

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, TaoYuan Hsien, Taiwan, R.O.C.
Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	Aptos Technology Inc.
Applicant Address	No. 398, Youyi Rd., Jhunan Township, Miaoli County 350, Taiwan R.O.C.
FCC ID	XPQ-ADST001-T
Manufacturer's company	Aptos Technology Inc.
Manufacturer Address	No. 398, Youyi Rd., Jhunan Township, Miaoli County 350, Taiwan R.O.C.

Product Name	433MHz TPMS
Brand Name	Aptos Design Lab.
Model Name	ADST001-T
Test Rule Part(s)	47 CFR FCC Part 15 Subpart C § 15.231
Test Frequency	433.92 MHz
Received Date	May 12, 2010
Final Test Date	May 16, 2010
Submission Type	Original Equipment

Statement

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in **ANSI C63.4-2003** and **47 CFR FCC Part 15 Subpart C**.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Testing Laboratory
1190

Table of Contents

1. CERTIFICATE OF COMPLIANCE	1
2. SUMMARY OF THE TEST RESULT	2
3. GENERAL INFORMATION	3
3.1. Product Details.....	3
3.2. Accessories.....	3
3.3. Table for Carrier Frequencies	3
3.4. Table for Test Modes.....	4
3.5. Table for Testing Locations.....	4
3.6. Table for Supporting Units	4
3.7. Test Configurations	5
4. TEST RESULT	6
4.1. Duty Factor Measurement	6
4.2. Field Strength of Fundamental Emissions Measurement.....	8
4.3. 20dB Spectrum Bandwidth Measurement	11
4.4. Period Time / Operation Restriction Measurement.....	13
4.5. Radiated Emissions Measurement.....	16
4.6. Antenna Requirements	25
5. LIST OF MEASURING EQUIPMENTS	26
6. TEST LOCATION.....	27
7. TAF CERTIFICATE OF ACCREDITATION	28
APPENDIX A. PHOTOGRAPHS OF EUT.....	A1 ~ A4
APPENDIX B. TEST PHOTOS.....	B1 ~ B6

History of This Test Report

Original Issue Date: May 24, 2010

Report No.: FR051214

- No additional attachment.
- Additional attachment were issued as following record:

1. CERTIFICATE OF COMPLIANCE

Product Name : 433MHz TPMS
Brand Name : Aptos Design Lab.
Model Name : ADST001-T
Applicant : Aptos Technology Inc.
Test Rule Part(s) : 47 CFR FCC Part 15 Subpart C § 15.231

Sportun International as requested by the applicant to evaluate the EMC performance of the product sample received on May 12, 2010 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

A handwritten signature in black ink that reads 'Jordan Hsiao 2010.5.28'.

Reviewed By:

Jordan Hsiao

2. SUMMARY OF THE TEST RESULT

Applied Standard: 47 CFR FCC Part 15 Subpart C				
Part	Rule Section	Description of Test	Result	Under Limit
-	15.207	AC Power Line Conducted Emissions	-	-
4.1	-	Duty Factor	-	-
4.2	15.231(e)	Field Strength of Fundamental Emissions	Complies	6.26 dB
4.3	15.231(c)	20dB Spectrum Bandwidth	Complies	-
4.4	15.231(e)	Period Time / Operation Restriction	Complies	-
4.5	15.231(e)	Radiated Emissions	Complies	9.20 dB
4.6	15.203	Antenna Requirements	Complies	-

Note:
The Power Supply of this EUT is a DC-powered equipment (DC voltage).
Conduced Powerline tests are not applicable for this EUT.

Test Items	Uncertainty	Remark
AC Power Line Conducted Emissions	±2.3dB	Confidence levels of 95%
Field Strength of Fundamental Emissions	±1.9dB	Confidence levels of 95%
20dB Spectrum Bandwidth	±8.5×10 ⁻⁸	Confidence levels of 95%
Radiated Emissions (9kHz~30MHz)	±0.8dB	Confidence levels of 95%
Radiated Emissions (30MHz~1000MHz)	±1.9dB	Confidence levels of 95%
Radiated Emissions (1GHz~18GHz)	±1.9dB	Confidence levels of 95%
Temperature	±0.7°C	Confidence levels of 95%
Humidity	±3.2%	Confidence levels of 95%
DC / AC Power Source	±1.4%	Confidence levels of 95%

3. GENERAL INFORMATION

3.1. Product Details

Items	Description	
Power Type	From Battery (DC 3V) ; Car Charger (DC 12V)	
Modulation	FSK	
Channel Number	1	
Channel Band Width (99%)	196.00 kHz	
Max. Field Strength	86.61 dBuV/m at 3m	
Carrier Frequencies	433.92 MHz	
Antenna 1	Antenna Type	Internal Antenna (Without any antenna connector)
	Antenna Gain	-7.86dBi
<p>Note:</p> <p>The EUT is a set of two units, one supports TX function (TX device), and another supports RX function (RX device). Those two devices will sell to the market together.</p>		

3.2. Accessories

Power	Model	Rating
Battery	RAYOVAC BR1632	3VDC

3.3. Table for Carrier Frequencies

Frequency Band
433.92 MHz

3.4. Table for Test Modes

Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Antenna
Field Strength of Fundamental Emissions	CTX	1
20dB Spectrum Bandwidth		
Period Time	Normal Use	1
Radiated Emissions 9kHz~30MHz	-	1
Radiated Emissions 9kHz~10 th Harmonic	CTX	1

