

ONE WORLD ◊ OUR APPROVAL

Test report

268950-2TRFWL

Date of issue: March 23, 2015

Applicant:

TableTop Media

Product:

ZIOSK

Model:

Z400

FCC ID:

XOX-Z400

Specifications:

◆ **FCC 47 CFR Part 15 Subpart E, §15.407**

Unlicensed National Information Infrastructure Devices

www.nemko.com

Nemko Canada Inc., a testing laboratory, is accredited by the Standards Council of Canada. The tests included in this report are within the scope of this accreditation

FCC 15.407 and RSS-210 A9.docx; Date: May 2013

Test location

Company name	Nemko Canada Inc.
Address	303 River Road
City	Ottawa
Province	Ontario
Postal code	K1V 1H2
Country	Canada
Telephone	+1 613 737 9680
Facsimile	+1 613 737 9691
Toll free	+1 800 563 6336
Website	www.nemko.com
Site number	FCC: 176392 (3 m semi anechoic chamber)

Tested by	Andrey Adelberg, Senior Wireless/EMC Specialist
Reviewed by	Kevin Rose, Wireless/EMC Specialist
Date	March 23, 2015
Signature of the reviewer	

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko Canada Inc.

Table of contents

Table of contents	3
Section 1. Report summary	4
1.1 Applicant and manufacturer	4
1.2 Test specifications	4
1.3 Test methods.....	4
1.4 Statement of compliance	4
1.5 Exclusions.....	4
1.6 Test report revision history	4
Section 2. Summary of test results.....	5
2.1 FCC Part 15 Subpart C, general requirements test results.....	5
2.2 FCC Part 15 Subpart E, test results	5
Section 3. Equipment under test (EUT) details	6
3.1 Sample information.....	6
3.2 EUT information	6
3.3 Technical information	6
3.4 Product description and theory of operation.....	6
3.5 EUT exercise details.....	6
3.6 EUT setup diagram	6
Section 4. Engineering considerations.....	7
4.1 Modifications incorporated in the EUT.....	7
4.2 Technical judgment	7
4.3 Deviations from laboratory tests procedures.....	7
Section 5. Test conditions.....	8
5.1 Atmospheric conditions	8
5.2 Power supply range	8
Section 6. Measurement uncertainty.....	9
6.1 Uncertainty of measurement	9
Section 7. Test equipment	10
7.1 Test equipment list.....	10
Section 8. Testing data	11
8.1 FCC 15.403(i) Emission bandwidth	11
8.2 FCC 15.407(a)(1) 5.15–5.25 GHz band output power, EIRP and spectral density limits	14
8.3 FCC 15.407(b) Spurious (out-of-band) emissions	19
8.4 FCC 15.407(g) Frequency stability	35
Section 9. Block diagrams of test set-ups	37
9.1 Radiated emissions set-up.....	37
9.2 Antenna terminal set-up	37

Section 1. Report summary

1.1 Applicant and manufacturer

Company name	TableTop Media
Address	12404 Park Central Drive Ste 350
City	Dallas
Province/State	TX
Postal/Zip code	75251
Country	United States

1.2 Test specifications

FCC 47 CFR Part 15, Subpart E, Clause 15.407	Unlicensed National Information Infrastructure Devices
--	--

1.3 Test methods

789033 D02 General UNII Test Procedures New Rules v01	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E
644545 D03 Guidance for IEEE 802.11ac New Rules v01	Guidance for IEEE Std 802.11ac devices emission testing

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was completed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Exclusions

None

1.6 Test report revision history

Revision #	Details of changes made to test report
TRF	Original report issued

Section 2. Summary of test results

2.1 FCC Part 15 Subpart C, general requirements test results

Part	Test description	Verdict
§15.207(a)	Conducted limits	Not applicable ¹
§15.31(e)	Variation of power source	Pass ²
§15.203	Antenna requirement	Pass ³

Notes: ¹The EUT is a battery powered device

²The tests were performed with fully charged batteries

³The Antennas are located within the enclosure of EUT and not user accessible.

2.2 FCC Part 15 Subpart E, test results

Part	Test description	Verdict
§15.403(i)	Emission bandwidth	Pass
§15.407(a)(1)	5.15–5.25 GHz band power and density limits	Pass
§15.407(a)(2)	5.25–5.35 GHz and 5.47–5.725 GHz bands power and density limits	Not applicable
§15.407(a)(3)	5.725–5.85 GHz band power and density limits	Not applicable
§15.407(b)(1)	5.15–5.25 GHz band undesired emission limits	Pass
§15.407(b)(2)	5.25–5.35 GHz band undesired emission limits	Not applicable
§15.407(b)(3)	5.47–5.725 GHz band undesired emission limits	Not applicable
§15.407(b)(4)	5.725–5.85 GHz band undesired emission limits	Not applicable
§15.407(e)	Minimum 6 dB bandwidth within the 5.725–5.85 GHz band	Not applicable
§15.407(g)	Frequency stability	Pass
§15.407(h)(1)	Transmit power control (TPC) for 5.25–5.35 GHz and 5.47–5.725 GHz bands	Not applicable
§15.407(h)(2)	Dynamic Frequency Selection (DFS) for 5.25–5.35 GHz and 5.47–5.725 GHz bands	Not applicable

Note: None

Section 3. Equipment under test (EUT) details

3.1 Sample information

Receipt date	September 15, 2014
Nemko sample ID number	1

3.2 EUT information

Product name	ZIOSK
Model	Z400
Serial number	001EC0890C7C

3.3 Technical information

Operating band	5150–5250 MHz
Operating frequencies	20 MHz channels: 5180–5240 MHz; 40 MHz channels: 5190–5230 MHz; 80 MHz channel: 5210 MHz
Modulation type	802.11a: 6–54 Mbps; 802.11n HT20: MCS 0–7; 802.11n HT40: MCS 0–7; 802.11ac VHT40: MCS 0–9; 802.11ac VHT80: MCS 0–9
Occupied bandwidth (99 %)	17.31 MHz (802.11a); 18.41 MHz (802.11n HT20); 36.62 MHz (802.11n HT40 and 802.11ac VHT40); 76.12 MHz (802.11ac VHT80)
Emission designator	W7D
Power requirements	7.4 V _{DC} Lithium battery
Antenna information	2.54 dBi The EUT uses a unique antenna coupling/ non-detachable antenna to the intentional radiator.

3.4 Product description and theory of operation

The Ziosk is a wireless, battery operated touch screen device with a 7" LCD display, used for pay-at-the-table applications in casual dining restaurants. The device can display menu items, specials, entertainment and local area information; it can also process credit card payments and print receipts.

3.5 EUT exercise details

EUT was connected to Laptop via internal (not user accessible) USB connector and Android shell commands were used to control channel, modulation and data rate settings.

3.6 EUT setup diagram

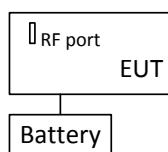


Figure 3.6-1: Setup diagram

Section 4. Engineering considerations

4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

None

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5. Test conditions

5.1 Atmospheric conditions

Temperature	15–30 °C
Relative humidity	20–75 %
Air pressure	860–1060 mbar

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages $\pm 5\%$, for which the equipment was designed.

Section 6. Measurement uncertainty

6.1 Uncertainty of measurement

Nemko Canada Inc. has calculated measurement uncertainty and is documented in EMC/MUC/001 "Uncertainty in EMC measurements." Measurement uncertainty was calculated using the methods described in CISPR 16-4 Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC measurements; as well as described in UKAS LAB34: The expression of Uncertainty in EMC Testing. Measurement uncertainty calculations assume a coverage factor of K=2 with 95% certainty.

Section 7. Test equipment

7.1 Test equipment list

Table 7.1-1: Equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 m EMI test chamber	TDK	SAC-3	FA002047	1 year	Mar. 18/15
Flush mount turntable	Sunol	FM2022	FA002082	—	NCR
Controller	Sunol	SC104V	FA002060	—	NCR
Antenna mast	Sunol	TLT2	FA002061	—	NCR
Receiver/spectrum analyzer	Rohde & Schwarz	ESU 26	FA002043	1 year	Oct. 24/14
Bilog antenna (20–3000 MHz)	Sunol	JB3	FA002108	1 year	Mar. 12/15
Horn antenna (1–18 GHz)	EMCO	3115	FA000825	1 year	Mar. 10/15
Pre-amplifier (1–18 GHz)	JCA	JCA118-503	FA002091	1 year	June 23/15
Spectrum analyzer	Rohde & Schwarz	FSU	FA001877	1 year	Jan. 27/15
Temperature chamber	Thermotron	SM-16C	FA001030	1 year	NCR
Multimeter	Fluke	16	FA001831	1 year	Feb. 04/15

Note: NCR - no calibration required

Section 8. Testing data

8.1 FCC 15.403(i) Emission bandwidth

8.1.1 Definitions and limits

For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

8.1.2 Test summary

Test date	September 24, 2014	Temperature	22 °C
Test engineer	Andrey Adelberg	Air pressure	1004 mbar
Verdict	Pass	Relative humidity	30 %

8.1.3 Observations, settings and special notes

Spectrum analyser settings:

Resolution bandwidth for 26 dB BW test	300 kHz for channels up to 40 MHz; 1 MHz for 80 MHz channel
Resolution bandwidth for 99% OBW test	300 kHz for 20 MHz channel; 500 kHz for 40 MHz channel; 1 MHz for 80 MHz channel
Video bandwidth	≥3 × RBW
Frequency span for 26 dB BW test	30 MHz for 20 MHz channel; 60 MHz for 40 MHz channel; 100 MHz for 80 MHz channel
Frequency span for 99% OBW test	30 MHz for 20 MHz channel; 50 MHz for 40 MHz channel; 100 MHz for 80 MHz channel
Detector mode	Peak
Trace mode	Max Hold

8.1.4 Test data

Table 8.1-1: Occupied bandwidth results for 802.11a

Frequency, MHz	Data rate	26 dB bandwidth, MHz	99% bandwidth, MHz
5180	6 Mbps	21.92	17.31
5180	54 Mbps	21.34	16.78
5200	6 Mbps	21.92	17.31
5200	54 Mbps	21.39	16.78
5240	6 Mbps	21.87	17.26
5240	54 Mbps	21.29	16.78

Table 8.1-2: Occupied bandwidth results for 802.11n HT20

Frequency, MHz	Data rate	26 dB bandwidth, MHz	99% bandwidth, MHz
5180	MCS 0	22.12	18.37
5180	MCS 7	21.63	18.08
5200	MCS 0	22.09	18.41
5200	MCS 7	21.78	18.08
5240	MCS 0	22.09	18.37
5240	MCS 7	21.59	18.08

Table 8.1-3: Occupied bandwidth results for 802.11n HT40

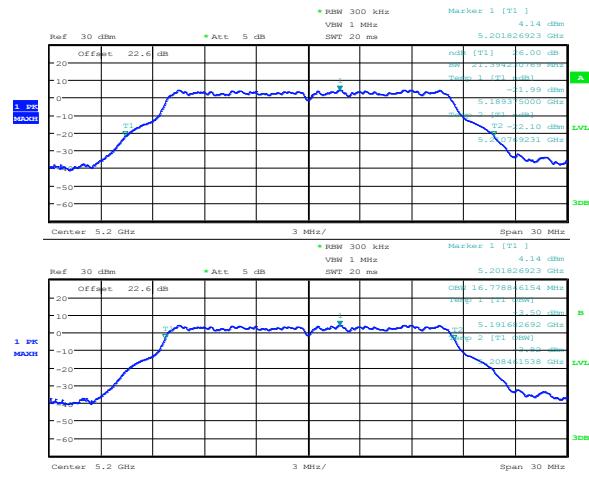
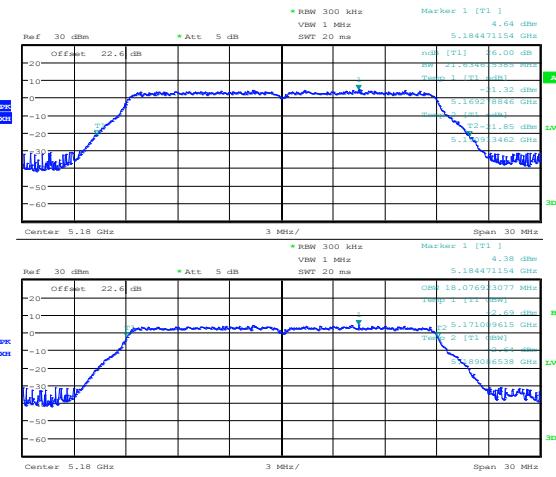

