classic, Bluetooth Low Energy and WLAN b, g, n, ac		
	Relevant for this report is WLAN. The WLAN transmitter supports WLAN b, g and n in 20 MHz BW as well as n in 40 MHz BW. 20 MHz channels 12 and 13 as well as 40 MHz channels 10 and 11 are not supported.		
EUT ports (connected	Enclosure		
cables during testing):	Data		
	DC Power		
	Antenna		
Tested datarates	BT LE: 1 Mbps, 2 Mbps		
	WLAN:		
	WLAN b: 1 Mbps, WLAN g: 6 Mbps, WLAN n: MCS0		
Special software used for testing	The test modes were set by the software labtool version 1.0.0.146 provided by the applicant on an auxiliary computer board.		
Power to be set in test software: Channel			

4.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
EUT aa01	DE1015186aa01	
Sample Parameter	Valu	e
Serial No.	I52CCF957E07F400300	
HW Version	M2-JODY-W263-00C-00 /HW3_01	
SW Version	FW: 16.80.205.164, Mfg WIFI: 2.0.	0.63, Mfg BT: 1.0.0.10
Comment		

NOTE: The short description is used to simplify the identification of the EUT in this test report.

4.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

4.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device Details (Manufacturer, Type Model, HW, SW, S/N)		Description
AUX 01 UBLOX, M.2 card universal adapter v2, - M		M.2 to μ SD adapter board
AUX 02 Kyocera AVX, TDS-ANT-0004 part number: 1001932PT-AA10L0075, -,		Dual Band Antenna
Toradex, Ixora, V1.2A, Angstrom GNU/Linux v2017.12 Linux 4.14.90- 2.8.5, 10629969		Board Computer

4.5 **EUT SETUPS**

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
S02_AA01	EUT aa01, AUX 02, AUX 01,	Radiated Setup
S01_AA01	EUT aa01, AUX 03, AUX 01,	Conducted Setup

4.6 OPERATING MODES / TEST CHANNELS

This chapter describes the operating modes of the EUTs used for testing.

2.4 GHz ISM

WLAN 2400 - 2483.5 MHz 20 MHz Test Channels: low **Channel:** 1 2412 Frequency [MHz]

40 MHz Test Channels: Channel:

Frequency [MHz]

low	mid	high
3	6	11
2422	2437	2462

mid

6

2437

high

11

2462

4.7 PRODUCT LABELLING

4.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

4.7.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

5 TEST RESULTS

5.1 PEAK POWER OUTPUT

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10, chapter 11.9.1.3

5.1.1 TEST DESCRIPTION

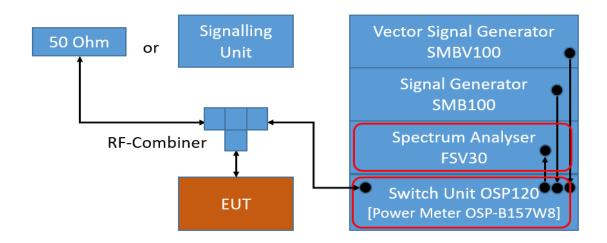
DTS EQUIPMENT:

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power.

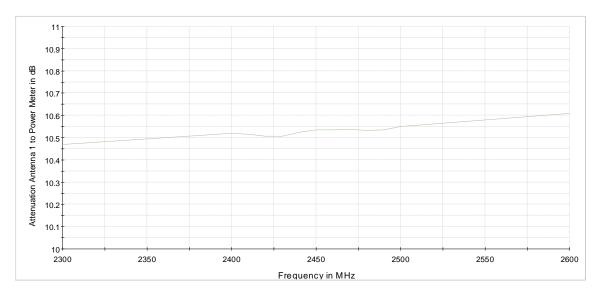
Maximum peak conducted output power (e.g. Bluetooth Low Energy):

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered. The reference level of the spectrum analyser was set higher than the output power of the EUT.

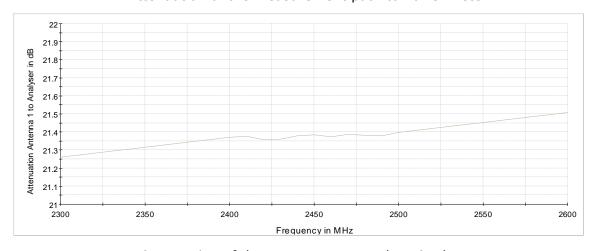
Analyser settings:


- Resolution Bandwidth (RBW): ≥ DTS bandwidth
- Video Bandwidth (VBW): ≥ 3 times RBW or maximum of analyzer
- Span: ≥ 3 times RBW
- Trace: Maxhold
- Sweeps: Till stable (min. 300, max. 15000)
- Sweeptime: AutoDetector: Peak

Maximum conducted average output power (e.g. WLAN):


The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Measurement is performed using the gated RF average power meter integrated in the OSP 120 module OSP-B157W8 with signal bandwidth >300 MHz.



TS8997; Output Power

Attenuation of the measurement path to Power Meter

Attenuation of the measurement path to Analyser

5.1.2 TEST REQUIREMENTS / LIMITS

DTS devices:

FCC Part 15, Subpart C, §15.247 (b) (3)

For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Frequency Hopping Systems:

FCC Part 15, Subpart C, §15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

FCC Part 15, Subpart C, §15.247 (b) (2)

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Used conversion factor: Limit (dBm) = $10 \log (Limit (W)/1mW)$

5.1.3 TEST PROTOCOL

Ambient temperature: °C
Air Pressure: hPa
Humidity: %
WLAN b-Mode; 20 MHz; 1 Mbit/s

Frequency [MHz]	Maximum Average Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]	Maximum Average Power Original Module Certification [dBm]	Margin [dB]
2412	11.3	30.0	18.7	13.5	11.2	0.1
2437	11.4	30.0	18.6	13.6	11.5	-0.1
2462	11.7	30.0	18.3	13.9	11.7	0.0

WLAN g-Mode; 20 MHz; 6 Mbit/s

Frequency [MHz]	Maximum Average Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]	Maximum Average Power Original Module Certification [dBm]	Margin [dB]
2437	15.6	30.0	14.4	17.8	15.3	0.3

WLAN n-Mode; 20 MHz; MCS0

Frequency [MHz]	Maximum Average Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]	Maximum Average Power Original Module Certification [dBm]	Margin [dB]
2437	15.8	30.0	14.2	18.0	15.6	0.2
2457	16.0	30.0	14.0	18.2	15.7	0.3

WLAN n-Mode; 40 MHz; MCS0

Frequency [MHz]	Maximum Average Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]	Maximum Average Power Original Module Certification [dBm]	Margin [dB]
2437	11.6	30.0	18.4	13.8	10.7	0.9

Remark: Power meter measurement, no plots provided.