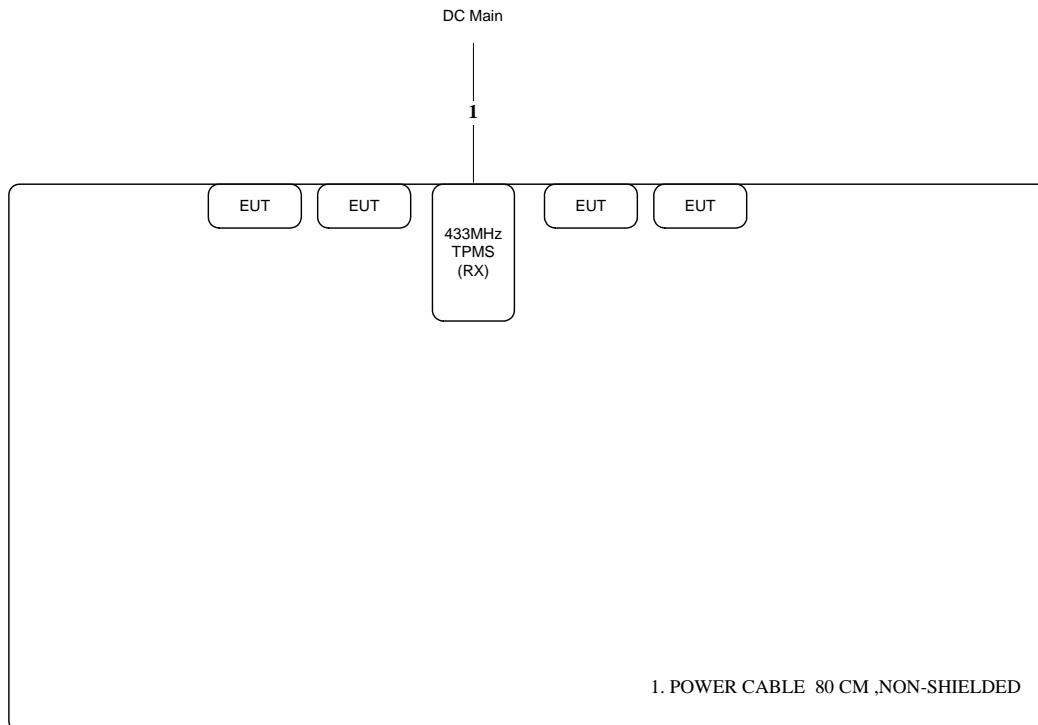
Note: CTX=continuously transmitting

3.5. Table for Testing Locations

Test Site No.	Site Category	Location	FCC Reg. No.	IC File No.	VCCI Reg. No
03CH03-HY	SAC	Hwa Ya	480872	IC 4086	-
TH01-HY	OVEN Room	Hwa Ya	-	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC); Fully Anechoic Chamber (FAC).

Please refer section 6 for Test Site Address.


3.6. Table for Supporting Units

Support Unit	Brand	Model	FCC ID
433MHz TPMS	Aptos Design Lab.	ADST002-R	N/A

3.7. Test Configurations

3.7.1. Radiation Emissions Test Configuration

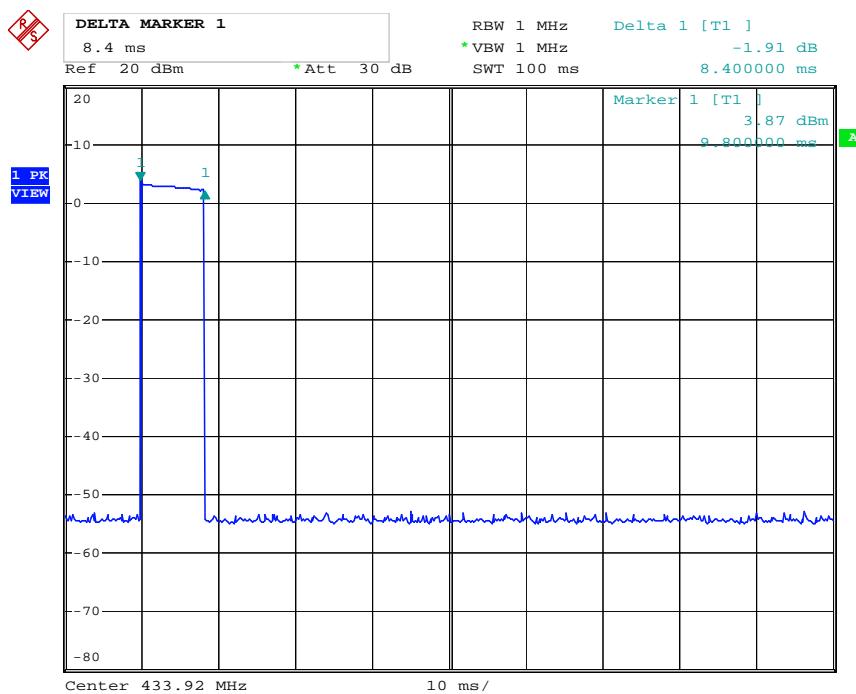
Test Configuration: Below 1GHz

Test Configuration: Above 1GHz

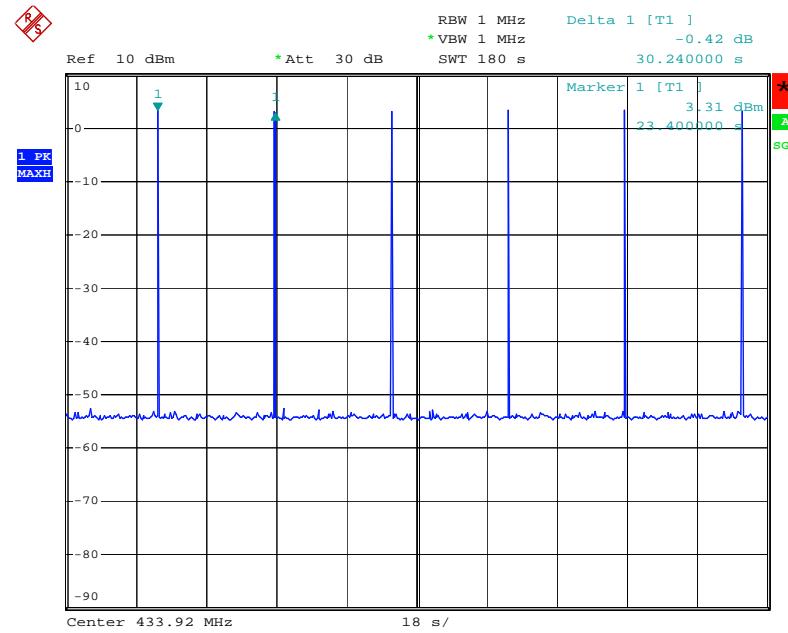
4. TEST RESULT

4.1. Duty Factor Measurement

4.1.1. Limit


None. For reporting purposes only.

