

Technical Description:

The Equipment Under Test (EUT) is a 2.4GHz transceiver for a wireless dongle which operating at 2.403 - 2.479GHz with 1MHz channel spacing. The EUT is powered by a USB port. After the EUT was inserted on PC, The EUT will pair the corresponding wireless keyboard for wireless data transfer.

Operating Frequency Band: 2.403GHz ~ 2.479GHz
Modulation Method: GFSK.

The functions of main ICs are mentioned as below.

- 1) U1 acts as 2.4GHz RF transceiver
- 2) U2 acts as USB Controller.
- 3) U3 acts as EEPROM.

DATA SHEET

EM198810AW

2.4 GHz ISM Band Transceiver/Framer IC
(QFN24 4x4x0.8mm package)

Production Data Sheet

ELAN MICROELECTRONICS CORP.
No.12, Innovation 1st RD., Science-based Industrial Park
Hsin Chu, Taiwan, R.O.C.
TEL: (03) 5639977
FAX: (03) 5782037(SL) 5630118 (SA2)

CONTENTS

1. Features
2. Block Diagram
3. Pins/pads name and pins/pads location
 - 3.1 Pins name
 - 3.2 Package outline
 - 3.3 Order information
4. Digital Base Band Interface
 - 4.1 SPI Command Format
 - 4.2 Register Information
 - 4.2.1 Package type define and FIFO point set**
 - 4.2.2 Digital Interface**
 - 4.2.3 Typical Register Values**
 - 4.2.4 State Diagram**
5. Electrical Characteristics
6. Application Reference Design
7. Soldering

2.4 GHz ISM BAND TRANSCEIVER/FRAMER IC

1. FEATURES

The EM198810 is a CMOS integrated circuit that performs all functions from the antenna to the microcontroller for transmission and reception of a 2.4GHz digital data. This transceiver IC integrates most of the functions required for data transmission into a single integrated circuit. Additionally, the programmability implemented reduces significantly external components count, board space requirements and external adjustments.

Key Features:

- Combines 2.4 GHz GFSK RF transceiver with 8-bit data framer function
- Eliminates need for external software or hardware FIFO; offloads MCU for other tasks
- Simple microprocessor interface – 4 wires for SPI, plus 3 wires for RST/buffer control
- Each transmit, receive buffer is 64 bytes deep
- Long packets are possible if buffers are read/written before overflow/underflow occurs
- Always 1Mbps over-the-air symbol rate, regardless of MCU speed or architecture
- Preamble can be 1 to 8 bytes
- Supports 1, 2, 3, or 4 word address (up to 64 bits)
- Various Payload data formats to eliminate DC offset, enhance receive clock recovery and BER
- Programmable data whitening
- Supports Forward Error Correction (FEC): none, 1/3, or 2/3
- Supports 16-bit CRC
- Baseband output clock available
- Power management for minimizing current consumption
- 5x5mm QFN package with minimum RF parasitic
- Lead-free packaging and dice is available on request