5.1.4 TEST EQUIPMENT USED

- R&S TS8997

5.2 TRANSMITTER SPURIOUS RADIATED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

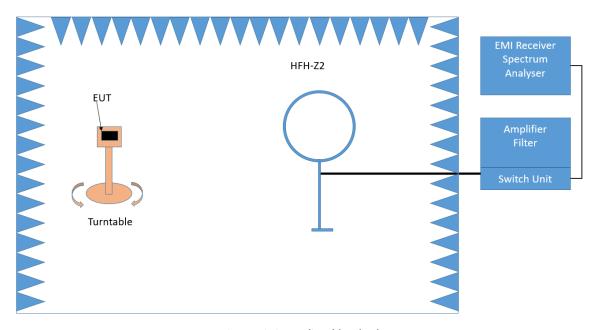
ANSI C63.10, chapter 6.4, 6.5, 6.6.5

5.2.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The measurements were performed according the following subchapters of ANSI C63.10:

• < 30 MHz: Chapter 6.4

30 MHz – 1 GHz: Chapter 6.5


• > 1 GHZ: Chapter 6.6 (procedure according 6.6.5 used)

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered.

Below 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The influence of the EUT support table that is used between 30–1000 MHz was evaluated.

1. Measurement up to 30 MHz

Test Setup; Spurious Emission Radiated (SAC), 9 kHz - 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

TEST REPORT REFERENCE: MDE_UBLOX_2315_FCC_01 Page 17 of 47

Anechoic chamber

Antenna distance: 3 mAntenna height: 1 m

Detector: Peak-Maxhold

Frequency range: 0.009 - 0.15 MHz and 0.15 - 30 MHz

• Frequency steps: 0.05 kHz and 2.25 kHz

• IF-Bandwidth: 0.2 kHz and 9 kHz

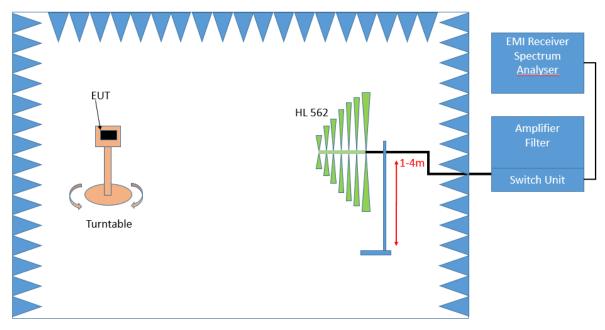
• Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

• Detector: Quasi-Peak (9 kHz – 150 kHz, Peak / Average 150 kHz- 30 MHz)


• Frequency range: 0.009 – 30 MHz

• Frequency steps: measurement at frequencies detected in step 1

• IF-Bandwidth: 0.2 - 10 kHz

Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Antenna distance: 3 m

- Detector: Peak-Maxhold / Quasipeak (FFT-based)

- Frequency range: 30 - 1000 MHz

Frequency steps: 30 kHzIF-Bandwidth: 120 kHz

Measuring time / Frequency step: 100 ms
Turntable angle range: -180° to 90°

- Turntable step size: 90°

Height variation range: 1 – 4 m
Height variation step size: 1.5 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by 360° . During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary between 1-4 meter. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF - Bandwidth: 120 kHz
Measuring time: 100 ms
Turntable angle range: 360 °
Height variation range: 1 - 4 m

- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

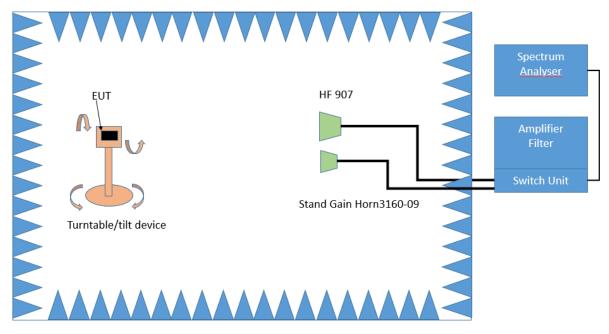
With the settings determined in step 2, the final measurement will be performed: EMI receiver settings for step 3:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.



Above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

3. Measurement above 1 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

Step 1:

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 $^{\circ}$.