4.1.2. Test Result of Duty Factor


Temperature	21°C	Humidity	60%
Test Engineer	Sam Chen	Configurations	433.92 MHz
Test Date	May 16, 2010		

TX-on (ms)	TX-on+TX-off (ms)	Duty cycle (%)	Correction Factor (dB)
8.4000	100	8.4	-21.51

TX_on Plot

Date: 17.JUN.2010 20:59:25

TX_on + TX_off Plot

Date: 3.MAY.2010 12:00:22

4.2. Field Strength of Fundamental Emissions Measurement

4.2.1. Limit

Devices complying with 47 CFR FCC Part 15 Subpart C, section 15.231(e). The field strength of emissions from intentional radiators at 3 meters operated under this Section shall not exceed the following:

Frequency Band (MHz)	Fundamental Emissions Limit (uV/m) at 3m
40.66-40.70	1000
70-130	500
130-174	500-1500(**)
174-260	1500
260-470	1500-5000(**)
Above 470	5000

** 1. Linear interpolations, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

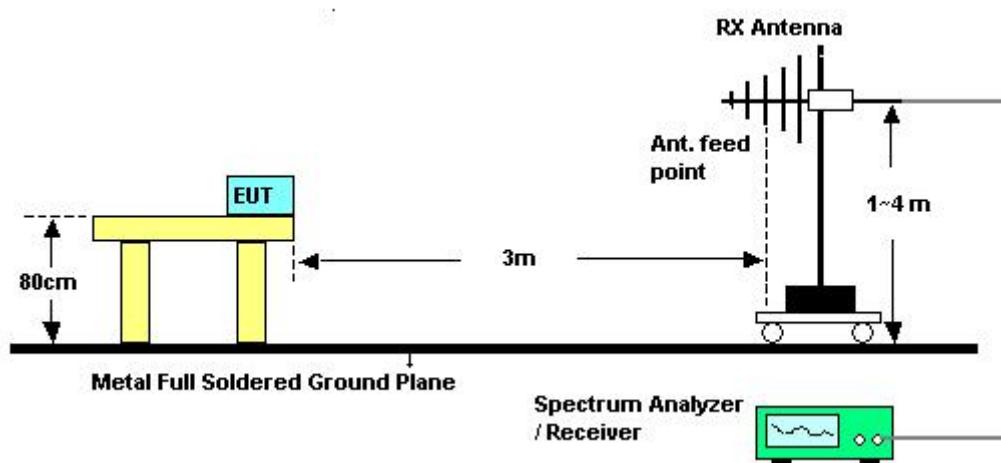
(1) for the band 130 - 174 MHz, μ V/m at 3 meters = $22.72727 \times (\text{operating frequency, MHz}) - 2454.545$;

(2) for the band 260 - 470 MHz, μ V/m at 3 meters = $16.6667 \times (\text{operating frequency, MHz}) - 2833.3333$.

So the field strength of emission limits have been calculated in below table.

Carrier Frequency (MHz)	Fundamental Emissions Limit (dBuV/m) at 3m
433.92 MHz	72.87 (Average)
433.92 MHz	92.87 (Peak)

4.2.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameter	Setting
Attenuation	Auto
Center Frequency	Fundamental Frequency
RB	120 kHz
Detector	Peak / Average

4.2.3. Test Procedures

1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
5. For Fundamental emissions, use the receiver to measure peak and average reading.
6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.2.7. Test Result of Field Strength of Fundamental Emissions

Temperature	26°C	Humidity	56%
Test Engineer	Sam Chen	Configurations	433.92 MHz
Test Date	Apr. 21, 2010		

Horizontal

Freq	Level	Limit	Over	Read	Cable	Antenna	Preamp	T/Pos	A/Pos	Remark	Pol/Phase
		Line	Limit	Level	Loss	Factor	Factor	deg	cm		
MHz	dBuV/m	dBuV/m		dB	dBuV	dB	dB/m	dB	deg		
1	433.87	79.92	92.87	-12.95	89.74	1.12	17.00	27.94	163	100 Peak	HORIZONTAL
2	433.88	58.41	72.87	-14.46	40.29	1.12	17.00	0.00	163	100 Average	HORIZONTAL

Vertical

Freq	Level	Limit	Over	Read	Cable	Antenna	Preamp	T/Pos	A/Pos	Remark	Pol/Phase
		Line	Limit	Level	Loss	Factor	Factor	deg	cm		
MHz	dBuV/m	dBuV/m		dB	dBuV	dB	dB/m	dB	deg		
1	433.98	65.10	72.87	-7.77	46.98	1.12	17.00	0.00	333	100 Average	VERTICAL
2	434.02	86.61	92.87	-6.26	96.41	1.12	17.02	27.94	333	100 Peak	VERTICAL

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Peak level: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Average Level = Peak level + Correction Factor

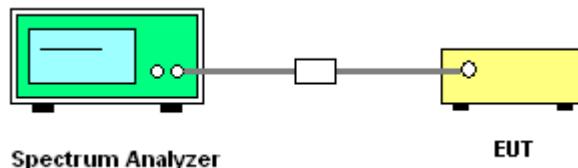
4.3. 20dB Spectrum Bandwidth Measurement

4.3.1. Limit

The bandwidth of the emissions shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. So the emission bandwidth limits have been calculated in below table.

Fundamental Frequency	20dB Bandwidth Limits (kHz)
433.92 MHz	1084.80

4.3.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 20dB Bandwidth
RB	10 kHz
VB	10 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.3.3. Test Procedures

