

**Amber Helm Development L.C.**  
92723 Michigan Hwy-152  
Sister Lakes, Michigan 49047 USA  
Tel: 888-847-8027

**ALGACA-WR2426USB**  
Issued: August 15, 2024

# Specific Host Test Report

regarding

**USA: CFR Title 47, Part 15.225 (Emissions)**

for



## Access Escutcheon

Category: Specific Host

Judgments:

Complies with FCC Part 15.209, and ISED RSS-210v10

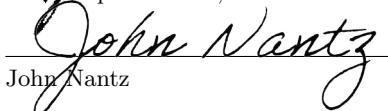
Testing Completed: August 14, 2024



Prepared for:

## Allegion, PLC

11819 North Pennsylvania Street, Carmel Indiana 46032 USA


Phone: +1 (317) 810-3362, Fax: +1 (317) 810-3193

Contact: Frank Nardelli, Frank.Nardelli@allegion.com

Data Rec./Rev. by:

  
Dr. Joseph Brunett, EMC-002790-NE

Rpt. Prep./Rev. by:

  
John Nantz

Rpt. Auth. by:

  
Dr. Joseph Brunett, EMC-002790-NE

Date of Issue:

August 15, 2024

## Revision History

| Rev. No. | Date             | Details               | Revised By |
|----------|------------------|-----------------------|------------|
| r0       | August 15, 2024  | Initial Release.      | J. Brunett |
| r1       | August 27, 2024  | Add band edge plot.   | J. Brunett |
| r2       | October 28, 2024 | Corrected DXX to DCD. | J. Brunett |

## Contents

|                                                                             |           |
|-----------------------------------------------------------------------------|-----------|
| <b>Revision History</b>                                                     | <b>2</b>  |
| <b>Table of Contents</b>                                                    | <b>2</b>  |
| <b>1 Test Report Scope and Limitations</b>                                  | <b>4</b>  |
| 1.1 Laboratory Authorization . . . . .                                      | 4         |
| 1.2 Report Retention . . . . .                                              | 4         |
| 1.3 Subcontracted Testing . . . . .                                         | 4         |
| 1.4 Test Data . . . . .                                                     | 4         |
| 1.5 Limitation of Results . . . . .                                         | 4         |
| 1.6 Copyright . . . . .                                                     | 4         |
| 1.7 Endorsements . . . . .                                                  | 4         |
| 1.8 Test Location . . . . .                                                 | 5         |
| 1.9 Traceability and Equipment Used . . . . .                               | 5         |
| <b>2 Test Specifications and Procedures</b>                                 | <b>6</b>  |
| 2.1 Test Specification and General Procedures . . . . .                     | 6         |
| <b>3 Configuration and Identification of the Equipment Under Test</b>       | <b>7</b>  |
| 3.1 Description and Declarations . . . . .                                  | 7         |
| 3.1.1 EUT Configuration . . . . .                                           | 8         |
| 3.1.2 Modes of Operation . . . . .                                          | 8         |
| 3.1.3 Variants . . . . .                                                    | 8         |
| 3.1.4 Test Samples . . . . .                                                | 8         |
| 3.1.5 Functional Exerciser . . . . .                                        | 8         |
| 3.1.6 Modifications Made . . . . .                                          | 8         |
| 3.1.7 Production Intent . . . . .                                           | 8         |
| 3.1.8 Declared Exemptions and Additional Product Notes . . . . .            | 8         |
| <b>4 Emissions</b>                                                          | <b>9</b>  |
| 4.1 General Test Procedures . . . . .                                       | 9         |
| 4.1.1 Radiated Test Setup and Procedures . . . . .                          | 9         |
| 4.1.2 Power Supply Variation . . . . .                                      | 13        |
| 4.2 Intentional Emissions . . . . .                                         | 14        |
| 4.2.1 Fundamental Emission Pulsed Operation (PREVIOUSLY TESTED) . . . . .   | 14        |
| 4.2.2 Fundamental Emission Occupied Bandwidth (PREVIOUSLY TESTED) . . . . . | 14        |
| 4.2.3 Fundamental Emission . . . . .                                        | 15        |
| 4.3 Unintentional Emissions . . . . .                                       | 16        |
| 4.3.1 Transmit Chain Spurious Emissions . . . . .                           | 16        |
| <b>5 Measurement Uncertainty and Accreditation Documents</b>                | <b>18</b> |
| <b>6 ANNEX A - Test Plan</b>                                                | <b>19</b> |

## List of Tables

|                                                       |    |
|-------------------------------------------------------|----|
| 1.8.0 Test Site List. . . . .                         | 5  |
| 1.9.0 Equipment List. . . . .                         | 5  |
| 3.1.0 EUT Declarations. . . . .                       | 7  |
| 4.2.3 Fundamental Radiated Emissions. . . . .         | 15 |
| 4.3.1 (i) Transmit Chain Spurious Emissions. . . . .  | 16 |
| 4.3.1 (ii) Transmit Chain Spurious Emissions. . . . . | 17 |
| 5.0.0 Measurement Uncertainty. . . . .                | 18 |

## List of Figures

|                                                                  |    |
|------------------------------------------------------------------|----|
| 3.1.0 Photos of EUT. . . . .                                     | 7  |
| 3.1.1 EUT Test Configuration Diagram. . . . .                    | 8  |
| 4.1.1 Radiated Emissions Diagram of the EUT. . . . .             | 9  |
| 4.1.1 (i) Radiated Emissions Test Setup Photograph(s). . . . .   | 10 |
| 4.1.1 (ii) Radiated Emissions Test Setup Photograph(s). . . . .  | 11 |
| 4.1.1 (iii) Radiated Emissions Test Setup Photograph(s). . . . . | 12 |
| 5.0.0 Accreditation Documents . . . . .                          | 18 |

## 1 Test Report Scope and Limitations

### 1.1 Laboratory Authorization

Test Facility description and attenuation characteristics are on file with the FCC Laboratory, Columbia, Maryland (FCC Reg. No: US5348 and US5356) and with ISED Canada, Ottawa, ON (File Ref. No: 3161A and 24249). Amber Helm Development L.C. holds accreditation under NVLAP Lab Code 200129-0.