The turn table step size (azimuth angle) for the preliminary measurement is 45 $^{\circ}$. Spectrum analyser settings:

- Detector: Peak, Average
- RBW = 1 MHz
- VBW = 3 MHz

Step 2:

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by $\pm 45^{\circ}$

Spectrum analyser settings:

- Detector: Peak

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / CISPR Average
- Measured frequencies: in step 1 determined frequencies
- RBW = 1 MHz
- VBW = 3 MHz
- Measuring time: 1 s

5.2.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

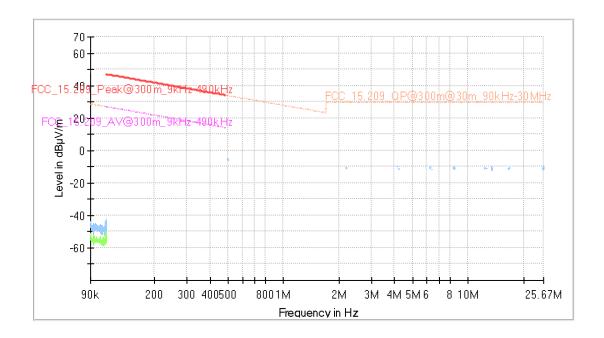
Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

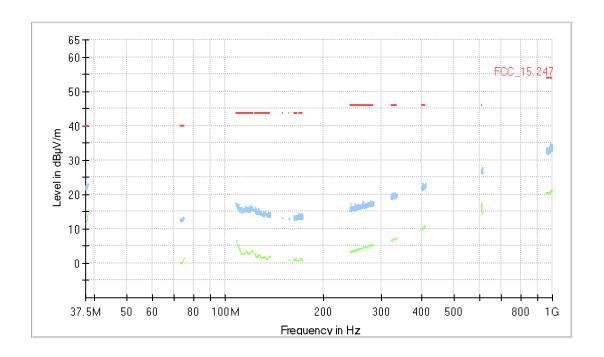
5.2.3 TEST PROTOCOL


Ambient temperature: 22 °C
Air Pressure: 1001 hPa
Humidity: 35 %
WLAN b-Mode; 20 MHz; 1 Mbit/s
Applied duty cycle correction (AV): 0 dB

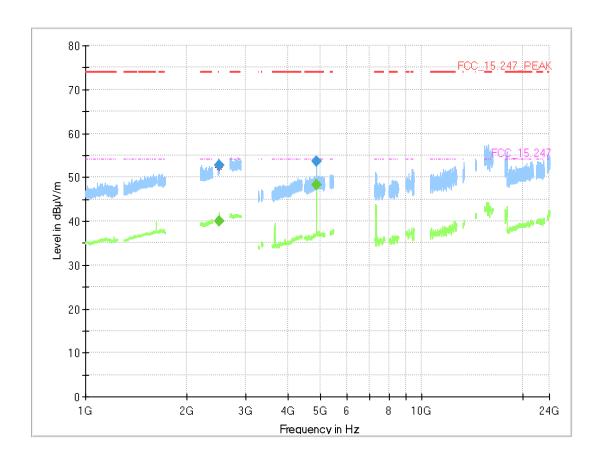
Ch. No.	Ch. Center Freq. [MHz]		Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	_	Margin to Limit [dB]	Limit Type
6	2437	4873.9	53.7	PEAK	1000	74.0	20.3	RB
6	2437	4873.9	48.4	AV	1000	54.0	5.6	RB

Remark: Please see next sub-clause for the measurement plot.

5.2.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)


Radio Technology = WLAN b, Operating Frequency = mid, Measurement range = 9 kHz - 30 MHz (S02_AA01)

Frequency (MHz)	MaxPeak (dBµV/m)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Azimut h (deg)	Corr. (dB/m)


Radio Technology = WLAN b, Operating Frequency = mid, Measurement range = 30 MHz - 1 $_{
m GHz}$ (S02_AA01)

-										
	Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
		-								

Radio Technology = WLAN b, Operating Frequency = mid, Measurement range = 1 GHz - 26 $\,$ GHz $\,$ (S02_AA01)

Final Result

Frequency	MaxPeak	CAverag	Limit	Margi	Meas.	Bandwidt	Heigh	Pol	Azimut	Elevatio	Corr.
(MHz)	(dBµV/m)	е	(dBµ	n	Time	h	t		h	n	(dB/
		(dBµV/m)	V/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(deg)	m)
2492.410		39.9	54.00	14.06	1000.0	1000.000	150.0	Н	19.0	84.0	8.0
2492.410	52.6		74.00	21.35	1000.0	1000.000	150.0	Н	19.0	84.0	8.0
4873.913		48.4	54.00	5.64	1000.0	1000.000	150.0	Н	-10.0	88.0	6.4
4873.913	53.7		74.00	20.28	1000.0	1000.000	150.0	Н	-10.0	88.0	6.4

5.2.5 TEST EQUIPMENT USED

- Radiated Emissions FAR 2.4 GHz FCC
- Radiated Emissions SAC H-Field
- Radiated Emissions SAC up to 1 GHz

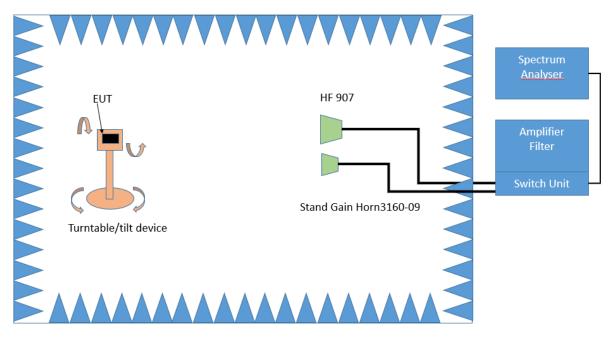
5.3 BAND EDGE COMPLIANCE RADIATED

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10, chapter 6.6.5

5.3.1 TEST DESCRIPTION


The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The measurements were performed according the following subchapter of ANSI C63.10:

• Chapter 6.10.5

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only (procedure according ANSI C63.10, chapter 6.6.5.

3. Measurement above 1 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

Step 1:

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 $^{\circ}$. Spectrum analyser settings:

- Detector: Peak, Average
- RBW = 1 MHz
- -VBW = 3MHz

Step 2:

The turn table azimuth will slowly vary by $\pm 22.5^{\circ}$.