Frequency, MHz	Data rate	26 dB bandwidth, MHz	99% bandwidth, MHz
5190	MCS 0	39.90	36.62
5190	MCS 7	39.42	36.54
5230	MCS 0	39.90	36.62
5230	MCS 7	39.52	36.46

Table 8.1-4: Occupied bandwidth results for 802.11ac VHT40

Frequency, MHz	Data rate	26 dB bandwidth, MHz	99% bandwidth, MHz
5190	MCS 0	40.10	36.62
5190	MCS 9	39.90	36.54
5230	MCS 0	40.00	36.54
5230	MCS 9	39.61	36.46


Table 8.1-5: Occupied bandwidth results for 802.11ac VHT80

Frequency, MHz	Data rate	26 dB bandwidth, MHz	99% bandwidth, MHz
5210	MCS 0	82.69	76.12
5210	MCS 9	82.37	75.96

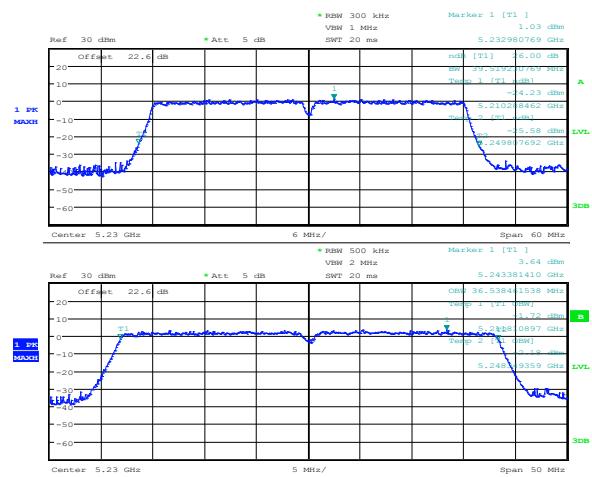

Date: 19.SEP.2014 10:22:59

Figure 8.1-1: Occupied bandwidth on 802.11a, sample plot

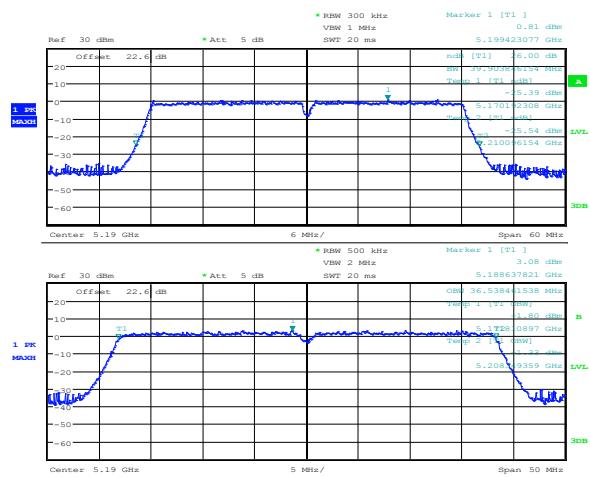

Date: 19.SEP.2014 10:41:58

Figure 8.1-2: Occupied bandwidth on 802.11n HT20, sample plot

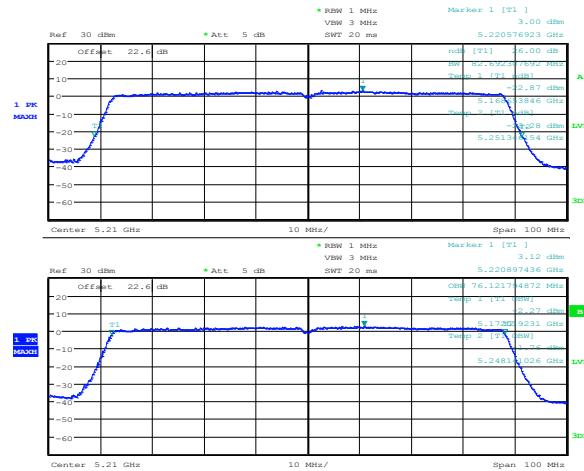

Date: 19.SEP.2014 10:56:44

Figure 8.1-3: Occupied bandwidth on 802.11n HT40, sample plot

Date: 19.SEP.2014 11:00:54

Figure 8.1-4: Occupied bandwidth on 802.11ac VHT40, sample plot

Date: 19.SEP.2014 11:38:28

Figure 8.1-5: Occupied bandwidth on 802.11ac VHT80, sample plot

8.2 FCC 15.407(a)(1) 5.15–5.25 GHz band output power, EIRP and spectral density limits

8.2.1 Definitions and limits

(3) (ii) For an indoor access point operating in the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(4) The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.

(5) The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.15–5.25 GHz, 5.25–5.35 GHz, and the 5.47–5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

8.2.2 Test summary

Test date	September 24, 2014	Temperature	22 °C
Test engineer	Andrey Adelberg	Air pressure	1004 mbar
Verdict	Pass	Relative humidity	30 %

8.2.3 Observations, settings and special notes

The test was performed according to 789033 D02 General UNII Test Procedures New Rules v01 section E) 2) b) Method SA-1 (trace averaging with the EUT transmitting at full power throughout each sweep). EUT is intended for indoor use only.

Spectrum analyser settings:

Resolution bandwidth	1 MHz
Video bandwidth	10 MHz
Frequency span	30 MHz for 20 MHz channel; 50 MHz for 40 MHz channel; 100 MHz for 80 MHz channel
Detector mode	RMS
Trace mode	Triggered power averaging over 100 sweeps with EBW integration for power measurement

8.2.4 Test data

Table 8.2-1: Output power measurements results for 802.11a

Frequency, MHz	Data rate	Output power level, dBm	Power limit, dBm	Margin, dB
5180	6 Mbps	12.04	30.00	17.96
5180	54 Mbps	12.20	30.00	17.80
5200	6 Mbps	12.10	30.00	17.90
5200	54 Mbps	12.33	30.00	17.67
5240	6 Mbps	12.22	30.00	17.78
5240	54 Mbps	12.46	30.00	17.54

Table 8.2-2: Output power measurements results for 802.11n HT20

Frequency, MHz	Data rate	Output power level, dBm	Power limit, dBm	Margin, dB
5180	MCS 0	11.28	30.00	18.72
5180	MCS 7	11.21	30.00	18.79
5200	MCS 0	11.08	30.00	18.92
5200	MCS 7	11.37	30.00	18.63
5240	MCS 0	11.14	30.00	18.86
5240	MCS 7	11.39	30.00	18.61

Table 8.2-3: FCC Output power measurements results for 802.11n HT40

Frequency, MHz	Data rate	Output power level, dBm	Power limit, dBm	Margin, dB
5190	MCS 0	11.34	30.00	18.66
5190	MCS 7	11.31	30.00	18.69
5230	MCS 0	11.39	30.00	18.61
5230	MCS 7	11.51	30.00	18.49

Table 8.2-4: Output power measurements results for 802.11ac VHT40

Frequency, MHz	Data rate	Output power level, dBm	Power limit, dBm	Margin, dB
5190	MCS 0	10.34	30.00	19.66
5190	MCS 9	10.30	30.00	19.70
5230	MCS 0	10.69	30.00	19.39
5230	MCS 9	10.61	30.00	19.39

Table 8.2-5: Output power measurements results for 802.11ac VHT80

Frequency, MHz	Data rate	Output power level, dBm	Power limit, dBm	Margin, dB
5210	MCS 0	10.12	30.00	19.88
5210	MCS 9	10.46	30.00	19.54

Table 8.2-6: Power spectral density measurements results for 802.11a

Frequency, MHz	Data rate	PSD level, dBm/MHz	PSD limit, dBm/MHz	Margin, dB
5180	6 Mbps	0.76	17.00	16.24
5180	54 Mbps	1.33	17.00	15.67
5200	6 Mbps	1.02	17.00	15.98
5200	54 Mbps	1.68	17.00	15.32
5240	6 Mbps	0.97	17.00	16.03
5240	54 Mbps	1.62	17.00	15.38

Table 8.2-7: Power spectral density measurements results for 802.11n HT20

Frequency, MHz	Data rate	PSD level, dBm/MHz	PSD limit, dBm/MHz	Margin, dB
5180	MCS 0	-0.35	17.00	17.35
5180	MCS 7	-0.34	17.00	17.34
5200	MCS 0	-0.52	17.00	17.52
5200	MCS 7	-0.22	17.00	17.22
5240	MCS 0	-0.48	17.00	17.48
5240	MCS 7	-0.20	17.00	17.20

Table 8.2-8: Power spectral density measurements results for 802.11n HT40


Frequency, MHz	Data rate	PSD level, dBm/MHz	PSD limit, dBm/MHz	Margin, dB
5190	MCS 0	-3.23	17.00	20.23
5190	MCS 7	-3.21	17.00	20.21
5230	MCS 0	-3.16	17.00	20.16
5230	MCS 7	-3.00	17.00	20.00

Table 8.2-9: Power spectral density measurements results for 802.11ac VHT40

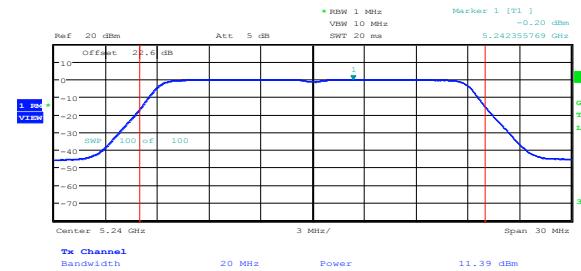
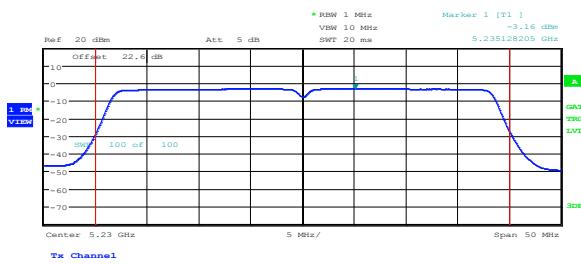
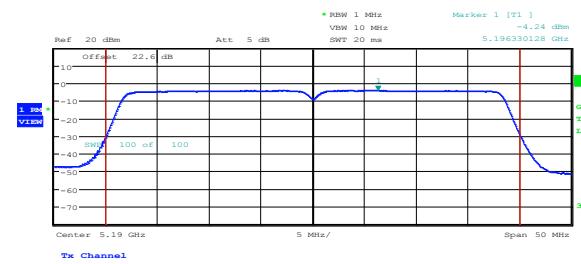

Frequency, MHz	Data rate	PSD level, dBm/MHz	PSD limit, dBm/MHz	Margin, dB
5190	MCS 0	-4.23	17.00	21.23
5190	MCS 9	-4.24	17.00	21.24
5230	MCS 0	-3.85	17.00	20.85
5230	MCS 9	-3.87	17.00	20.87

Table 8.2-10: Power spectral density measurements results for 802.11ac VHT80


Frequency, MHz	Data rate	PSD level, dBm/MHz	PSD limit, dBm/MHz	Margin, dB
5210	MCS 0	-7.27	17.00	24.27
5210	MCS 9	-6.88	17.00	23.88