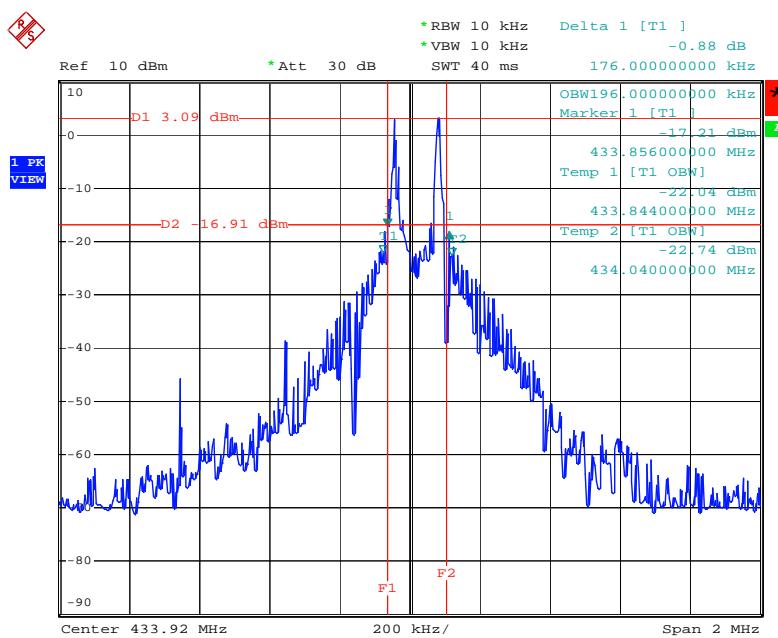
1. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
2. The resolution bandwidth of 10 kHz and the video bandwidth of 10 kHz were used.
3. Measured the spectrum width with power higher than 20dB below carrier.

4.3.4. Test Setup Layout

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test


The EUT was programmed to be in continuously transmitting mode.

4.3.7. Test Result of 20dB Spectrum Bandwidth

Temperature	26°C	Humidity	56%
Test Engineer	Sam Chen	Configurations	433.92 MHz

Frequency	20dB BW (kHz)	99% OBW (kHz)	Limits (kHz)	Test Result
433.92	176.00	196.00	1084.80	Complies

20 dB/99% Bandwidth Plot on 433.92 MHz

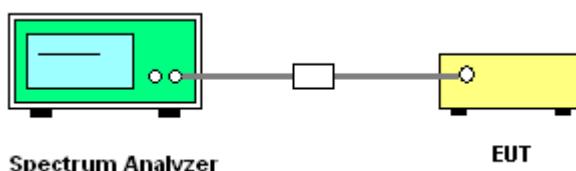
Date: 3.MAY.2010 10:58:54

4.4. Period Time / Operation Restriction Measurement

4.4.1. Limit

The device is provided with a means for automatically limiting operation so that the duration of each transmissions is not greater than one second and the silent period between transmissions is at least 30 times the duration of the transmission but in no case less than 10 seconds.

4.4.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	0 MHz
RB	1000 kHz
VB	1000 kHz
Detector	Peak
Trace	Single Trigger
Attenuation	Auto

4.4.3. Test Procedures

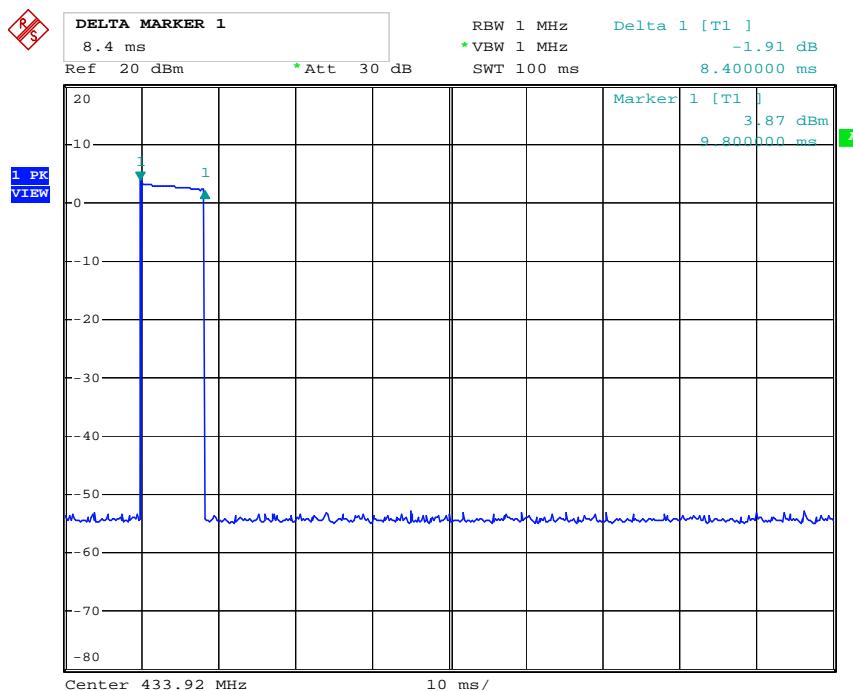
1. The transmitter output (antenna port) was connected to the spectrum analyser
2. Set RBW of spectrum analyzer to 1000kHz and VBW to 1000kHz.
3. Use a video trigger with the trigger level set to enable triggering only on full pulses.
4. Sweep Time is more than once pulse time.
5. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
6. Measure the maximum periodic transmissions time of the EUT in one hour .

4.4.4. Test Setup Layout

4.4.5. Test Deviation

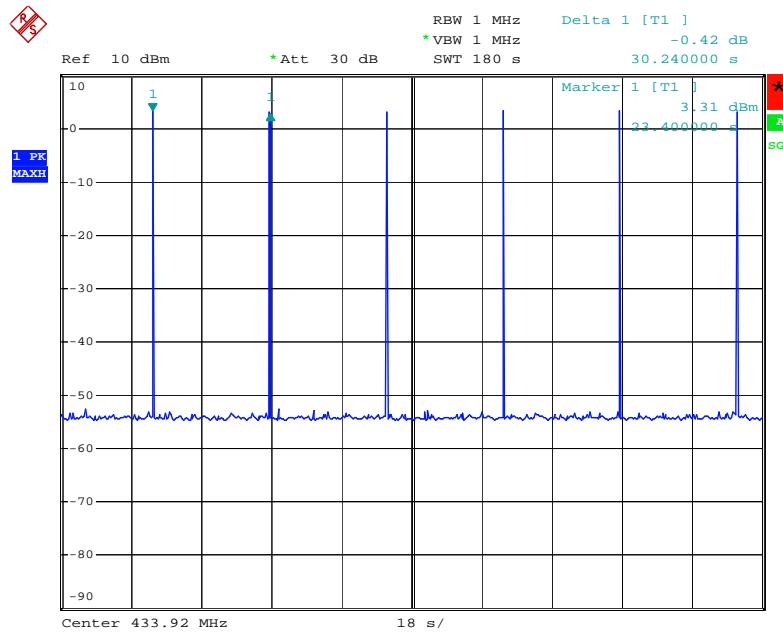
There is no deviation with the original standard.