The elevation angle will slowly vary by \pm 45°

Spectrum analyser settings:

- Detector: Peak

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / CISPR Average

- Measured frequencies: in step 1 determined frequencies

- RBW = 1 MHz - VBW = 3 MHz - Measuring time: 1 s

5.3.2 TEST REQUIREMENTS / LIMITS

For band edges connected to a restricted band, the limits are specified in Section 15.209(a)

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)	
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m	
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m	
1.705 - 30	30@30m	3	29.5@30m	

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

5.3.3 TEST PROTOCOL

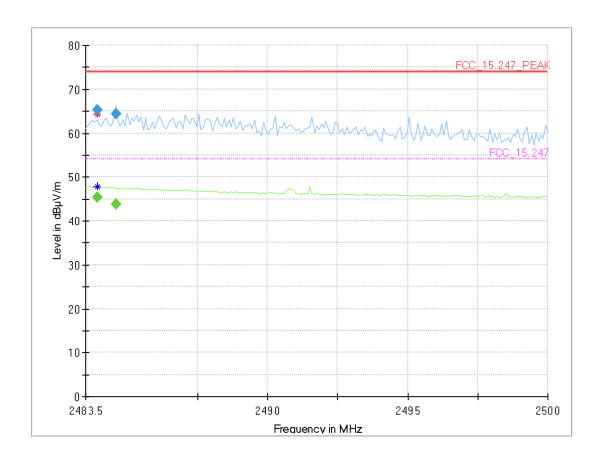
WLAN n-Mode; 20 MHz; MCS0

Applied duty cycle correction (AV): 0 dB

, (PP.10	, a a a c , c , c , c , c	300.0 (7.17). 0 W.B					
Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
2	2417	2390.0	63.6	PEAK	1000	74.0	10.4
2	2417	2390.0	45.4	PEAK	1000	74.0	28.6
10	2457	2483.5	65.2	PEAK	1000	74.0	8.8
10	2457	2483.5	45.3	AV	1000	54.0	8.7

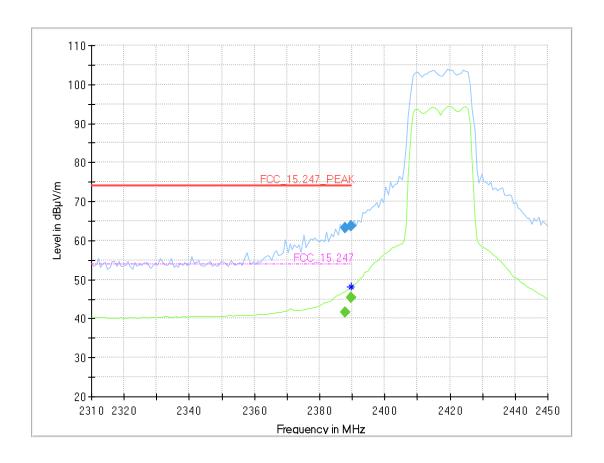
WLAN n-Mode; 40 MHz; MCS0

Applied duty cycle correction (AV): 0 dB

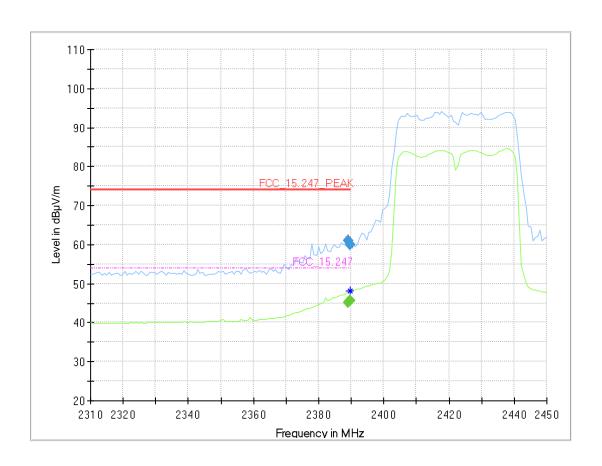

Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
3	2422	2390.0	61.0	PEAK	1000	74.0	13.0
3	2422	2390.0	45.7	PEAK	1000	74.0	28.3
9	2452	2483.5	72.6	PEAK	1000	74.0	1.4
9	2452	2483.5	49.2	AV	1000	54.0	4.8

Remark: Please see next sub-clause for the measurement plot.

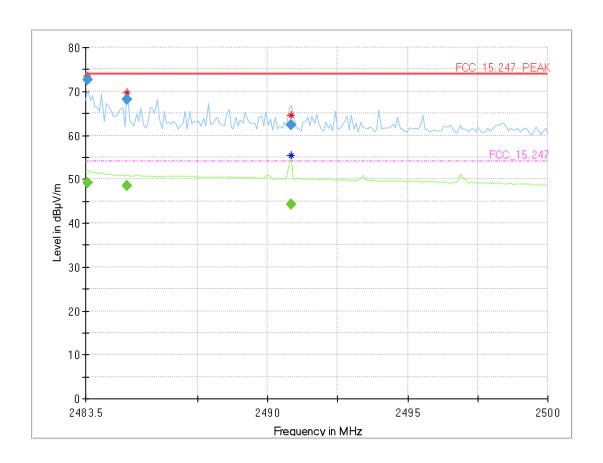
5.3.4 MEASUREMENT PLOTS


Radio Technology = WLAN n 20 MHz, Operating Frequency = high, Band Edge = high (S02_AA01)

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Elevation (deg)	Corr. (dB/m)
2483.913	65.2		74.00	8.82	1000.0	1000.000	150.0	Н	-182.0	75.0	43.6
2483.913		45.3	54.00	8.72	1000.0	1000.000	150.0	Н	-182.0	75.0	43.6
2484.573	64.4		74.00	9.61	1000.0	1000.000	150.0	Н	60.0	0.0	43.6
2484.573		43.8	54.00	10.25	1000.0	1000.000	150.0	Н	60.0	0.0	43.6


Radio Technology = WLAN n 20 MHz, Operating Frequency = low, Band Edge = low (S02_AA01)

aooa											
Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Elevation (deg)	Corr. (dB/m)
2387.700		41.7	54.00	12.26	1000.0	1000.000	150.0	Н	-169.0	75.0	7.5
2387.700	63.3		74.00	10.68	1000.0	1000.000	150.0	Н	-169.0	75.0	7.5
2389.800		45.4	54.00	8.61	1000.0	1000.000	150.0	Н	-6.0	80.0	7.6
2389.800	63.6		74.00	10.35	1000.0	1000.000	150.0	Н	-6.0	80.0	7.6