### 1.2 Report Retention

For equipment verified to comply with the regulations herein, the manufacturer is obliged to retain this report with the product records for the life of the product, and no less than ten years. A copy of this Report will remain on file with this laboratory until September 2034.

### 1.3 Subcontracted Testing

This report does not contain data produced under subcontract.

### 1.4 Test Data

This test report contains data included within the laboratory's scope of accreditation. Any data in this report that is not covered under the laboratory's scope is clearly identified.

### 1.5 Limitation of Results

The test results contained in this report relate only to the item(s) tested. Any electrical or mechanical modification made to the test item subsequent to the test date shall invalidate the data presented in this report. Any electrical or mechanical modification made to the test item subsequent to this test date shall require reevaluation.

### 1.6 Copyright

This report shall not be reproduced, except in full, without the written approval of Amber Helm Development L.C.

### 1.7 Endorsements

This report shall not be used to claim product endorsement by any accrediting, regulatory, or governmental agency.

## 1.8 Test Location

The EUT was fully tested by **Amber Helm Development L.C.**, headquartered at 92723 Michigan Hwy-152, Sister Lakes, Michigan 49047 USA. Table 1.8.0 lists all sites employed herein. Specific test sites utilized are also listed in the test results sections of this report where needed.

Table 1.8.0 Test Site List.

| Description    | Location                                            | Quality Num. |
|----------------|-----------------------------------------------------|--------------|
| OATS (3 meter) | 3615 E Grand River Rd., Williamston, Michigan 48895 | OATSD        |

## 1.9 Traceability and Equipment Used

Pertinent test equipment used for measurements at this facility is listed in Table 1.9.0. The quality system employed at Amber Helm Development L.C. has been established to ensure all equipment has a clearly identifiable classification, calibration expiry date, and that all calibrations are traceable to the SI through NIST, other recognized national laboratories, accepted fundamental or natural physical constants, ratio type of calibration, or by comparison to consensus standards. All equipment is evaluated on a cycle no greater than 12 months following laboratory validation procedures and is calibrated following manufacturer recommended intervals.

Table 1.9.0 Equipment List.

| Description           | Manufacturer/Model | SN        | Quality Num. | Cal/Ver By / Date Due |
|-----------------------|--------------------|-----------|--------------|-----------------------|
| Spectrum Analyzer     | R & S / FSV30      | 101660    | RSFSV3001    | RS / Apr-2025         |
| Spectrum Analyzer     | R & S / FPC1500    | 101692    | RSFPC15001   | RS / Feb-2025         |
| Shielded Loop Antenna | EMCO / 6502        | 9502-2926 | EMCOLOOP1    | Keysight / Jul-2026   |
| Biconical             | EMCO / 93110B      | 9802-3039 | BICEMCO01    | Keysight / Aug-2025   |
| Log Periodic Antenna  | EMCO / 3146        | 9305-3614 | LOGEMCO01    | Keysight / Aug-2025   |

## 2 Test Specifications and Procedures

## 2.1 Test Specification and General Procedures

The goal of Allegion, PLC is to demonstrate that the Equipment Under Test (EUT) complies with the Rules and/or Directives below. Detailed in this report are the results of testing the Allegion, PLC Access Escutcheon for compliance to:

| Country/Region/Manu. | Rules or Directive          | Referenced Section(s)     |
|----------------------|-----------------------------|---------------------------|
| United States        | Code of Federal Regulations | CFR Title 47, Part 15.225 |

It has been determined that the equipment under test is subject to the rules and directives above at the date of this testing. In conjunction with these rules and directives, the following specifications and procedures are followed herein to demonstrate compliance (in whole or in part) with these regulations.

|                  |                                                                                                                                        |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| ANSI C63.4:2014  | ”Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz” |
| ANSI C63.10:2013 | ”American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices”                                       |
| WR-ITP0102RA     | ”AHD Internal Document - Radiated Emissions Test Method”                                                                               |
| WR-ITP0101LC     | ”AHD Internal Document - Conducted Emissions Test Method”                                                                              |

### 3 Configuration and Identification of the Equipment Under Test

#### 3.1 Description and Declarations

The EUT is an access card reader host containing a pre-certified radio module. The EUT is approximately (see photos) in dimension, and is depicted in Figure 3.1.0. It is powered by 6 VDC 4 x AA Alkaline Battery Pack. This product is used as an access reader host to enable key free access to a doorway. Table 3.1.0 outlines provider declared EUT specifications.



Figure 3.1.0 Photos of EUT.

Table 3.1.0 EUT Declarations.

#### General Declarations

|                     |               |
|---------------------|---------------|
| Equipment Type:     | Specific Host |
| Country of Origin:  | Not Declared  |
| Nominal Supply:     | 6 VDC         |
| Oper. Temp Range:   | Not Declared  |
| Frequency Range:    | 125 kHz       |
| Antenna Dimension:  | Integral      |
| Antenna Type:       | Integral      |
| Antenna Gain:       | Integral      |
| Number of Channels: | 1             |
| Channel Spacing:    | None          |
| Alignment Range:    | Not Declared  |
| Type of Modulation: | ASK           |

#### United States

|                 |                               |
|-----------------|-------------------------------|
| FCC ID Number:  | Contains FCC ID: XPB-47446672 |
| Classification: | DCD                           |

### 3.1.1 EUT Configuration

The EUT is configured for testing as depicted in Figure 3.1.1 .