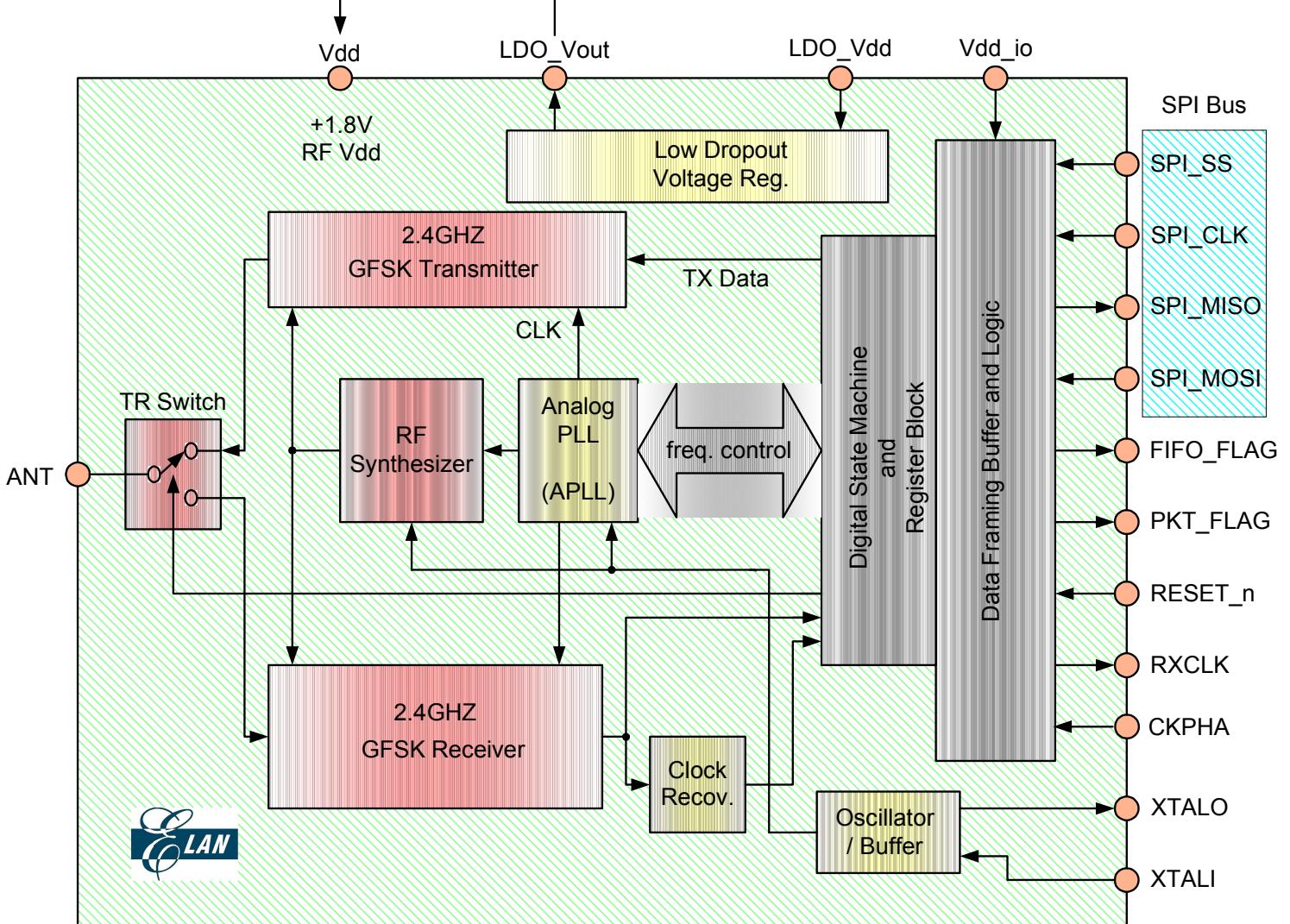
Applications

- Wireless devices that need quick time-to-market
- Simple and fast wireless data networks
- Cordless headsets and Cellular Phones
- Wireless streaming audio
- Wireless voice and VOIP
- Wireless Skype earphone
- Home and factory automation
- Wireless security and access control
- Battery Powered wireless devices

1.1 Description

The Elan EM198810 IC is a low-cost, fully integrated CMOS radio frequency (RF) transceiver block, combined with a 64-byte buffered framer block. The RF transceiver block is a self-contained, fast-hopping GFSK data modem, optimised for use in the widely available 2.4 GHz ISM band. It contains transmit, receive, VCO and PLL functions, including an on-chip channel filter and resonator, thus minimizing the need for external components. The receiver utilizes extensive digital processing for excellent overall performance, even in the presence of interference and transmitter impairments. Transmit power is digitally controlled. The low-IF receiver architecture results in sensitivity to -80dBm or better, with impressive selectivity.

In normal applications, the EM198810 is connected to a low cost microcontroller(ex:EM78P451S).


In normal application The on-chip framer processes and stores the RF data in the background, unloading this critical timing function from the MCU. This lowers MCU speed requirements, expedites product development time, and frees the MCU for implementing additional product features.

The framer register settings determine the over-the-air formatting characteristics. Many configurations are possible, depending on the user's specific needs. Raw transmit data is easily sent over-the-air as a complete frame of data, with preamble, address, payload, and CRC. Receiving data is just the opposite, using the preamble to train the receiver clock recovery, then the address is checked, then the data is reverse formatted for receive, followed by CRC. All of this is done in hardware to ease the programming and overhead requirements of the baseband MCU.

For longer battery life, power consumption is minimized by automatic enabling of the various transmit, receive, PLL, and PA sections, depending on the instantaneous state of the chip. A sleep mode is also provided for ultra low current consumption.

