

The University of Michigan Radiation Laboratory 3228 EECS Building Ann Arbor, MI 48109-2122 Tel: (734) 764-0500 Fax: (734) 647-2106

Measured Radio Frequency Emissions From

Evigia Systems, Inc. Transponder FCC ID: XND-EBB-1 IC: 8519A-EBB1

Test Report No. 417124-517 August 10, 2009

Copyright © 2009

For:

Evigia Systems, Inc. 3810 Varsity Drive Ann Arbor, MI 48108-2224 Contact: Robert W. Hower webinfo@evigia.com Phone: 734-302-1140

Fax: 734-372-6435

Measurements made by: Joseph D. Brunett

Test report written by: Joseph D. Brunett

Testing supervised by: Report Approved by:

Valdis V. Liepa \
Research Scientist

Summary

Tests for compliance with FCC Regulations, CFR 47, Part 15 and with Industry Canada RSS-210/Gen, were performed on a Evigia, FCC ID: XND-EBB-1, IC: 8519A-EBB1. This device under test (DUT) is subject to the rules and regulations as a Transceiver.

In testing completed on July 29, 2009, the DUT tested meets the allowed specifications for intentional radiated emissions by 3.3 dB. Harmonic radiated emissions meet the regulations by more than 6.9 dB. The FCC Class A digital emissions limit pass by more than 22.4 dB. Power line conducted emissions are not subject to regulation as the DUT is powered by a 3.6 VDC battery.

Table of Contents

1.	Introd	luction	3
2.	Equip	oment Used	3
3.	Devic	ce Under Test	4
	3.1	Description & Block Diagram	4
	3.2	Variants and Samples	4
	3.3	Modes of Operation	4
	3.4	Exemptions	4
	3.5	EMC Relevant Modifications	4
4.	Emiss	sions Limits	5
	4.1	Radiated Emissions Limits	5
	4.2	Power Line Conducted Emissions Limits	6
5.	Meas	urement Procedures	6
	5.1	Semi-Anechoic Chamber Radiated Emissions.	6
	5.2	Outdoor Radiated Emissions	6
	5.3	Radiated Field Computations	7
	5.4	Indoor Power Line Conducted Emissions	7
	5.5	Supply Voltage Variation.	7
6.	Test I	Results	8
	6.1	Radiated Emissions	8
	6.1.1	Correction for Pulse Operation	8
	6.1.2	Emission Spectrum	8
	6.1.3	Emission Bandwidth	8
	6.1.4	Supply Voltage and Supply Voltage Variation	8
	6.2	Conducted Emissions	8

1. Introduction

These Evigia Transponders were tested for compliance with FCC Regulations, Part 15, adopted under Docket 87-389, April 18, 1989 as subsequently amended, and with Industry Canada RSS-210/Gen, Issue 7, June 2007. Tests were performed at the University of Michigan Radiation Laboratory Willow Run Test Range following the procedures described in ANSI C63.4-2003 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The Site description and attenuation characteristics of the Open Site facility are on file with FCC Laboratory, Columbia, Maryland (FCC Reg. No: 91050) and with Industry Canada, Ottawa, ON (File Ref. No: IC 2057A-1).

2. Equipment Used

The test equipment commonly used in our facility is listed in Table 2.1. Except where indicated as a pretest, monitoring, or support device; all equipment listed below is a part of the University of Michigan Radiation Laboratory (UMRL) quality system. This quality system has been established to ensure all equipment has a clearly identifiable classification, calibration expiry date, and that all calibrations are traceable to national standards.

Table 2.1 Test Equipment.

Test Instrument	Used	Manufacturer/Model	Q Number
Spectrum Analyzer (9kHz-26GHz)	\boxtimes	Hewlett-Packard 8593E, SN: 3412A01131	HP8593E1
Spectrum Analyzer (9kHz-6.5GHz)	\boxtimes	Hewlett-Packard 8595E, SN: 3543A01546	JDB8595E
Power Meter		Hewlett-Packard, 432A	HP432A1
Harmonic Mixer (26-40 GHz)		Hewlett-Packard 11970A, SN: 3003A08327	HP11970A1
Harmonic Mixer (40-60 GHz)		Hewlett-Packard 11970U, SN: 2332A00500	HP11970U1
Harmonic Mixer (75-110 GHz)		Hewlett-Packard 11970W, SN: 2521A00179	HP11970W1
Harmonic Mixer (140-220 GHz)		Pacific Millimeter Prod., GMA, SN: 26	PMPGMA1
S-Band Std. Gain Horn		S/A, Model SGH-2.6	SBAND1
C-Band Std. Gain Horn		University of Michigan, NRL design	CBAND1
XN-Band Std. Gain Horn		University of Michigan, NRL design	XNBAND1
X-Band Std. Gain Horn		S/A, Model 12-8.2	XBAND1
X-band horn (8.2- 12.4 GHz)		Narda 640	XBAND2
X-band horn (8.2- 12.4 GHz)		Scientific Atlanta, 12-8.2, SN: 730	XBAND3
K-band horn (18-26.5 GHz)		FXR, Inc., K638KF	KBAND1
Ka-band horn (26.5-40 GHz)		FXR, Inc., U638A	KABAND1
U-band horn (40-60 GHz)		Custom Microwave, HO19	UBAND1
W-band horn(75-110 GHz)		Custom Microwave, HO10	WBAND1
G-band horn (140-220 GHz)		Custom Microwave, HO5R	GBAND1
Bicone Antenna (30-250 MHz)	\boxtimes	University of Michigan, RLBC-1	LBBIC1
Bicone Antenna (200-1000 MHz)	\boxtimes	University of Michigan, RLBC-2	HBBIC1
Dipole Antenna Set (30-1000 MHz)	$\overline{\boxtimes}$	University of Michigan, RLDP-1,-2,-3	UMDIP1
Dipole Antenna Set (30-1000 MHz)		EMCO 3121C, SN: 992 (Ref. Antennas)	EMDIP1
Active Rod Antenna (30 Hz-50 MHz)		EMCO 3301B, SN: 3223	EMROD1
Active Loop Antenna (30 Hz-50 MHz)		EMCO 6502, SN:2855	EMLOOP1
Ridge-horn Antenna (300-5000 MHz)		University of Michigan	UMRH1
Amplifier (5-1000 MHz)	\boxtimes	Avantek, A11-1, A25-1S	AVAMP1
Amplifier (5-4500 MHz)	\boxtimes	Avantek	AVAMP2
Amplifier (4.5-13 GHz)		Avantek, AFT-12665	AVAMP3
Amplifier (6-16 GHz)		Trek	TRAMP1
Amplifier (16-26 GHz)		Avantek	AVAMP4
LISN Box		University of Michigan	UMLISN1
Signal Generator		Hewlett-Packard 8657B	HPSG1