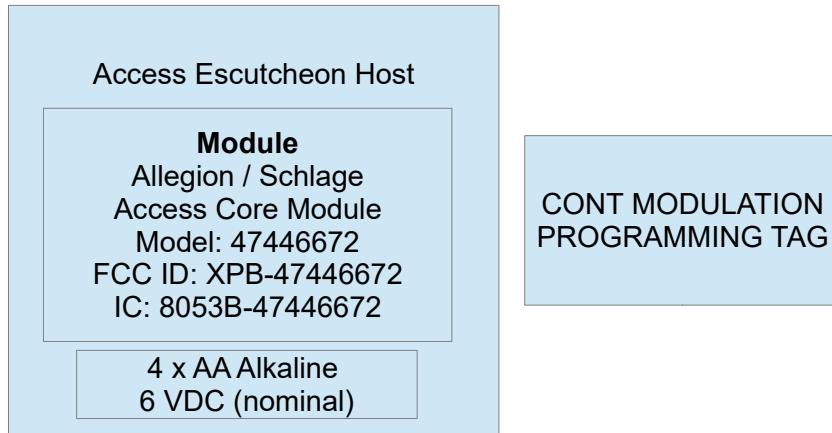



Figure 3.1.1 EUT Test Configuration Diagram.

### 3.1.2 Modes of Operation

The EUT is capable of two modes of operation, POLLING continuously to detect a 125 kHz tag and TAG READ interrogation if detected. Both modes are tested herein.

### 3.1.3 Variants

There are three variants of the EUT host, including a Long, Medium, and Short variant, all of which are tested herein.

### 3.1.4 Test Samples

Three variant samples of the EUT were provided for testing. Each sample is populated with the pre-certified XPB-47446672 module capable of both normal or forced transmission for testing via a custom programming tag. Test data is provided demonstrating compliance for all three samples following the XPB-47446672 module's Specific Host Test Plan included here in Annex A.

### 3.1.5 Functional Exerciser

Normal functionality was confirmed by measurement of transmitted signals.

### 3.1.6 Modifications Made

There were no modifications made to the EUT by this laboratory.

### 3.1.7 Production Intent

The EUT appears to be a production ready sample.

### 3.1.8 Declared Exemptions and Additional Product Notes

The EUT is populated with a limited module which is evaluated herein following the test plan as instructed in the module FCC certification documents. The EUT is also subject to digital spurious emissions evaluation completed separately via SDoC evaluation.

## 4 Emissions

### 4.1 General Test Procedures

#### 4.1.1 Radiated Test Setup and Procedures

Radiated electromagnetic emissions from the EUT are first pre-scanned in our screen room. Spectrum and modulation characteristics of all emissions are recorded. Instrumentation, including spectrum analyzers and other test equipment as detailed in Section 1.8 are employed. After pre-scan, emission measurements are made on the test site of record. If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in relevant test standards are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed if the resulting emissions appear to be worst-case in such a configuration. See Figure 4.1.1. All intentionally radiating elements that are not fixed-mounted in use are placed on the test table lying flat, on their side, and on their end (3-axes) and the resulting worst case emissions are recorded. If the EUT is fixed-mounted in use, measurements are made with the device oriented in the manner consistent with installation and then emissions are recorded. If the EUT exhibits spurious emissions due to internal receiver circuitry, such emissions are measured with an appropriate carrier signal applied.

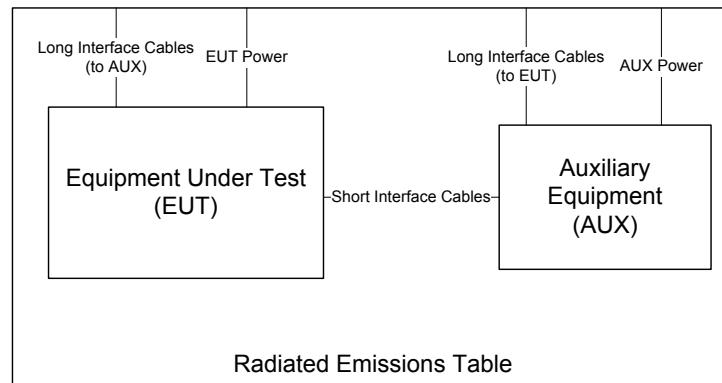



Figure 4.1.1 Radiated Emissions Diagram of the EUT.

For devices with intentional emissions below 30 MHz, a shielded loop antenna and/or E-field and H-Field broadband probes are used depending on the regulation. Shielded loops are placed at a 1 meter receive height at the desired measurement distance. For exposure in this band, 10cm diameter single-axis broadband probes meeting the requirements of ISED SPR-002 section 5.2 are employed. Measurements are repeated and summed over three axes, and the entire frequency range is measured with and without the EUT transmitting.

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. For both horizontal and vertical polarizations, the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected. The EUT is then rotated through 360° in azimuth until the highest emission is detected. The test antenna is then raised and lowered one last time from 1 to 4 m and the worst case value is recorded. Emissions above 1 GHz are characterized using standard gain or broadband ridge-horn antennas on our OATS with a 4 × 5 m rectangle of ECCOSORB absorber covering the OATS ground screen and a 1.5m table height. Care is taken to ensure that test receiver resolution and video bandwidths meet the regulatory requirements, and that the emission bandwidth of the EUT is not reduced. Photographs of the test setup employed are depicted in Figure 4.1.1.

Where regulations allow for direct measurement of field strength, power values (dBm) measured on the test receiver / analyzer are converted to dB $\mu$ V/m at the regulatory distance, using

$$E_{dist} = 107 + P_R + K_A - K_G + K_E - C_F$$

where  $P_R$  is the power recorded on spectrum analyzer, in dBm,  $K_A$  is the test antenna factor in dB/m,  $K_G$  is the combined pre-amplifier gain and cable loss in dB,  $K_E$  is duty correction factor (when applicable) in dB, and  $C_F$  is a distance conversion (employed only if limits are specified at alternate distance) in dB. This field strength value is then compared with the regulatory limit. If effective isotropic radiated power (EIRP) is computed, it is computed as

$$EIRP(dBm) = E_{3m}(dB\mu V/m) - 95.2.$$

When presenting data at each frequency, the highest measured emission under all possible EUT orientations (3-axes) is reported.