4.4.6. EUT Operation during Test


The EUT is in normal operation.

4.4.7. Test Result of Periodic Transmissions Time

Temperature	26°C	Humidity	56%
Test Engineer	Sam Chen	Configurations	Normal Use


Operation Condition	Pulse Duration	Limits
Transmission time (TX-on) (ms)	8.4000	1000.0000
Silent duration (TX-on+TX-off) (ms)	30240.0000	10000.0000
Silent period versus transmission time ratio (times)	3600.0000	30.0000

Transmission time Plot

Date: 17.JUN.2010 20:59:25

Silent Duration Transmissions Time Plot

Date: 3.MAY.2010 12:00:22

4.5. Radiated Emissions Measurement

4.5.1. Limit

Devices complying with 47 CFR FCC Part 15 Subpart C, section 15.231(e). The field strength of emissions from intentional radiators at 3 meters operated under this Section shall not exceed the following:

Frequency Band (MHz)	Spurious Emissions Limit (μ V/m) at 3m
40.66-40.70	100
70-130	50
130-174	50-150(**)
174-260	150
260-470	150-500(**)
Above 470	500

** 1. Linear interpolations, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

- (1) for the band 130 - 174 MHz, μ V/m at 3 meters = $22.72727 \times (\text{operating frequency, MHz}) - 2454.545$;
- (2) for the band 260 - 470 MHz, μ V/m at 3 meters = $16.6667 \times (\text{operating frequency, MHz}) - 2833.3333$.
- (3) The maximum permitted unwanted emissions level is 20 dB below the maximum permitted fundamental level. In addition field strength of any emissions which appear inside of the restriction band shall not exceed the general radiated emissions limits in Section 15.209(a).

Frequencies (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	$2400/F(\text{KHz})$	300
0.490~1.705	$24000/F(\text{KHz})$	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

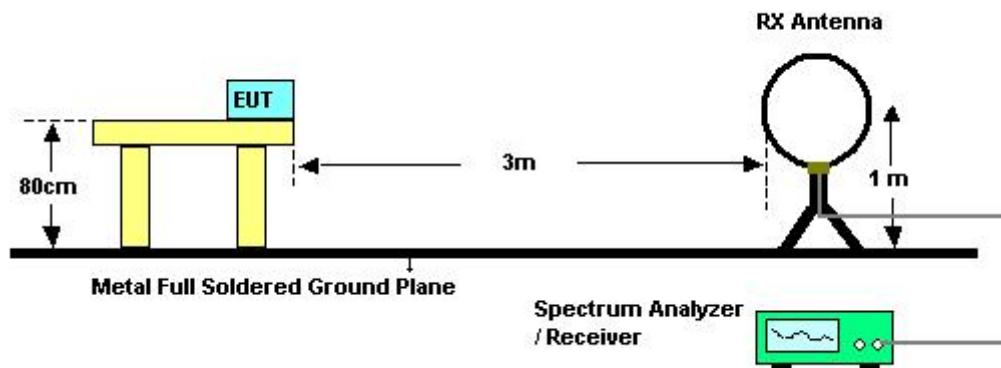
4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

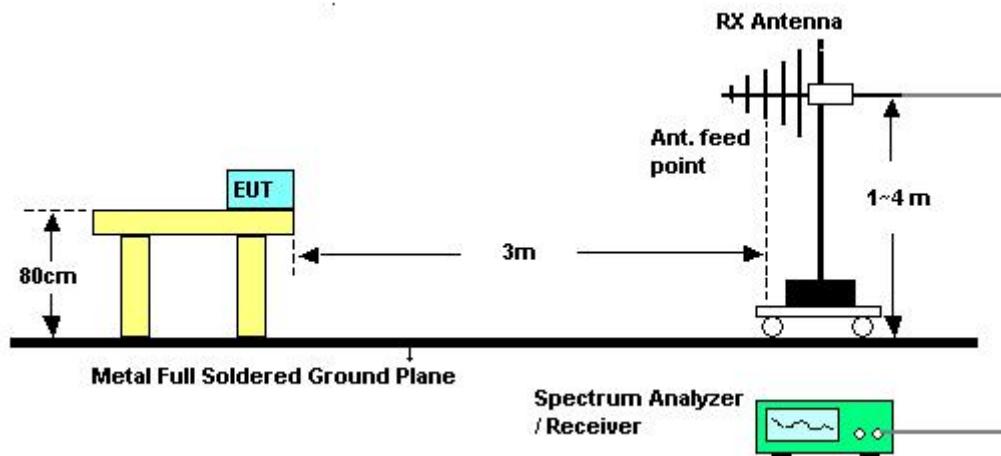
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	100KHz / 100KHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

4.5.3. Test Procedures


1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the

field strength is at its maximum value.


8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High – Low scan is not required in this case.