Radio Technology = WLAN n 40 MHz, Operating Frequency = low, Band Edge = low $(S02_AA01)$

aooa											
Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Elevation (deg)	Corr. (dB/m)
2389.100		45.1	54.00	8.87	1000.0	1000.000	150.0	Н	-158.0	105.0	7.6
2389.100	61.0		74.00	12.98	1000.0	1000.000	150.0	Н	-158.0	105.0	7.6
2389.800		45.7	54.00	8.33	1000.0	1000.000	150.0	Н	-4.0	82.0	7.6
2389.800	60.0		74.00	14.01	1000.0	1000.000	150.0	Н	-4.0	82.0	7.6

Radio Technology = WLAN n 40 MHz, Operating Frequency = high, Band Edge = high (S02_AA01)

Final_Result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Elevation (deg)	Corr. (dB/m)
2483.583		49.2	54.00	4.77	1000.0	1000.000	150.0	Н	8.0	70.0	43.6
2483.583	72.6		74.00	1.42	1000.0	1000.000	150.0	Н	8.0	70.0	43.6
2484.985	68.2		74.00	5.82	1000.0	1000.000	150.0	Н	-174.0	98.0	43.6
2484.985		48.5	54.00	5.47	1000.0	1000.000	150.0	Н	-174.0	98.0	43.6
2490.843	62.4		74.00	11.59	1000.0	1000.000	150.0	Н	9.0	-12.0	43.7
2490.843		44.3	54.00	9.70	1000.0	1000.000	150.0	Н	9.0	-12.0	43.7

5.3.5 TEST EQUIPMENT USED

- Radiated Emissions FAR 2.4 GHz FCC

5.4 POWER DENSITY

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10, chapter 11.10.2

5.4.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up in a shielded room to perform the Power Density measurements.

The results recorded were measured with the modulation which produces the worst-case (highest) power density.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Maximum Peak Power Spectral Density (e.g. Bluetooth low energy):

Analyser settings:

• Resolution Bandwidth (RBW): 100 kHz, 10 kHz or 3 kHz

• Video Bandwidth (VBW): ≥ 3 times RBW

Trace: Maxhold

• Sweeps: Till stable (min. 200, max. 15000)

Sweeptime: AutoDetector: Peak

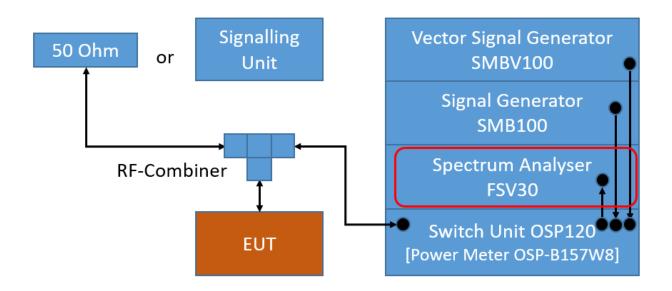
Maximum Average Power Spectral Density (e.g. WLAN):

Analyser settings:

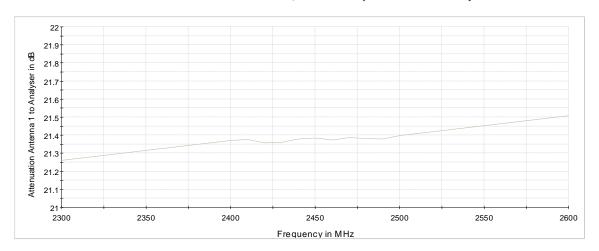
• Resolution Bandwidth (RBW): 100 kHz, 10 kHz or 3 kHz

• Video Bandwidth (VBW): ≥ 3 times RBW

Sweep Points: ≥ 2 times span / RBW


Trace: Maxhold

• Sweeps: Till stable (max. 150)


Sweeptime: ≤ Number of Sweep Points x minimum transmission duration

Detector: RMS

TS8997; Power Spectral Density

Attenuation of the measurement path

5.4.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

. . .

The same method of determining the conducted output power shall be used to determine the power spectral density.

FCC Part 15, Subpart C, §15.247 (f)

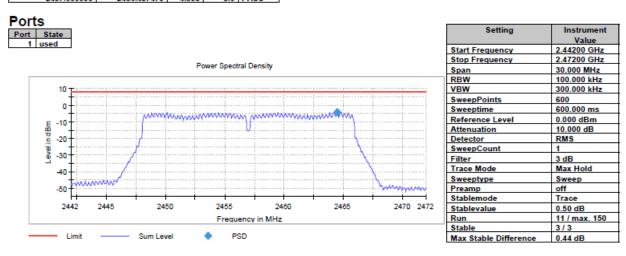
(f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques.

...

The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

5.4.3 TEST PROTOCOL

WLAN n-Mode; 20 MHz; MCS0


Frequency [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]	Power Density Original Module Certification [dBm]	Margin [dB]
2457	-3.8	100.0	8.0	11.8	-4.2	0.4

Remark: Please see next sub-clause for the measurement plot.

