

*Radio Test Report**FCC Part 95
MedRadio Transmitter**Model: PW1000*

COMPANY: Nevro Corporation
1800 Bridge Parkway
Redwood City, CA 94065

TEST SITE(S): National Technical Systems
41039 Boyce Road.
Fremont, CA. 94538-2435

PROJECT NUMBER: PR085867

REPORT DATE: November 19, 2018

REISSUE DATE: January 24, 2019

FINAL TEST DATES: November 1, 2 and 5, 2018

TOTAL NUMBER OF PAGES: 39

Testing Cert #0214.26

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

National Technical Systems

Project number PR085867
Report Date: November 19, 2018, Reissued Date: January 24, 2019

VALIDATING SIGNATORIES

PROGRAM MGR

David W. Bare
Chief Engineer

TECHNICAL REVIEWER:

David W. Bare
Chief Engineer

FINAL REPORT PREPARER:

David Guidotti
Senior Technical Writer

QUALITY ASSURANCE DELEGATE

Gary Izard
Technical Writer

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	November 19, 2018	First release	
1	January 24, 2019	Corrected reference to test method standard	dwb

TABLE OF CONTENTS

COVER PAGE	1
VALIDATING SIGNATORIES	2
REVISION HISTORY	3
TABLE OF CONTENTS	4
SCOPE	5
OBJECTIVE	6
STATEMENT OF COMPLIANCE	6
DEVIATIONS FROM THE STANDARDS	6
TEST RESULTS	7
FCC PART 95.....	7
EXTREME CONDITIONS	8
MEASUREMENT UNCERTAINTIES.....	8
EQUIPMENT UNDER TEST (EUT) DETAILS	9
GENERAL.....	9
OTHER EUT DETAILS	9
ENCLOSURE.....	9
MODIFICATIONS.....	9
SUPPORT EQUIPMENT.....	9
EUT INTERFACE PORTS	10
EUT OPERATION	10
TESTING	11
GENERAL INFORMATION.....	11
RF PORT MEASUREMENT PROCEDURES	12
OUTPUT POWER.....	12
BANDWIDTH MEASUREMENTS	12
FREQUENCY STABILITY	13
RADIATED EMISSIONS MEASUREMENTS	13
INSTRUMENTATION	14
FILTERS/ATTENUATORS	14
ANTENNAS.....	14
ANTENNA MAST AND EQUIPMENT TURNTABLE.....	15
SAMPLE CALCULATIONS	15
SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS	15
SAMPLE CALCULATIONS -RADIATED FIELD STRENGTH.....	16
SAMPLE CALCULATIONS -RADIATED POWER.....	17
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	18
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	19
APPENDIX B TEST DATA	20
END OF REPORT	39

SCOPE

Tests have been performed on the Nevro Corporation model PW1000, pursuant to the relevant requirements of the following standard(s) in order to obtain device certification against the regulatory requirements of the Federal Communications Commission.

- Code of Federal Regulations (CFR) Title 47 Part 2
- CFR 47 Part 95 Subpart I (Medical Device Radio Communication Service)

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in National Technical Systems test procedures:

ANSI C63.26:2015

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

National Technical Systems is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise.

The test results recorded herein are based on a single type test of the Nevro Corporation model PW1000 and therefore apply only to the tested sample. The sample was selected and prepared by Ryan Greenstreet of Nevro Corporation.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, the device requires certification. Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested samples of Nevro Corporation model PW1000 complied with the requirements of the standards and frequency bands declared in the scope of this test report.

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS

FCC Part 95

Rule Part	Description	Measured	Limit	Result
Transmitter frequency, power, bandwidth, modulation and unwanted emissions				
§2.1033(c) (5) § 95.2563(a)	Frequency range(s)	402.45 – 404.55 MHz	402-405 MHz	Complied
§2.1033(c) (6) §2.1033(c) (7) §2.1046 §95.2567(a)(1)	EIRP (Calculated from Field Strength)	23.3µW -16.3dBm	25µW -16dBm	Complied
§2.1033(c) (4) §2.1047 §95.2579(c)	Emission types Unwanted emissions	F1D 0.007µW -51.5dBm	- 0.25µW -36dBm	- Complied
§2.1049 §95.2573(a)	Authorized Bandwidth	252 kHz	300 kHz	Complied
Transmitter spurious emissions				
§2.1053 §2.1057 §95.2579(a)	Field strength	39.4 dBuV/m	See table	Complied
Other details				
95.2559	Frequency Monitoring	LBT Threshold power level -102.3 dBm Monitoring system bandwidth > 20 dB EBW Monitoring system scan cycle time 1 second Monitoring system Minimum Channel monitoring period 0.1 ms / 10 ms Channel access based on ambient level above PTh Correct channel selection Discontinuation of MICS session 5 seconds	LBT Threshold power level -102.3 dBm Monitoring system bandwidth > 20 dB EBW Monitoring system scan cycle time < 5 seconds Monitoring system Minimum Channel monitoring period 0.1 ms / 10 ms Channel access based on ambient level above PTh Correct channel selection Discontinuation of MICS session < 5 seconds	Complied
§2.1055 §95.2565	Frequency stability	18.9 ppm	100 ppm	Complied
§2.1093	RF Exposure	Refer to separate exhibit		
§2.1033 (c) (8)	Final radio frequency amplifying circuit's dc voltages and currents for normal operation over the power range	3.3Vdc, 7mA		
Notes				

EXTREME CONDITIONS

Frequency stability is determined over extremes of temperature and voltage. As the device is hand carried, USB powered equipment, the supply voltage of the laptop to which the PW1000 is connected was varied between 85% and 115% of the nominal AC voltage range. The laptop battery was removed for the testing.

The extremes of temperature were 0°C to +55°C as specified in FCC §95.2565(b) for stations in the Medical Device Radiocommunication Service.

MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2) and were calculated in accordance with NAMAS document NIS 81 and M3003.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF frequency	Hz	25 to 7,000 MHz	1.7×10^{-7}
RF power, conducted	dBm	25 to 7,000 MHz	± 0.52 dB
Conducted emission of transmitter	dBm	25 to 40,000 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 40,000 MHz	± 2.5 dB
Radiated emission (field strength)	dB μ V/m	25 to 1,000 MHz 1 to 40 GHz	± 3.6 dB ± 6.0 dB

EQUIPMENT UNDER TEST (EUT) DETAILS**GENERAL**

The Nevro Corporation model PW1000 is a programmer wand that is designed to communicate with an IPG or Trial Stimulator to program these devices. Since the EUT could be placed in any position during operation and could be handheld, the EUT was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the Wand is 5VDC supplied from the USB connection. The electrical rating of the laptop adapter is 100-240V, 50-60 Hz, 1.7A.

The samples were received on October 25, 2018 and tested on November 1, 2 and 5, 2018. The following units were used during testing:

Company	Model	Description	Serial Number	FCC ID
Nevro Corporation	PW1000	Programmer Wand	11080-0000106	XKYWAND1001
Nevro Corporation	PW1000	Programmer Wand	11080-0000122	XKYWAND1001
Dell / Nevro	Latitude 3340 / Clinician Programmer	Laptop	15GGD32	-
Dell / Nevro	HA65NM130	AC Adapter	CN-06TFFF-75661-73G-05HD-A04	-

OTHER EUT DETAILS

Any details including receiver class and power class, channel separation, frequency range or ranges, antennas used etc.