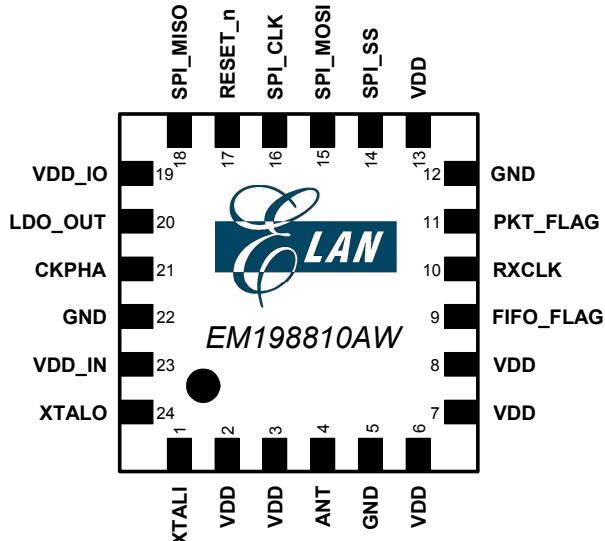
This product is available in 32-lead 5x5 mm JEDEC standard QFN package, featuring an exposed pad on the bottom for best RF characteristics. Lead-free RoHS compliant packaging is available on request.