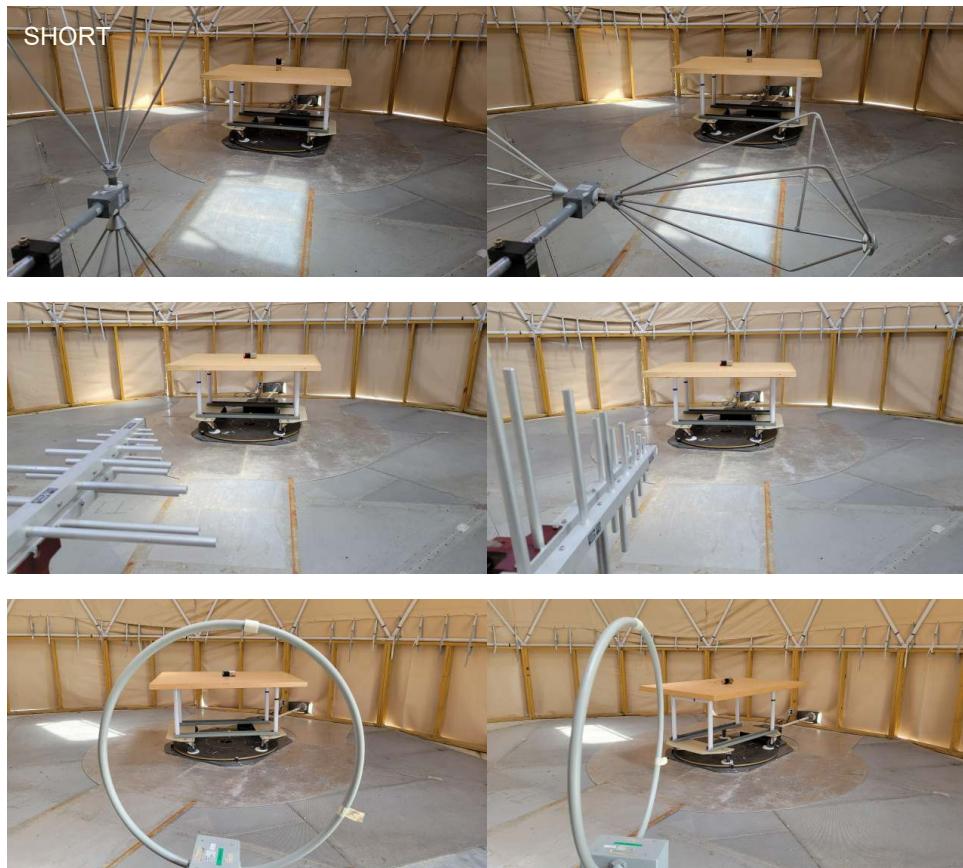



Figure 4.1.1 (i) Radiated Emissions Test Setup Photograph(s).

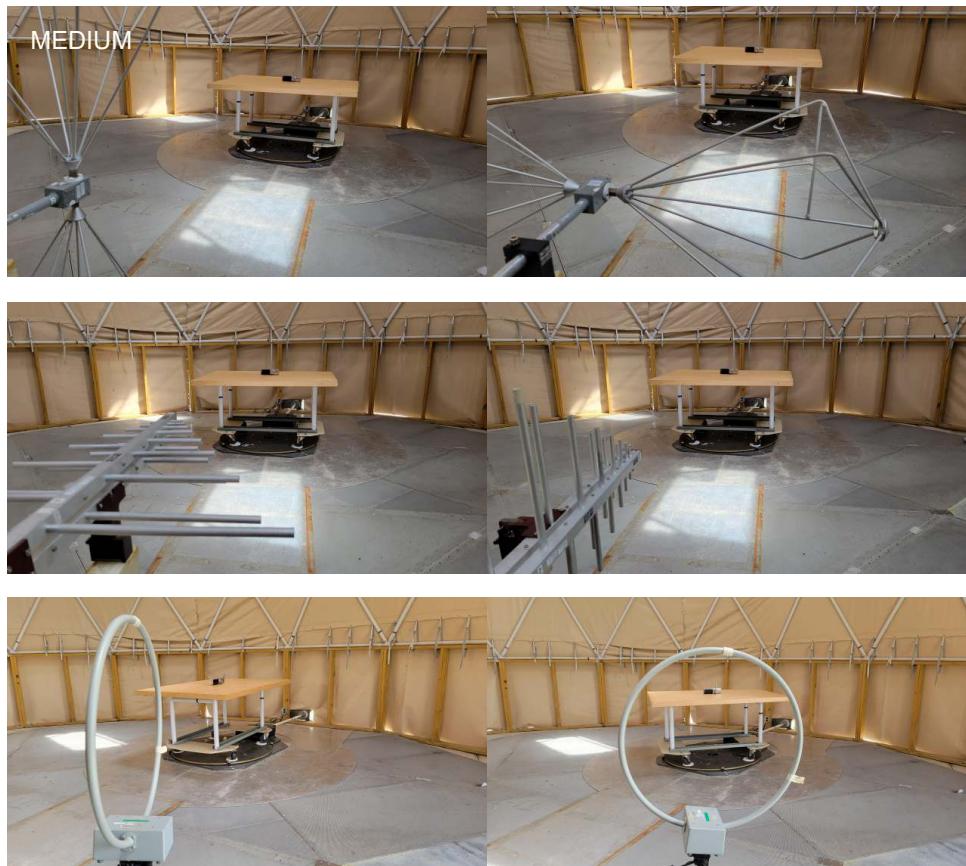



Figure 4.1.1 (ii) Radiated Emissions Test Setup Photograph(s).