ENCLOSURE

The Programmer Wand enclosure is primarily constructed of plastic. It measures approximately 6.5 cm wide by 10.5 cm deep by 2.2 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at National Technical Systems.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Nevro	Senza	Implant	100912	-
Lenovo	Thinkpad	Laptop	PC-0D8RVE	-
Lenovo	ADLX45NLC2A	AC Adapter for Laptop	-	-

Note: The Lenovo laptop was used for some tests in place of the Dell/Nevro laptop

No remote support equipment was used during testing.

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

EUT				
Port	Connected To	Description	Cable(s)	
			Shielded or Unshielded	Length(m)
USB	Laptop	Multewire	Shielded	1.4

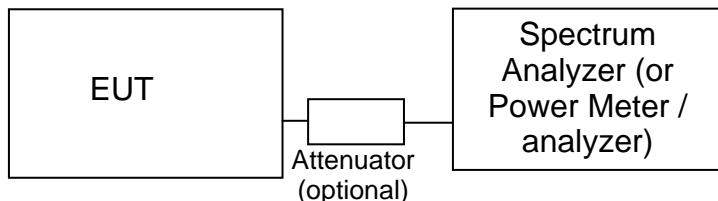
Additional on Support Equipment

Port	Connected To	Description	Cable(s)	
			Shielded or Unshielded	Length(m)
Laptop DC	AC Adapter	two wire	Unshielded	1.6
AC Adapter	Mains	three wire	Unshielded	1

EUT OPERATION

During emissions testing the EUT was programmed to continuously transmit a modulated signal on the selected channel except for frequency stability where a CW signal was employed.

TESTING**GENERAL INFORMATION**


Radiated spurious emissions measurements were taken at the National Technical Systems Anechoic Chambers and/or Open Area Test Site(s) listed below. The sites conform to the requirements of ANSI C63.4:2014 *American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz* and CISPR 16-1-4 - *Specification for radio disturbance and immunity measuring apparatus and methods Part 1-4: Radio disturbance and immunity measuring apparatus Ancillary equipment Radiated disturbances*. They are on file with the FCC and industry Canada.

Site	Registration Numbers		Location
	FCC	Canada	
Chamber 5	769238	IC 2845B-5	41039 Boyce Road Fremont, CA 94538-2435

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Results from testing performed in this chamber have been correlated with results from an open area test site. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

RF PORT MEASUREMENT PROCEDURES

Conducted measurements are performed with the EUT's rf input/output connected to the input of a spectrum analyzer, power meter or modulation analyzer. When required an attenuator, filter and/or dc block is placed between the EUT and the spectrum analyzer to avoid overloading the front end of the measurement device. Measurements are corrected for the insertion loss of the attenuators and cables inserted between the rf port of the EUT and the measurement equipment.

Test Configuration for Antenna Port Measurements

OUTPUT POWER

Output power is measured using a power meter and an average sensor head, a spectrum analyzer or a power meter and peak power sensor head as required by the relevant rule part(s). Where necessary measurements are gated to ensure power is only measured over periods that the device is transmitting.

Power measurements made directly on the rf power port are, when appropriate, converted to an EIRP by adding the gain of the highest gain antenna that can be used with the device under test, as specified by the manufacturer.

For devices with an integral antenna the output power is measured as a field strength at a test distance of (typically) 3m and then converted to an eirp using far field equations as shown in SAMPLE CALCULATIONS –RADIATED POWER.

BANDWIDTH MEASUREMENTS

The 20dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.26. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN. The measurement bandwidth is set to be at least 1% of the instrument's frequency span.

FREQUENCY STABILITY

The EUT is placed inside a temperature chamber with all support and test equipment located outside of the chamber. The temperature is varied across the specified frequency range in 10 degree increments with frequency measurements made at each temperature step. The EUT is allowed enough time to stabilize at each temperature variation.

The spectrum analyzer is configured to give a 5- or 6-digit display for the marker-frequency function. The spectrum analyzer's built-in frequency counter is used to measure the maximum deviation of the fundamental frequency at each temperature. Where possible the device is set to transmit an unmodulated signal. Where this is not possible the frequency drift is determined by finding a stable point on the signal (e.g. the null at the centre of an OFDM signal) or by calculating a centre frequency based on the upper and lower XdB points (where X is typically 6dB or 10dB) on the signal's skirts.

RADIATED EMISSIONS MEASUREMENTS

Radiated spurious emissions measurements are made in accordance with ANSI C63.26 by measuring the field strength of the emissions from the device at a specific test distance and comparing them to a field strength limit. Where the field strength limit is specified at a longer distance than the measurement distance the measurement is extrapolated to the limit distance.

All radiated emissions measurements are performed in two phases. A preliminary scan of emissions is conducted in either an anechoic chamber or on an OATS during which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed across the complete frequency range of interest and at each operating frequency identified in the reference standard. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode).

During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. For transmitter spurious emissions, where the limit is expressed as an effective radiated power, the eirp or erp is converted to a field strength limit.

Final measurements are made on an OATS or in a semi-anechoic chamber at the significant frequencies observed during the preliminary scan(s) using the same process of rotating the EUT and raising/lowering the measurement antenna to find the highest level of the emission. The field strength is recorded and, for receiver spurious emissions, compared to the field strength limit. For the final measurement the appropriate detectors (average, peak, normal, sample, quasi-peak) are used. For receiver measurements below 1GHz the detector is a Quasi-Peak detector, above 1GHz a peak detector is used and the peak value (RB=VB=1MHz) and average value (RB=1MHz, VB=10Hz) are recorded.

INSTRUMENTATION

An EMI receiver as specified in CISPR 16-1-1 is used for radiated emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 7000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary.

For measurements above the frequency range of the receivers and for all conducted measurements a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis.

Measurement bandwidths for the test instruments are set in accordance with the requirements of the standards referenced in this document.

Software control is used to correct the measurements for transducer factors (e.g. antenna) and the insertion loss of cables, attenuators and other series elements to obtain the final measurement value. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are exported in a graphic and/or tabular format, as appropriate.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the EUT antenna port or receiving antenna and the test receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A combination of biconical, log periodic or bi-log antennas are used to cover the range from 30 MHz to 1000 MHz. Broadband antennas or tuned dipole antennas are used over the entire 25 to 1000 MHz frequency range as the reference antenna for substitution measurements.

Above 1000 MHz, a dual-ridge guide horn antenna or octave horn antenna are used as reference and measurement antennas.

The antenna calibration factors are included in site factors that are programmed into the test receivers and instrument control software when measuring the radiated field strength.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height.

Table mounted devices are placed on a non-conductive table at a height of 80 centimeters above the floor. Floor mounted equipment is placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. The EUT is positioned on a motorized turntable to allow it to be rotated during testing to determine the angle with the highest level of emissions.