Figure 8.2-1: Sample plot for power and PSD on 802.11a

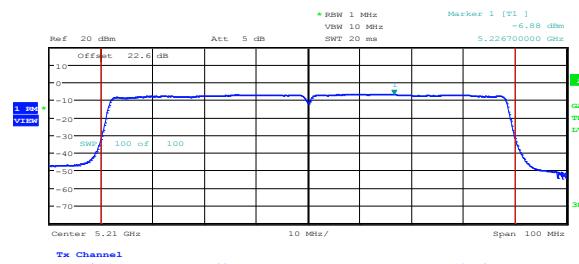

Figure 8.2-2: Sample plot for power and PSD on 802.11n HT20

Figure 8.2-3: Sample plot for power and PSD on 802.11n HT40

Figure 8.2-4: Sample plot for power and PSD on 802.11ac VHT40

Figure 8.2-5: Sample plot for power and PSD on 802.11ac VHT80

Output power summary

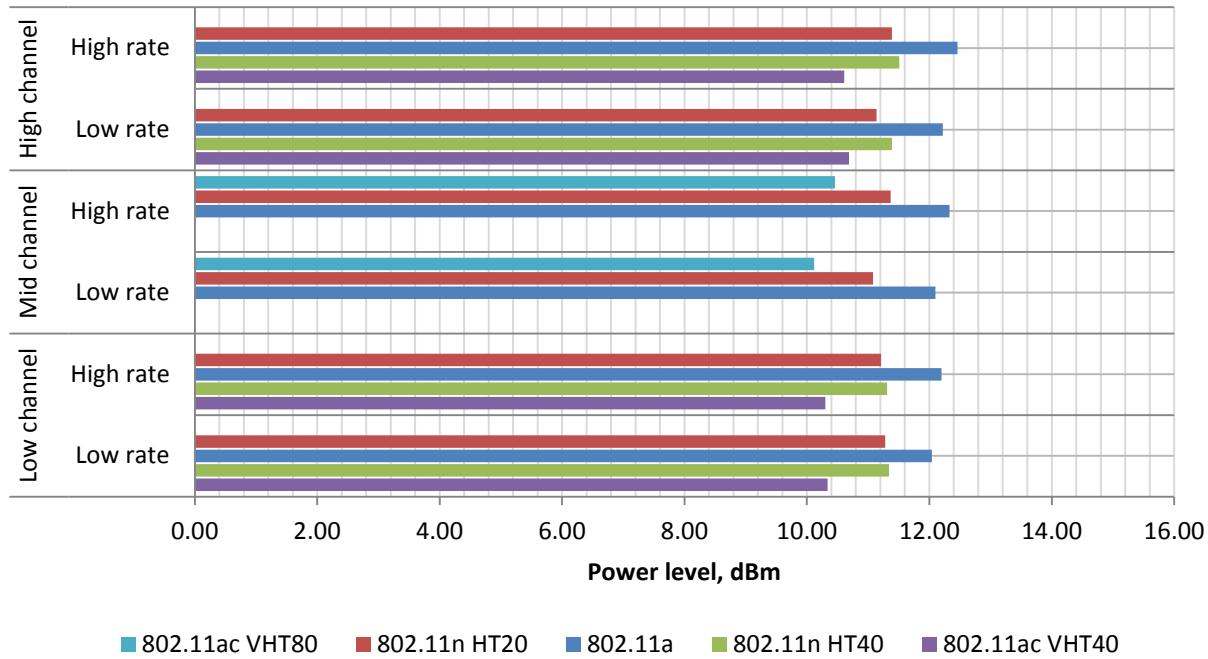


Figure 8.2-6: Output power summary

8.3 FCC 15.407(b) Spurious (out-of-band) emissions

8.3.1 Definitions and limits

- (1) For transmitters operating in the 5.15–5.25 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of –27 dBm/MHz.
- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.
- (7) The provisions of § 15.205 apply to intentional radiators operating under this section.
- (8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency block edges as the design of the equipment permits.

Table 8.3-1: FCC §15.209 – Radiated emission limits

Frequency, MHz	Field strength of emissions		Measurement distance, m
	µV/m	dB μ V/m	
0.009–0.490	2400/F	67.6 – 20 × log ₁₀ (F)	300
0.490–1.705	24000/F	87.6 – 20 × log ₁₀ (F)	30
1.705–30.0	30	29.5	30
30–88	100	40.0	3
88–216	150	43.5	3
216–960	200	46.0	3
above 960	500	54.0	3

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test

Table 8.3-2: FCC restricted frequency bands

MHz	MHz	MHz	GHz
0.090–0.110	16.42–16.423	399.9–410	4.5–5.15
0.495–0.505	16.69475–16.69525	608–614	5.35–5.46
2.1735–2.1905	16.80425–16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025–8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725–4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291–8.294	149.9–150.05	2310–2390	15.35–16.2
8.362–8.366	156.52475–156.52525	2483.5–2500	17.7–21.4
8.37625–8.38675	156.7–156.9	2690–2900	22.01–23.12
8.41425–8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358	36.43–36.5
12.57675–12.57725	322–335.4	3600–4400	Above 38.6
13.36–13.41			

8.3.2 Test summary

Test date	September 24, 2014	Temperature	22 °C
Test engineer	Andrey Adelberg	Air pressure	1004 mbar
Verdict	Pass	Relative humidity	30 %

8.3.3 Observations, settings and special notes

The spectrum was searched from 30 MHz to 40 GHz.

Cabinet radiation measurements were performed at a distance of 3 m while antenna connector was terminated with 50Ω load.

Spectrum analyser for peak conducted measurements within restricted bands below 1 GHz:

Resolution bandwidth	100 kHz
Video bandwidth	300 kHz
Detector mode	Peak
Trace mode	Max Hold

Average limit line was set as follows: $54 \text{ dB}\mu\text{V/m} - 95.23 \text{ dB} - 2.54 \text{ dBi} - 4.7 \text{ dB} = -48.47 \text{ dBm}$

Spectrum analyser for peak conducted measurements within restricted bands above 1 GHz:

Resolution bandwidth	1 MHz
Video bandwidth	3 MHz
Detector mode	Peak
Trace mode	Max Hold

Average limit line was set as follows: $54 \text{ dB}\mu\text{V/m} - 95.23 \text{ dB} - 2.54 \text{ dBi} = -43.77 \text{ dBm/MHz}$

Spectrum analyser for average conducted measurements within restricted bands above 1 GHz for frequencies where peak results were above the average limit:

Resolution bandwidth	1 MHz
Video bandwidth	10 MHz
Detector mode	RMS
Trace mode	Power average
Number of averaging traces	100

Peak limit is 20 dB higher than the average limit: $-43.77 \text{ dBm/MHz} + 20 \text{ dB} = -23.77 \text{ dBm/MHz}$

Spectrum analyser for peak conducted measurements outside restricted bands:

Resolution bandwidth	1 MHz
Video bandwidth	3 MHz
Detector mode	Peak
Trace mode	Max Hold

The limit was adjusted to include antenna directional gain of 3 dBi: $-27 \text{ dBm/MHz} - 2.54 \text{ dBi} = -29.54 \text{ dBm/MHz}$

As per **789033 D02 General UNII Test Procedures New Rule sv01**: If an out-of-band emission complies with both the peak and average limits of §15.209 it is not required to satisfy the -27 dBm/MHz or -17 dBm/MHz maximum emission limit.

As per **644545 D03 Guidance for IEEE 802.11ac New Rules v01, section II E) 3)** Although the peak limit of 74 dB μ V/m (20 dB above 54 dB μ V/m) in the restricted band appears to be higher than 68 dB μ V/m, the lower average limit of 54 dB μ V/m in the restricted bands needs to be complied to.

All limit lines on the plots are lower by 0.46 dB than the ones calculated above, due to wrong initial antenna gain.

Every margin depicted on the plots is 0.46 dB higher.

8.3.4 Test data

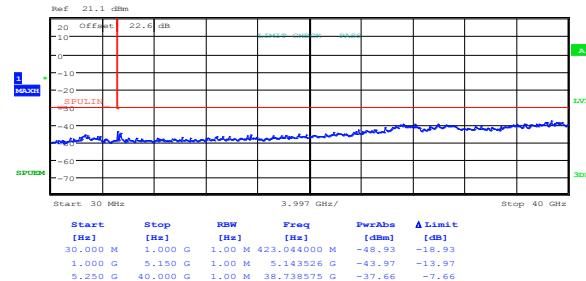



Figure 8.3-1: Spurious emissions outside restricted bands at low channel, 802.11a, 6 Mbps

Figure 8.3-2: Spurious emissions outside restricted bands at low channel, 802.11a, 54 Mbps

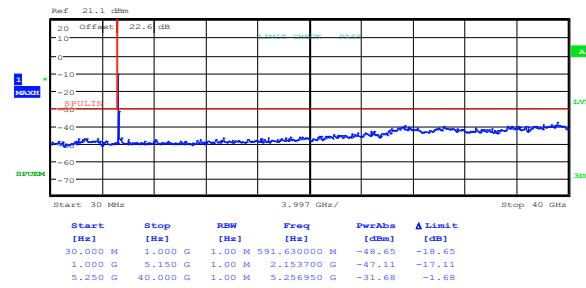
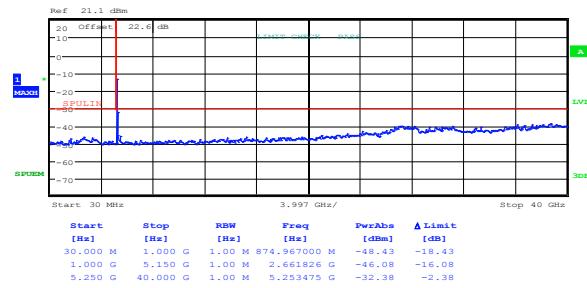



Figure 8.3-3: Spurious emissions outside restricted bands at high channel, 802.11a, 6 Mbps

Figure 8.3-4: Spurious emissions outside restricted bands at high channel, 802.11a, 54 Mbps

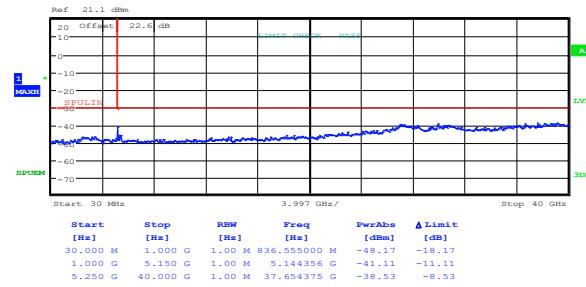
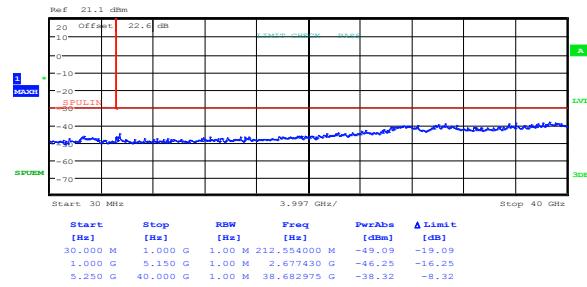



Figure 8.3-5: Spurious emissions outside restricted bands at low channel, 802.11n HT20, MCS 0

Figure 8.3-6: Spurious emissions outside restricted bands at low channel, 802.11n HT20, MCS 7

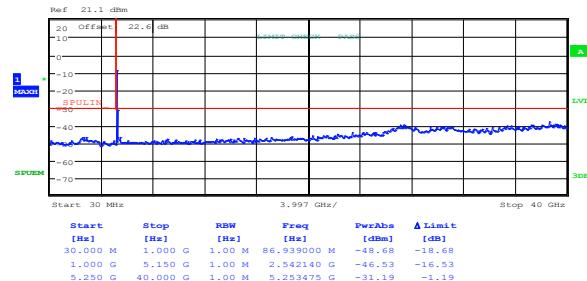


Figure 8.3-7: Spurious emissions outside restricted bands at high channel, 802.11n HT20, MCS 0

