

Report No.: TCWA25070059103

TEST REPORT

Applicant: Quectel Wireless Solutions Co., Ltd.

EUT Description: LTE Cat 1 bis Module

Model: EG915U-LA

Brand: QUECTEL

FCC ID: XMR202111EG915ULA

Standards: FCC 47 CFR Part 2.1091

Date of Receipt: 2025/07/29

Date of Issue: 2025/08/18

TOWE. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

the results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of the model are manufactured with identical electrical and mechanical components. All sample tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise, without written approval of TOWE, the test report shall not be reproduced except in full.

IAC-MRA

ACCREDITED
CERTIFICATE #7088.01

Jim Huang Approved By: Carey Chen Reviewed By:

Revision History

Rev.	Issue Date	Description	Revised by	
01	2025/08/18	Original	Carey Chen	

Table of Contents

1	Gene	General Description						
	1.1		b Information					
			Testing Location					
			Test Facility / Accreditations					
	1.2		ent Information					
			Applicant					
			Manufacturer					
	1.3	Pro	oduct Information					
2	Maxi	mum F	Permissible RF Exposure					
	2.1		Exposure Limit Introduction					
	2.2		uations					
3	RF E		re Results					
	3.1	-	andalone Exposure Calculations					
	3.1		Iltiple Sources Exposure Calculations					

Page 4 / 9 Report No.: TCWA25070059103

General Description

1.1 Lab Information

1.1.1 Testing Location

These measurements tests were conducted at the Sushi TOWE Wireless Testing(Shenzhen) Co., Ltd. facility located at F401 and F101, Building E, Hongwei Industrial Zone, Liuxian 3rd Road, Bao'an District, Shenzhen, China. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014 Tel.: +86-755-27212361

Contact Email: info@towewireless.com

1.1.2 Test Facility / Accreditations

A2LA (Certificate Number: 7088.01)

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

FCC Designation No.: CN1353

Sushi TOWE Wireless Testing(Shenzhen) Co., Ltd. has been recognized as an accredited testing laboratory. Designation Number: CN1353.

ISED CAB identifier: CN0152

Sushi TOWE Wireless Testing(Shenzhen) Co., Ltd. has been recognized by ISED as an accredited testing

laboratory.

CAB identifier: CN0152 Company Number: 31000

1.2 Client Information

1.2.1 Applicant

Applicant:	Quectel Wireless Solutions Co., Ltd.
Address:	Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai, 200233, China.

1.2.2 Manufacturer

Manufacturer:	Quectel Wireless Solutions Co., Ltd.
Address:	Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai, 200233, China.

1.3 Product Information

EUT Description:	LTE Cat 1 bis Module							
Model:	EG915U-LA							
Brand:	QUECTEL	QUECTEL						
Hardware Version:	R1.1	R1.1						
Software Version:	EG915ULAABR03A16M0	EG915ULAABR03A16M08						
	Band	TX Frequency	RX Frequency					
	GSM 850	824 ~ 849 MHz	869 ~ 894 MHz					
	PCS 1900	1850 ~ 1910 MHz	1930 ~ 1990 MHz					
	LTE Band 2	1850 ~ 1910 MHz	1930 ~ 1990 MHz					
Frequency Bands:	LTE Band 4	1710 ~ 1755 MHz	2110 ~ 2155 MHz					
	LTE Band 5	824 ~ 849 MHz	869 ~ 894 MHz					
	LTE Band 7	2500 ~ 2570 MHz	2620 ~ 2690 MHz					
	LTE Band 66	1710 ~ 1780 MHz	2110 ~ 2180 MHz					
	Bluetooth	2402 ~ 2480MHz	2402 ~ 2480MHz					
Antenna Type:	⊠ External, ☐ Integrated							
Power Class:	Class 3: All							
	Band	Ant (dBi)						
	GSM 850	2.53						
	PCS 1900	1.59						
	LTE Band 2	1.59						
Antenna Gain:	LTE Band 4	2						
	LTE Band 5	2.53						
	LTE Band 7	3						
	LTE Band 66	2						
	Bluetooth	5.38						

Remark: The above EUT's information was declared by applicant, please refer to the specifications or user's manual for more detailed description.