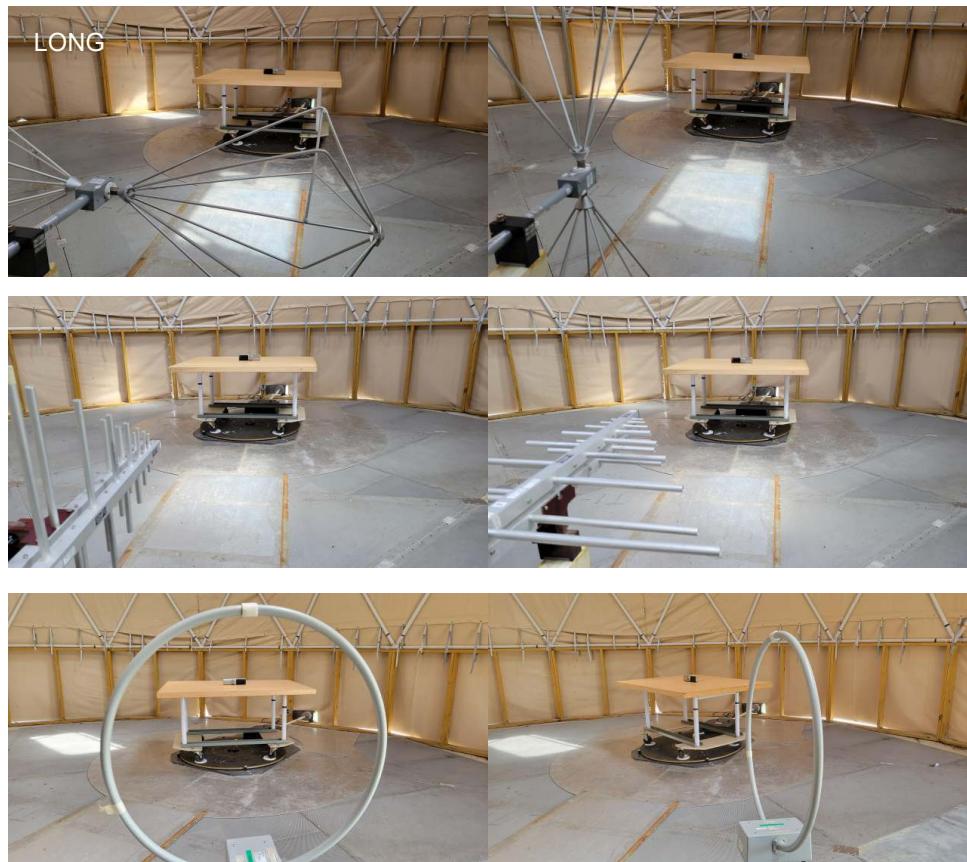



Figure 4.1.1 (iii) Radiated Emissions Test Setup Photograph(s).

#### 4.1.2 Power Supply Variation

Tests at extreme supply voltages are made if required by the procedures specified in the test standard, and results of this testing are detailed in this report.

In the case the EUT is designed for operation from a battery power source, the extreme test voltages are evaluated over the range specified in the test standard; no less than  $\pm 10\%$  of the nominal battery voltage declared by the manufacturer. For all battery operated equipment, worst case intentional and spurious emissions are re-checked employing a new (fully charged) battery.

## 4.2 Intentional Emissions

### 4.2.1 Fundamental Emission Pulsed Operation (PREVIOUSLY TESTED)

This device was previously tested as detailed in the report(s) to which this document in an addendum (AHD, LC Test Report No. ALGACA-WR2240USBr1).

### 4.2.2 Fundamental Emission Occupied Bandwidth (PREVIOUSLY TESTED)

This device was previously tested as detailed in the report(s) to which this document in an addendum (AHD, LC Test Report No. ALGACA-WR2240USBr1).

#### 4.2.3 Fundamental Emission

Following the test procedures listed in Section 2.1, field emissions measurements are made on the EUT for both Horizontal and Vertically polarized coupling fields. The EUT's loop antenna(s) are measured along all three axes, including when the EUT loop axes are aligned in the same axis as the test loop and aligned coplanar (in the same plane) with the test loop antenna. Table 4.2.3 details the results of these measurements.

Table 4.2.3 Fundamental Radiated Emissions.

| Frequency Range        |  | Det    | IF Bandwidth |  | Video Bandwidth |  | Test Date:      | 14-Aug-24  |
|------------------------|--|--------|--------------|--|-----------------|--|-----------------|------------|
| 9 kHz ≤ f ≤ 150 kHz    |  | Pk/QPk | 200 Hz       |  | 300 Hz          |  | Test Engineer:  | J. Brunett |
| 150 kHz ≤ f ≤ 30 MHz   |  | Pk/QPk | 9 kHz        |  | 30 kHz          |  | EUT Mode:       | CM         |
| 25 MHz ≤ f ≤ 1 000 MHz |  | Pk/QPk | 120 kHz      |  | 300 kHz         |  | Meas. Distance: | 3 meters   |
| f > 1 000 MHz          |  | Pk     | 1 MHz        |  | 3MHz            |  | EUT Tested:     | See Table  |
|                        |  | Avg    | 1 MHz        |  | 3MHz            |  |                 |            |