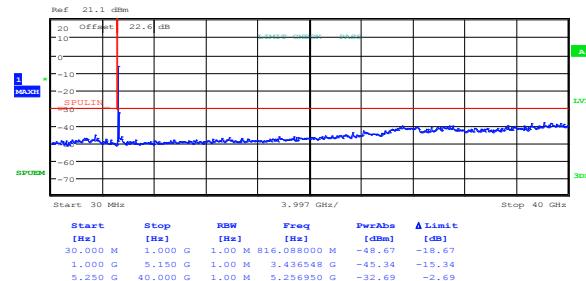


Figure 8.3-8: Spurious emissions outside restricted bands at high channel, 802.11n HT20, MCS 7

Figure 8.3-9: Spurious emissions outside restricted bands at low channel, 802.11n HT40, MCS 0

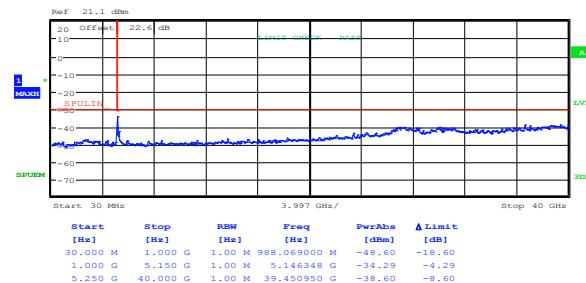


Figure 8.3-10: Spurious emissions outside restricted bands at low channel, 802.11n HT40, MCS 7

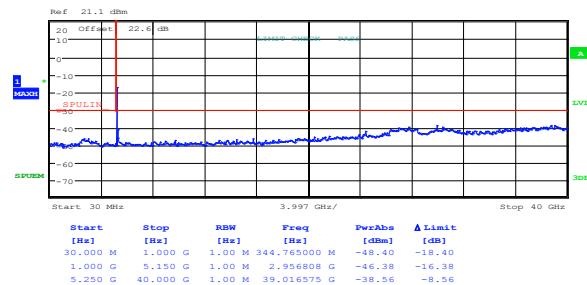
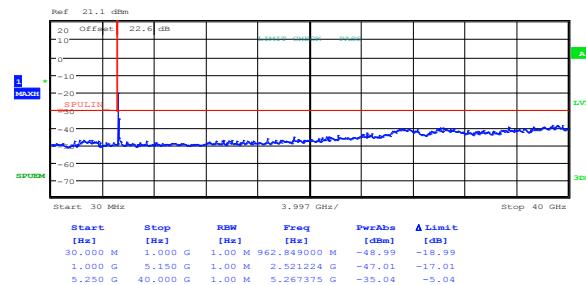
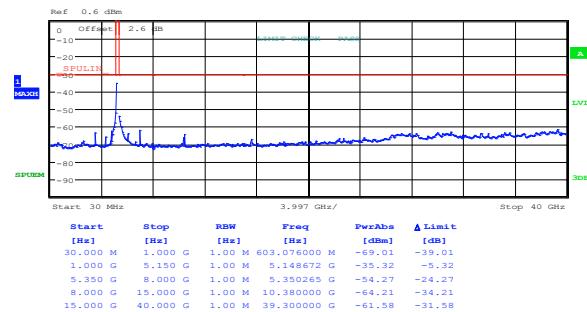
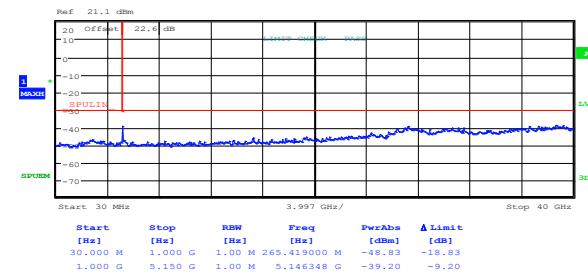
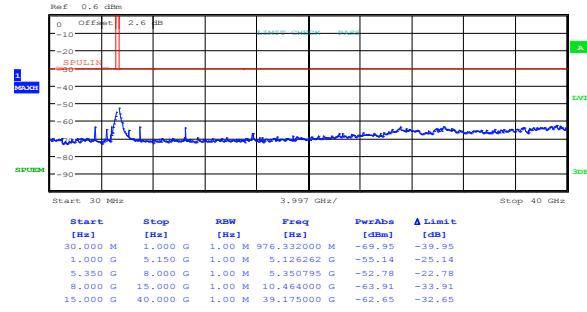
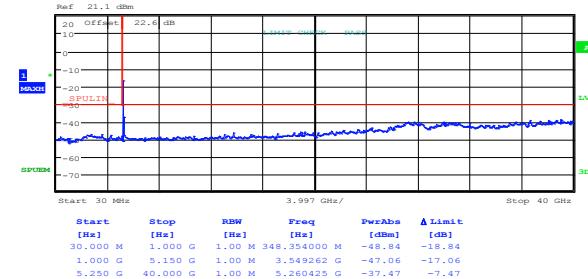
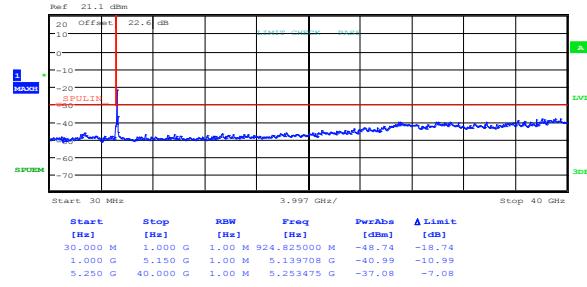


Figure 8.3-11: Spurious emissions outside restricted bands at high channel, 802.11n HT40, MCS 0


Figure 8.3-12: Spurious emissions outside restricted bands at high channel, 802.11n HT40, MCS 7


Figure 8.3-13: Spurious emissions outside restricted bands at low channel, 802.11ac VHT40, MCS 0


Figure 8.3-14: Spurious emissions outside restricted bands at low channel, 802.11ac VHT40, MCS 9

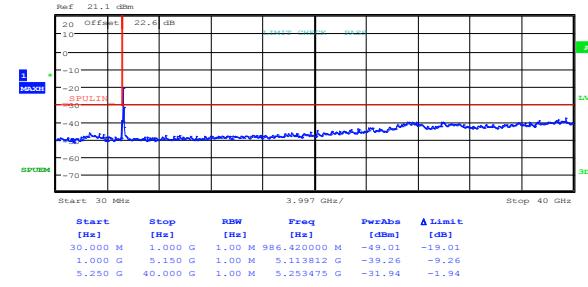

Figure 8.3-15: Spurious emissions outside restricted bands at high channel, 802.11ac VHT40, MCS 0

Figure 8.3-16: Spurious emissions outside restricted bands at high channel, 802.11ac VHT40, MCS 9

Figure 8.3-17: Spurious emissions outside restricted bands, 802.11ac VHT80, MCS 0

Figure 8.3-18: Spurious emissions outside restricted bands, 802.11ac VHT80, MCS 9

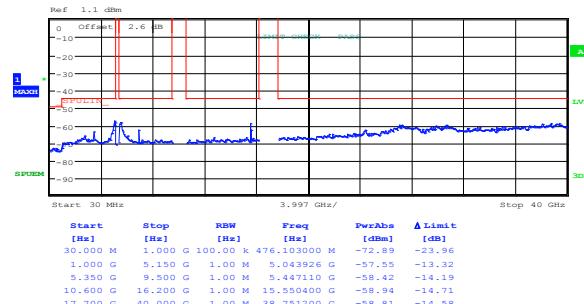


Figure 8.3-19: Spurious emissions within restricted bands at low channel, 802.11a, 6 Mbps

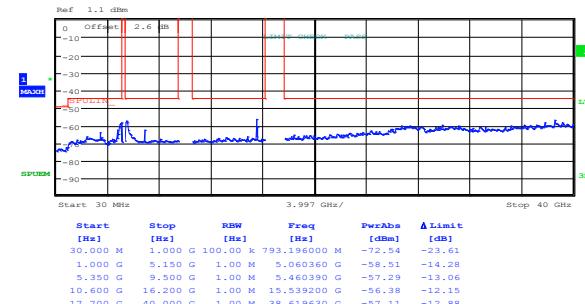


Figure 8.3-20: Spurious emissions within restricted bands at low channel, 802.11a, 54 Mbps

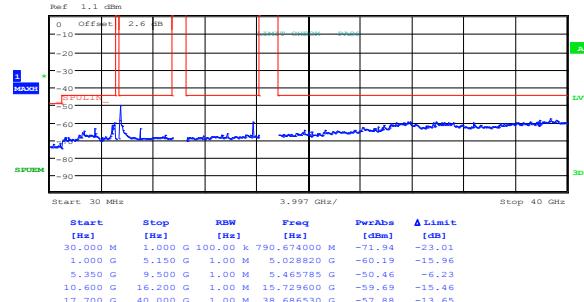


Figure 8.3-21: Spurious emissions within restricted bands at high channel, 802.11a, 6 Mbps

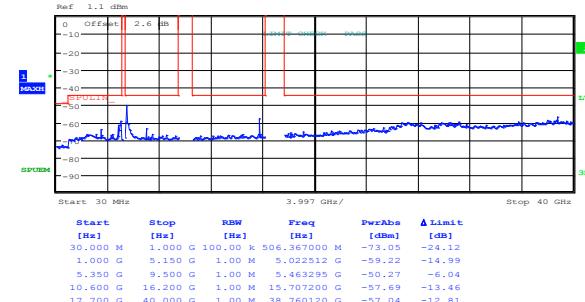


Figure 8.3-22: Spurious emissions within restricted bands at high channel, 802.11a, 54 Mbps

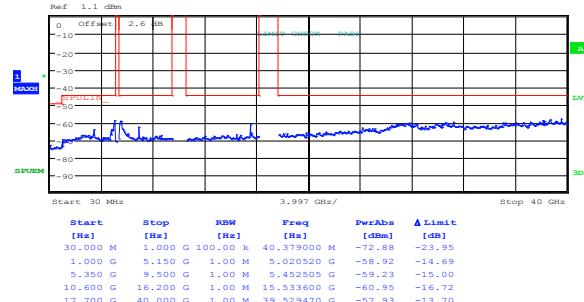


Figure 8.3-23: Spurious emissions within restricted bands at low channel, 802.11n HT20, MCS 0

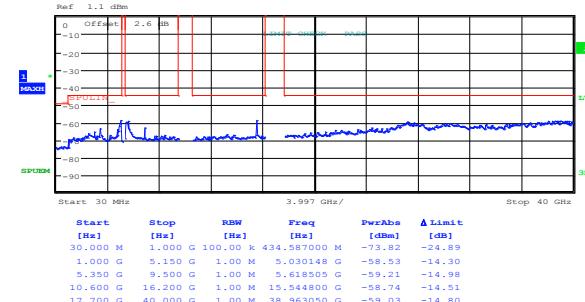


Figure 8.3-24: Spurious emissions within restricted bands at low channel, 802.11n HT20, MCS 7

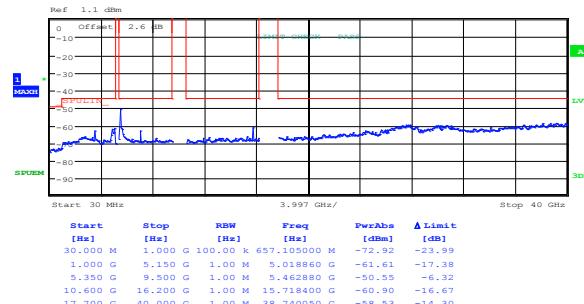


Figure 8.3-25: Spurious emissions within restricted bands at high channel, 802.11n HT20, MCS 0