SAMPLE CALCULATIONS**SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS**

Measurements are compared directly to the conducted emissions specification limit (decibel form). The calculation is as follows:

$$R_f - S = M$$

where:

R_f = Measured value in dBm

S = Specification Limit in dBm

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS -RADIATED FIELD STRENGTH

Measurements of radiated field strength are compared directly to the specification limit (decibel form). The receiver and/or control software corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor is used when measurements are made at a test distance that is different to the specified limit distance by using the following formula:

$$F_d = 20 * \text{LOG10} (D_m/D_s)$$

where:

F_d = Distance Factor in dB

D_m = Measurement Distance in meters

D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40 * \text{LOG10} (D_m/D_s)$$

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_f + F_d$$

and

$$M = R_c - L_s$$

where:

R_f = Receiver Reading in dBuV/m

F_d = Distance Factor in dB

R_c = Corrected Reading in dBuV/m

L_s = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS -RADIATED POWER

The erp/eirp limits for transmitter spurious measurements are converted to a field strength in free space using the following formula:

$$E = \frac{\sqrt{30} P G}{d}$$

where:

E = Field Strength in V/m
P = Power in Watts
G = Gain of isotropic antenna (numeric gain) = 1
D = measurement distance in meters

The field strength limit is then converted to decibel form (dBuV/m) and the margin of a given emission peak relative to the limit is calculated (refer to SAMPLE CALCULATIONS -RADIATED FIELD STRENGTH).

When substitution measurements are required (all signals with less than 20dB of margin relative to the calculated field strength limit) the eirp of the spurious emission is calculated using:

$$P_{EUT} = P_s - (E_s - E_{EUT})$$

and

$$P_s = G + P_{in}$$

where:

P_s = effective isotropic radiated power of the substitution antenna (dBm)
 P_{in} = power input to the substitution antenna (dBm)
G = gain of the substitution antenna (dBi)
 E_s = field strength the substitution antenna (dBm) at eirp P_s
 E_{EUT} = field strength measured from the EUT

Where necessary the effective isotropic radiated power is converted to effective radiated power by subtracting the gain of a dipole (2.2dBi) from the eirp value.

RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions as detailed in FCC Part 95.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

Appendix A Test Equipment Calibration Data

<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	<u>Asset #</u>	<u>Calibrated</u>	<u>Cal Due</u>
Radiated Emissions, 25 - 4,050 MHz, 01-Nov-18					
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	10/8/2018	10/8/2020
LBT and Receiver Blocking, 02-Nov-18					
Agilent Technologies	PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	E4446A	2139	7/27/2018	7/27/2019
Agilent Technologies	MXG Analog Signal Generator 6 GHz	N5181A	2146	3/7/2018	3/7/2019
Agilent Technologies	PSG, Vector Signal Generator, (250kHz - 20GHz)	E8267D	3011	2/26/2018	2/26/2019
Conducted Emissions - AC Power Ports, 02-Nov-18					
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	1398	1/8/2018	1/8/2019
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB 7	1756	7/7/2018	7/7/2019
Fischer Custom Comm	LISN, 25A, 150kHz to 30MHz, 25 Amp,	FCC-LISN-50-25-2-09	2001	8/15/2018	8/15/2019
Frequency Stability, 05-Nov-18					
Rohde & Schwarz	Signal Analyzer 20 Hz - 26.5 GHz	FSQ26	2327	6/25/2018	6/25/2019

National Technical Systems

Project number PR085867
Report Date: November 19, 2018, Reissued Date: January 24, 2019

Appendix B Test Data

TL085867-RA Pages 21 – 38

EMC Test Data

Client:	Nevro Corporation	PR Number:	PR085867
Product	PW1000	T-Log Number:	TL085867-RA
System Configuration:		Project Manager:	Christine Krebill
Contact:	Ryan Greenstreet	Project Engineer:	David Bare
Emissions Standard(s):	FCC part 95, EN 301 839	Class:	-
Immunity Standard(s):		Environment:	Radio

EMC Test Data

For The

Nevro Corporation

Product

PW1000

Date of Last Test: 11/5/2018

EMC Test Data

Client:	Nevro Corporation	PR Number:	PR085867
Model:	PW1000	T-Log Number:	TL085867-RA
		Project Manager:	Christine Krebill
Contact:	Ryan Greenstreet	Project Engineer:	David Bare
Standard:	FCC part 95, EN 301 839	Class:	-

Radiated Emissions

(NTS Silicon Valley, Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform engineering evaluation testing of the EUT with respect to the specification listed above.

Date of Test: 11/1/2018 Config. Used: 1
Test Engineer: David W. Bare Config Change: None
Test Location: Fremont Chamber #5 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT was located on the turntable for radiated emissions testing. The EUT was tested in all three orthogonal orientations.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions: Temperature: 20 °C
Rel. Humidity: 43 %

Summary of Results

Run #	Test Performed	Limit	Result	Value / Margin
2	Fundamental Signal Field Strength	FCC Part 95	Pass	84.9 dB _u V/m (-16.3 dBm eirp)
2	Transmitter Radiated Spurious Emissions, 30 - 4,050 MHz	FCC Part 95	Pass	39.4 dB _u V/m @ 132.00 MHz (-4.1 dB)
3	Spurious Emissions Receive/Stand-By Mode 30 - 1,300 MHz	FCC Part 15	Pass	39.4 dB _u V/m @ 132.00 MHz (-4.1 dB)
4	Bandwidth	FCC Part 95	Pass	252 kHz (Limit is 300 kHz)

Modifications Made During Testing

Modifications are detailed under each run description.

Deviations From The Standard

Deviations, if any, are detailed under each run description.

Sample Notes

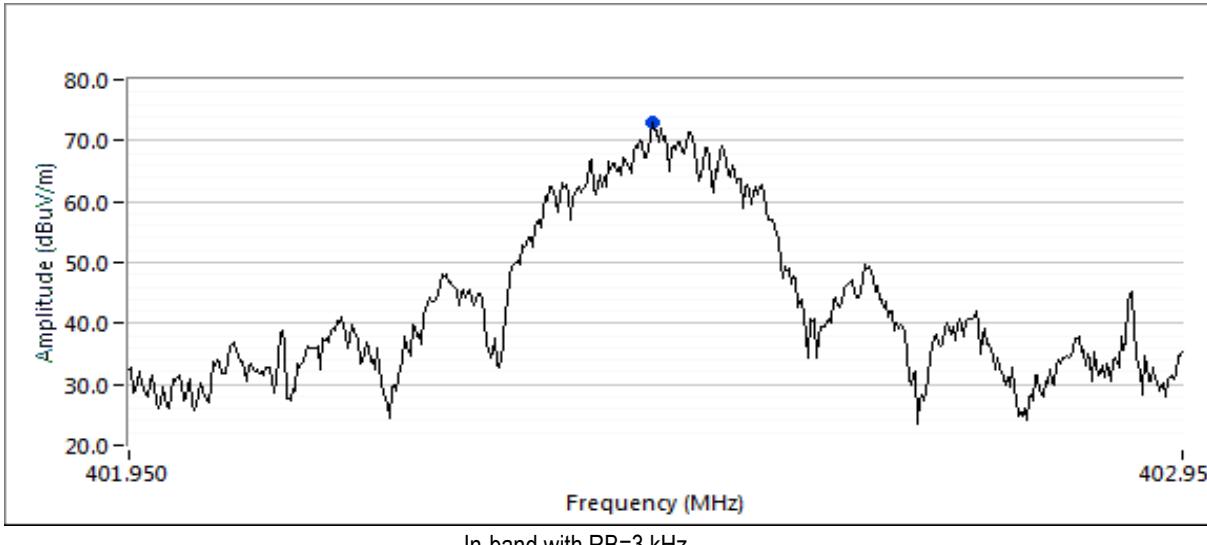
Sample S/N: 11080-0000106

Client:	Nevro Corporation	PR Number:	PR085867
Model:	PW1000	T-Log Number:	TL085867-RA
		Project Manager:	Christine Krebill
Contact:	Ryan Greenstreet	Project Engineer:	David Bare
Standard:	FCC part 95, EN 301 839	Class:	-

Run #1: Radiated Emissions, 30-4050 MHz, Fundamental and Transmitter Spurious Emissions

Tests were performed on the sample in three orientations to determine orientation with highest emissions.

