

EMC TEST REPORT**No. SH09061372-001**

Applicant : NINGBO COMEN ELECTRONICS TECHNOLOGY CO., LTD
No.2 Hongxing Road,Zone A Hongtang Industry Park, Ningbo, China

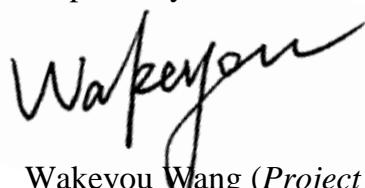
Manufacturer : NINGBO COMEN ELECTRONICS TECHNOLOGY CO., LTD
No.2 Hongxing Road,Zone A Hongtang Industry Park, Ningbo, China

Equipment : Remote control power switch key chain transmitter
Type/Model : SD-US1-RF, AC51530(TX1)

SUMMARY

The equipment complies with the requirements according to the following standard(s):

47CFR Part 15 (2008): Radio Frequency Devices


ANSI C63.4 (2003): American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

RSS-210 Issue 7 (June 2007): Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment

RSS-Gen Issue 2 (June 2007): General Requirements and Information for the Certification of Radiocommunication Equipment

Date of issue: July 27, 2009

Prepared by:

Wakeyou Wang (*Project Engineer*)

Reviewed by:

Daniel Zhao (*Reviewer*)

Description of Test Facility

Name: Intertek Testing Services Limited Shanghai
Address: Building No.86, 1198 Qinzhou Road(North), Shanghai 200233, P.R. China

FCC Registration Number: 236597
IC Assigned Code: 2042B-1

Name of contact: Steve Li
Tel: +86 21 64956565 ext. 214
Fax: +86 21 54262335 ext. 214

Content

SUMMARY	1
DESCRIPTION OF TEST FACILITY.....	2
1. GENERAL INFORMATION.....	4
1.1 Applicant Information	4
1.2 Identification of the EUT	4
1.3 Technical specification.....	5
1.4 Mode of operation during the test / Test peripherals used	5
2. TEST SPECIFICATION.....	6
2.1 Instrument list.....	6
2.2 Test Standard.....	6
3. FUNDAMENTAL & SPURIOUS EMISSION & RESTRICT BAND RADIATED EMISSION.....	8
3.1 Test limit.....	8
3.2 Test Configuration	9
3.3 Test procedure and test setup	9
3.4 Test protocol.....	10
3.5 Measurement uncertainty	10
4. DEACTIVATING TIME	11
4.1 Test limit.....	11
4.2 Test Configuration	12
4.3 Test procedure and test setup	12
4.4 Test protocol.....	12
4.5 Measurement uncertainty	12
5. POWER LINE CONDUCTED EMISSION	13
5.1 Limit	13
5.2 Test configuration	13
5.3 Test procedure and test set up	14
5.4 Test protocol.....	15
5.5 Measurement Uncertainty	15
6. EMISSION BANDWIDTH.....	16
6.1 Test limit.....	16
6.2 Test Configuration	16
6.3 Test procedure and test setup	16
6.4 Test protocol.....	17
6.5 Measurement uncertainty	17
7. OCCUPIED BANDWIDTH.....	18
7.1 Test limit.....	18
7.2 Test Configuration	18
7.3 Test procedure and test setup	18
7.4 Test protocol.....	19
7.5 Measurement uncertainty	19

1. General Information

1.1 Applicant Information

Applicant: NINGBO COMEN ELECTRONICS TECHNOLOGY CO., LTD
No.2 Hongxing Road,Zone A Hongtang Industry Park, Ningbo, China

Name of contact: Mark Shi

Tel: 86 574 87259392

Fax: 86 574 87259390

Manufacturer: NINGBO COMEN ELECTRONICS TECHNOLOGY CO., LTD
No.2 Hongxing Road,Zone A Hongtang Industry Park, Ningbo, China

Sample received date : June 10, 2009

Date of test : June 10, 2009 ~ July 27, 2009

1.2 Identification of the EUT

Equipment: Remote control power switch key chain transmitter

Type/model: SD-US1-RF, AC51530(TX1)