3. Device Under Test

3.1 Description & Block Diagram

The DUT is a 433.9 MHz FSK, active RFID Transponder designed for cargo tracking applications. These devices are housed in plastic cases and employ a 3.6 V lithium battery. The DUT is designed and manufactured by Evigia Systems, Inc., 3810 Varsity Drive, Ann Arbor, MI 48108-2224.

Transponder	[Make], Model	[S/N],P/N	EMC Consideration
Asset	[Evigia], EV3-AT	[18713172574317], AT2	
Data Rich	[Evigia], EV3-DRT	[18713172574517], DRT2	Class A PC Peripheral
License Plate	[Evigia], EV3-LPT	[18713172574215], LPT2	
Sensor	[Evigia], EV3-ST	[18713172574720], AS1	Class A PC Peripheral

Cable	[Make], Model	Length	EMC Consideration
USB	[Conorio]	1 m	Class A PC Interface
USB	[Generic]	I m	(programming)

3.2 Variants and Samples

There are four variants of the DUT. All employ identical RF layout and IF & RF circuitry, but have different digital circuitry and (in the case of the EV3-ST) environmental sensors. Models EV3-DRT and EV3-ST both have commercial USB connectors for programming and data retrieval purposes. Four samples were provided for testing, one for each model detailed above. An Evigia engineer programmed the devices into CW, modulated, and Rx only modes for testing.

3.3 Modes of Operation

Evigia transponders, models EV3-AT, EV3-DRT, EV3-LPT, and EV3-ST, are capable of only a single mode of operation, and qualify for certification under two rule parts (FCC 15.231/RSS-210 2.7 and FCC 15.240/RSS-210 A5). When interrogated by an associated reader, these transponders reply with a single control/data packet. The reader device verifies the integrity of the packet sent before requesting a new packet. Both the transponder and any associated reader employ the ISO 18000-7:2008 RFID protocol.

3.4 Exemptions

Two of these models can be connected to a commercial computer for programming and data retrieval purposes. Since these devices are sold only for commercial use, they are subject only to Class A emissions verification as a PC peripheral. They are not used for residential purposes.

3.5 EMC Relevant Modifications

No EMI Relevant Modifications were performed by this test laboratory.

4. Emissions Limits

4.1 Radiated Emissions Limits

The DUT tested falls under the category of an Intentional Radiator. The applicable testing frequencies and corresponding emission limits set by both the FCC and IC are given in Tables 4.1 and 4.2 below.

Table 4.1. TX Emission Limits (FCC: 15.231(b), .205(a); IC: RSS-210 2.7 T4).

Frequency	Fundar Ave. E _{li}		Spurious** Ave. E _{lim} (3m)			
(MHz)	$(\mu V/m)$	dB (μV/m)	$(\mu V/m)$	dB (μV/m)		
260.0-470.0	3750-12500*		375-1250			
315	6042	75.6	604.2	55.6		
433.9	10966	80.8	1096.6	60.8		
322-335.4 399.9-410 608-614	Restr Bar		200	46.0		
960-1240/1427(IC) 1300-1427 1435-1626.5 1645.5-1646.5 (IC) 1660-1710 1718.9-1722.2 2200-2300	Restr Bar		500	54.0		

^{*} Linear interpolation, formula: E = -7083 + 41.67*f (MHz)

Table 4.1(b). TX Emission Limits (FCC: 15.240; IC: RSS-210 A5).

Frequency	Fundaı Ave. E _{l:}		Spurious** Ave. E _{lim} (3m)			
(MHz)	dz $dB (\mu V/m)$		$(\mu V/m)$	$dB (\mu V/m)$		
433.5-434.5	11000	80.8	200 < 1 GHz 500 > 1 GHz	46.0 54.0		

^{*} Linear interpolation, formula: E = -7083 + 41.67*f (MHz)

Table 4.2. Spurious Emission Limits (FCC: 15.33, .35, .109/209; IC: RSS-210 2.7, T2)

Freq. (MHz)	E_{lim} (3m) $\mu V/m$	$E_{lim} dB(\mu V/m)$
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
960-2000	500	54.0

Note: Average readings apply above 1000 MHz (1 MHz BW), Quasi-Peak readings apply to 1000 MHz (120 kHz RBW), PRF of intentional emissions > 20 Hz for QPK to apply.