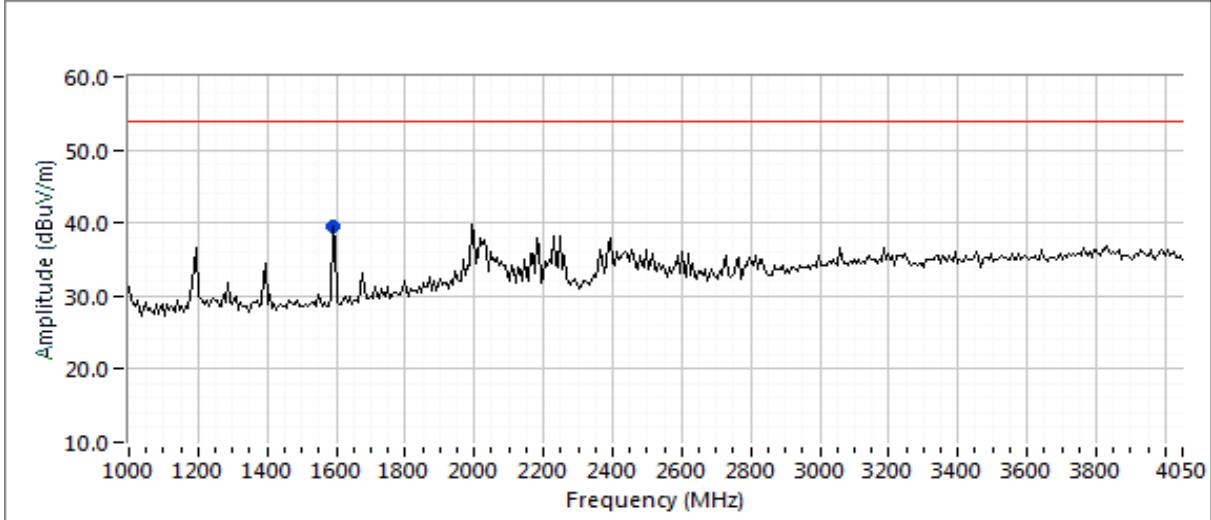
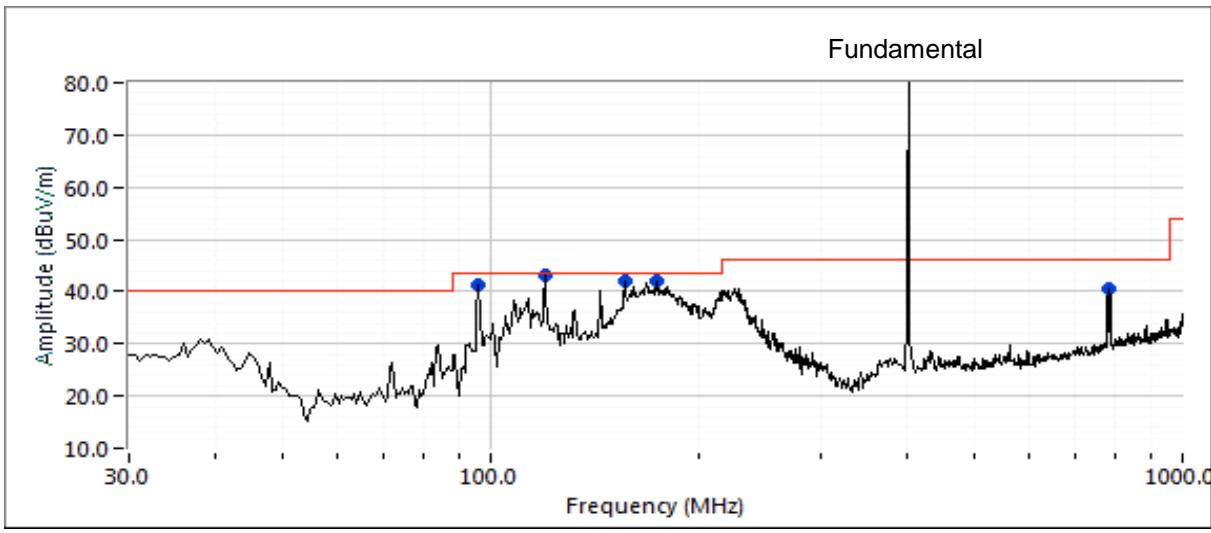
The results showed that the highest emissions are with the device flat on the support so the device was placed in this orientation for final tests.


Run #2: Radiated Emissions, 30-4050 MHz, Fundamental and Transmitter Spurious Emissions

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
30 - 4,050 MHz	3	3	0.0

Note: The limit in part 95 for the fundamental signal is 85.2 dBuV/m Peak. Spurious emissions must comply with the Part 95 limits which are the same as 15.209 limits except in the 250 kHz range adjacent to the 402-405 MHz band and in-band more than 150kHz from the fundamental frequency (65.2 dBuV/m in 3kHz RB).