| Fundamental Emissions Measurements |                  |                 |                   |                     |              |                  |                   |                     |       |                 |                 |                   |                     |            |      |     |
|------------------------------------|------------------|-----------------|-------------------|---------------------|--------------|------------------|-------------------|---------------------|-------|-----------------|-----------------|-------------------|---------------------|------------|------|-----|
| R0                                 | Mode / Host      | EUT Orientation | Freq. kHz         | DC Supply Voltage V | Ant. Used QN | Ant.** Height m  | Table Azim deg    | Ka dB/m             | Kg dB | E-field @ 3m    |                 | E-field @ 300m    |                     | Pass By*** |      |     |
|                                    |                  |                 |                   |                     |              |                  |                   |                     |       | Pk              | Qpk dBuV/m      | Pk                | Qpk dBuV/m          |            |      |     |
| R1                                 | CM / Long Host   | Flat            | 124.9             | 6.0                 | EMCOLOOP1    | 1.0              | all               | 10.1                | 0.0   | 80.0            | 52.1            |                   | -27.9               | 25.7       | 53.6 |     |
| R2                                 |                  | Side            | 124.9             | 6.0                 | EMCOLOOP1    | 1.0              | all               | 10.1                | 0.0   | 80.0            | 60.1            |                   | -19.9               | 25.7       | 45.6 |     |
| R3                                 |                  | End             | 124.9             | 6.0                 | EMCOLOOP1    | 1.0              | all               | 10.1                | 0.0   | 80.0            | 56.1            |                   | -23.9               | 25.7       | 49.6 |     |
| R4                                 | CM / Medium Host | Flat            | 124.9             | 6.0                 | EMCOLOOP1    | 1.0              | all               | 10.1                | 0.0   | 80.0            | 50.3            |                   | -29.7               | 25.7       | 55.4 |     |
| R5                                 |                  | Side            | 124.9             | 6.0                 | EMCOLOOP1    | 1.0              | all               | 10.1                | 0.0   | 80.0            | 58.3            |                   | -21.7               | 25.7       | 47.4 |     |
| R6                                 |                  | End             | 124.9             | 6.0                 | EMCOLOOP1    | 1.0              | all               | 10.1                | 0.0   | 80.0            | 55.3            |                   | -24.7               | 25.7       | 50.4 |     |
| R7                                 | CM / Small Host  | Flat            | 124.9             | 6.0                 | EMCOLOOP1    | 1.0              | all               | 10.1                | 0.0   | 80.0            | 48.0            |                   | -32.0               | 25.7       | 57.7 |     |
| R8                                 |                  | Side            | 124.9             | 6.0                 | EMCOLOOP1    | 1.0              | all               | 10.1                | 0.0   | 80.0            | 56.0            |                   | -24.0               | 25.7       | 49.7 |     |
| R9                                 |                  | End             | 124.9             | 6.0                 | EMCOLOOP1    | 1.0              | all               | 10.1                | 0.0   | 80.0            | 53.0            |                   | -27.0               | 25.7       | 52.7 |     |
| R10                                | Mode / Host      | EUT Orientation | DC Supply Voltage | E-field @ 3m dBuV/m |              | EUT Orientation  | DC Supply Voltage | E-field @ 3m dBuV/m |       | Mode / Host     | EUT Orientation | DC Supply Voltage | E-field @ 3m dBuV/m |            |      |     |
| R11                                | CM / Long Host   | Side            |                   | 8.0                 | 60.1         | CM / Medium Host |                   | 8.0                 | 58.3  | CM / Small Host |                 |                   | 8.0                 | 56.0       |      |     |
| R11                                |                  |                 |                   | 7.0                 | 60.1         |                  |                   | 7.0                 | 58.3  |                 |                 |                   | 7.0                 | 56.0       |      |     |
| R12                                |                  |                 |                   | 6.0                 | 60.1         |                  |                   | 6.0                 | 58.3  |                 |                 |                   | 6.0                 | 56.0       |      |     |
| R13                                |                  |                 |                   | 5.0                 | 60.1         |                  |                   | 5.0                 | 58.3  |                 |                 |                   | 5.0                 | 56.0       |      |     |
| R14                                |                  |                 |                   | 4.0                 | 60.1         |                  |                   | 4.0                 | 58.3  |                 |                 |                   | 4.0                 | 56.0       |      |     |
| R15                                |                  |                 |                   | 3.0                 | 57.9         |                  |                   | 3.0                 | 56.1  |                 |                 |                   | 3.0                 | 53.8       |      |     |
| R16                                |                  |                 |                   | 2.0                 | OFF          |                  |                   | 2.0                 | OFF   |                 |                 |                   | 2.0                 | OFF        |      |     |
| #                                  | C1               | C2              | C3                | C4                  | C5           | C6               | C7                | C8                  | C9    | C10             | C11             | C12               | C13                 | C14        | C15  | C19 |

(ROW) (COLUMN) NOTES  
 ALL C1 EUT is tested in CM (CONTINUOUSLY MODULATED). No averaging applies and Quasi-Peak data was not needed to demonstrate compliance.  
 ALL C10 EUT field decay rate is assumed to be 40 dB/dec in line with regulatory allowance.

## 4.3 Unintentional Emissions

### 4.3.1 Transmit Chain Spurious Emissions

The results for the measurement of transmit chain spurious emissions at the nominal voltage and temperature are provided in Table 4.3.1. Following the test procedures listed in Section 2.1, field emissions measurements are made on the EUT for both Horizontal and Vertically polarized coupling fields. The EUT's loop antenna(s) are measured when the EUT loop axes placed in all three axes, including when they are aligned along the same axis as the test loop antenna and are aligned coplanar with the test loop antenna. For all arrangements, test loop is rotated for maximum field. The results for the measurement of transmit chain spurious emissions at the nominal voltage and temperature are provided in Table 4.3.1. Measurements are performed to 10 times the highest fundamental operating frequency.

Table 4.3.1 (i) Transmit Chain Spurious Emissions.

| Frequency Range        | Det    | IF Bandwidth | Video Bandwidth | Test Date:      | 14-Aug-24  |
|------------------------|--------|--------------|-----------------|-----------------|------------|
| 9 kHz ≤ f ≤ 150 kHz    | Pk/QPk | 200 Hz       | 300 Hz          | Test Engineer:  | J. Brunett |
| 150 kHz ≤ f ≤ 30 MHz   | Pk/QPk | 9 kHz        | 30 kHz          | EUT Mode:       | CM         |
| 25 MHz ≤ f ≤ 1 000 MHz | Pk/QPk | 120 kHz      | 300 kHz         | Meas. Distance: | 3 meters   |
| f > 1 000 MHz          | Pk/Avg | 1 MHz        | 3MHz            | EUT Tested:     | See Table  |