^{**} Measure up to tenth harmonic; 120 kHz BW up to 1 GHz, 1 MHz BW above 1 GHz

^{**} Measure up to tenth harmonic; 120 kHz BW up to 1 GHz, 1 MHz BW above 1 GHz

4.2 Power Line Conducted Emissions Limits

Table 4.3 Emission Limits (FCC:15.107 (CISPR); IC: RSS-Gen, 7.2.2 T2).

Frequency	Class A	(dBµV)	Class B (dBµV)			
(MHz)	Quasi-peak	Average	Quasi-peak	Average		
.150 - 0.50	79	66	66 - 56*	56 - 46*		
0.50 - 5	73	60	56	46		
5 - 30	73	60	60	50		

Notes:

- 1. The lower limit shall apply at the transition frequency
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15-0.50 MHz:
 - *Class B Quasi-peak: $dB\mu V = 50.25 19.12*log(f)$
 - *Class B Average: $dB\mu V = 40.25 19.12 \log(f)$
- 3. 9 kHz RBW

5. Measurement Procedures

5.1 Semi-Anechoic Chamber Radiated Emissions

To become familiar with the radiated emission behavior of the DUT, the device is first studied and measured in our shielded semi-anechoic chamber. In the chamber there is a set-up similar to that of an outdoor 3-meter site, with a turntable, an antenna mast, and a ground plane. Instrumentation includes spectrum analyzers and other equipment as needed.

The DUT is laid on the test table as shown in the included block diagram and/or photographs. A shielded loop antenna is employed when studying emissions from 9 kHz to 30 MHz. Above 30 MHz and below 250 MHz a biconical antenna is employed. Above 250 MHz a ridge or and standard gain horn antennas are used. The spectrum analyzer resolution and video bandwidths are set so as to measure the DUT emission without decreasing the emission bandwidth (EBW) of the device. Emissions are studied for all orientations (3-axes) of the DUT and all test antenna polarizations. In the chamber, spectrum and modulation characteristics of intentional carriers are recorded. Receiver spurious emissions are measured with an appropriate carrier signal applied. Associated test data is presented in subsequent sections.

5.2 Outdoor Radiated Emissions

After measurements are performed indoors, emissions on our outdoor 3-meter Open Area Test Site (OATS) are made. If the DUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.4 are employed. Alternatively, an on-table layout more representative of actual use may be employed if the resulting emissions appear to be worst-case in such a configuration. Any intentionally radiating elements are placed on the test table flat, on their side, and on their end (3-axes) and worst case emissions are recorded. For each configuration the DUT is rotated 360 degrees about its azimuth and the receive antenna is raised and lowered between 1 and 4 meters to maximize radiated emissions from the device. Receiver spurious emissions are measured with an appropriate carrier signal applied. For devices with intentional emissions below 30 MHz, our shielded loop antenna at a 1 meter received height is used. Low frequency field extrapolation to the regulatory limit distance is employed as needed. Emissions between 30 MHz and 1 GHz are measured using tuned dipoles and/or biconical antennas. Care is taken to ensure that the RBW and VBW used meet the regulatory requirements, and that the EBW of the DUT is not reduced. The Photographs included in this report show the DUT on the OATS.

5.3 Radiated Field Computations

To convert the dBm values measured on the spectrum analyzer to $dB(\mu V/m)$, we use expression

$$E3(dB\mu V/m) = 107 + PR + KA - KG + KE - CF$$

where PR = power recorded on spectrum analyzer, dBm, measured at 3 m

KA = antenna factor, dB/m

KG = pre-amplifier gain, including cable loss, dB

KE = duty correction factor, dB

CF = distance conversion (employed only if limits are specified at alternate distance), dB

When presenting the data at each frequency, the highest measured emission under all of the possible DUT orientations (3-axes) is given.

5.4 Indoor Power Line Conducted Emissions

When applicable, power line conducted emissions are measured in our semi-anechoic chamber. If the DUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.4 are employed. Alternatively, an on-table layout more representative of actual use may be employed if the resulting emissions appear to be worst-case in such a configuration.

The conducted emissions measured with the spectrum analyzer and recorded (in $dB\mu V$) from 0-2 MHz and 2-30 MHz for both the ungrounded (Hi) and grounded (Lo) conductors. The spectrum analyzer is set to peak-hold mode in order to record the highest peak throughout the course of functional operation. Only when the emission exceeds or is near the limit are quasi-peak and average detection used.

5.5 Supply Voltage Variation

Measurements of the variation in the fundamental radiated emission were performed with the supply voltage varied by no less than 85% and 115% of the nominal rated value. For battery operated equipment, tests were performed using a new battery, and worst case emissions are re-checked employing a new battery.

6. Test Results

6.1 Radiated Emissions

6.1.1 Correction for Pulse Operation

These transponder devices are firmware encoded to limit transmitted packet length, measured at 25.5 ms, with a minimum measured packet period of 96.5 ms. Each transponder is capable of transmitting only a single FSK data packet in response to an automatic activation from an associated reader unit (not included in this certification). See Figure 6.1. Computing the duty factor results in:

$$K_E = 25.5 \text{ ms} / 96.5 \text{ ms} = 0.264 \text{ or } -11.6 \text{ dB}.$$

6.1.2 Emission Spectrum

The relative DUT emission spectrum is recorded and is shown in Figure 6.2.