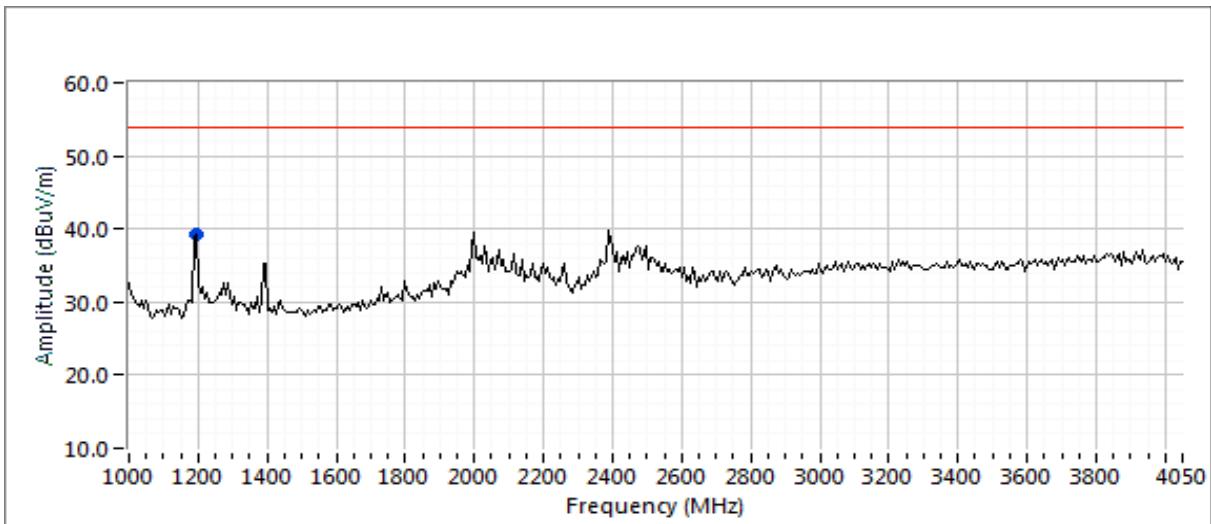
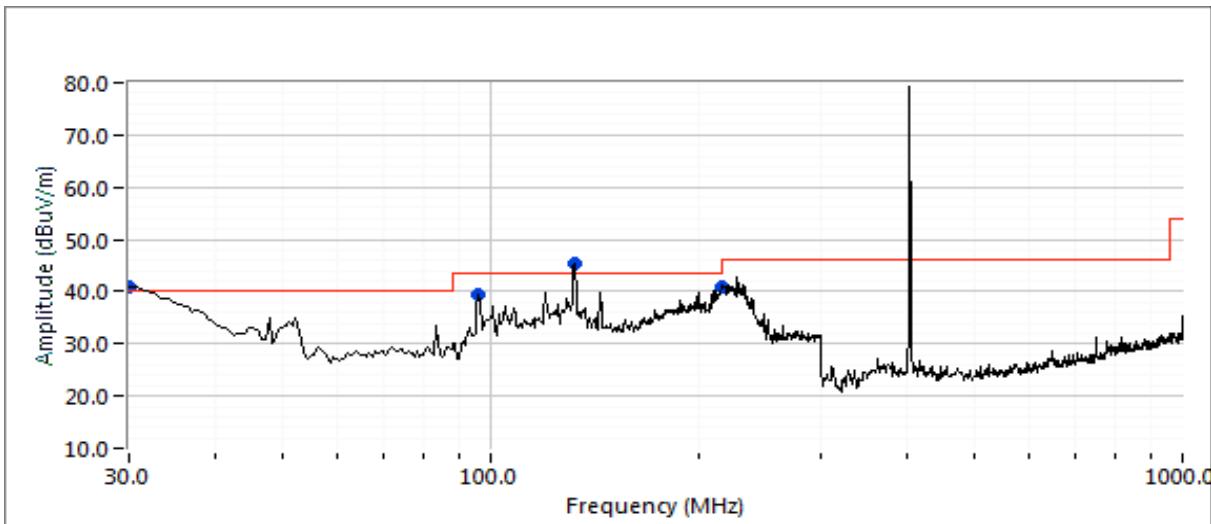
Note: The field strength of any spurious emissions may not exceed the field strength of the fundamental signal.



Note: The frequency scans plot below are obtained using a peak detector. Final measurements are made at specific frequencies observed during the scans using the detector specified after maximizing the amplitude of each emission.

EMC Test Data

Client:	Nevro Corporation	PR Number:	PR085867
Model:	PW1000	T-Log Number:	TL085867-RA
Contact:	Ryan Greenstreet	Project Manager:	Christine Krebill
Standard:	FCC part 95, EN 301 839	Project Engineer:	David Bare
		Class:	-

EMC Test Data



Client:	Nevro Corporation				PR Number:	PR085867	
Model:	PW1000				T-Log Number:	TL085867-RA	
Contact:	Ryan Greenstreet				Project Manager:	Christine Krebill	
Standard:	FCC part 95, EN 301 839				Project Engineer:	David Bare	
					Class:	-	

Low Channel 402.45MHz

Frequency MHz	Level dB μ V/m	Pol v/h	FCC Part 95		Detector	Azimuth degrees	Height meters	Comments
Fundamental and inband maximized								
402.450	84.9	V	85.2	-0.3	Peak	98	1.5	RB=1 MHz
402.447	72.9	V	85.2	-12.3	Peak	322	1.5	RB=3 kHz
402.247	48.2	V	65.2	-17.0	Peak	322	1.5	RB=3 kHz; Note 1
402.647	49.7	V	65.2	-15.5	Peak	332	1.5	RB=3 kHz; Note 1
Preliminary spurious								
96.015	41.1	H	43.5	-2.4	Peak	132	2.0	USB related
120.007	43.1	H	43.5	-0.4	Peak	298	2.5	USB related
156.547	42.1	H	43.5	-1.4	Peak	231	1.5	Broadband
173.029	41.9	H	43.5	-1.6	Peak	201	1.5	Broadband
786.162	40.6	V	46.0	-5.4	Peak	115	3.0	
Final maximized spurious								
96.015	37.4	H	43.5	-6.1	QP	147	2.2	QP (1.00s)
120.007	39.0	H	43.5	-4.5	QP	311	2.5	QP (1.00s)
156.547	33.8	H	43.5	-9.7	QP	230	1.5	QP (1.00s)
173.029	34.9	H	43.5	-8.6	QP	198	1.3	QP (1.00s)
786.162	34.1	V	46.0	-11.9	QP	139	3.1	QP (1.00s)
1594.100	23.5	V	54.0	-30.5	AVG	2	1.7	AVG (0.10s)
1594.100	42.1	V	74.0	-31.9	PK	2	1.7	PK (0.10s)

Note 1: Highest emission within 402-405 MHz band more than 150 kHz from the operating frequency.

Client:	Nevro Corporation	PR Number:	PR085867
Model:	PW1000	T-Log Number:	TL085867-RA
		Project Manager:	Christine Krebill
Contact:	Ryan Greenstreet	Project Engineer:	David Bare
Standard:	FCC part 95, EN 301 839	Class:	-

EMC Test Data

Client:	Nevro Corporation			PR Number:	PR085867		
Model:	PW1000			T-Log Number:	TL085867-RA		
Contact:	Ryan Greenstreet			Project Manager:	Christine Krebill		
Standard:	FCC part 95, EN 301 839			Project Engineer:	David Bare		