4.5.4. Test Setup Layout

For radiated emissions below 30MHz

For radiated emissions above 30MHz

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

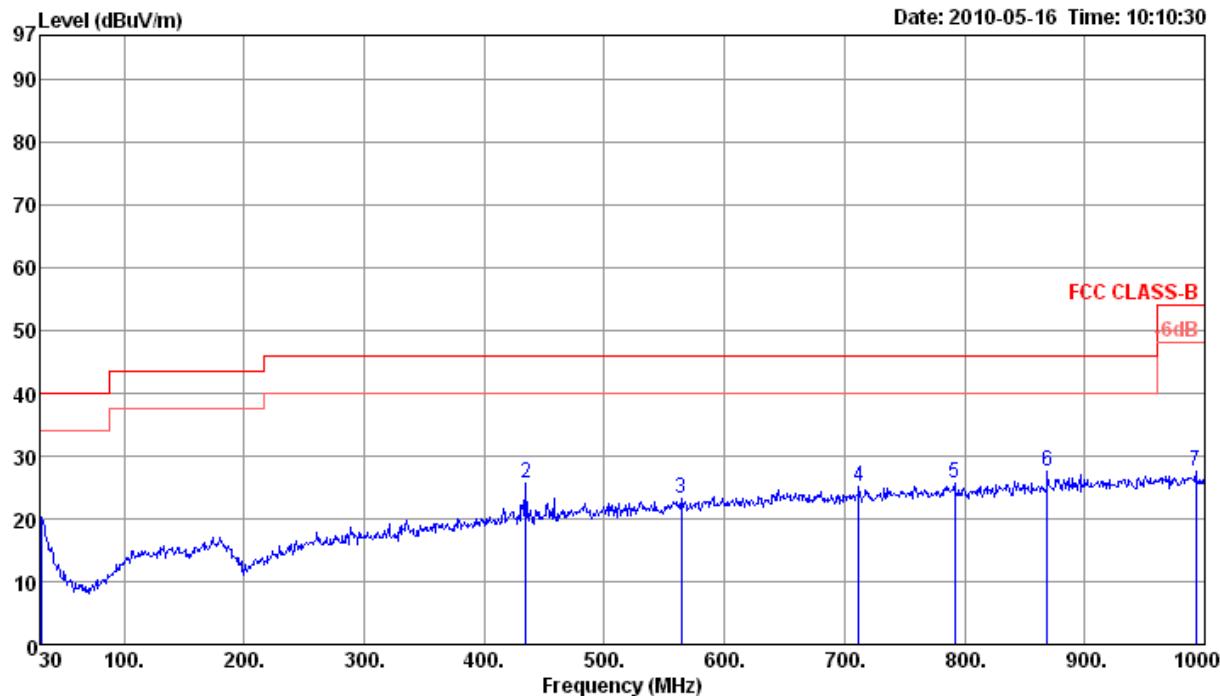
4.5.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	24°C	Humidity	56%
Test Engineer	Sam Chen	Configurations	Normal Link
Evaluating Date	May 16, 2010		

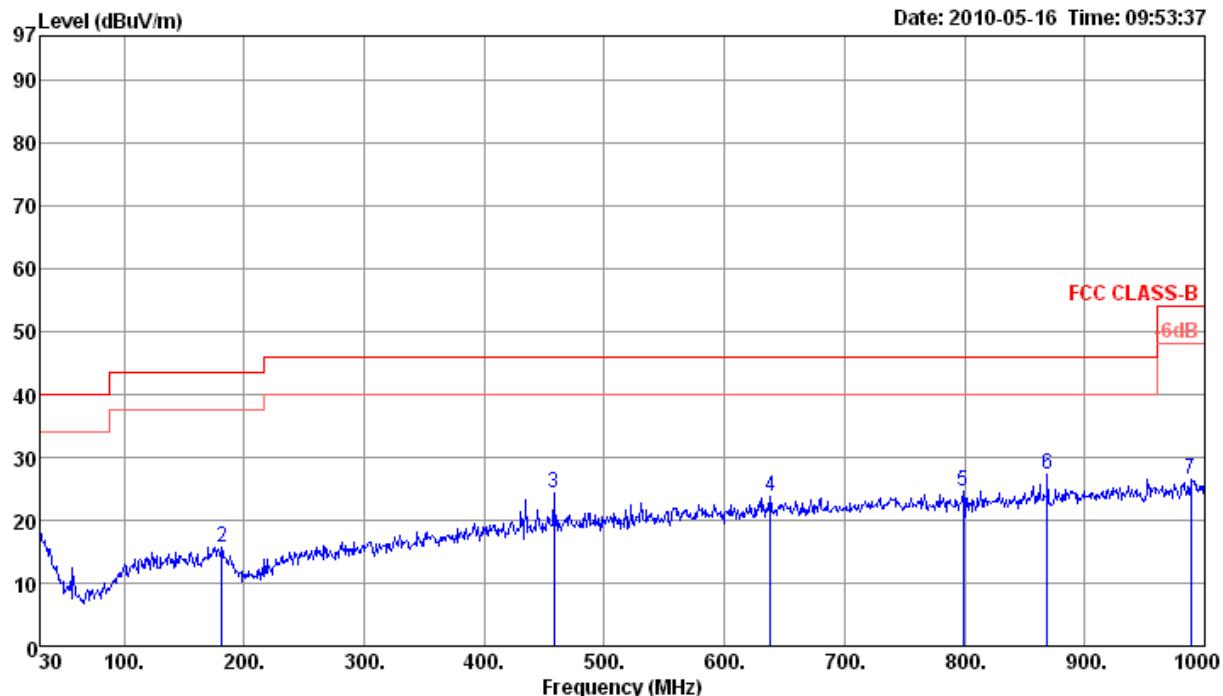
Freq. (MHz)	Level (dBuV)	Over Limit (dB)	Limit Line (dBuV)	Remark
-	-	-	-	See Note

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.


Distance extrapolation factor = $40 \log (\text{specific distance} / \text{test distance})$ (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.


4.5.8. Results of Radiated Emissions (30MHz~1GHz and 2th Harmonic)

Temperature	24°C	Humidity	56%
Test Engineer	Sam Chen	Configurations	Normal Link

Horizontal

Freq MHz	Level dBuV/m	Limit Line dBuV/m	Over Limit dB	Read Level dBuV	Cable Loss			Preamp Factor	Antenna Factor	T/Pos deg	A/Pos cm	Remark	Pol/Phase
					dB	dB	dB/m						
1	30.97	20.18	40.00	-19.82	29.26	0.50	27.80	18.22	0	400	Peak		HORIZONTAL
2	434.49	25.57	46.00	-20.43	34.23	2.51	27.77	16.60	0	400	Peak		HORIZONTAL
3	564.47	23.17	46.00	-22.83	30.08	2.83	28.10	18.36	0	400	Peak		HORIZONTAL
4	711.91	25.01	46.00	-20.99	30.44	3.35	27.95	19.17	0	400	Peak		HORIZONTAL
5	791.45	25.66	46.00	-20.34	30.26	3.33	27.64	19.71	0	400	Peak		HORIZONTAL
6 P	869.05	27.44	46.00	-18.56	31.13	3.48	27.46	20.29	0	400	Peak		HORIZONTAL
7	992.24	27.59	54.00	-26.41	29.71	3.68	27.03	21.23	0	400	Peak		HORIZONTAL