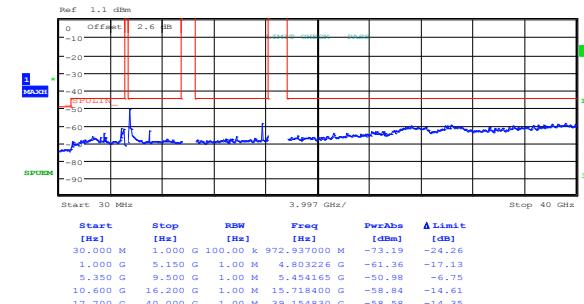


Figure 8.3-26: Spurious emissions within restricted bands at high channel, 802.11n HT20, MCS 7

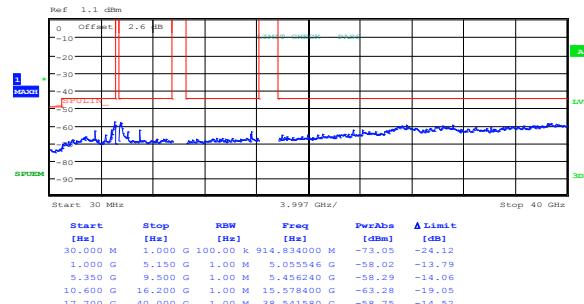


Figure 8.3-27: Spurious emissions within restricted bands at low channel, 802.11n HT40, MCS 0

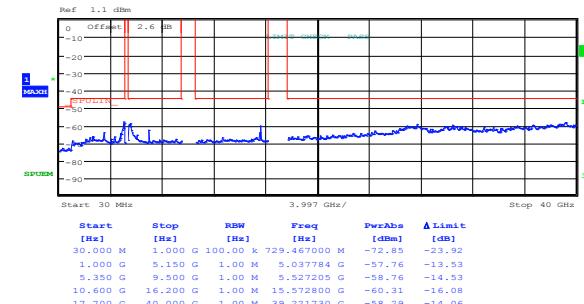


Figure 8.3-28: Spurious emissions within restricted bands at low channel, 802.11n HT40, MCS 7

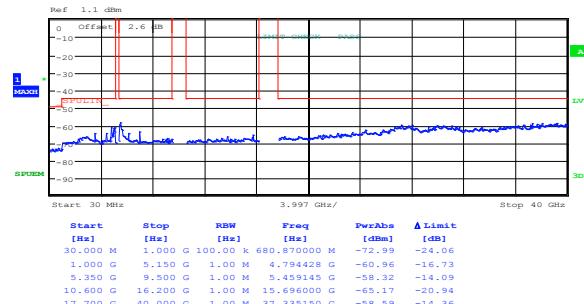


Figure 8.3-29: Spurious emissions within restricted bands at high channel, 802.11n HT40, MCS 0

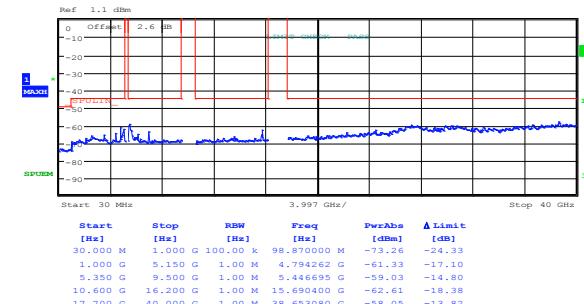


Figure 8.3-30: Spurious emissions within restricted bands at high channel, 802.11n HT40, MCS 7

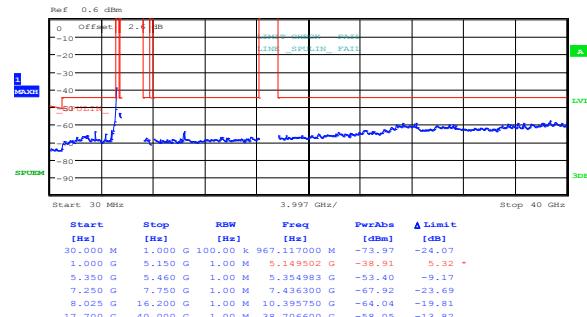


Figure 8.3-31: Spurious emissions within restricted bands at low channel, 802.11ac VHT40, MCS 0

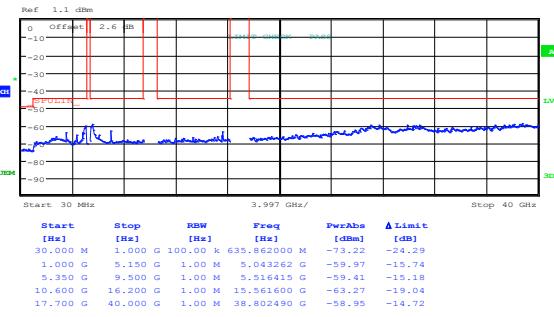


Figure 8.3-32: Spurious emissions within restricted bands at low channel, 802.11ac VHT40, MCS 9

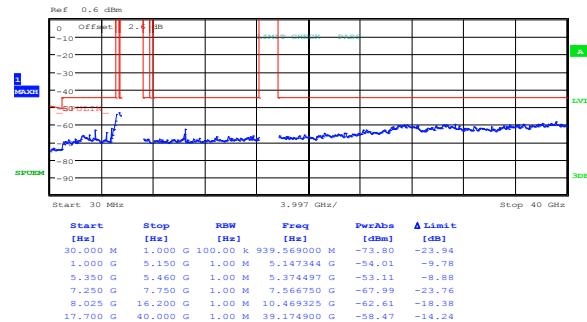


Figure 8.3-33: Spurious emissions within restricted bands at high channel, 802.11ac VHT40, MCS 0

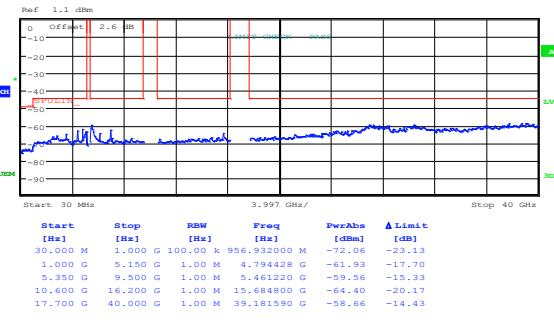


Figure 8.3-34: Spurious emissions within restricted bands at high channel, 802.11ac VHT40, MCS 9

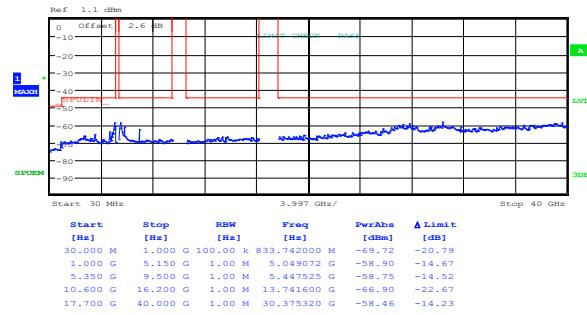


Figure 8.3-35: Spurious emissions within restricted bands, 802.11ac VHT80, MCS 0

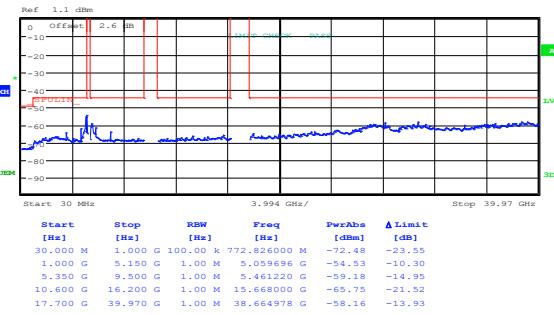
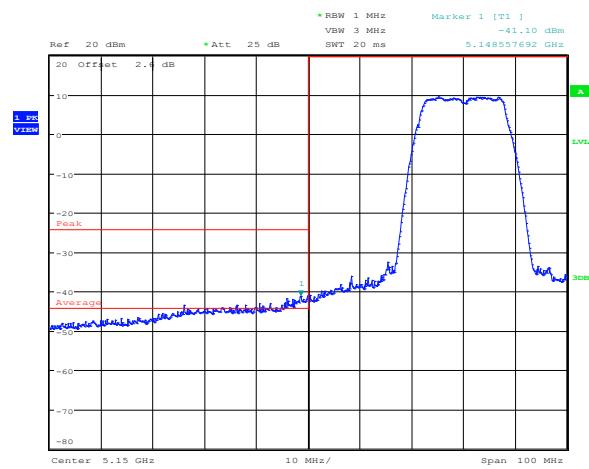
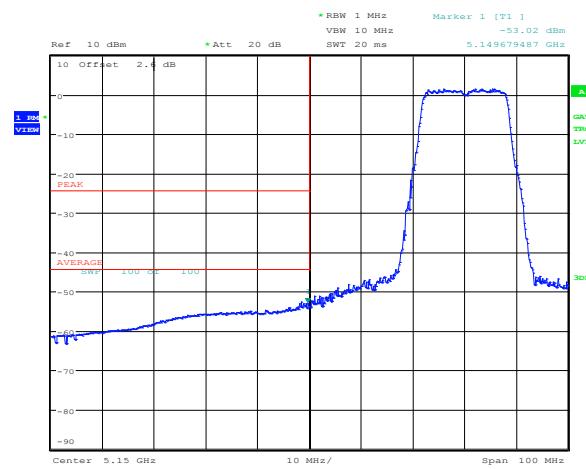