6.1.3 Emission Bandwidth

The emission bandwidth of the signal is shown in Figure 6.3. The allowed 99% bandwidth is 0.25% of 433.9 MHz, or 1.085 MHz. From the plot we see that the EBW is 285.0 kHz, and the center frequency is 433.92 MHz.

6.1.4 Supply Voltage and Supply Voltage Variation

The DUT has been designed to be powered by a 3.6 VDC battery. For this test, relative radiated power was measured at the fundamental as the voltage was varied from 2.5 to 4.5 volts. The emission variation is shown in Figure 6.4.

Batteries: before testing $V_{oc} = 3.65 \text{ V}$

after testing $V_{oc} = 3.59 \text{ V}$

Ave. current from batteries I = 18 mA (cw)

6.2 Conducted Emissions

These tests do not apply, since the DUT is powered from a 3.6 VDC battery.

The University of Michigan Radiation Laboratory 3228 EECS Building Ann Arbor, MI 48109-2122

Tel: (734) 764-0500 Fax: (734) 647-2106

Table 6.1(a) Fundamental & Harmonic Emissions

				Radi	ated E	missio	n - RF				Evigia EV3-AT; FCC/IC
	Freq.	Ant.	Ant.	Pr	Det.	Ka	Kg	E3*	E3lim**	Pass	
#	MHz	Used	Pol.	dBm	Used	dB/m	dB	dBμV/m	dBμV/m	dB	Comments
1	EV3-AT										
2	433.9	Dip	Н	-19.2	Pk	21.2	20.2	77.2	80.8	3.7	flat
3	433.9	Dip	V	-18.8	Pk	21.2	20.2	77.6	80.8	3.3	end
4	867.8	Dip	Н	-75.3	Pk	27.4	16.8	30.7	46.0	15.3	side, background
5	867.8	Dip	V	-72.5	Pk	27.4	16.8	33.5	46.0	12.5	end, background
6	1301.8	Horn	Н	-63.5	Pk	20.7	28.1	24.5	54.0	29.5	flat
7	1735.7	Horn	Н	-64.1	Pk	21.9	28.1	25.1	54.0	28.9	side
8	2169.6	Horn	Н	-57.0	Pk	22.9	26.5	34.8	54.0	19.2	flat
9	2603.5	Horn	Н	-65.0	Pk	24.1	25.7	28.8	54.0	25.2	side
10	3037.4	Horn	Н	-49.9	Pk	25.5	23.9	47.0	54.0	7.0	side
11	3471.4	Horn	Н	-67.1	Pk	26.8	23.2	31.9	54.0	22.1	side
12	3905.3	Horn	Н	-64.4	Pk	28.1	22.4	36.8	54.0	17.2	side
13	4339.2	Horn	Н	-73.8	Pk	29.5	16.2	34.8	54.0	19.2	end
14											
15	EV3-DRT	1									
16	433.9	Dip	Н	-20.4	Pk	21.2	20.2	76.0	80.8	4.9	side
17	433.9	Dip	V	-20.6	Pk	21.2	20.2	75.8	80.8	5.1	end
18	867.8	Dip	Н	-76.6	Pk	27.4	16.8	29.4	46.0	16.6	flat, background
19	867.8	Dip	V	-77.3	Pk	27.4	16.8	28.7	46.0	17.3	end, background
20	1301.8	Horn	Н	-42.1	Pk	20.7	28.1	45.9	54.0	8.1	flat
21	1735.7	Horn	Н	-56.6	Pk	21.9	28.1	32.6	54.0	21.4	side
22	2169.6	Horn	Н	-50.9	Pk	22.9	26.5	40.9	54.0	13.1	flat
23	2603.5	Horn	Н	-61.9	Pk	24.1	25.7	31.9	54.0	22.1	end
24	3037.4	Horn	Н	-54.5	Pk	25.5	23.9	42.4	54.0	11.6	side
25	3471.4	Horn	Н	-65.4	Pk	26.8	23.2	33.6	54.0	20.4	side
26	3905.3	Horn	Н	-67.8	Pk	28.1	22.4	33.4	54.0	20.6	side
27	4339.2	Horn	Н	-74.0	Pk	29.5	16.2	34.6	54.0	19.4	side
28											
29								.6 dB duty f			
30	*	* Harmo	onic Em	issions I	imit is	60.8 dB	uV/m uı	nder 15.231	, 46 dBuV/n	1 - 54 d	BuV/m under 15.240.
31											
32											
33											
34											
35											
36											
37											
38											
39											

Meas. 07/23/2009; U of Mich.