5.4.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

DUT Frequency (MHz)	Frequency (MHz)	PSD (dBm)	Limit Max (dBm)	Result
2457 000000	2464 487479	-4 398	8.0	PASS

5.4.5 TEST EQUIPMENT USED

- R&S TS8997

Page 36 of 47

6 TEST EQUIPMENT

6.1 TEST EQUIPMENT HARDWARE

1 R&S TS8997 2.4 and 5 GHz Bands Conducted Test Lab

Def No	Device Name	Description	Manufacturer	Serial Number	Last	Calibration
Kei.ito.	Device Name	Description	Manufacturei	Serial Number	Calibration	
1.1	Opus10 TPR (8253.00)	T/P Logger 13	Lufft Mess- und Regeltechnik GmbH	13936	2023-12	2025-12
1.2		Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2021-06	2024-06
1.3		Digital Multimeter 12	Extech Instruments Corp	05157876	2022-06	2024-06
1.4		Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2023-08	2025-08
1.5	Temperature Chamber VT 4002	Temperature Chamber Vötsch 03	Vötsch	58566002150010	2022-05	2024-05
1.6	FSW43	Signal Analyser	Rohde & Schwarz GmbH & Co. KG	102013	2023-07	2025-07
1.7	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	13993	2023-12	2025-12
1.8		Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	259291	2023-01	2026-01
1.9		Contains Power Meter and Switching Unit OSP- B157W8 PLUS	Rohde & Schwarz	101158	2021-08	2024-08
1.10		Rubidium Frequency Standard	Rohde & Schwarz GmbH & Co. KG	100321	2023-10	2024-10

2 Radiated Emissions FAR 2.4 GHz FCC Radiated emission tests for 2.4 GHz ISM devices in a fully anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.1	Opus10 TPR (8253.00)	. 33	Lufft Mess- und Regeltechnik GmbH	13936	2023-12	2025-12
2.2			innco systems GmbH	CO3000/1460/54 740522/P	N/A	N/A
2.3	7D00101800-	Broadband Amplifier 100 MHz - 18 GHz	Miteq		N/A	N/A
2.4		FAR, 8.80m x 4.60m x 4.05m (I x w x h)		P26971-647-001- PRB	N/A	N/A
2.5		Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2023-08	2025-08

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.6	JS4-18002600- 32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785	N/A	N/A
2.7	FSW43	Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	103779	2023-04	2025-04
2.8	EP 1200/B, NA/B1	•	Spitzenberger & Spies GmbH & Co. KG	B6278	N/A	N/A
2.9	3160-09	Standard Gain / Pyramidal Horn Antenna 26.5 GHz	EMCO Elektronic GmbH	00083069	N/A	N/A
2.10	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright Instruments GmbH	09	N/A	N/A
2.11	•	Bore Sight Antenna Mast	innco systems GmbH	9210522	N/A	N/A
2.12	TT 1.5 WI	Turn Table	Maturo GmbH	-	N/A	N/A
2.13	5HC3500/18000 -1.2-KK	High Pass Filter	Trilithic	200035008	N/A	N/A
2.14	Opus 20 THI (8120.00)	, ,	Lufft Mess- und Regeltechnik GmbH	115.0318.0802.0 33	2023-08	2025-08
2.15	TD1.5-10kg	EUT Tilt Device (Rohacell)	Maturo GmbH	TD1.5- 10kg/024/37907 09	N/A	N/A
2.16	AFS42- 00101800-25-S- 42		Miteq	2035324	N/A	N/A
2.17	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2021-09	2024-09

Radiated Emissions SAC H-Field Radiated emission tests in the H-Field in a semi anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
3.1	N5000/NP	Filter for EUT, 2 Lines, 250 V, 16 A	ETS-LINDGREN	241515	N/A	N/A
3.2	Opus10 TPR (8253.00)		Lufft Mess- und Regeltechnik GmbH	13936	2023-12	2025-12
3.3	ESW44	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	101603	2024-03	2026-03
3.4		, ,	Frankonia Germany EMC Solution GmbH		N/A	N/A
3.5	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2023-08	2025-08
3.6	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	12488	2023-12	2025-12

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
3.7	NA/B1	Amplifier with	Spitzenberger & Spies GmbH & Co. KG	B6278	N/A	N/A
3.8		Turn Table 2 m diameter	HD GmbH	420/573/99	N/A	N/A
3.9	HFH2-Z2		Rohde & Schwarz GmbH & Co. KG	829324/006		
3.10			Rohde & Schwarz GmbH & Co. KG	100321	2023-10	2024-10

4 Radiated Emissions SAC up to 1 GHz Radiated emission tests up to 1 GHz in a semi anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
4.1	N5000/NP	Filter for EUT, 2 Lines, 250 V, 16 A	ETS-LINDGREN	241515	N/A	N/A
4.2	Opus10 TPR (8253.00)	T/P Logger 13	Lufft Mess- und Regeltechnik GmbH	13936	2023-12	2025-12
4.3	ESW44	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	101603	2024-03	2026-03
4.4	Anechoic Chamber 01	SAC/FAR, 10.58 m x 6.38 m x 6.00 m	Frankonia Germany EMC Solution GmbH		N/A	N/A
4.5	HL 562 ULTRALOG	Biconical-log- per antenna (30 MHz - 3 GHz) with HL 562E biconicals	Rohde & Schwarz GmbH & Co. KG	830547/003	2021-09	2024-09
4.6	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2023-08	2025-08
4.7	Opus10 THI (8152.00)	T/H Logger 10	Lufft Mess- und Regeltechnik GmbH	12488	2023-12	2025-12
4.8	EP 1200/B, NA/B1	AC Source, Amplifier with integrated variable Oscillator	Spitzenberger & Spies GmbH & Co. KG	B6278	N/A	N/A
4.9	DS 420S	Turn Table 2 m diameter	HD GmbH	420/573/99	N/A	N/A
4.10	CS-RUB6	Rubidium Frequency Standard	Rohde & Schwarz GmbH & Co. KG	100321	2023-10	2024-10
4.11	AM 4.0	Antenna Mast 4 m	Maturo GmbH	AM4.0/180/1192 0513	N/A	N/A

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

6.2 TEST EQUIPMENT SOFTWARE

Semi-Anechoic Chamber:			
Software	Version		
EMC32 Measurement Software	10.60.10		
INNCO Mast Controller	1.02.62		
MATURO Mast Controller	12.19		
MATURO Turn-Table Controller	30.10		
Fully-Anechoic Chamber:			
Software	Version		
EMC32 Measurement Software	10.60.10		
MATURO Turn-Unit Controller	11.10		
MATURO Mast Controller	12.10		
MATURO Turntable Controller	12.11		
INNCO Mast Controller	1.02.62		
TS 8997			
WMC32 Measurement Software	11.40.00		
Conducted AC Emissions:			
Software	Version		
EMC32 Measurement Software	10.60.20		