Vertical

Freq	Level	Limit	Over	Read	Cable			Preamp	Antenna	T/Pos	A/Pos	Remark	Pol/Phase	
					Line	Limit	dB	dBuV	dB	dB	dB/m	deg	cm	
MHz	dBuV/m	dBuV/m												
1	30.00	18.96	40.00	-21.04	27.50	0.50	27.80	18.76	0	100	Peak		VERTICAL	
2	181.32	15.71	43.50	-27.79	28.36	1.60	27.19	12.94	0	100	Peak		VERTICAL	
3	457.77	24.32	46.00	-21.68	32.61	2.62	27.88	16.97	0	100	Peak		VERTICAL	
4	638.19	23.82	46.00	-22.18	29.86	3.13	28.06	18.89	0	100	Peak		VERTICAL	
5	799.21	24.46	46.00	-21.54	29.01	3.30	27.61	19.76	0	100	Peak		VERTICAL	
6 P	869.05	27.38	46.00	-18.62	31.07	3.48	27.46	20.29	0	100	Peak		VERTICAL	
7	988.36	26.42	54.00	-27.58	28.59	3.68	27.05	21.20	0	100	Peak		VERTICAL	

Temperature	24°C	Humidity	56%
Test Engineer	Sam Chen	Configurations	TX Mode
Test Date	May 16, 2010		

Horizontal

Freq	Level	Limit		Over Limit	Read Level	Cable	Antenna	Preamp	T/Pos	A/Pos	Remark	Pol/Phase
		Line	dB			dBuV	dB	dB/m	dB	deg		
1	867.74	43.67	52.87	-9.20	48.28	1.60	21.41	27.62	243	100	Average	HORIZONTAL
2	868.02	51.06	72.87	-21.81	55.67	1.60	21.41	27.62	243	100	Peak	HORIZONTAL

Vertical

Freq	Level	Limit		Over Limit	Read Level	Cable	Antenna	Preamp	T/Pos	A/Pos	Remark	Pol/Phase
		Line	dB			dBuV	dB	dB/m	dB	deg		
1	867.75	43.57	52.87	-9.30	48.18	1.60	21.41	27.62	279	143	Average	VERTICAL
2	868.02	50.85	72.87	-22.02	55.46	1.60	21.41	27.62	279	143	Peak	VERTICAL

4.5.9. Results for Radiated Emissions (1GHz~10th Harmonic)

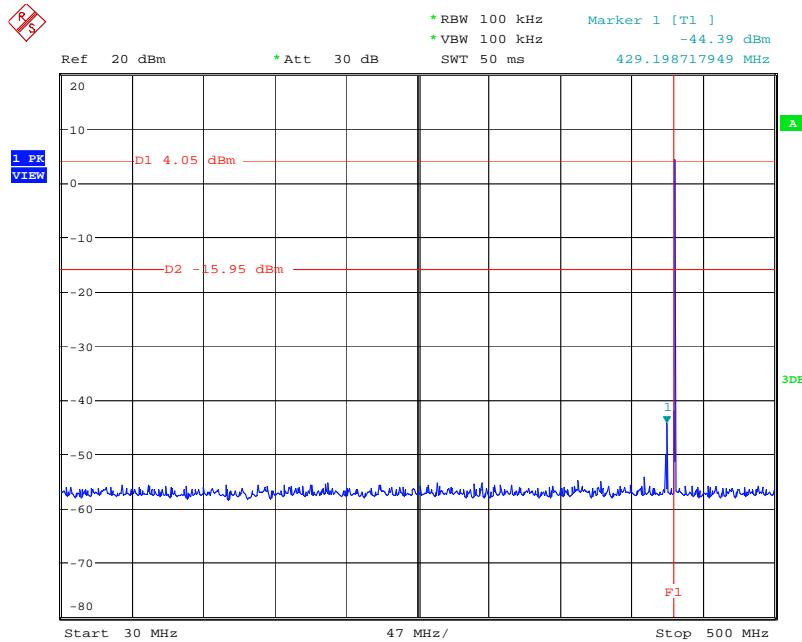
Temperature	24°C	Humidity	56%
Test Engineer	Sam Chen	Configurations	433.92 MHz
Test Date	May 16, 2010		

Horizontal

Freq	Level	Limit		Over Limit	Read Level	Cable		Antenna Factor	Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
		Line	dB			dBuV	dB						
		MHz	dBuV/m	dBuV/m	dB	dB	dB/m	dB	deg	cm			
1	1735.49	38.34	72.87	-34.53	45.06	2.31	26.30	35.33	301	100	Peak	HORIZONTAL	
2	1735.87	27.91	52.87	-24.96	34.63	2.31	26.30	35.33	301	100	Average	HORIZONTAL	

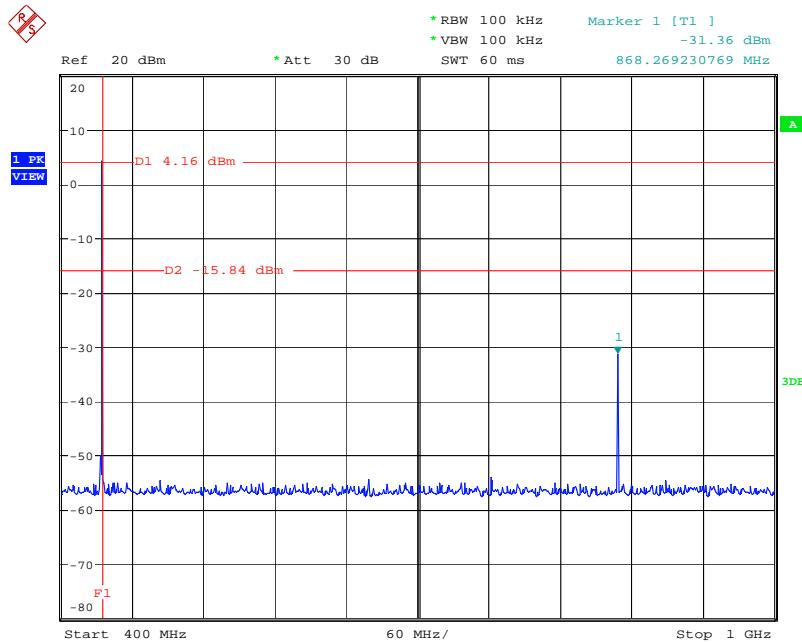
Vertical

Freq	Level	Limit		Over Limit	Read Level	Cable		Antenna Factor	Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
		Line	dB			dBuV	dB						
		MHz	dBuV/m	dBuV/m	dB	dB	dB/m	dB	deg	cm			
1	1735.75	39.89	52.87	-12.98	46.61	2.31	26.30	35.33	261	104	Average	VERTICAL	
2	1736.13	44.40	72.87	-28.47	51.12	2.31	26.30	35.33	261	104	Peak	VERTICAL	


Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).


Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

For Emission not in Restricted Band
Low Band Edge Plot on 433.92 MHz

Date: 16.MAY.2010 11:44:34

High Band Edge Plot on 433.92 MHz

Date: 16.MAY.2010 11:49:27

4.6. Antenna Requirements

4.6.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.6.2. Antenna Connector Construction

Please refer to section 3.1 in this test report, antenna connector complied with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30 MHz - 1 GHz 3m	Jun. 07, 2009	Radiation (03CH03-HY)
Amplifier	SCHAFFNER	COA9231A	18667	9 kHz - 2 GHz	Jan. 24, 2010	Radiation (03CH03-HY)
Amplifier	Agilent	8449B	3008A02120	1 GHz - 26.5 GHz	Jul. 21, 2009	Radiation (03CH03-HY)
Amplifier	MITEQ	AMF-6F-260400	9121372	26.5 GHz - 40 GHz	Apr. 06, 2009*	Radiation (03CH03-HY)
Spectrum Analyzer	R&S	FSP40	100004	9 kHz - 40 GHz	Oct. 03, 2009	Radiation (03CH03-HY)
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz - 30 MHz	Jul. 28, 2008*	Radiation (03CH03-HY)
Bilog Antenna	SCHAFFNER	CBL 6112D	22237	30 MHz - 1 GHz	Sep. 26, 2009	Radiation (03CH03-HY)
Horn Antenna	EMCO	3115	6741	1GHz ~ 18GHz	Apr. 28, 2009	Radiation (03CH03-HY)
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15 GHz - 40 GHz	Jan. 11, 2010	Radiation (03CH03-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	30 MHz - 1 GHz	Jan. 05, 2010	Radiation (03CH03-HY)
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1 GHz - 40 GHz	Jan. 05, 2010	Radiation (03CH03-HY)
Turn Table	HD	DS 420	420/650/00	0 - 360 degree	N/A	Radiation (03CH03-HY)
Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (03CH03-HY)
Spectrum Analyzer	R&S	FSU26.5	100015	20Hz ~ 26.5GHz	Oct. 29, 2009	Conducted (TH01-HY)
Power Meter	R&S	NRVS	100444	DC ~ 40GHz	Jul. 31, 2009	Conducted (TH01-HY)
Power Sensor	R&S	NRV-Z51	100666	DC ~ 30GHz	Aug. 05, 2009	Conducted (TH01-HY)
Power Sensor	R&S	NRV-Z32	100057	30MHz ~ 6GHz	Jul. 31, 2009	Conducted (TH01-HY)
AC Power Source	HPC	HPA-500W	HPA-9100024	AC 0 ~ 300V	Jul. 12, 2009*	Conducted (TH01-HY)
DC Power Source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Mar. 13, 2010	Conducted (TH01-HY)
Temp. and Humidity Chamber	Giant Force	GTH-225-20-S	MAB0103-001	N/A	Aug. 06, 2009	Conducted (TH01-HY)
RF CABLE-1m	Jye Bao	RG142	CB034-1m	20MHz ~ 7GHz	Dec. 02, 2009	Conducted (TH01-HY)
RF CABLE-2m	Jye Bao	RG142	CB035-2m	20MHz ~ 1GHz	Dec. 02, 2009	Conducted (TH01-HY)
Vector Signal Generator	R&S	SMU200A	102098	100kHz ~ 6GHz	Feb. 13, 2010	Conducted (TH01-HY)
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Mar. 25, 2010	Conducted (TH01-HY)
Power Sensor	Anritsu	MA2411B	0917017	300MHz~40GHz	Dec. 03, 2009	Conducted (TH01-HY)
Power Meter	Anritsu	ML2495A	0949003	300MHz~40GHz	Dec. 03, 2009	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is one year.

Note: For "*" Calibration Interval of instruments listed above is two years.

6. TEST LOCATION

SHIJR	ADD : 6Fl., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C. TEL : 886-2-2696-2468 FAX : 886-2-2696-2255
HWA YA	ADD : No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. TEL : 886-3-327-3456 FAX : 886-3-318-0055
LINKOU	ADD : No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C TEL : 886-2-2601-1640 FAX : 886-2-2601-1695
DUNGHU	ADD : No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C. TEL : 886-2-2631-4739 FAX : 886-2-2631-9740
JUNGHE	ADD : 7Fl., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C. TEL : 886-2-8227-2020 FAX : 886-2-8227-2626
NEIHU	ADD : 4Fl., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C. TEL : 886-2-2794-8886 FAX : 886-2-2794-9777
JHUBEI	ADD : No.8, Lane 728, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C. TEL : 886-3-656-9065 FAX : 886-3-656-9085

7. TAF CERTIFICATE OF ACCREDITATION

Certificate of Accreditation

This is to certify that

Sporton International Inc.
EMC & Wireless Communications Laboratory
No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien,
Taiwan, R.O.C.

is accredited in respect of laboratory

Accreditation Criteria : ISO/IEC 17025:2005
Accreditation Number : 1190
Originally Accredited : December 15, 2003
Effective Period : January 10, 2010 to January 09, 2013
Accredited Scope : Testing Field, see described in the Appendix
Specific Accreditation Program : Accreditation Program for Designated Testing Laboratory
for Commodities Inspection
Accreditation Program for Telecommunication Equipment
Testing Laboratory
Accreditation Program for BSMI Mutual Recognition
Arrangement with Foreign Authorities

Jay-San Chen
President, Taiwan Accreditation Foundation
Date : December 30, 2009

P1, total 22 pages

The Appendix forms an integral part of this Certificate, which shall be invalid when use without the Appendix