FCC ID: XK8-SDUS1RF

IC: 8476A-SDUS1RF

1.3 Technical specification

Operation Frequency Band:	315MHz
Modulation:	ASK
Antenna Designation:	Internal antenna, non-user removable.
Rating:	Built-in Battery: DC 12V Working frequency: 315MHz
Description of EUT:	There are two models. They are electrically identical except for different model names. As a result, the model AC51530(TX1) was chosen to perform test as representative. The EUT is a transmitter to transmit wireless signal so as to control the on/off condition of receiver.
Channel Description:	There is one channel only and working at the central frequency of 315MHz.

1.4 Mode of operation during the test / Test peripherals used

Within this test report, EUT was tested with modulation and tested under its rating voltage and frequency.

The EUT is a portable device, so three axes were observed.

2. Test Specification

2.1 Instrument list

Equipment	Type	Manu.	Internal no.	Cal. Date	Due date
Test Receiver	ESIB 26	R&S	EC 3045	2009-6-1	2010-5-31
Semi-anechoic chamber	-	Albatross project	EC 3048	2009-6-1	2010-5-31
A.M.N.	ESH2-Z5	R&S	EC 3119	2009-1-23	2010-1-22
Test Receiver	ESCS 30	R&S	EC 2107	2009-1-23	2010-1-22
Broadband antenna	CBL 6112D	TESEQ	EC 4206	2009-6-2	2010-6-1
Horn antenna	HF 906	R&S	EC 3049	2009-6-30	2010-6-29
Pre-amplifier	Pre-amp 18	R&S	EC 3222	2009-6-30	2010-6-29

2.2 Test Standard

47CFR Part 15 (2008)

ANSI C63.4: 2003

RSS-210 Issue 7 (June 2007)

RSS-Gen Issue 2 (June 2007)

2.3 Test Summary

This report applies to tested sample only. This report shall not be reproduced in part without written approval of Intertek Testing Service Shanghai Limited.

TEST ITEM	FCC REFERANCE	IC REFERANCE	RESULT
Fundamental & spurious emission	15.231(b)	RSS-210 Issue 7 Annex A1.1.2	Pass
Restrict band radiated emission	15.205	RSS-210 Issue 7 Clause 2	Pass
Power line conducted emission	15.207	RSS-Gen Issue 2 Clause 7.2.2	NA
Emission bandwidth	15.231(c)	RSS-Gen Issue 2 Annex A1.1.3	Pass
Deactivating time	15.231(a)(1)	RSS-210 Issue 7 Annex A1.1.1	Pass
Occupied bandwidth	-	RSS-Gen Issue 2 Clause 4.6.1	Tested