Figure 8.3-36: Spurious emissions within restricted bands, 802.11ac VHT80, MCS 9

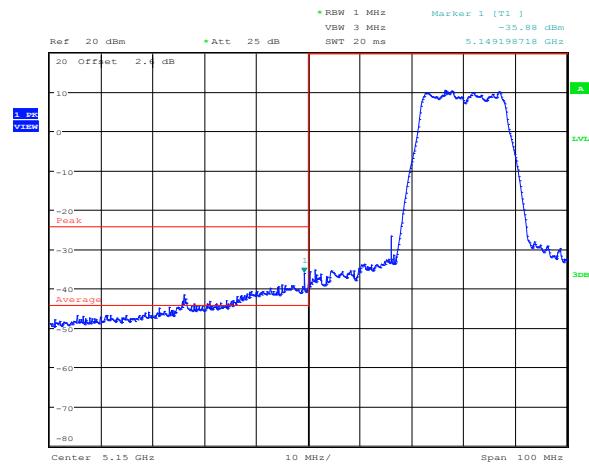

Date: 24.SEP.2014 15:18:36

Figure 8.3-37: Lower band edge emission for 802.11a with 6 Mbps, peak

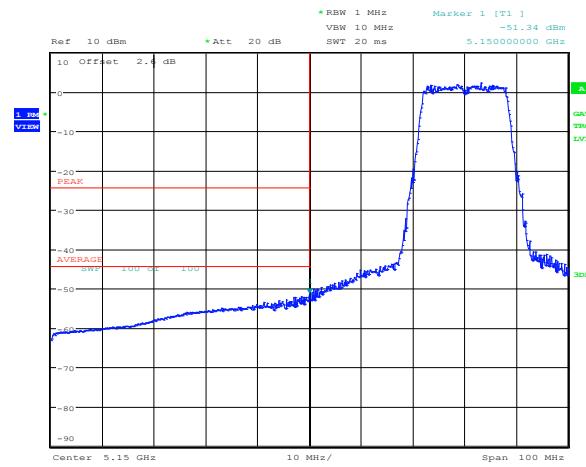

Date: 14.OCT.2014 11:36:42

Figure 8.3-38: Lower band edge emission for 802.11a with 6 Mbps, average

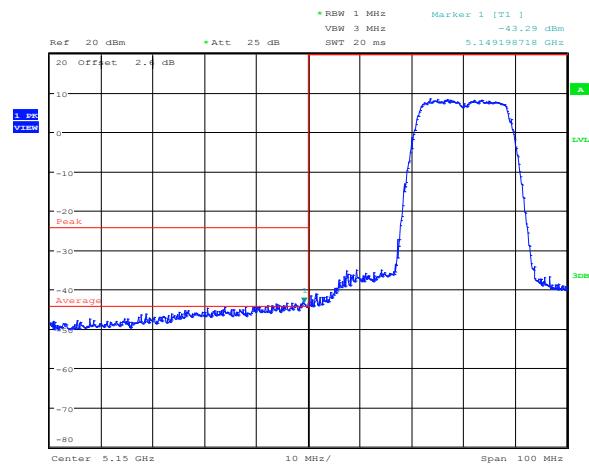

Date: 24.SEP.2014 15:19:29

Figure 8.3-39: Lower band edge emission for 802.11a with 54 Mbps, peak

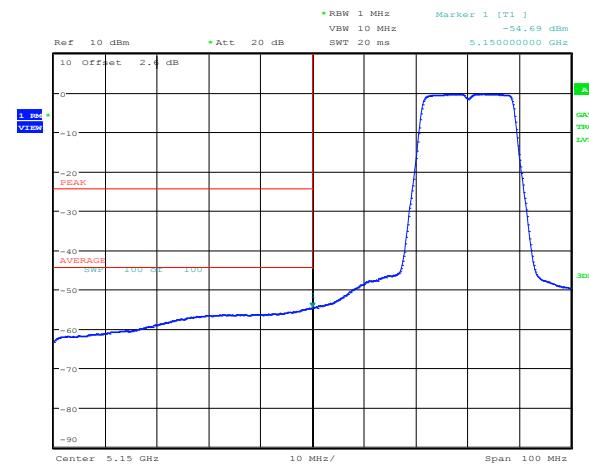

Date: 14.OCT.2014 11:35:36

Figure 8.3-40: Lower band edge emission for 802.11a with 54 Mbps, average

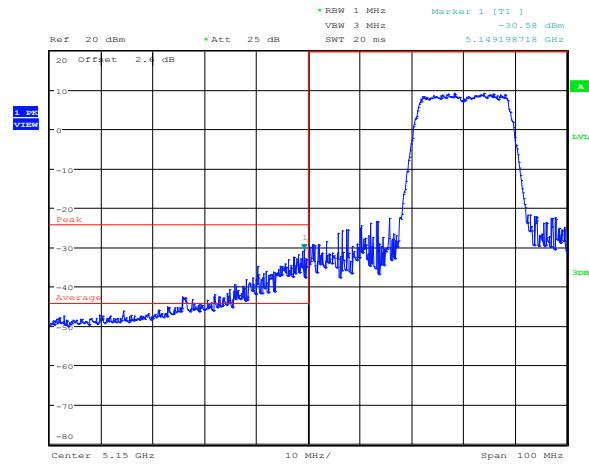

Date: 24.SEP.2014 15:20:49

Figure 8.3-41: Lower band edge emission for 802.11n HT20 with MCS 0, peak

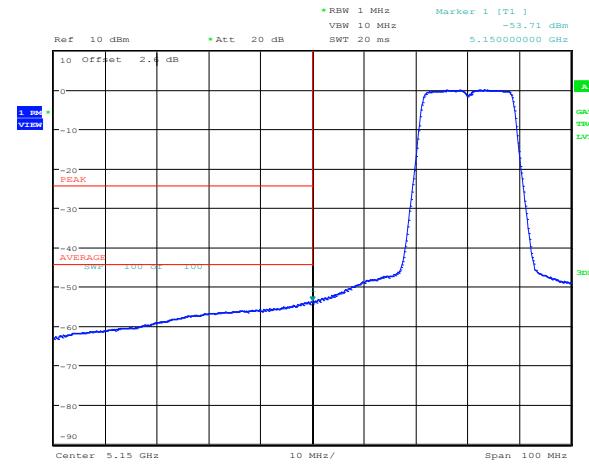

Date: 14.OCT.2014 11:37:53

Figure 8.3-42: Lower band edge emission for 802.11n HT20 with MCS 0, average

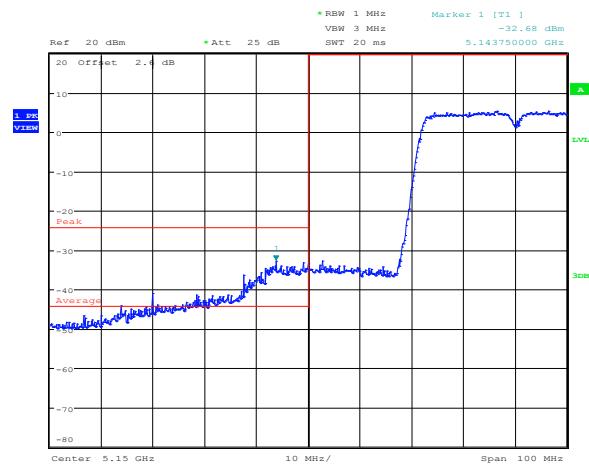

Date: 24.SEP.2014 15:21:19

Figure 8.3-43: Lower band edge emission for 802.11n HT20 with MCS 7, peak

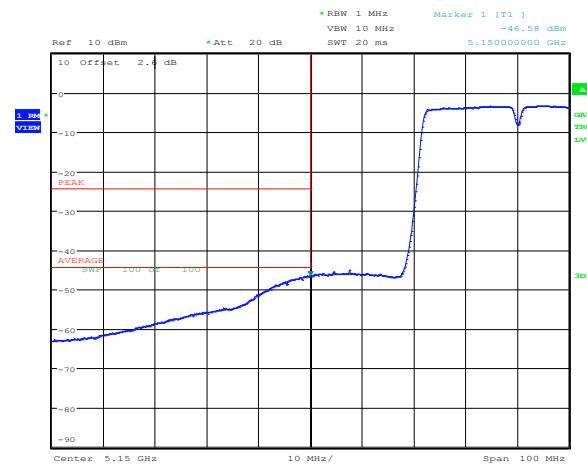

Date: 14.OCT.2014 11:38:41

Figure 8.3-44: Lower band edge emission for 802.11n HT20 with MCS 7, average

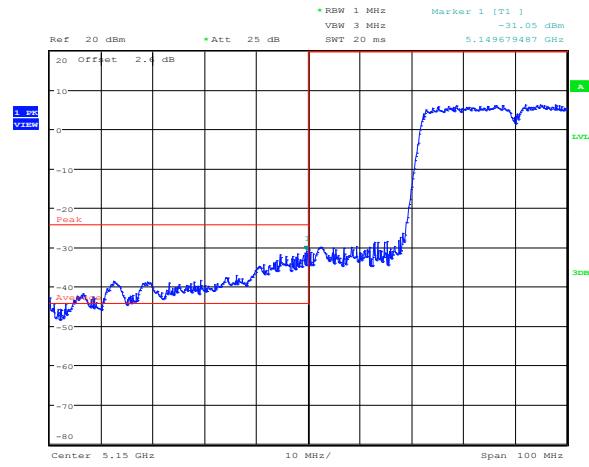

Date: 24.SEP.2014 15:22:14

Figure 8.3-45: Lower band edge emission for 802.11n HT40 with MCS 0, peak

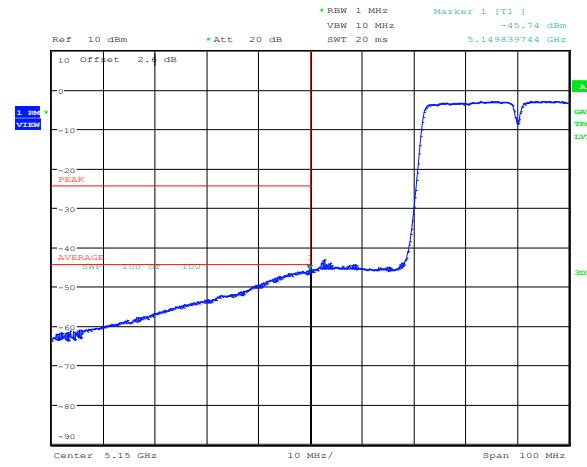

Date: 14.OCT.2014 11:39:50

Figure 8.3-46: Lower band edge emission for 802.11n HT40 with MCS 0, average

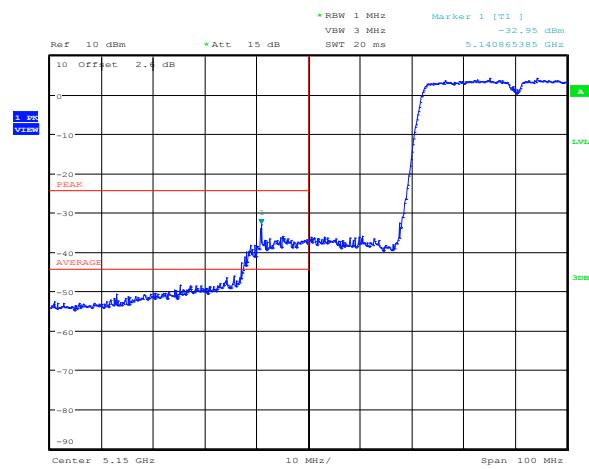

Date: 24.SEP.2014 15:22:58

Figure 8.3-47: Lower band edge emission for 802.11n HT40 with MCS 7, peak


Date: 14.OCT.2014 11:40:38

Figure 8.3-48: Lower band edge emission for 802.11n HT40 with MCS 7, average

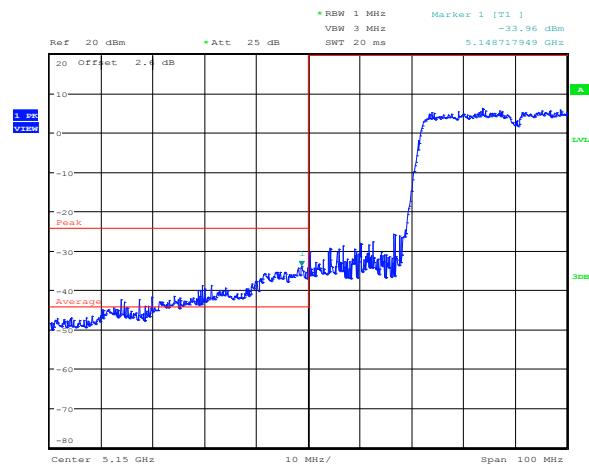

Date: 21.OCT.2014 10:46:39

Figure 8.3-49: Lower band edge emission for 802.11ac VHT40 with MCS 0, peak

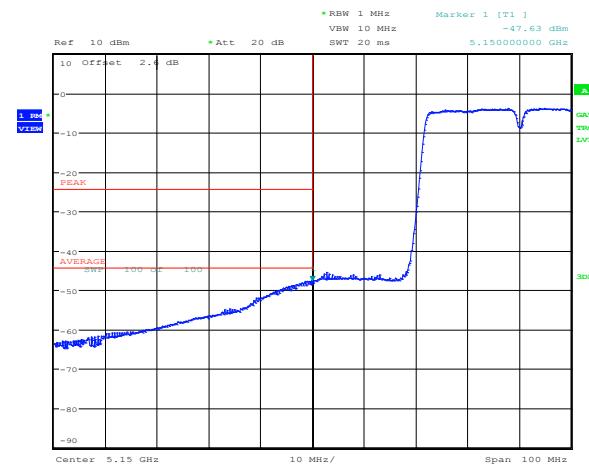

Date: 21.OCT.2014 10:47:25

Figure 8.3-50: Lower band edge emission for 802.11ac VHT40 with MCS 0, average

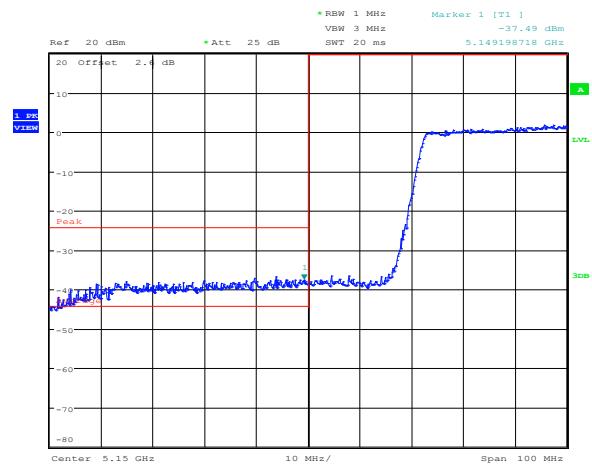

Date: 24.SEP.2014 15:26:22