| Transmit Chain Spurious Emissions |                        |                |        |           |                       |                      |            |          |                            |              |     |                   |      |          |            |     |
|-----------------------------------|------------------------|----------------|--------|-----------|-----------------------|----------------------|------------|----------|----------------------------|--------------|-----|-------------------|------|----------|------------|-----|
| R0                                | Mode                   | EUT            | Freq.  | Ant.      | Ant.**<br>Height<br>m | Table<br>Azim<br>deg | Ka<br>dB/m | Kg<br>dB | Cf<br>(3 to 30/300m)<br>dB | E-field @ 3m |     | E-field @ 30/300m |      | Comments |            |     |
| R1                                | CM /<br>Long<br>Host   | Max All, Worst | 249.8  | EMCOLOOP1 | 1.0                   | 90                   | 10.0       | 0.0      | 80.0                       | 72.3         |     | -29.0             | 19.7 | 48.6     |            |     |
| R2                                |                        | Max All, Worst | 374.7  | EMCOLOOP1 | 1.0                   | 90                   | 10.0       | 0.0      | 80.0                       | 63.8         |     | -39.4             | 16.1 | 55.5     |            |     |
| R3                                |                        | Max All, Worst | 499.6  | EMCOLOOP1 | 1.0                   | 90                   | 10.2       | 0.0      | 40.0                       | 58.1         |     | 0.2               | 33.6 | 33.5     |            |     |
| R4                                |                        | Max All, Worst | 624.5  | EMCOLOOP1 | 1.0                   | 90                   | 10.2       | 0.0      | 40.0                       | 46.0         |     | -2.5              | 31.7 | 34.2     |            |     |
| R5                                |                        | Max All, Worst | 749.4  | EMCOLOOP1 | 1.0                   | 90                   | 10.1       | 0.0      | 40.0                       | 39.4         |     | -5.1              | 30.1 | 35.2     |            |     |
| R6                                |                        | Max All, Worst | 874.3  | EMCOLOOP1 | 1.0                   | 90                   | 10.3       | 0.0      | 40.0                       | 36.8         |     | -4.9              | 28.8 | 33.7     |            |     |
| R7                                |                        | Max All, Worst | 999.2  | EMCOLOOP1 | 1.0                   | 90                   | 11.5       | 0.0      | 40.0                       | 48.5         |     | 8.6               | 27.6 | 19.0     | background |     |
| R8                                |                        | Max All, Worst | 1124.1 | EMCOLOOP1 | 1.0                   | 90                   | 11.3       | 0.0      | 40.0                       | 41.4         |     | 2.9               | 26.6 | 23.7     |            |     |
| R9                                |                        | Max All, Worst | 1249.0 | EMCOLOOP1 | 1.0                   | 90                   | 12.3       | 0.0      | 40.0                       | 54.5         |     | 15.0              | 25.7 | 10.7     | background |     |
| R10                               | CM /<br>Medium<br>Host | Max All, Worst | 249.8  | EMCOLOOP1 | 1.0                   | 90                   | 10.0       | 0.0      | 80.0                       | 56.0         |     | -29.5             | 19.7 | 49.1     |            |     |
| R11                               |                        | Max All, Worst | 374.7  | EMCOLOOP1 | 1.0                   | 90                   | 10.0       | 0.0      | 80.0                       | 40.8         |     | -39.2             | 16.1 | 55.3     |            |     |
| R12                               |                        | Max All, Worst | 499.6  | EMCOLOOP1 | 1.0                   | 90                   | 10.2       | 0.0      | 40.0                       | 39.5         |     | 0.7               | 33.6 | 32.9     |            |     |
| R13                               |                        | Max All, Worst | 624.5  | EMCOLOOP1 | 1.0                   | 90                   | 10.2       | 0.0      | 40.0                       | 35.4         |     | -2.6              | 31.7 | 34.3     |            |     |
| R14                               |                        | Max All, Worst | 749.4  | EMCOLOOP1 | 1.0                   | 90                   | 10.1       | 0.0      | 40.0                       | 34.4         |     | -4.7              | 30.1 | 34.8     |            |     |
| R15                               |                        | Max All, Worst | 874.3  | EMCOLOOP1 | 1.0                   | 90                   | 10.3       | 0.0      | 40.0                       | 36.0         |     | -5.1              | 28.8 | 33.8     |            |     |
| R16                               |                        | Max All, Worst | 999.2  | EMCOLOOP1 | 1.0                   | 90                   | 11.5       | 0.0      | 40.0                       | 48.7         |     | 8.9               | 27.6 | 18.7     | background |     |
| R17                               |                        | Max All, Worst | 1124.1 | EMCOLOOP1 | 1.0                   | 90                   | 11.3       | 0.0      | 40.0                       | 41.2         |     | 2.7               | 26.6 | 23.9     |            |     |
| R18                               |                        | Max All, Worst | 1249.0 | EMCOLOOP1 | 1.0                   | 90                   | 12.3       | 0.0      | 40.0                       | 55.6         |     | 14.3              | 25.7 | 11.4     | background |     |
| R19                               | CM /<br>Small<br>Host  | Max All, Worst | 249.8  | EMCOLOOP1 | 1.0                   | 90                   | 10.0       | 0.0      | 80.0                       | 51.2         |     | -28.8             | 19.7 | 48.4     |            |     |
| R20                               |                        | Max All, Worst | 374.7  | EMCOLOOP1 | 1.0                   | 90                   | 10.0       | 0.0      | 80.0                       | 41.6         |     | -38.4             | 16.1 | 54.6     |            |     |
| R21                               |                        | Max All, Worst | 499.6  | EMCOLOOP1 | 1.0                   | 90                   | 10.2       | 0.0      | 40.0                       | 40.8         |     | 0.8               | 33.6 | 32.8     |            |     |
| R22                               |                        | Max All, Worst | 624.5  | EMCOLOOP1 | 1.0                   | 90                   | 10.2       | 0.0      | 40.0                       | 38.3         |     | -1.7              | 31.7 | 33.4     |            |     |
| R23                               |                        | Max All, Worst | 749.4  | EMCOLOOP1 | 1.0                   | 90                   | 10.1       | 0.0      | 40.0                       | 35.4         |     | -4.6              | 30.1 | 34.7     |            |     |
| R24                               |                        | Max All, Worst | 874.3  | EMCOLOOP1 | 1.0                   | 90                   | 10.3       | 0.0      | 40.0                       | 35.4         |     | -4.6              | 28.8 | 33.4     |            |     |
| R25                               |                        | Max All, Worst | 999.2  | EMCOLOOP1 | 1.0                   | 90                   | 11.5       | 0.0      | 40.0                       | 49.5         |     | 9.5               | 27.6 | 18.1     | background |     |
| R26                               |                        | Max All, Worst | 1124.1 | EMCOLOOP1 | 1.0                   | 90                   | 11.3       | 0.0      | 40.0                       | 42.9         |     | 2.9               | 26.6 | 23.7     |            |     |
| R27                               |                        | Max All, Worst | 1249.0 | EMCOLOOP1 | 1.0                   | 90                   | 12.3       | 0.0      | 40.0                       | 55.2         |     | 15.2              | 25.7 | 10.4     | background |     |
| #                                 | C1                     | C2             | C3     | C4        | C5                    | C6                   | C7         | C8       | C9                         | C10          | C11 | C12               | C13  | C14      | C18        | C19 |