3. Fundamental & Spurious Emission & Restrict band radiated emission

Test result: **PASS**

3.1 Test limit

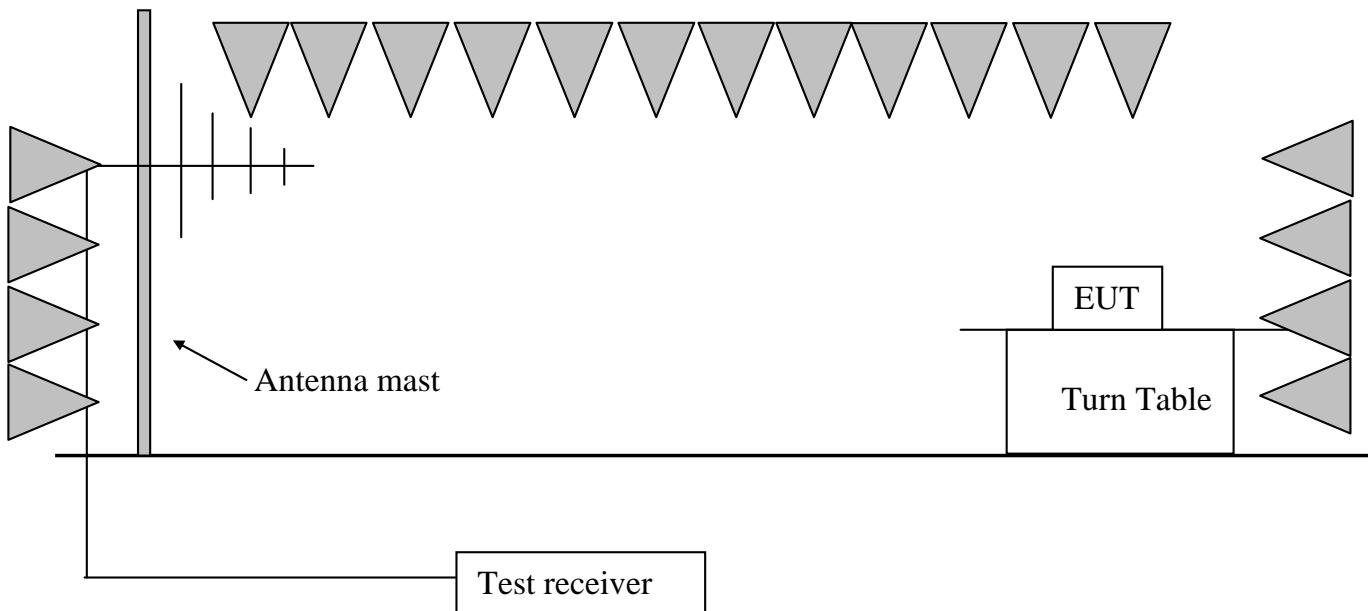
3.1.1 The emission shall test through the 10th harmonic or to 40GHz, whichever is lower. It must comply with the limits below:

Fundamental Frequency (MHz)	Fundamental limit (uV/m)	Spurious limit (uV/m)
<input type="checkbox"/> 40.66 – 40.70	2250	225
<input type="checkbox"/> 70 – 130	1250	125
<input type="checkbox"/> 130 - 174	1250 to 3750	125 to 375
<input type="checkbox"/> 174 - 260	3750	375
<input checked="" type="checkbox"/> 260 – 470	3750 to 12500	375 to 1250
<input type="checkbox"/> Above 470	12500	1250

The formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, uV/m at 3 meters = $56.81818(\text{Frequency}) - 6136.3636$; for the band 260-470 MHz, uV/m at 3 meters = $41.6667(\text{Frequency}) - 7083.3333$. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.

For that the EUT use fundamental frequency of 433.92MHz, after calculation, the limit is:

$$\text{Fundamental limit} = 41.6667 * 315 - 7083.3333 = 6041.68 \text{uV/m} = 75.60 \text{dBuV/m}$$


$$\text{Spurious limit} = 75.60 - 20 = 55.60 \text{dBuV/m}$$

//////////

3.1.2 The radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) showed as below:

Frequency (MHz)	Field Strength (dBuV/m)	Measurement Distance (m)
30 - 88	40.0	3
88 - 216	43.5	3
216 - 960	46.0	3
Above 960	54.0	3

3.2 Test Configuration

3.3 Test procedure and test setup

The measurement was applied in a semi-anechoic chamber. While testing for spurious emission higher than 1GHz, the pre-amplifier is equipped just at the output terminal of the antenna.

The EUT and simulators were placed on a 0.8m high wooden turntable above the horizontal metal ground plane. The turn table rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna which was mounted on an antenna mast. The antenna moved up and down between from 1 meter to 4 meters to find out the maximum emission level.

The radiated emission was measured using the Spectrum Analyzer with the resolutions bandwidth set as:

RBW = 100kHz, VBW = 300kHz (30MHz~1GHz)

RBW = 1MHz, VBW = 3MHz (>1GHz for PK);

3.4 Test protocol

Channel	Antenna	Frequency (MHz)	Correct Factor (dB/m)	Corrected Reading (dBuV/m)	Emission Type	Limit (dBuV/m)	Detector
1	H	314.89	16.40	72.00	Fundamental	/	PK
1	V	629.86	22.90	52.30	Harmonics	/	PK
1	H	945.02	25.80	55.60	Harmonics	/	PK
1	H	1259.75	0.30	44.10	Harmonics	/	PK
1	V	322.00	16.70	31.20	Restrict	46.00	PK
1	H	285.00	15.80	31.40	Restrict	46.00	PK
1	H	131.08	13.20	30.70	Restrict	43.50	PK