Table 6.1(b) Fundamental & Harmonic Emissions

				Radi	ated E	missio	n - RF				Evigia EV3-AT; FCC/IC
	Freq.	Ant.	Ant.	Pr	Det.	Ka	Kg	E3*	E3lim**	Pass	
#	MHz	Used	Pol.	dBm	Used	dB/m	dB	dBμV/m	dBμV/m	dB	Comments
1	EV3-LPT	1									
2	433.9	Dip	Н	-21.8	Pk	21.2	20.2	74.6	80.8	6.3	flat
3	433.9	Dip	V	-21.2	Pk	21.2	20.2	75.2	80.8	5.7	end
4	867.8	Dip	Н	-76.9	Pk	27.4	16.8	29.1	46.0	16.9	flat, background
5	867.8	Dip	V	-75.4	Pk	27.4	16.8	30.6	46.0	15.4	end, background
6	1301.8	Horn	Н	-40.9	Pk	20.7	28.1	47.1	54.0	6.9	side
7	1735.7	Horn	Н	-63.6	Pk	21.9	28.1	25.6	54.0	28.4	side
8	2169.6	Horn	Н	-58.0	Pk	22.9	26.5	33.8	54.0	20.2	flat
9	2603.5	Horn	Н	-63.2	Pk	24.1	25.7	30.6	54.0	23.4	side
10	3037.4	Horn	Н	-53.9	Pk	25.5	23.9	43.0	54.0	11.0	side
11	3471.4	Horn	Н	-69.5	Pk	26.8	23.2	29.5	54.0	24.5	side
12	3905.3	Horn	Н	-66.1	Pk	28.1	22.4	35.1	54.0	18.9	side
13	4339.2	Horn	Н	-73.2	Pk	29.5	16.2	35.4	54.0	18.6	flat
14											
15	EV3-ST										
16	433.9	Dip	Н	-20.0	Pk	21.2	20.2	76.4	80.8	4.5	flat
17	433.9	Dip	V	-20.5	Pk	21.2	20.2	75.9	80.8	5.0	end
18	867.8	Dip	Н	-73.4	Pk	27.4	16.8	32.6	46.0	13.4	flat, background
19	867.8	Dip	V	-76.9	Pk	27.4	16.8	29.1	46.0	16.9	end, background
20	1301.8	Horn	Н	-44.5	Pk	20.7	28.1	43.5	54.0	10.5	side
21	1735.7	Horn	Н	-67.9	Pk	21.9	28.1	21.3	54.0	32.7	side
22	2169.6	Horn	Н	-53.9	Pk	22.9	26.5	37.9	54.0	16.1	side
23	2603.5	Horn	Н	-61.6	Pk	24.1	25.7	32.2	54.0	21.8	end
24	3037.4	Horn	Н	-49.8	Pk	25.5	23.9	47.1	54.0	6.9	side
25	3471.4	Horn	Н	-64.1	Pk	26.8	23.2	34.9	54.0	19.1	side
26	3905.3	Horn	Н	-64.0	Pk	28.1	22.4	37.2	54.0	16.8	flat
27	4339.2	Horn	Н	-73.8	Pk	29.5	16.2	34.8	54.0	19.2	side
28											
29								.6 dB duty f			
30	*	* Harmo	onic Em	nissions I	imit is	60.8 dB	uV/m uı	nder 15.231	, 46 dBuV/n	1 - 54 d	BuV/m under 15.240.
31											
32											
33											
34											
35											
36											
37											
38											
39											

Meas. 07/23/2009; U of Mich.