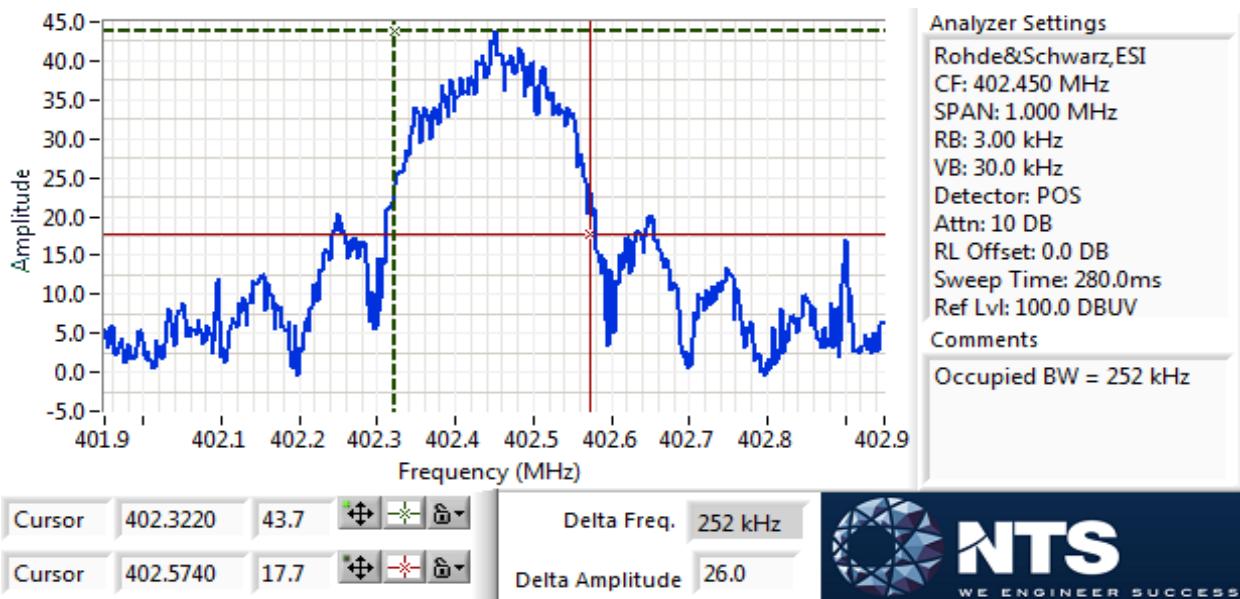
High Channel 404.55MHz

Frequency	Level	Pol	FCC Part 95		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
Fundamental maximized								
404.550	81.2	H	85.2	-4.0	PK	282	1.0	RB=1 MHz
Preliminary spurious								
30.001	40.9	H	40.0	0.9	Peak	255	4.0	Broadband
96.001	39.5	H	43.5	-4.0	Peak	165	3.5	USB related
132.000	45.3	H	43.5	1.8	Peak	96	1.5	USB related
215.879	41.0	H	43.5	-2.5	Peak	196	1.5	Broadband
Final maximized spurious								
30.001	31.6	H	40.0	-8.4	QP	257	3.5	QP (1.00s)
96.001	37.7	H	43.5	-5.8	QP	151	2.9	QP (1.00s)
132.000	39.4	H	43.5	-4.1	QP	93	2.0	QP (1.00s)
215.879	35.6	H	43.5	-7.9	QP	211	1.2	QP (1.00s)
1196.800	42.5	V	74.0	-31.5	PK	360	2.5	PK (0.10s)
1196.800	25.0	V	54.0	-29.0	AVG	360	2.5	AVG (0.10s)

Run #3: Radiated Spurious Emissions, Receive Mode, 30 - 1,300 MHz

Since all of the emissons except the fundamental when the radio is transmitting must meet the receiver limits of Part 15, no additional test is required for receive mode.

EMC Test Data


Client:	Nevro Corporation	PR Number:	PR085867
Model:	PW1000	T-Log Number:	TL085867-RA
Contact:	Ryan Greenstreet	Project Manager:	Christine Krebill
Standard:	FCC part 95, EN 301 839	Project Engineer:	David Bare
		Class:	-

Run #4: Bandwidth Measurement

Date of Test: 11/1/2018
Test Engineer: David W. Bare
Test Location: Fremont Chamber #7

Config. Used: 1
Config Change: None
EUT Voltage: 120V/60Hz

Frequency (MHz)	Resolution Bandwidth	Video Bandwidth	Bandwidth (kHz)
402.45	3 kHz	30 kHz	252

Note 1: 99% bandwidth measured in accordance with ANSI C63.10, with RB between 1% and 5% of the measured bandwidth and VB \geq 3*RB and Span \geq 1.5% and \leq 5% of measured bandwidth.

EMC Test Data

Client:	Nevro Corporation	Job Number:	PR085867
Model:	PW1000	T-Log Number:	TL085867-RA
Contact:	Ryan Greenstreet	Project Manager:	Christine Krebill
Standard:	FCC part 95, EN 301 839	Project Coordinator:	David Bare
		Class:	N/A

FCC Part 95.2565 & EN 301 839 Frequency Stability

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

All measurements are made with the EUT's rf port connected to the measurement instrument via an attenuator or dc-block if necessary. For frequency stability measurements the EUT was placed inside an environmental chamber.

Ambient Conditions: Temperature: 21 °C
Rel. Humidity: 42 %

Summary of Results

Run #		Test Performed	Limit	Pass / Fail	Result / Margin
1		Frequency Stability	100ppm	Pass	18.9 ppm

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Sample Notes

Sample S/N: 11080-0000122

EMC Test Data

Client:	Nevro Corporation	Job Number:	PR085867
Model:	PW1000	T-Log Number:	TL085867-RA
Contact:	Ryan Greenstreet	Project Manager:	Christine Krebill
Standard:	FCC part 95, EN 301 839	Project Coordinator:	David Bare
		Class:	N/A

Run #1: Frequency Stability

Date of Test: 11/5/2018

Test Engineer: Jude Semana

Test Location: Frement EMC Lab #3

Config. Used: 1

Config Change: None

EUT Voltage: 100 - 240V, 60 Hz

Nominal Frequency: 402.45 MHz

Frequency Stability Over Temperature

The EUT was soaked at each temperature for a minimum of 30 minutes prior to making the measurements to ensure the EUT and chamber had stabilized at that temperature.

Temperature (Celsius)	Frequency Measured (MHz)	Drift	
		(Hz)	(ppm)
0	402.447596	-2404	-6.0
10	402.447115	-2885	-7.2
20	402.449199	-801	-2.0
30	402.445439	-4561	-11.3
40	402.442388	-7612	-18.9
50	402.445593	-4407	-11.0
55	402.447997	-2003	-5.0
Worst case:		-7612	-18.9

Frequency Stability Over Input Voltage

Nominal Voltage is 100-240VAC

Voltage (AC)	Frequency Measured (MHz)	Drift	
		(Hz)	(ppm)
85%	402.447276	-2724	-6.8
115%	402.447276	-2724	-6.8
Worst case:		-2724	-6.8

Voltage (AC)	Frequency Measured (MHz)	Drift	
		(Hz)	(ppm)
73	402.447276	-2724	-6.8

Note 1: Maximum drift of fundamental frequency before it shut down at 73 VAC was 0 Hz

EMC Test Data

Client:	Nevro Corporation	Job Number:	PR085867
Model:	PW1000	T-Log Number:	TL085867-RA
		Project Manager:	Christine Krebill
Contact:	Ryan Greenstreet	Project Coordinator:	David Bare
Standard:	FCC part 95, EN 301 839	Class:	N/A

LBT, FCC Part 95 and EN 301 839

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 11/2/2018

Config. Used: 1

Test Engineer: David W. Bare

Config Change: None

Test Location: Fremont Chamber #2

EUT Voltage: 120V/60Hz

General Test Configuration

All measurements are made with the EUT's rf port connected to the signal generating and measurement instruments via combiners.