Remark: 1. Correct Factor = Antenna Factor + Cable Loss (+ Amplifier, for higher than 1GHz)

2. Corrected Reading = Original Receiver Reading + Correct Factor

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB, Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10dBuV. Then Correct Factor = $30.20 + 2.00 - 32.00 = 0.20$ dB/m; Corrected Reading = $10\text{dBuV} + 0.20\text{dB/m} = 10.20\text{dBuV/m}$

Calculating the AV value of spurious emission according to the duty cycle

Antenna	Frequency (MHz)	PK Reading (dBuV/m)	Correct Factor (dB)	AV Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)
H	314.89	72.00	-5.80	66.20	75.60	9.40
V	629.86	52.30		46.50	55.60	9.10
V	945.02	55.60		49.80	55.60	5.80
H	1259.75	44.10		38.30	55.60	17.30

Remark: 1. Correct Factor = $20\lg(\text{duty cycle}) = 20\lg(51\%) = -5.80$

2. AV Reading = PK Reading + Correct Factor

3. Margin = limit - AV Reading

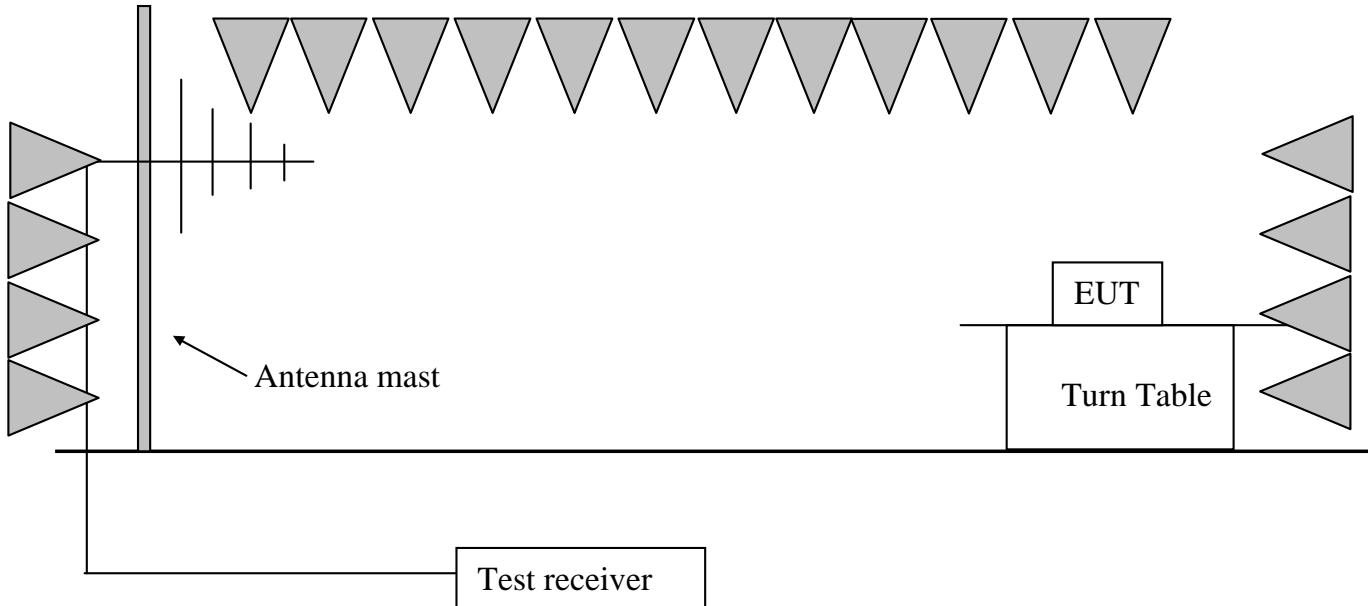
3.5 Measurement uncertainty

The measurement uncertainty describes the overall uncertainty of the given measured value during the operation of the EUT.