Table 6.2 Spurious Emissions Measured

Freq.		Spurious Digital Emissions (Class A) Evigia; FCC/											
1 33.2 Bic H -90.6 QPk 12.4 24.2 4.6 49.5 44.9 noise / background 2 33.2 Bic V -88.7 QPk 12.4 24.2 6.5 49.5 43.0 noise / background 3 52.7 Bic V -90.9 QPk 8.8 23.9 0.7 49.5 48.8 noise / background 4 52.7 Bic V -90.9 QPk 8.8 23.9 1.0 49.5 48.5 noise / background 5 66.7 Bic V -86.9 QPk 7.7 23.7 5.6 49.5 43.9 noise / background 6 66.7 Bic W -86.9 QPk 7.7 23.7 4.1 49.5 43.9 noise / background 7 86.1 Bic H -90.1 QPk 7.7 23.4 1.2 49.5 48.3 noise / background 8 86.1 Bic H -90.1 QPk 7.7 23.4 1.2 49.5 48.3 noise / background 8 86.1 Bic H -86.3 QPk 13.7 22.3 12.6 54.0 41.4 noise / background 10 169.2 Bic W -86.3 QPk 13.7 22.3 12.1 54.0 41.9 noise / background 11 183.8 Bic W -79.0 QPk 14.3 22.1 20.2 54.0 43.8 noise / background 12 183.8 Bic W -79.0 QPk 14.5 22.0 31.6 54.0 42.4 noise / background 13 191.7 Bic H -67.9 QPk 14.5 22.0 31.6 54.0 22.4 noise / background 14 191.7 Bic W -73.5 QPk 14.5 22.0 26.0 54.0 22.4 noise / background 15		Freq.	Ant.	Ant.	Pr	Det.	Ka	Kg	E3	E3lim	Pass		
2 33.2 Bic V -88.7 OPk 12.4 24.2 6.5 49.5 43.0 noise / background 3 52.7 Bic V -90.9 QPk 8.8 23.9 1.0 49.5 48.8 noise / background 5 66.7 Bic V -85.4 QPk 7.7 23.7 5.6 49.5 43.9 noise / background 6 66.7 Bic V -86.9 QPk 7.7 23.7 5.6 49.5 43.9 noise / background 6 66.7 Bic V -86.9 QPk 7.7 23.7 4.1 49.5 43.4 noise / background 7 86.1 Bic V -90.9 QPk 7.7 23.4 1.2 49.5 43.4 noise / background 8 86.1 Bic V -90.9 QPk 7.7 23.4 1.2 49.5 49.1 noise / background 9 169.2 Bic H -85.8 QPk 13.7 22.3 12.6 54.0 41.4 noise / background 10 169.2 Bic V -86.3 QPk 13.7 22.3 12.1 54.0 41.9 noise / background 11 183.8 Bic H -89.9 QPk 14.3 22.1 9.3 54.0 44.7 noise / background 12 183.8 Bic H -89.9 QPk 14.3 22.1 20.2 54.0 33.8 noise / background 13 191.7 Bic H -67.9 QPk 14.5 22.0 26.0 54.0 22.4 noise / background 14 191.7 Bic V -73.5 QPk 14.5 22.0 26.0 54.0 22.4 noise / background 15 Spurious Receiver Emissions (Class B)	#	MHz	Used	Pol.	dBm	Used	dB/m	dB	$dB\mu V/m$	$dB\mu V/m$	dB	Comments	
3 52.7 Bic H -91.2 OPk 8.8 23.9 0.7 49.5 48.8 noise / background 4 52.7 Bic V -90.9 OPk 8.8 23.9 1.0 49.5 48.5 noise / background 5 66.7 Bic H -85.4 OPk 7.7 23.7 5.6 49.5 48.5 noise / background 6 66.7 Bic V -86.9 OPk 7.7 23.7 5.6 49.5 45.4 noise / background 7 86.1 Bic V -90.0 OPk 7.7 23.7 4.1 49.5 45.4 noise / background 8 86.1 Bic V -90.9 OPk 7.7 23.4 1.2 49.5 43.3 noise / background 9 169.2 Bic H -85.8 OPk 13.7 22.3 12.6 54.0 41.4 noise / background 10 169.2 Bic H -85.8 OPk 13.7 22.3 12.1 54.0 41.9 noise / background 11 183.8 Bic H -89.9 OPk 14.3 22.1 9.3 54.0 44.7 noise / background 12 183.8 Bic V -79.0 OPk 14.3 22.1 20.2 54.0 33.8 noise / background 13 191.7 Bic H -67.9 OPk 14.5 22.0 26.0 54.0 22.4 noise / background 15 NOTE: Worst case digital emissions observed from DRT/ST models (with commercial USB interface). Freq. Ant. MHz Used MBm Used MBm MB MBµV/m	1	33.2	Bic	Н	-90.6	QPk	12.4	24.2	4.6	49.5	44.9	noise / background	
4 52.7 Bic V -90.9 QPk 8.8 23.9 1.0 49.5 48.5 noise / background 5 66.7 Bic H -85.4 QPk 7.7 23.7 5.6 49.5 43.9 noise / background 6 66.7 Bic V -86.9 QPk 7.7 23.7 4.1 49.5 49.5 43.4 7 86.1 Bic H -90.1 QPk 7.7 23.4 1.2 49.5 48.3 noise / background 8 86.1 Bic V -90.9 QPk 7.7 23.4 0.4 49.5 49.1 noise / background 9 169.2 Bic H -85.8 QPk 13.7 22.3 12.1 54.0 41.4 noise / background 10 169.2 Bic V -86.3 QPk 13.7 22.3 12.1 54.0 41.9 noise / background 11 183.8 Bic H -87.9 QPk 14.3 22.1 9.3 54.0 41.9 noise / background 12 183.8 Bic H -67.9 QPk 14.3 22.1 20.2 54.0 33.8 noise / background 13 191.7 Bic H -67.9 QPk 14.5 22.0 31.6 54.0 22.4 noise / background 14 191.7 Bic V -73.5 QPk 14.5 22.0 26.0 54.0 28.0 noise / background 15 16 NOTE: Worst case digital emissions observed from DRT/ST models (with commercial USB interface). Freq. Ant. Ant. Pr Det. Ka Ka Es Eslim Pass Silim Pass Silim Pass Pred.	2	33.2	Bic	V	-88.7	QPk	12.4	24.2	6.5	49.5	43.0	noise / background	
S 66.7 Bic H -85.4 QPk 7.7 23.7 5.6 49.5 43.9 noise / background	3	52.7	Bic	Н	-91.2	QPk	8.8	23.9	0.7	49.5	48.8	noise / background	
6 66.7 Bic V -86.9 QPk 7.7 23.7 4.1 49.5 45.4 noise / background 7 86.1 Bic H -90.1 QPk 7.7 23.4 0.4 49.5 48.3 noise / background 8 86.1 Bic V -90.9 QPk 7.7 23.4 0.4 49.5 49.1 noise / background 9 169.2 Bic H -85.8 QPk 13.7 22.3 12.6 54.0 41.4 noise / background 10 169.2 Bic V -86.3 QPk 13.7 22.3 12.6 54.0 41.4 noise / background 11 183.8 Bic V -79.0 QPk 14.3 22.1 9.3 54.0 44.7 noise / background 12 183.8 Bic V -79.0 QPk 14.3 22.1 20.2 54.0 33.8 noise / background 13 191.7 Bic H -67.9 QPk 14.5 22.0 31.6 54.0 22.4 noise / background 14 191.7 Bic V -73.5 QPk 14.5 22.0 26.0 54.0 28.0 noise / background 15	4	52.7	Bic	V	-90.9	QPk	8.8	23.9	1.0	49.5	48.5	noise / background	
Ref. Bic	5	66.7	Bic	Н	-85.4	QPk	7.7	23.7	5.6	49.5	43.9	noise / background	