7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

7.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Frequency	Corr.
MHz	dB
0.15	10.1
5	10.3
7	10.5
10	10.5
12	10.7
14	10.7
16	10.8
18	10.9
20	10.9
22	11.1
24	11.1
26	11.2
28	11.2
30	11.3

LISN insertion loss ESH3- Z5	cable loss (incl. 10 dB atten- uator)
dB	dB
0.1	10.0
0.1	10.2
0.2	10.3
0.2	10.3
0.3	10.4
0.3	10.4
0.4	10.4
0.4	10.5
0.4	10.5
0.5	10.6
0.5	10.6
0.5	10.7
0.5	10.7
0.5	10.8

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

7.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

	AF	
Frequency	HFH-Z2)	Corr.
MHz	dB (1/m)	dB
0.009	20.50	-79.6
0.01	20.45	-79.6
0.015	20.37	-79.6
0.02	20.36	-79.6
0.025	20.38	-79.6
0.03	20.32	-79.6
0.05	20.35	-79.6
0.08	20.30	-79.6
0.1	20.20	-79.6
0.2	20.17	-79.6
0.3	20.14	-79.6
0.49	20.12	-79.6
0.490001	20.12	-39.6
0.5	20.11	-39.6
0.8	20.10	-39.6
1	20.09	-39.6
2	20.08	-39.6
3	20.06	-39.6
4	20.05	-39.5
5	20.05	-39.5
6	20.02	-39.5
8	19.95	-39.5
10	19.83	-39.4
12	19.71	-39.4
14	19.54	-39.4
16	19.53	-39.3
18	19.50	-39.3
20	19.57	-39.3
22	19.61	-39.3
24	19.61	-39.3
26	19.54	-39.3
28	19.46	-39.2
30	19.73	-39.1

\ -	(2) (11) (2)								
cable	cable	cable	cable	distance	d_{Limit}	d_{used}			
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.			
(inside	(outside	(switch	(to	(-40 dB/	distance	distance			
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)			
dB	dB	dB	dB	dB	m	m			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-80	300	3			
0.1	0.1	0.1	0.1	-40	30	3			
0.1	0.1	0.1	0.1	-40	30	3			
0.1	0.1	0.1	0.1	-40	30	3			
0.1	0.1	0.1	0.1	-40	30	3			
0.1	0.1	0.1	0.1	-40	30	3			
0.1	0.1	0.1	0.1	-40	30	3			
0.2	0.1	0.1	0.1	-40	30	3			
0.2	0.1	0.1	0.1	-40	30	3			
0.2	0.1	0.1	0.1	-40	30	3			
0.2	0.1	0.1	0.1	-40	30	3			
0.2	0.1	0.2	0.1	-40	30	3			
0.2	0.1	0.2	0.1	-40	30	3			
0.2	0.1	0.2	0.1	-40	30	3			
0.3	0.1	0.2	0.1	-40	30	3			
0.3	0.1	0.2	0.1	-40	30	3			
0.3	0.1	0.2	0.1	-40	30	3			
0.3	0.1	0.2	0.1	-40	30	3			
0.3	0.1	0.2	0.1	-40	30	3			
0.3	0.1	0.2	0.1	-40	30	3			
0.3	0.1	0.3	0.1	-40	30	3			
0.4	0.1	0.3	0.1	-40	30	3			

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-40 * LOG (d_{Limit} / d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

7.3 ANTENNA R&S HL562 (30 MHZ - 1 GHZ)

d _{Limit} = 3 m)						
Frequency	AF R&S HL562	Corr.				
MHz	dB (1/m)	dB				
30	18.6	0.6				
50	6.0	0.9				
100	9.7	1.2				
150	7.9	1.6				
200	7.6	1.9				
250	9.5	2.1				
300	11.0	2.3				
350	12.4	2.6				
400	13.6	2.9				
450	14.7	3.1				
500	15.6	3.2				
550	16.3	3.5				
600	17.2	3.5				
650	18.1	3.6				
700	18.5	3.6				
750	19.1	4.1				
800	19.6	4.1				
850	20.1	4.4				
900	20.8	4.7				
950	21.1	4.8				
1000	21.6	4.9				

cable	cable	cable	cable	distance	d_{Limit}	d_{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

... = 10 m)

(<u>d_{Limit} = 10 m</u>	1)								
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/ d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ)

	AF R&S	
Frequency	HF907	Corr.
MHz	dB (1/m)	dB
1000	24.4	-19.4
2000	28.5	-17.4
3000	31.0	-16.1
4000	33.1	-14.7
5000	34.4	-13.7
6000	34.7	-12.7
7000	35.6	-11.0

cable loss 1 (relay + cable inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit, atten- uator & pre-amp)	cable loss 4 (to receiver)	
dB	dB	dB	dB	
0.99	0.31	-21.51	0.79	
1.44	0.44	-20.63	1.38	
1.87	0.53	-19.85	1.33	
2.41	0.67	-19.13	1.31	
2.78	0.86	-18.71	1.40	
2.74	0.90	-17.83	1.47	
2.82	0.86	-16.19	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
3000	31.0	-23.4
4000	33.1	-23.3
5000	34.4	-21.7
6000	34.7	-21.2
7000	35.6	-19.8