Measurement uncertainty of radiated emission is: $\pm 5.31\text{dB}$

The measurement uncertainty is given with a confidence of 95%, k=2.

The measurement uncertainty is traceable to internal procedure TI-036.


4. Deactivating time

Test result: **PASS**

4.1 Test limit

- (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.
- (2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.
- (3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.
- (4) Intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition.
- (5) Transmission of set-up information for security systems may exceed the transmission duration limits in (1) and (2) above, provided such transmission are under the control of a professional installer and do not exceed ten seconds after a manually operated switch is released or a transmitter is activated automatically. Such set-up information may include data.

4.2 Test Configuration

4.3 Test procedure and test setup

The measurement was applied in a semi-anechoic chamber.

The central frequency of test receiver was set as the operating frequency of EUT and the Span was set as 0.

The EUT was switched once. The test receiver recorded the whole time from the triggered moment to the time of stopping radiating. For manual switching, to avoid uncertainty, the operating above would be repeated five times and the worst data is recorded.

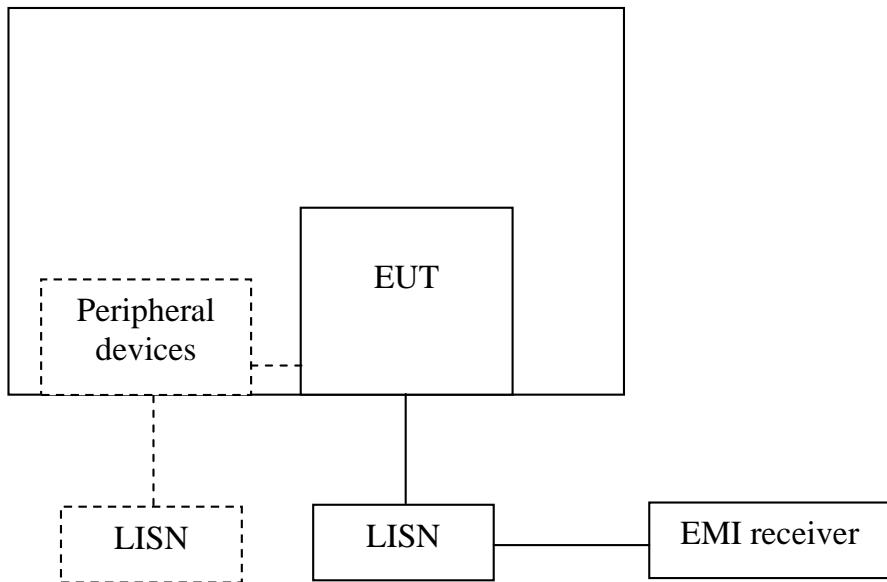
4.4 Test protocol

Whole time from the triggered moment to the time of stopping radiating: 357ms.
As a result, the EUT complies with the limit of 5s' deactivating time.

4.5 Measurement uncertainty

Measurement uncertainty is: 10ms.

5. Power line conducted emission


Test result: NA

5.1 Limit

Frequency of Emission (MHz)	Conducted Limit (dBuV)	
	QP	AV
0.15-0.5	66 to 56*	56 to 46 *
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

5.2 Test configuration

- For table top equipment, wooden support is 0.8m height table
- For floor standing equipment, wooden support is 0.1m height rack.

5.3 Test procedure and test set up

The EUT are connected to the main power through a line impedance stabilization network (LISN). This provides a $50\Omega/50\mu\text{H}$ coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a $50\Omega/50\mu\text{H}$ coupling impedance with 50Ω termination.

Both sides (Line and Neutral) of AC line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4 on conducted measurement. The bandwidth of the test receiver is set at 9 kHz.

5.4 Test protocol

Power line: L

Frequency	Correct Factor (dB)	Corrected Reading (dBuV)		Limit (dBuV)		Margin (dB)	
		QP	AV	QP	AV	QP	AV
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-

Remark: 1. Correction Factor (dB) = LISN Factor (dB) + Cable Loss (dB).