Page 6 / 9 Report No.: TCWA25070059103

Maximum Permissible RF Exposure

2.1 RF Exposure Limit Introduction

§1.1310 the criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to RF radiation as specified in §1.1307(b).

(1) Table 1 to § 1.1310(e)(1)sets forth limits for Maximum Permissible Exposure (MPE) to radiofrequency electromagnetic fi elds.

Table 1 to 8 1 1310(e)(1) - Limits for Maximum Permissible Exposure (MPF)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm)	Averaging time (minutes)				
(i) Limits for Occupational/Controlled Exposure								
0.3~3.0	614	1.63	*(100)	≤6				
3.0~30	1842/f	4.89/f	*(900/f ²)	<6				
30~300	61.4	0.163	1.0	<6				
300~1500			f/300	<6				
1500~100000			5	<6				
	(ii) Limits for General Population/Uncontrolled Exposure							
0.3~1.34	614	1.63	*(100)	<30				
1.34~30	824/f	2.19/f	*(180/f ²)	<30				
30~300	27.5	0.073	0.2	<30				
300~1500			f/1500	<30				
1500~100000			1.0	<30				

Note: f = frequency in MHz. * = Plane-wave equivalent power density.

- (2) Occupational/controlled exposure limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. The phrase fully aware in the context of applying these exposure limits means that an exposed person has received written and/or verbal information fully explaining the potential for RF exposure resulting from his or her employment. With the exception of transient persons, this phrase also means that an exposed person has received appropriate training regarding work practices relating to controlling or mitigating his or her exposure. In situations when an untrained person is transient through a location where occupational/controlled limits apply, he or she must be made aware of the potential for exposure and be supervised by trained personnel pursuant to § 1.1307(b)(2) of this part where use of time averaging is required to ensure compliance with the general population exposure limit. The phrase exercise control means that an exposed person is allowed and also knows how to reduce or avoid exposure by administrative or engineering work practices, such as use of personal protective equipment or time averaging of exposure.
- (3) General population/uncontrolled exposure limits apply in situations in which the general public may be exposed, or in which persons who are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure. For example, RF sources intended for consumer use shall be subject to the limits for general population/uncontrolled exposure in this section.

The MPE was calculated at **20cm** to show compliance with the power density limit.

Page 7 / 9 Report No.: TCWA25070059103

2.2 Equations

Power Density is given by:

$$S = \frac{EIRP}{4\pi R^2}$$

Where:

S = Power density in mW/cm²

EIRP= Equivalent isotropic Radiated power in mW

R = Distance from transmitting antenna in cm

Power density in units of mW/cm² is converted to units of W/m² by multiplying by 10.

Distance:

$$R = \sqrt{\frac{EIRP}{4\pi S}}$$

Where:

S = Power density in mW/cm²

EIRP= Equivalent isotropic Radiated power in mW

R = Distance from transmitting antenna in cm

EIRP:

EIRP = P+G

Where:

EIRP = Equivalent isotropic Radiated power in Mw

P = Output power at Antenna Terminals

G = Gain of Transmit Antenna (linear gain)

Source-Based Duty Cycle:

Where applicable (for example, multi-slot cell phone applications) a duty cycle factor may be applied.

Source-based time-averaged EIRP = (DC / 100)* EIRP

Where:

DC = Duty Cycle in %, as applicable

EIRP= Equivalent isotropic Radiated power in mW

MIMO and collocated transmitters (identical limit for all transmitters):

For multiple chain devices, and collocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the PG (in linear units) of each transmitter.

Total EIRP = (EIRP 1) + (EIRP 2) + ... + (EIRP n)

MIMO and collocated transmitters:

For multiple collocated transmitters operating simultaneously in frequency bands where different limit apply:

The power density at the specified separation distance is calculated for each transmitter chain or transmitter.

The fraction of the exposure limit is calculated for each chain or transmitter as

Power density of chain or transmitter / limit applicable to the chain or transmitter.