Figure 8.3-51: Lower band edge emission for 802.11ac VHT40 with MCS 9, peak

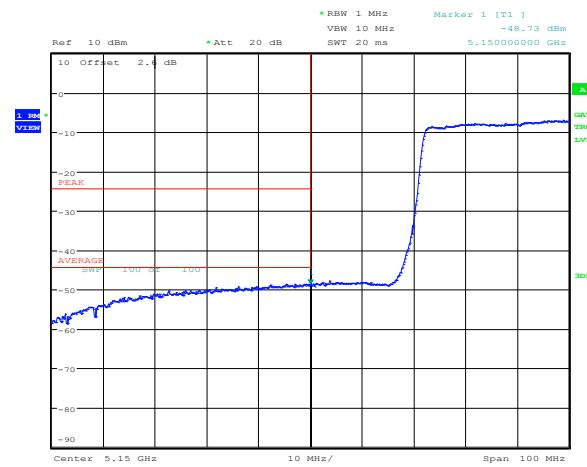

Date: 14.OCT.2014 11:42:06

Figure 8.3-52: Lower band edge emission for 802.11ac VHT40 with MCS 9, average

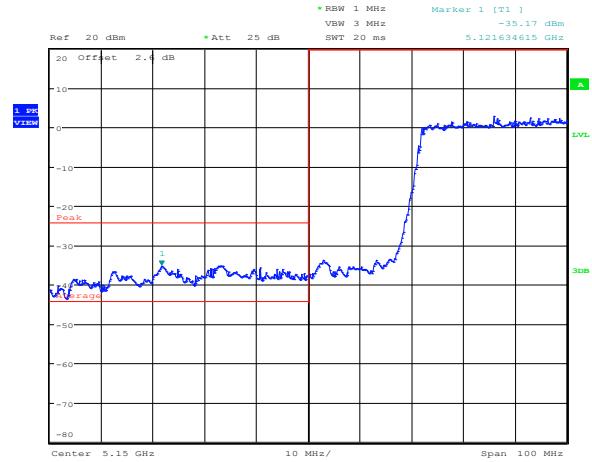

Date: 24.SEP.2014 15:27:40

Figure 8.3-53: Lower band edge emission for 802.11ac VHT80 with MCS 0, peak

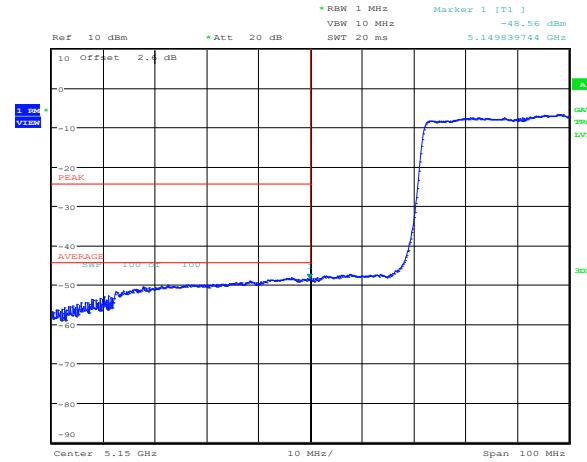

Date: 14.OCT.2014 11:43:40

Figure 8.3-54: Lower band edge emission for 802.11ac VHT80 with MCS 0, average

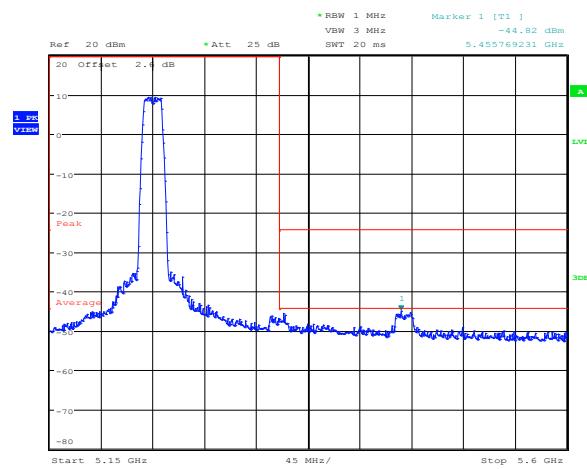

Date: 24.SEP.2014 15:28:26

Figure 8.3-55: Lower band edge emission for 802.11ac VHT80 with MCS 9, peak

Date: 14.OCT.2014 11:44:33

Figure 8.3-56: Lower band edge emission for 802.11ac VHT80 with MCS 9, average

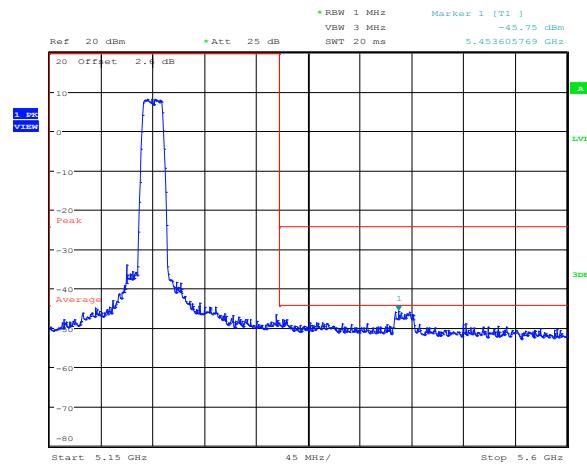

Date: 24.SEP.2014 15:38:56

Figure 8.3-57: Upper band edge emission for 802.11a with 6 Mbps, peak

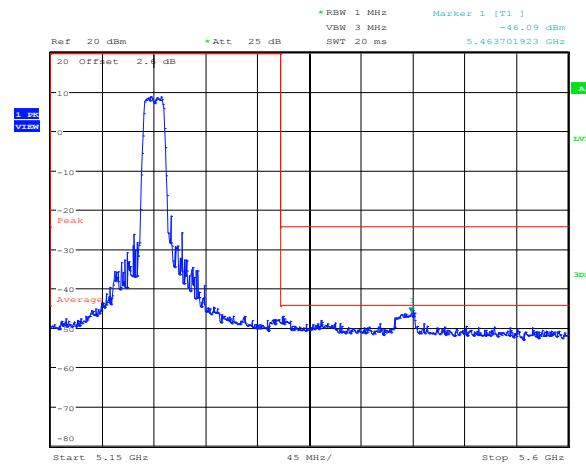
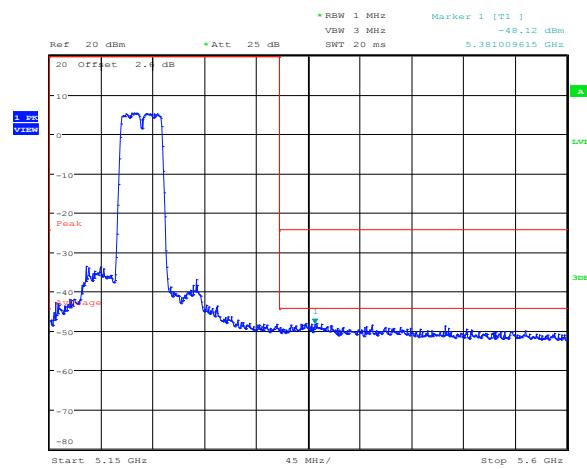
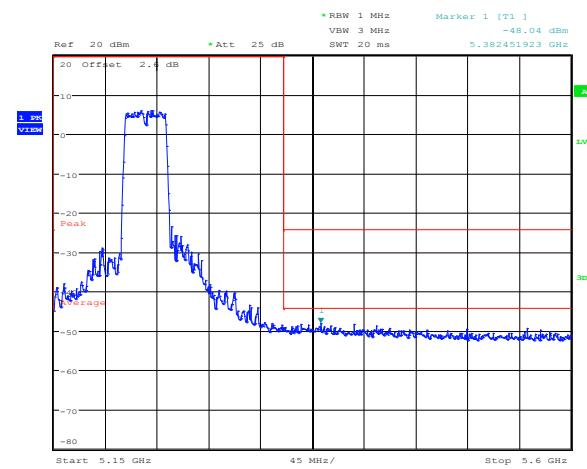

Date: 24.SEP.2014 15:39:32

Figure 8.3-58: Upper band edge emission for 802.11a with 54 Mbps, peak

Date: 24.SEP.2014 15:37:05


Figure 8.3-59: Upper band edge emission for 802.11n HT20 with MCS 0, peak

Date: 24.SEP.2014 15:37:47


Figure 8.3-60: Upper band edge emission for 802.11n HT20 with MCS 7, peak

Note: in the plots above peak value complies with average limit therefore average measurement was not performed.

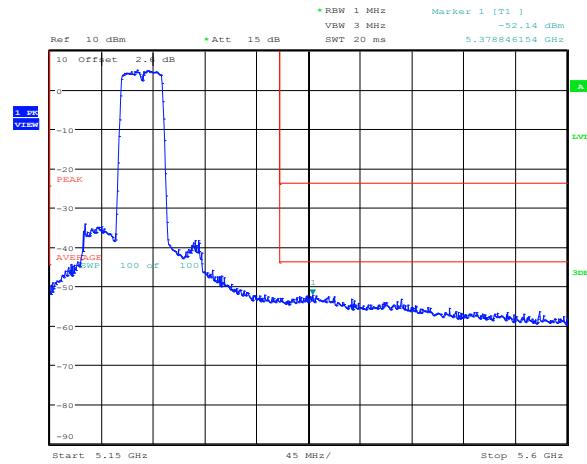

Date: 24.SEP.2014 15:35:12

Figure 8.3-61: Upper band edge emission for 802.11n HT40 with MCS 0, peak

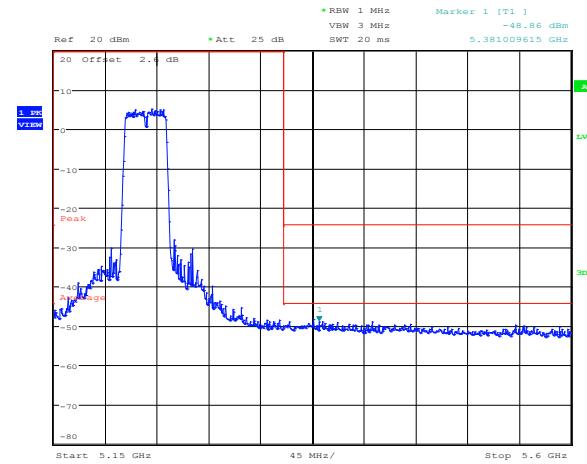
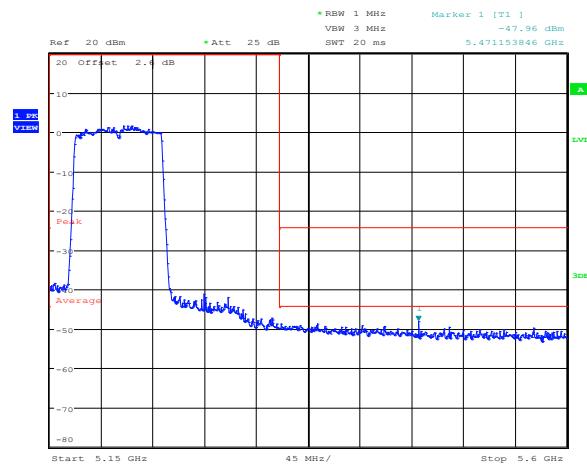
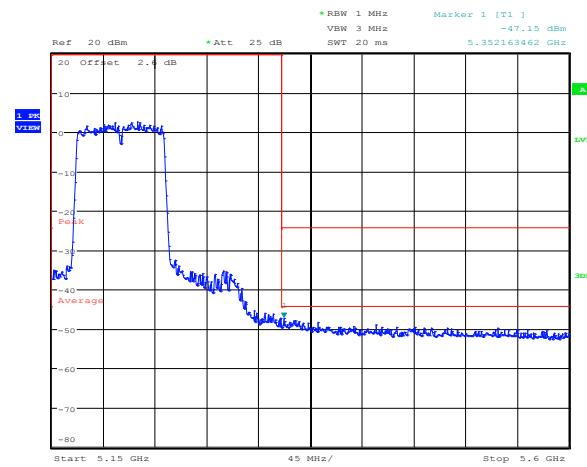

Date: 24.SEP.2014 15:35:50

Figure 8.3-62: Upper band edge emission for 802.11n HT40 with MCS 7, peak

Date: 21.OCT.2014 10:53:14


Figure 8.3-63: Upper band edge emission for 802.11ac VHT40 with MCS 0, peak

Date: 24.SEP.2014 15:31:42


Figure 8.3-64: Upper band edge emission for 802.11ac VHT40 with MCS 9, peak

Note: in the plots above peak value complies with average limit therefore average measurement was not performed.