2. Margin (dB) = Limit - Corrected Reading.

3. If the margin higher than 20dB, it would be marked as *.

Power line: N

Frequency	Correct Factor (dB)	Corrected Reading (dBuV)		Limit (dBuV)		Margin (dB)	
		QP	AV	QP	AV	QP	AV
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-

Remark: 1. Correction Factor (dB) = LISN Factor (dB) + Cable Loss (dB).

2. Margin (dB) = Limit - Corrected Reading.

3. If the margin higher than 20dB, it would be marked as *.

5.5 Measurement Uncertainty

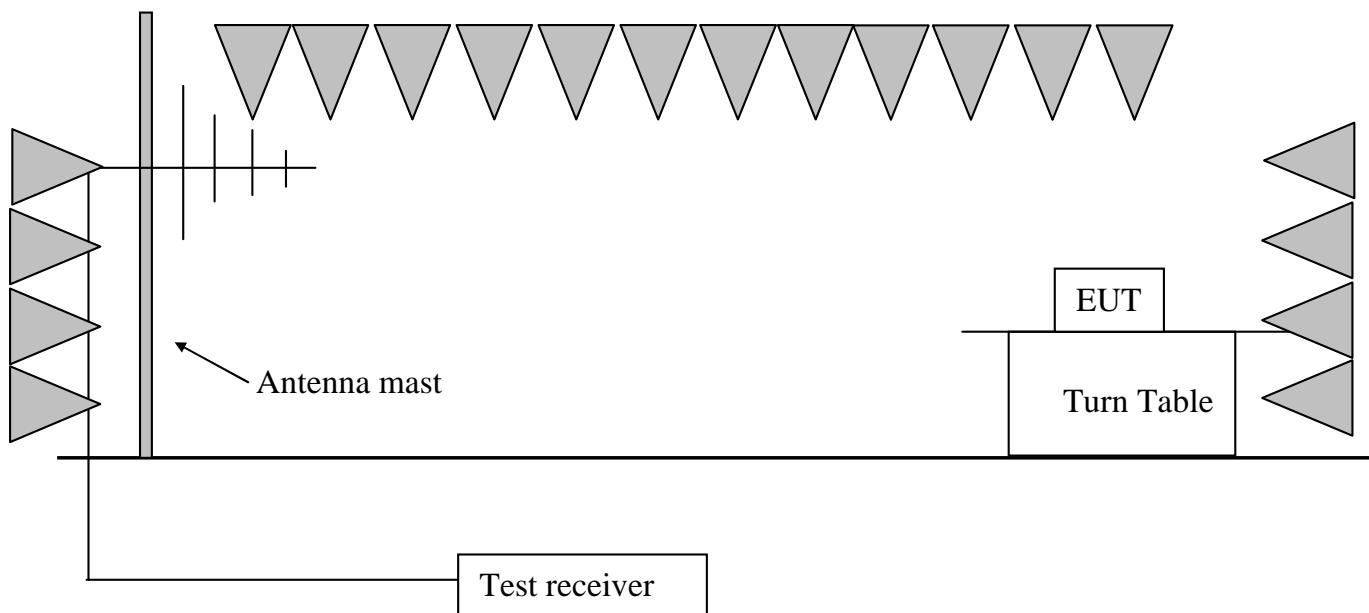
The measurement uncertainty describes the overall uncertainty of the given measured value during the operation of the EUT.

Measurement uncertainty at mains terminal: $\pm 1.99\text{dB}$

The measurement uncertainty is given with a confidence of 95%, $k=2$.

The measurement uncertainty is traceable to internal procedure TI-036.

6. Emission Bandwidth


Test Status: Pass

6.1 Test limit

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20dB down from the modulated carrier.

The limit for the EUT = $0.25\% * 315\text{MHz} = 788\text{kHz}$

6.2 Test Configuration

6.3 Test procedure and test setup

The EUT and simulators were placed on a 0.8m high wooden turntable above the horizontal metal ground plane. The turn table rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna which was mounted on an antenna mast. The antenna moved up and down between from 1 meter to 4 meters to find out the maximum emission level.