8 86.1 Bic V -90.9 QPk 7.7 23.4 0.4 49.5 49.1 noise / background 9 169.2 Bic H -85.8 QPk 13.7 22.3 12.6 54.0 41.4 noise / background 10 169.2 Bic V -86.3 QPk 13.7 22.3 12.1 54.0 41.9 noise / background 11 183.8 Bic H -89.9 QPk 14.3 22.1 9.3 54.0 44.7 noise / background 12 183.8 Bic V -79.0 QPk 14.3 22.1 20.2 54.0 33.8 noise / background 13 191.7 Bic H -67.9 QPk 14.5 22.0 31.6 54.0 22.4 noise / background 14 191.7 Bic V -73.5 QPk 14.5 22.0 26.0 54.0 28.0 noise / background 15	6	66.7	Bic	V	-86.9	QPk	7.7	23.7	4.1	49.5	45.4	noise / background	
9 169.2 Bic H -85.8 QPk 13.7 22.3 12.6 54.0 41.4 noise / background 10 169.2 Bic V -86.3 QPk 13.7 22.3 12.1 54.0 41.9 noise / background 11 183.8 Bic H -89.9 QPk 14.3 22.1 9.3 54.0 44.7 noise / background 12 183.8 Bic V -79.0 QPk 14.3 22.1 20.2 54.0 33.8 noise / background 13 191.7 Bic H -67.9 QPk 14.5 22.0 31.6 54.0 22.4 noise / background 14 191.7 Bic V -73.5 QPk 14.5 22.0 31.6 54.0 22.4 noise / background 15	7	86.1	Bic	Н	-90.1	QPk	7.7	23.4	1.2	49.5	48.3	noise / background	
10	8	86.1	Bic	V	-90.9	QPk	7.7	23.4	0.4	49.5	49.1	noise / background	
11 183.8 Bic H -89.9 QPK 14.3 22.1 9.3 54.0 44.7 noise / background 12 183.8 Bic V -79.0 QPK 14.3 22.1 20.2 54.0 33.8 noise / background 13 191.7 Bic H -67.9 QPK 14.5 22.0 31.6 54.0 22.4 noise / background 14 191.7 Bic V -73.5 QPK 14.5 22.0 26.0 54.0 28.0 noise / background 15	9	169.2	Bic	Н	-85.8	QPk	13.7	22.3	12.6	54.0	41.4	noise / background	
12 183.8 Bic V -79.0 QPk 14.3 22.1 20.2 54.0 33.8 noise / background 13 191.7 Bic H -67.9 QPk 14.5 22.0 31.6 54.0 22.4 noise / background 14 191.7 Bic V -73.5 QPk 14.5 22.0 26.0 54.0 28.0 noise / background 15	10	169.2	Bic	V	-86.3	QPk	13.7	22.3	12.1	54.0	41.9	noise / background	
13 191.7 Bic H -67.9 QPk 14.5 22.0 31.6 54.0 22.4 noise / background 14 191.7 Bic V -73.5 QPk 14.5 22.0 26.0 54.0 28.0 noise / background 15	11	183.8	Bic	Н	-89.9	QPk	14.3	22.1	9.3	54.0	44.7	noise / background	
13	12	183.8	Bic	V	-79.0	QPk	14.3	22.1		54.0	33.8	noise / background	
14				Н			14.5				22.4	ĕ	
15	14	191.7	Bic	V	-73.5	QPk	14.5	22.0		54.0	28.0	noise / background	
17	15												
18	16	NOTE: W	orst case di	igital eı	missions	s observ	ed from	DRT/	ST models	(with com	mercial	USB interface).	
Spurious Receiver Emissions (Class B)	17											·	
Comments Comments	18												
Comments Comments	19												
Spurious Receiver Emissions (Class B)													
Freq. Ant. Ant. Pr Det. Ka Kg E3 E3lim Pass dBμV/m													
Freq. Ant. Used Pol. dBm Used dB/m dB dB μV/m dB μV/m dB LO, noise	22												
# MHz Used Pol. dBm Used dB/m dB dBμV/m dBμV/m dB Comments 23 433.89 SBic H -83.1 Pk 21.9 19.2 26.6 46.0 19.4 LO, noise 24 433.95 SBic H -84.2 Pk 21.9 19.2 25.5 46.0 20.5 LO, noise 25 867.77 SBic H -83.5 Pk 28.6 15.8 36.3 46.0 9.7 2 x LO, noise 26 867.91 SBic V -81.4 Pk 28.6 15.8 38.4 46.0 7.6 2 x LO, noise 27 28 29 30 30 31 32 33 34 35 36 3 36 3 36 3 36 3 36 3 36 3		•	9	Spurio	us Rece	iver En	nissions	(Class	s B)				
23 433.89 SBic H -83.1 Pk 21.9 19.2 26.6 46.0 19.4 LO, noise 24 433.95 SBic H -84.2 Pk 21.9 19.2 25.5 46.0 20.5 LO, noise 25 867.77 SBic H -83.5 Pk 28.6 15.8 36.3 46.0 9.7 2 x LO, noise 26 867.91 SBic V -81.4 Pk 28.6 15.8 38.4 46.0 7.6 2 x LO, noise 28 29 30 31 32 33 34 34 34 34 34 34 34 34 34 34 34 34 34 35 36 37 38 39 39 34 34 34 35 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 3		Freq.	Ant.	Ant.	Pr	Det.	Ka	Kg	E3	E3lim	Pass		
24 433.95 SBic H -84.2 Pk 21.9 19.2 25.5 46.0 20.5 LO, noise 25 867.77 SBic H -83.5 Pk 28.6 15.8 36.3 46.0 9.7 2 x LO, noise 26 867.91 SBic V -81.4 Pk 28.6 15.8 38.4 46.0 7.6 2 x LO, noise 27 30 30 31 32 33 34 33 34 34 35 36 37 38 39 39 39 30 <td>#</td> <td>MHz</td> <td>Used</td> <td>Pol.</td> <td>dBm</td> <td>Used</td> <td>dB/m</td> <td>dB</td> <td>$dB\muV/m$</td> <td>$dB\mu V/m$</td> <td>dB</td> <td>Comments</td>	#	MHz	Used	Pol.	dBm	Used	dB/m	dB	$dB\muV/m$	$dB\mu V/m$	dB	Comments	
25 867.77 SBic H -83.5 Pk 28.6 15.8 36.3 46.0 9.7 2 x LO, noise 26 867.91 SBic V -81.4 Pk 28.6 15.8 38.4 46.0 7.6 2 x LO, noise 27 28 29 30 30 31 32 33 34 32 33 34 34 35 36 37 38 39 39 30	23	433.89	SBic	Н	-83.1	Pk	21.9	19.2	26.6	46.0	19.4	LO, noise	
26 867.91 SBic V -81.4 Pk 28.6 15.8 38.4 46.0 7.6 2 x LO, noise 28 29 30 31 32 33 33 34 35 35 36 37 38 39 39 38 39 38 38 38 38 38 39 38 38 38 39 38 38 38 38 38 39 38 39 38 38 39 38 39 38 39 38 38 39 38 39 38 38 39 38 39 38 38 39 38 30 38 39 30 38 30 30 38 39 30 30 38 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30	24	433.95	SBic	Н	-84.2	Pk	21.9	19.2	25.5	46.0	20.5	LO, noise	
27 28 29 30 31 32 33 34 35 36 37 38 39	25	867.77	SBic	Н	-83.5	Pk	28.6	15.8	36.3	46.0	9.7	2 x LO, noise	
28 9 30 30 31 31 32 33 33 34 35 36 37 38 39 39		867.91	SBic	V	-81.4	Pk	28.6	15.8	38.4	46.0	7.6	2 x LO, noise	
29 30 31 32 33 34 35 36 37 38 39													
30 31 32 33 34 35 36 37 38 39													
31 32 33 34 35 36 37 38 39	29												
32 33 34 35 36 37 38 39													
33 34 35 36 37 38 39													
34 35 36 37 38 39	32												
35 36 37 38 39	33												
36 37 38 39	34												
37 38 39	35												
38 39	36												
39	37												
	38												
140	39												
[40]	40												