Ambient Conditions:

Temperature: 21 °C

Rel. Humidity: 40 %

Summary of Results

Run #		Test	Requirement / Limit	Result / Margin
1		LBT threshold power level	EUT shall select only the Least Interferred Channel (LIC)	Pass
2		Monitoring system bandwidth	\geq 20 dB EBW	Pass
3		Monitoring system scan cycle time	\leq 5 s	Pass
4		Monitoring system Minimum Channel monitoring period	0.1 ms / 10 ms	Pass
5		Channel access based on ambient level above PTh	Correct channel selection	Pass
6		Discontinuation of MICS session	\leq 5 seconds	Pass
7		Use of pre-scanned alternative channel	The EUT does not use this feature	N/A

Modifications Made During Testing

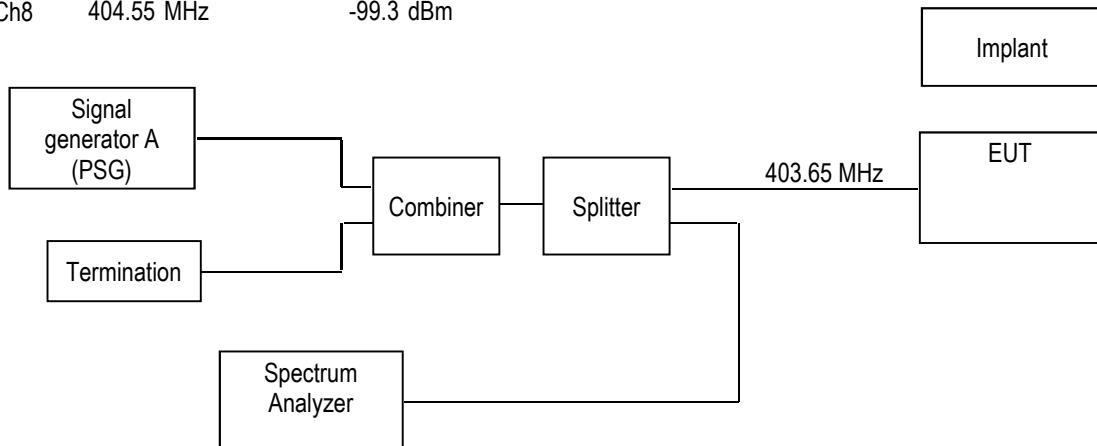
The following modifications were made to the EUT prior to testing in order to facilitate testing:

The internal antenna was removed and a short coax to an SMA connector was connected instead to allow conducted testing. Special firmware was used to allow continuous attempts to establish a communication session.

Deviations From The Standard

No deviations were made from the requirements of the standard.

Sample Notes


Sample S/N: 11080-0000122

Client:	Nevro Corporation	Job Number:	PR085867
Model:	PW1000	T-Log Number:	TL085867-RA
Contact:	Ryan Greenstreet	Project Manager:	Christine Krebill
Standard:	FCC part 95, EN 301 839	Project Coordinator:	David Bare

Run #1: LBT Threshold power level
Test Configuration Details:

The Signal Generator A (PSG vector signal generator) was configured to produce 7 un-modulated carriers at 7 of the 8 channels at;

Ch1	402.45 MHz	-99.3 dBm	3 dB above minimum LBT threshold level
Ch2	402.75 MHz	Turned off	
Ch3	403.05 MHz	-99.3 dBm	
Ch4	403.35 MHz	-99.3 dBm	
Ch5	403.65 MHz	-99.3 dBm	
Ch6	403.95 MHz	-99.3 dBm	
Ch7	404.25 MHz	-99.3 dBm	
Ch8	404.55 MHz	-99.3 dBm	

Calculated Antenna Gain: 6.3 dBi (from measured field strength and measured output power)

Minimum LBT threshold power = $10 \log B \text{ (Hz)} - 150 + G \text{ (dBi)}$

When B: 252000 Hz (20 dB bandwidth)

Minimum LBT threshold power = -102.3 dBm

EUT Mode:

The EUT was placed in search mode looking for an implanted device. At this amplitude, the EUT must initiate communications only on the channel 2 (402.75 MHz) not generated by the signal generator.

Test result:

The EUT complies with this requirement. EUT starts to initiate communication only at channel 2.

EMC Test Data

Client:	Nevro Corporation	Job Number:	PR085867
Model:	PW1000	T-Log Number:	TL085867-RA
Contact:	Ryan Greenstreet	Project Manager:	Christine Krebill
Standard:	FCC part 95, EN 301 839	Project Coordinator:	David Bare
		Class:	N/A

Run #2: Monitoring system bandwidth

Test Configuration Details:

The PSG signal generator was configured to produce 7 un-modulated carriers at 7 of the 8 channels at;

Ch1	402.45 MHz	-99.3 dBm	3 dB above minimum LBT threshold level
Ch2	402.75 MHz	Turned off	
Ch3	403.05 MHz	-99.3 dBm	
Ch4	403.35 MHz	-99.3 dBm	
Ch5	403.65 MHz	-99.3 dBm	
Ch6	403.95 MHz	-99.3 dBm	
Ch7	404.25 MHz	-99.3 dBm	
Ch8	404.55 MHz	-99.3 dBm	
Pa:	-87 dBm	@402.750 MHz	
Pb:	-81 dBm	@402.624 MHz	D1: 6.0 dB
Pc:	-77 dBm	@402.876 MHz	D2: 10.0 dB

Test Result

Pb – Pa = 6dB and Pc – Pa = 10dB, the EUT complies with the 20 dB monitoring bandwidth requirement.

EMC Test Data

Client:	Nevro Corporation	Job Number:	PR085867
Model:	PW1000	T-Log Number:	TL085867-RA
Contact:	Ryan Greenstreet	Project Manager:	Christine Krebill
Standard:	FCC part 95, EN 301 839	Project Coordinator:	David Bare
		Class:	N/A

Run #3: Monitoring system scan cycle time

Note: The EUT performs a clear channel assessment prior to initiating any transmission

Test Configuration Details:

Ch1	402.45 MHz	-99.3 dBm	3 dB above minimum LBT threshold level
Ch2	402.75 MHz	-96.3	Turned off after starting a communication session
Ch3	403.05 MHz	-99.3 dBm	
Ch4	403.35 MHz	-99.3 dBm	
Ch5	403.65 MHz	-99.3 dBm	
Ch6	403.95 MHz	-99.3 dBm	
Ch7	404.25 MHz	-99.3 dBm	
Ch8	404.55 MHz	-99.3 dBm	

Test result:

The EUT transmits on the clear channel within 1 second after the signal on that channel is switched off.

EMC Test Data

Client:	Nevro Corporation	Job Number:	PR085867
Model:	PW1000	T-Log Number:	TL085867-RA
Contact:	Ryan Greenstreet	Project Manager:	Christine Krebill
Standard:	FCC part 95, EN 301 839	Project Coordinator:	David Bare
		Class:	N/A

Run #4: Monitoring system Minimum Channel monitoring period

Test Configuration Details:

Ch1	402.45 MHz	-96.3 dBm		
Ch2	402.75 MHz	-99.3 dBm	MXG	3 dB above minimum LBT threshold level
Ch3	403.05 MHz	-96.3 dBm		
Ch4	403.35 MHz	-96.3 dBm		
Ch5	403.65 MHz	-96.3 dBm		
Ch6	403.95 MHz	-96.3 dBm		
Ch7	404.25 MHz	-96.3 dBm		
Ch8	404.55 MHz	-96.3 dBm		

The MXG signal generator was configured to produce 1 un-modulated carrier at channel (402.75 MHz). The output of the generators were combined. The amplitude of the MXG generator was adjusted to be equal to the amplitude of the PSG generator.