cable loss 1 (relay inside chamber)	cable loss 2 (inside chamber)	cable loss 3 (outside chamber)	cable loss 4 (switch unit, atten- uator & pre-amp)	cable loss 5 (to receiver)	used for FCC 15.247
dB	dB	dB	dB	dB	13.247
0.47	1.87	0.53	-27.58	1.33	
0.56	2.41	0.67	-28.23	1.31	
0.61	2.78	0.86	-27.35	1.40	
0.58	2.74	0.90	-26.89	1.47	
0.66	2.82	0.86	-25.58	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
7000	35.6	-57.3
8000	36.3	-56.3
9000	37.1	-55.3
10000	37.5	-56.2
11000	37.5	-55.3
12000	37.6	-53.7
13000	38.2	-53.5
14000	39.9	-56.3
15000	40.9	-54.1
16000	41.3	-54.1
17000	42.8	-54.4
18000	44.2	-54.7

cable					
loss 1	cable	cable	cable	cable	cable
(relay	loss 2	loss 3	loss 4	loss 5	loss 6
inside	(High	(pre-	(inside	(outside	(to
chamber)	Pass)	amp)	chamber)	chamber)	receiver)
dB	dB	dB	dB	dB	dB
0.56	1.28	-62.72	2.66	0.94	1.46
0.69	0.71	-61.49	2.84	1.00	1.53
0.68	0.65	-60.80	3.06	1.09	1.60
0.70	0.54	-61.91	3.28	1.20	1.67
0.80	0.61	-61.40	3.43	1.27	1.70
0.84	0.84 0.42		3.53	1.26	1.73
0.83	0.44	-59.81	3.75	1.32	1.83
0.91	0.53	-63.03	3.91	1.40	1.77
0.98	0.54	-61.05	4.02	1.44	1.83
1.23	0.49	-61.51	4.17	1.51	1.85
1.36	0.76	-62.36	4.34	1.53	2.00
1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

	AF EMCO	
Frequency	3160-09	Corr.
MHz	dB (1/m)	dB
18000	40.2	-23.5
18500	40.2	-23.2
19000	40.2	-22.0
19500	40.3	-21.3
20000	40.3	-20.3
20500	40.3	-19.9
21000	40.3	-19.1
21500	40.3	-19.1
22000	40.3	-18.7
22500	40.4	-19.0
23000	40.4	-19.5
23500	40.4	-19.3
24000	40.4	-19.8
24500	40.4	-19.5
25000	40.4	-19.3
25500	40.5	-20.4
26000	40.5	-21.3
26500	40.5	-21.1

2 (10 0112		0112)		
cable	cable	cable	cable	cable
loss 1	loss 2	loss 3	loss 4	loss 5
(inside	(pre-	(inside	(switch	(to
chamber)	amp)	chamber)	unit)	receiver)
dB	dB	dB	dB	dB
0.72	-35.85	6.20	2.81	2.65
0.69	-35.71	6.46	2.76	2.59
0.76	-35.44	6.69	3.15	2.79
0.74	-35.07	7.04	3.11	2.91
0.72	-34.49	7.30	3.07	3.05
0.78	-34.46	7.48	3.12	3.15
0.87	-34.07	7.61	3.20	3.33
0.90	-33.96	7.47	3.28	3.19
0.89	-33.57	7.34	3.35	3.28
0.87	-33.66	7.06	3.75	2.94
0.88	-33.75	6.92	3.77	2.70
0.90	-33.35	6.99	3.52	2.66
0.88	-33.99	6.88	3.88	2.58
0.91	-33.89	7.01	3.93	2.51
0.88	-33.00	6.72	3.96	2.14
0.89	-34.07	6.90	3.66	2.22
0.86	-35.11	7.02	3.69	2.28
0.90	-35.20	7.15	3.91	2.36

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

7.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Frequency	AF EMCO 3160-10	Corr.
GHz	dB (1/m)	dB
26.5	43.4	-11.2
27.0	43.4	-11.2
28.0	43.4	-11.1
29.0	43.5	-11.0
30.0	43.5	-10.9
31.0	43.5	-10.8
32.0	43.5	-10.7
33.0	43.6	-10.7
34.0	43.6	-10.6
35.0	43.6	-10.5
36.0	43.6	-10.4
37.0	43.7	-10.3
38.0	43.7	-10.2
39.0	43.7	-10.2
40.0	43.8	-10.1

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
dB	dB	dB	dB	dB	m	m
4.4				-9.5	3	1.0
4.4				-9.5	3	1.0
4.5				-9.5	3	1.0
4.6				-9.5	3	1.0
4.7				-9.5	3	1.0
4.7				-9.5	3	1.0
4.8				-9.5	3	1.0
4.9				-9.5	3	1.0
5.0				-9.5	3	1.0
5.1				-9.5	3	1.0
5.1				-9.5	3	1.0
5.2				-9.5	3	1.0
5.3				-9.5	3	1.0
5.4				-9.5	3	1.0
5.5				-9.5	3	1.0

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

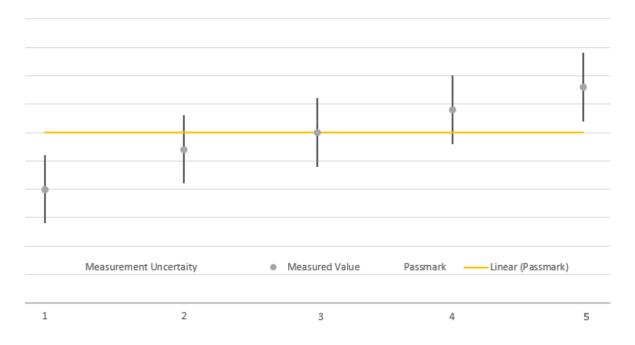
U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)

Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG (d_{Limit}/d_{used}) Linear interpolation will be used for frequencies in between the values in the table.


Table shows an extract of values.

8 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	on pass mark	within pass mark	Passed
4	above pass mark	within pass mark	Failed
5	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so-called shared risk principle.

TEST REPORT REFERENCE: MDE_UBLOX_2315_FCC_01 Page 46 of 47

9	D	н	U.	Т	\cap	R	F	D	\cap	D	т
7	Г		v		U	Γ	ᆫ	Г	U	'n	, I

Please see separate photo report.