The fractions are summed.

Compliance is established if the sum of the fractions is less than or equal to one.

3 RF Exposure Results

3.1 Standalone Exposure Calculations

For conservativeness, the lowest frequency of each band is used to determine the MPE limit of that band. The manufacturing configures output power so that the maximum power, after accounting for manufacturing tolerances, will never exceed the maximum power level measured.

The antenna gain in the tables below is the maximum antenna gain among various channels within the specified band.

Operating Band	Frequency (MHz)	Antenna Gain (dBi)	Maximum Power (dBm)	EIRP/ERP (dBm)	EIRP/ERP Limit (dBm)	Maximum Power (mW)	Power Density at R=20cm (mW/cm2)	Limit (mW/cm2)	Gain According to EIRP/ERP (dBi)	Gain According to Pd (dBi)	Maximum Gain Allowed (dBi)	Results
GSM 850	824.2	2.53	27.00	27.38	38.45	60.3949	0.0131	0.5495	13.60	18.75	13.60	Pass
PCS 1900	1850.2	1.59	23.00	24.59	33.00	24.0436	0.0069	1.0000	10.00	23.20	10.00	Pass
LTE Band 2	1850.7	1.59	25.70	27.29	33.00	371.5352	0.1066	1.0000	7.30	11.31	7.30	Pass
LTE Band 4	1710.7	2.00	25.70	27.70	30.00	371.5352	0.1171	1.0000	4.30	11.31	4.30	Pass
LTE Band 5	824.7	2.53	25.70	26.08	38.45	371.5352	0.0807	0.5498	14.90	10.86	10.86	Pass
LTE Band 7	2502.5	3.00	25.70	28.70	33.00	371.5352	0.1475	1.0000	7.30	11.31	7.30	Pass
LTE Band 66	1710.7	2.00	25.70	27.70	30.00	371.5352	0.1171	1.0000	4.30	11.31	4.30	Pass
Bluetooth	2402	5.38	7.41	12.79	30.00	5.5081	0.0038	1.0000		NA		Pass

Remark:

- 1. GSM Operating Band: Frame-average power=Burst power+ Division Factors (-9.19).
- 2. "Maximum Power" comes from the largest "Tune-up" provided by the customer.

3.1 Multiple Sources Exposure Calculations

When a number of sources at different frequencies, and/or broadband sources, contribute to the total exposure, it becomes necessary to weigh each contribution relative to the MPE in accordance with the provisions of Table(A) and Table(B). To comply with the MPE, the fraction of the MPE in terms of E2, H2 (or power density) incurred within each frequency interval should be determined and the sum of all such fractions should not exceed unity.

In order to ensure compliance with the MPE for a controlled environment, the sum of the ratios of the power density to the corresponding MPE should not exceed unity.

$$\sum_{i=1}^{n} \frac{S_i}{MPE_i} \le 1$$

The product also has multiple transmitters The Simultaneous Transmission Possibilities are as below:

Simultaneous Tx Combination	Configuration
1	WWAN + Bluetooth

TER (Total exposure ratio) = Power Density (mW/cm²) / Limt (mW/cm²)

Operating Band	Frequency (MHz)	Power Density at R=20cm (mW/cm2)	Limit (mW/cm2)	TER
GSM 850	824.2	0.0131	0.5495	0.0239
PCS 1900	1850.2	0.0069	1.0000	0.0069
LTE Band 2	1850.7	0.1066	1.0000	0.1066
LTE Band 4	1710.7	0.1171	1.0000	0.1171
LTE Band 5	824.7	0.0807	0.5498	0.1467
LTE Band 7	2502.5	0.1475	1.0000	0.1475
LTE Band 66	1710.7	0.1171	1.0000	0.1171
Bluetooth	2402	0.0038	1.0000	0.0038

The worst-case combination:

Combination	TER	Total TER	Limit	Conclusion	
LTE Band 7	0.1475	0.1513	-1	DACC	
Bluetooth	0.0038	0.1515	7	PASS	

~The End~