Date: 24.SEP.2014 15:30:07

Figure 8.3-65: Upper band edge emission for 802.11ac VHT80 with MCS 0, peak

Date: 24.SEP.2014 15:29:32

Figure 8.3-66: Upper band edge emission for 802.11ac VHT80 with MCS 7, peak

Note: in the plots above peak value complies with average limit therefore average measurement was not performed.

Table 8.3-3: Cabinet radiation measurements results within restricted bands

Modulation	Frequency, MHz	Peak field strength, dB μ V/m	Peak limit, dB μ V/m	Peak margin, dB	Average field strength, dB μ V/m	Average limit, dB μ V/m	Average margin, dB
802.11a	5150	64.08	74.00	9.92	53.12	54.00	0.88
802.11a	5350	55.14	74.00	18.86	44.18	54.00	9.82
802.11n HT20	5150	64.82	74.00	9.18	53.06	54.00	0.94
802.11n HT20	5350	49.31	74.00	24.69	37.55	54.00	16.45
802.11n HT40	5150	64.68	74.00	9.32	53.07	54.00	0.93
802.11n HT40	5350	47.59	74.00	26.41	36.06	54.00	17.94
802.11ac VHT40	5150	63.86	74.00	10.14	53.09	54.00	0.91
802.11ac VHT40	5350	44.67	74.00	29.33	31.82	54.00	22.18
802.11ac VHT80	5150	64.19	74.00	9.81	53.06	54.00	0.94
802.11ac VHT80	5350	51.40	74.00	22.60	41.08	54.00	12.92

8.4 FCC 15.407(g) Frequency stability

8.4.1 Definitions and limits

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

8.4.2 Test summary

Test date	September 24, 2014	Temperature	22 °C
Test engineer	Andrey Adelberg	Air pressure	1004 mbar
Verdict	Pass	Relative humidity	30 %

8.4.3 Observations, settings and special notes

As per manufacturer specification the temperature operational range is 5–30 °C. Spectrum analyser settings:

Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold

8.4.4 Test data

Table 8.4-1: Frequency drift measurement

Test conditions	Frequency, GHz	Drift, Hz
+30 °C, Nominal	5.2000801285	0
+20 °C, +15 %	5.2000801285	0
+20 °C, Nominal	5.2000801285	Reference
+20 °C, -15 %	5.2000801285	0
+10 °C, Nominal	5.2001201925	+40064
+5 °C, Nominal	5.2001201925	+40064

Table 8.4-2: Lower band edge drift calculation

Modulation	-26 dBc lower cross point, GHz	Max negative drift, Hz	Drifted lower cross point, GHz	Band edge, GHz	Margin, MHz
802.11a	5.169086538	0	5.169086538	5.15	19.086538
802.11n HT20	5.168990385	0	5.168990385	5.15	18.990385
802.11n HT40	5.170069154	0	5.170069154	5.15	20.069154
802.11ac VHT40	5.170192308	0	5.170192308	5.15	20.192308
802.11ac VHT80	5.168653846	0	5.168653846	5.15	18.653846

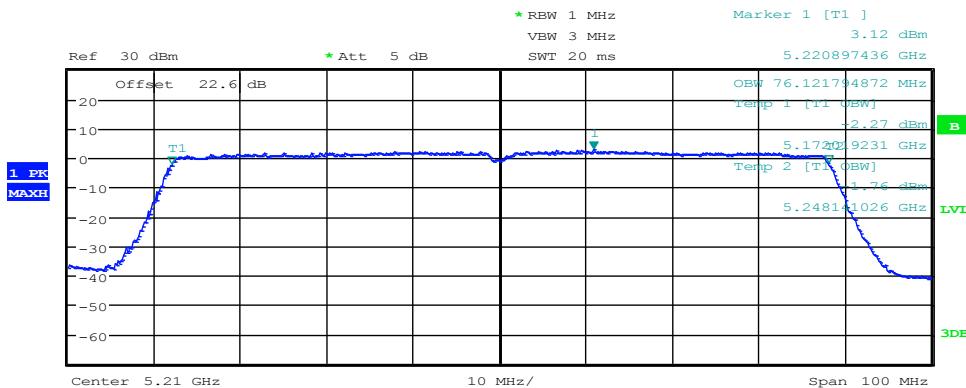
Notes: Drifted lower cross point = -26 dBc lower cross point – max negative drift.

Table 8.4-3: Upper band edge drift calculation

Modulation	-26 dBc upper cross point, GHz	Max positive drift, Hz	Drifted upper cross point, GHz	Band edge, GHz	Margin, MHz
802.11a	5.249751154	40064	5.24979122	5.25	0.208782
802.11n HT20	5.249865385	40064	5.24990545	5.25	0.094551
802.11n HT40	5.249807692	40064	5.24984776	5.25	0.152244
802.11ac VHT40	5.249807692	40064	5.24984776	5.25	0.152244
802.11ac VHT80	5.251346154	40064	5.25138622	5.25	-1.386218*

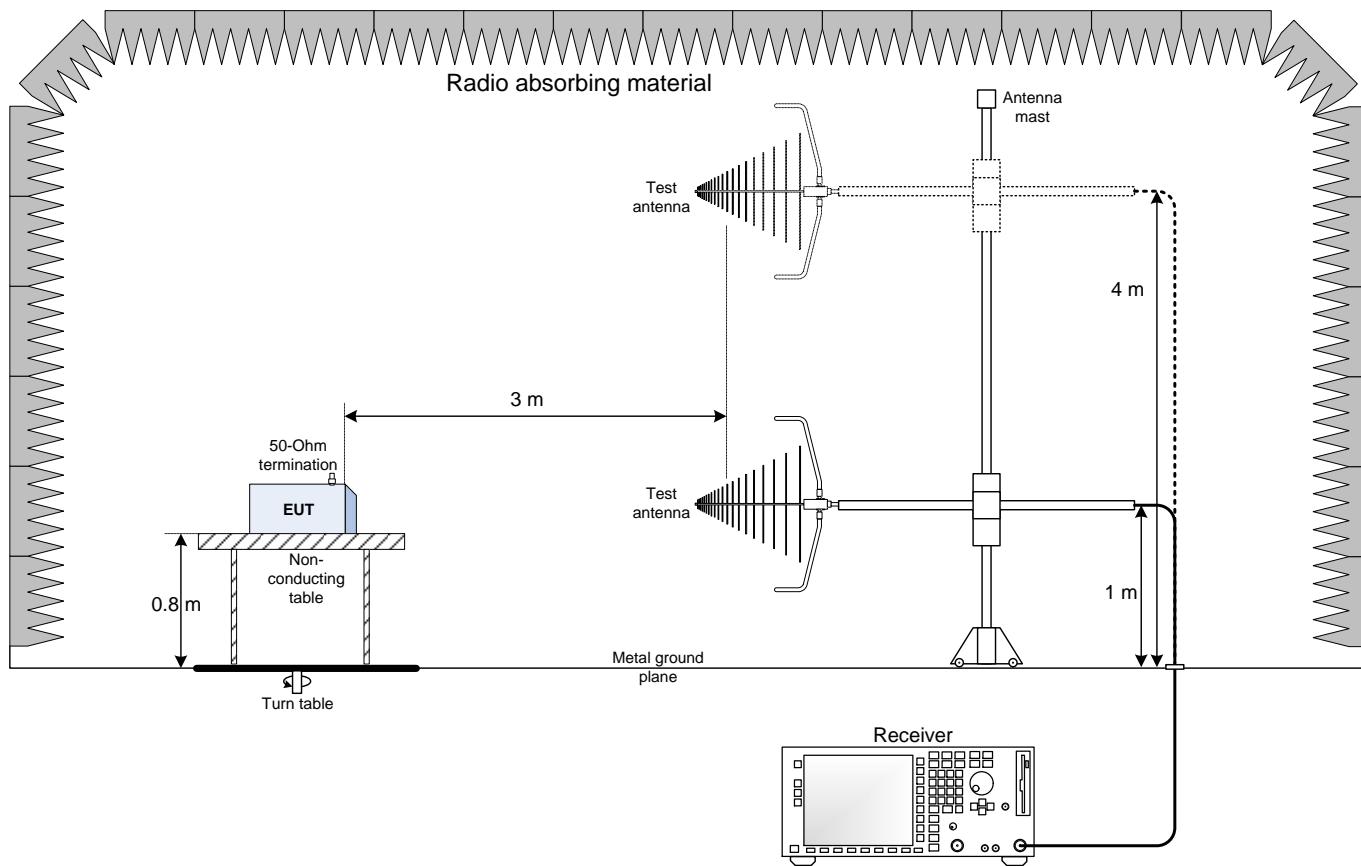
Notes: Drifted upper cross point = -26 dBc upper cross point + max positive drift.

* 99 % OBW lies completely within 5.15–5.25 GHz (U-NII-1) band (see plot below) but -26 dBc (26 dB BW) at upper band edge straddles into U-NII-2A band.

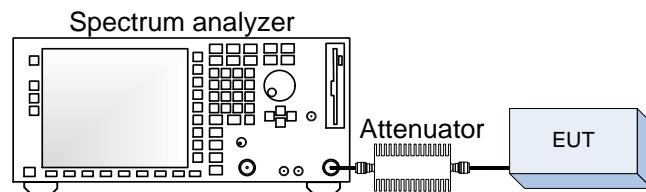

As per **644545 D03 Guidance for IEEE 802.11ac New Rules v01**, section II) B) 1) b):

§15.407(b)(1) specifies an exception permitting the out-of-band limits to be exceeded the U-NII-2A band when transmitting in the U-NII-1 band.

NOTE: In that case, if the 26 dB bandwidth of the transmitted signal extends into the U-NII-2A band, the device shall be considered to be operating in both the U-NII-1 and U-NII-2A bands, and will therefore require implementation of Dynamic Frequency Selection and Transmit Power Control in accordance with §15.407(h) within U-NII-2A band (5.25–5.35 GHz).


For DFS and TPC compliance please refer to test report covering U-NII-2a band (5.25–5.35 GHz).

99% band edges: 5.172019231 GHz (lower band edge) and 5.248141026 GHz (upper band edge):



Section 9. Block diagrams of test set-ups

9.1 Radiated emissions set-up

9.2 Antenna terminal set-up