(ROW) (COLUMN) NOTES  
 ALL C10 EUT is tested in CM (CONTINUOUSLY MODULATED). No averaging applies and Quasi-Peak data was not needed to demons  
 ALL C9 EUT field decay rate is assumed to be 40 dB/dec in line with regulatory allowance.  
 ALL ALL Emissions were evaluated at 1m test antenna height from 9 kHz to 30 MHz. No significant spurious were observed past the 10

Table 4.3.1 (ii) Transmit Chain Spurious Emissions.



## 5 Measurement Uncertainty and Accreditation Documents

The maximum values of measurement uncertainty for the laboratory test equipment and facilities associated with each test are given in the table below. This uncertainty is computed for a 95.45% confidence level based on a coverage factor of  $k = 2$ .

Table 5.0.0 Measurement Uncertainty.

| Measured Parameter                                   | Measurement Uncertainty <sup>†</sup>                            |
|------------------------------------------------------|-----------------------------------------------------------------|
| Radio Frequency                                      | $\pm(f_{Mkr}/10^7 + RBW/10 + (SPN/(PTS - 1))/2 + 1 \text{ Hz})$ |
| Conducted Emm. Amplitude                             | $\pm1.9 \text{ dB}$                                             |
| Radiated Emm. Amplitude ( $f < 30 \text{ MHz}$ )     | $\pm3.1 \text{ dB}$                                             |
| Radiated Emm. Amplitude ( $30 - 200 \text{ MHz}$ )   | $\pm4.0 \text{ dB}$                                             |
| Radiated Emm. Amplitude ( $200 - 1000 \text{ MHz}$ ) | $\pm5.2 \text{ dB}$                                             |
| Radiated Emm. Amplitude ( $f > 1000 \text{ MHz}$ )   | $\pm3.7 \text{ dB}$                                             |

<sup>†</sup>Ref: CISPR 16-4-2:2011+A1:2014



Figure 5.0.0 Accreditation Documents

## 6 ANNEX A - Test Plan

### Allegion Limited Module Host Integration Test Plan

#### Objective:

The objective of this integration test plan is to confirm that each host in which this module is employed remains compliant with all applicable FCC regulations.

#### Scope:

This module does not employ (1) an integral EMC shield or (2) internal voltage regulation, and thus its use is limited for use by this manufacturer. In addition, this integration test plan must be followed by this manufacturer for each Specific Host (SH) in which this module is used.

A Specific Host is classified as a series or set of similar models having the same form factor, physical size, component layout and construction. A Permissive Change (PC) authorization is required for every unique SH.

#### Test Plan:

For each product (SH w/ module), Allegion must ensure the product is tested and test data retained for demonstrating ongoing emissions compliance. The following table of module configurations must be tested, and data retained. These configurations have been selected as worst-case scenarios based on the module's stand-alone test report and general testing required for a host product per 996369 D04 Module Integration Guide v02.

| REGULATION      | TEST CHANNELS | TEST MODULATION | TEST PROCEDURE (C63.10)            | EMISSION TYPE | MODULE REPORT REFERENCE |
|-----------------|---------------|-----------------|------------------------------------|---------------|-------------------------|
| 15.209 / 15.225 | -             | NFC             | BAND EDGE SPURIOUS                 | RADIATED      | PAGE 16 (NFC Rpt)       |
| 15.209 / 15.225 | -             | NFC             | OUTPUT PWR VS. HOST SUPPLY VOLTAGE | RADIATED      | PAGE 17 (NFC Rpt)       |
| 15.209 / 15.225 | -             | LF              | BAND EDGE SPURIOUS                 | RADIATED      | PAGE 15 (LF Rpt)        |
| 15.209 / 15.225 | -             | LF              | OUTPUT PWR VS. HOST SUPPLY VOLTAGE | RADIATED      | PAGE 16 (LF Rpt)        |
| 15.109/209      | -             | NFC + LF        | SPURIOUS EMISSIONS (9 kHz - 1 GHz) | RADIATED      | (See module SDoC Rpt)   |

\* NOTE: HOST DIGITAL ELECTRONICS MUST BE FULLY ACTIVE DURING THIS TESTING IN LINE WITH SDoC EMISSIONS COMPLIANCE TESTING REQUIREMENTS.

Furthermore, if this product incorporates any other radio module, the manufacturer must ensure that all additional equipment authorization and testing for technical requirements not covered by the current module's grant be met. This module may only be co-located with other modules listed on its authorization grant. The incorporation of any other radio module will require further testing and regulatory approval.

Following FCC authorized laboratory guidance, a C2PC will be required for each SH dissimilar from those already approved, including any additional equipment authorization and testing for technical requirements not covered by the module grant. The module manufacturer is reminded that this product is not authorized for use in portable products without further addressing RF exposure requirements.