The output of the PSG generator was switched off and the EUT was set to initiate a transmission. The EUT did not transmit at 402.75 MHz. The output of the PSG was switched back on and the amplitude increased by 3 dB. The EUT was set to initiate a transmission. The EUT only transmitted at 402.75 MHz. The PSG generator was configured with pulse modulation on all the carriers. The modulation was 0.1 ms pulse with a repetition rate of 10 ms corresponding to a silent period between pulses of 9.9 ms. The EUT was set to initiate a transmission 10 times. In each case, the EUT only transmitted at 402.75 MHz.

Test result:

The test has been repeated 10 times and the channel selection occurred only on 403.65 MHz in each test run. The EUT complies with this requirement.

EMC Test Data

Client:	Nevro Corporation	Job Number:	PR085867
Model:	PW1000	T-Log Number:	TL085867-RA
Contact:	Ryan Greenstreet	Project Manager:	Christine Krebill
Standard:	FCC part 95, EN 301 839	Project Coordinator:	David Bare
		Class:	N/A

Run #5: Channel access based on ambient level above PTh

Test Configuration Details:

Ch1	402.45 MHz	-92.3 dBm	10 dB above minimum LBT threshold level
Ch2	402.75 MHz	-105.3 dBm	Increased: -96.3 dBm (MXG)
Ch3	403.05 MHz	-92.3 dBm	
Ch4	403.35 MHz	-92.3 dBm	
Ch5	403.65 MHz	-92.3 dBm	
Ch6	403.95 MHz	-92.3 dBm	
Ch7	404.25 MHz	-99.3 dBm	3 dB above minimum LBT threshold level
Ch8	404.55 MHz	-92.3 dBm	

The MXG signal generator was configured to produce 1 un-modulated carrier at channel 2 (402.75 MHz) with 3 dB below the threshold level.

The EUT was set to initiate a transmission, it only transmitted at 402.75 MHz. The amplitude of the MXG generator was increased 9 dB and the EUT was set to initiate a transmission. The EUT only selected 404.25 MHz

Test result:

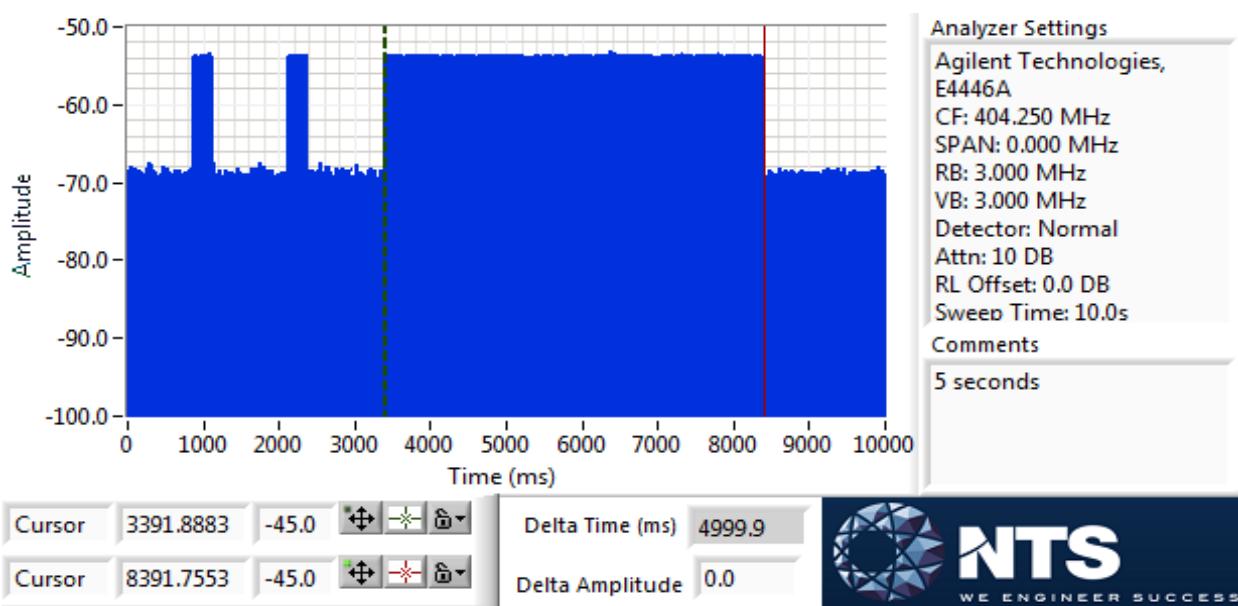
The EUT complies with this requirement.

Client:	Nevro Corporation	Job Number:	PR085867
Model:	PW1000	T-Log Number:	TL085867-RA
Contact:	Ryan Greenstreet	Project Manager:	Christine Krebill
Standard:	FCC part 95, EN 301 839	Project Coordinator:	David Bare
		Class:	N/A

Run #6: Discontinuation of MICS session

MIC systems shall cease transmission in the event the communications session is interrupted for a period of 5 seconds or more. Once a MICS session is established, it may continue as long as a silent period in two-way communication between co-operating devices does not exceed 5 seconds

Test Configuration Details:


Ch1	402.45 MHz	-96.2 dBm	
Ch2	402.75 MHz	-96.2 dBm	(MXG)
Ch3	403.05 MHz	-96.2 dBm	
Ch4	403.35 MHz	-96.2 dBm	
Ch5	403.65 MHz	-99.2 dBm	
Ch6	403.95 MHz	-96.2 dBm	
Ch7	404.25 MHz	-96.2 dBm	
Ch8	404.55 MHz	-96.2 dBm	

The MXG signal generator was configured to produce 1 un-modulated carrier at channel 2 (402.75 MHz)

The EUT was set to initiate a transmission to communicate with the implant. The EUT transmitted at 402.75 MHz. The Implant was removed from the test setup to block the communications.. From the point in time when the Implant was blocked to the end of transmissions from the EUT was 5 seconds. After the implant is introduced to the test setup, no transmissions were observed.

Test result:

The transmissions from the EUT has stopped in less than 5 seconds and did not re-initiate, the EUT complied with this requirement

EMC Test Data

Client:	Nevro Corporation	Job Number:	PR085867
Model:	PW1000	T-Log Number:	TL085867-RA
Contact:	Ryan Greenstreet	Project Manager:	Christine Krebill
Standard:	FCC part 95, EN 301 839	Project Coordinator:	David Bare
		Class:	N/A

Run #7: Use of pre-scanned alternative channel

The test is not applicable, The EUT does not use this feature

Test result: N/A

National Technical Systems

Project number PR085867
Report Date: November 19, 2018, Reissued Date: January 24, 2019

End of Report

This page is intentionally blank and marks the last page of this test report.