The central frequency of test receiver was set near the operating frequency of EUT.

Spectrum Analyzer with the resolutions bandwidth set at 10kHz, the video bandwidth set at 30kHz.

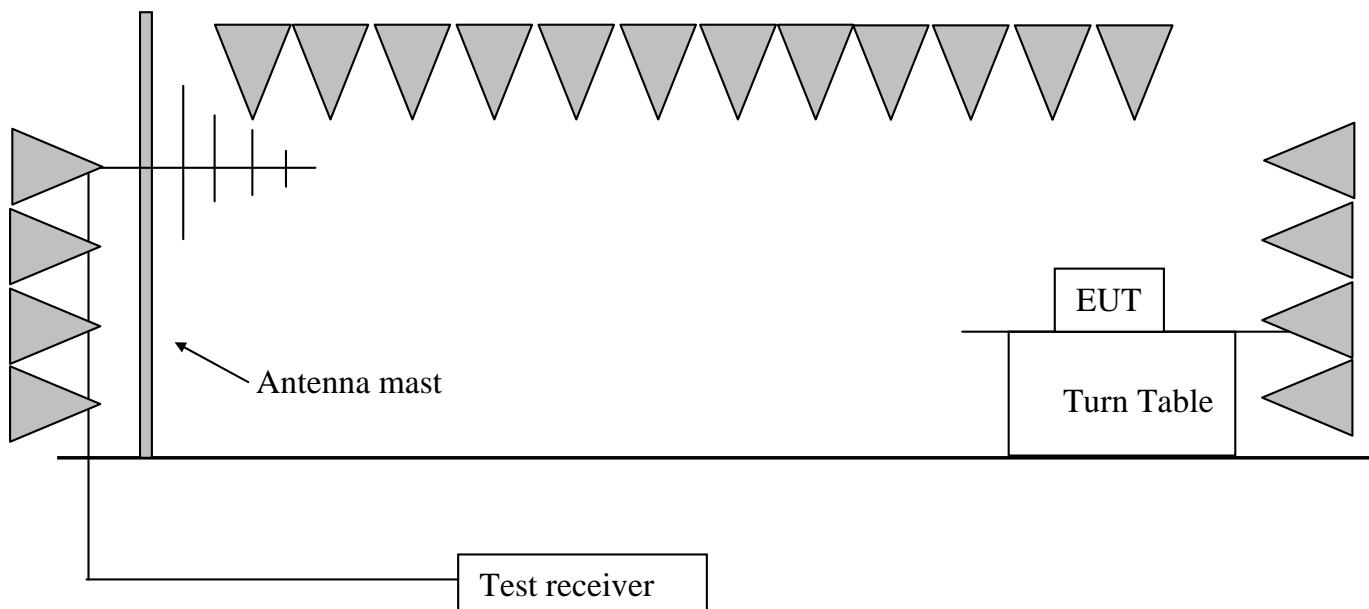
6.4 Test protocol

Temperature : 22 °C
Relative Humidity : 43 %

Channel	Emission Bandwidth (kHz)	Limit (kHz)
1	204	788

6.5 Measurement uncertainty

The measurement uncertainty is $\pm 100\text{Hz}$.


7. Occupied Bandwidth

Test Status: Tested

7.1 Test limit

None

7.2 Test Configuration

7.3 Test procedure and test setup

The occupied bandwidth per RSS-Gen Issue 2 Clause 4.6.1 was measured using the Spectrum Analyzer with the resolutions bandwidth set at 10kHz, the video bandwidth set at 30kHz.

7.4 Test protocol

Temperature : 22 °C
Relative Humidity : 43 %

Channel	Occupied Bandwidth (kHz)	Max. Value (kHz)
1	539	539

Remark: "Max. Value" is the maximum test result of all the measured occupied bandwidth.

7.5 Measurement uncertainty

The measurement uncertainty is $\pm 100\text{Hz}$.