Meas. 07/23/2009; U of Mich.

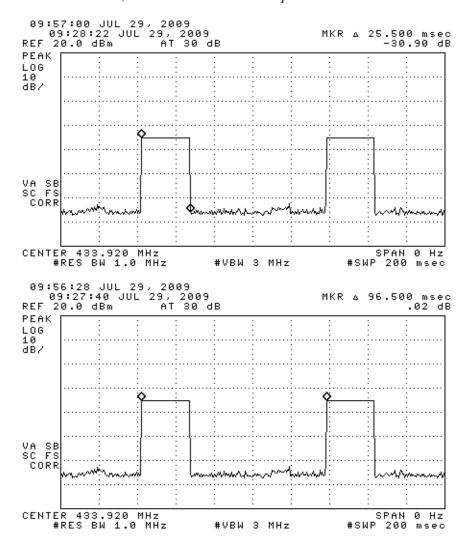


Figure 6.1. Transmission characteristics, (top) single packet length, (bottom) minimum packet period when the DUT is automatically for a second transmission

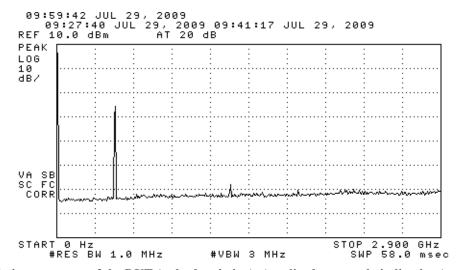


Figure 6.2. Emission spectrum of the DUT (pulsed emission). Amplitudes are only indicative (not corrected).

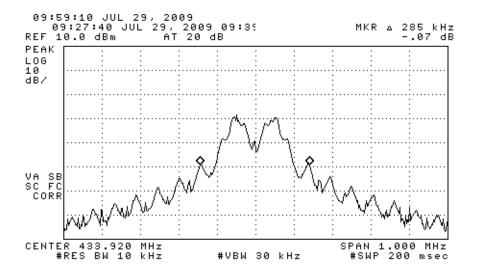


Figure 6.3. Measured emission bandwidth of the DUT (pulsed).

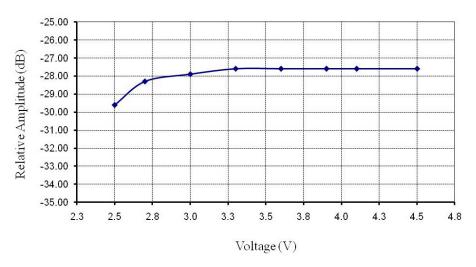


Figure 6.4. Relative emission at fundamental vs. supply voltage (pulsed).

Photograph 6.5. DUT on OATS (one of three axes tested)

Photograph 6.6. Close-up of DUT on OATS (one of three axes tested)

Photograph 6.7. Digital Emissions Test Setup on OATS