2. Block diagram

- Fig. 1 -

This spec is subject to change
without any notice

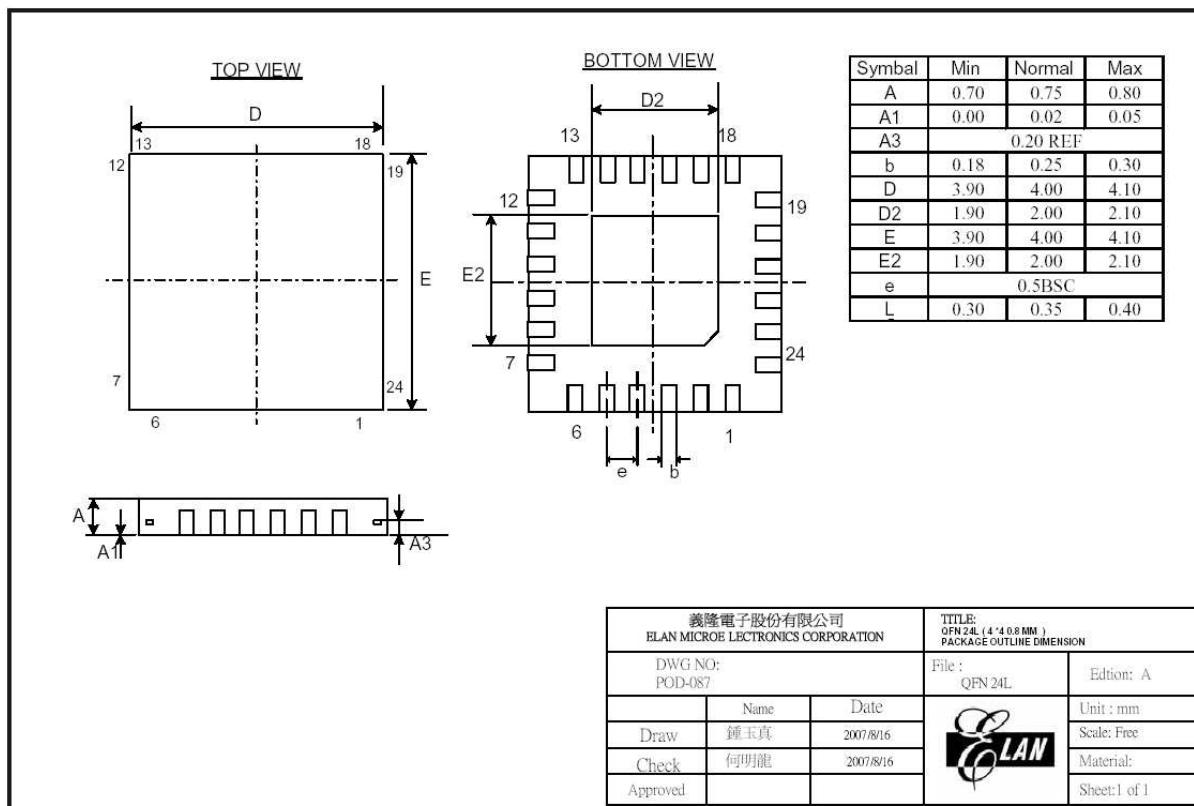
5 / 5


7.Aug.2007

3. Pins names and pins location

3.1 Pins names

SYMBOL	TYPE	PIN	DESCRIPTION
XTALI	AI	1	Input to the crystal oscillator gain block.
VDD	PWR	2	Power supply voltage(+1.8V).
VDD	PWR	3	Power supply voltage(+1.8V).
ANT	50ΩRF	4	RF input/output.
GND	GND	5	Ground connection.
VDD	PWR	6	Power supply voltage(+1.8V).
VDD	PWR	7	Power supply voltage(+1.8V).
NC	PWR	8	Power supply voltage(+1.8V).
FIFO_FLAG	O	9	FIFO full/empty flag.
RXCLK	O	10	Receiver symbol timing clock recovery output. Fixed at 1MHz fundamental rate.
PKT_FLAG	O	11	Transmit/Receive packet process flag.
GND	GND	12	Ground connection.
VDD	PWR	13	Power supply voltage(+1.8V).
SPI_SS	I	14	Enable line for the SPI bus. Active low.
SPI_MOSI	I	15	Data input for the SPI bus.
SPI_CLK	I	16	Clock line for the SPI bus.
RESET_n	I	17	When RESET_n is low, most of the chip shuts down to conserve power. When raised high, RESET_n is used to turn on the chip,restoring all registers to their default value.
SPI_MISO	O	18	Data output for the SPI bus.
VDD_IN	PWR	19	Vdd for the digital i/o pins,plus the on-chip LDO. Nominally +3.3 VDC.
LDO_OUT	PWR	20	+1.8V output of the on-chip LDO voltage regulator.
CKPHA	DI	21	SPI clock phase. When 0, SPI_MOSI data clocked in on rising edge of SPI_CLK. When 1, SPI_MOSI data clocked in on falling edge of SPI_CLK.
GND	GND	22	Ground connection.
VDD	PWR	23	Power supply voltage(+1.8V).
XTALO	AO	24	Output of the crystal oscillator gain block.
GND	GND	Exposed pad	Ground connection.


- Table 1 -

- Figure 2 -

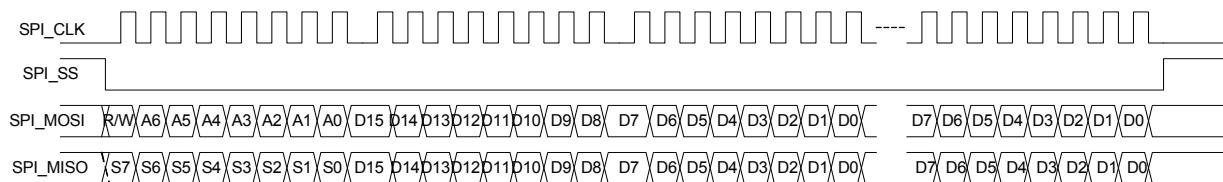
3.2 Package Outline

QFN24 Lead Exposed Pad Package, 4x4 mm Pkg.

- Table 2 -

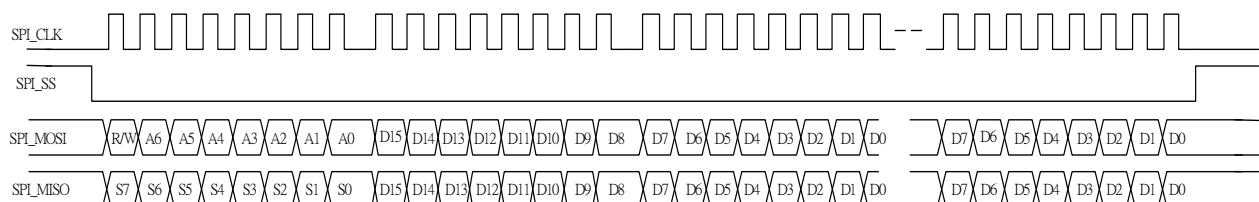
3.3 Order information

Type number	Package	
	Name	Description
EM198810AW	QFN24	Plastic, quad flat package; no leads; 24 terminals; body 4 x 4 x 0.8 mm


4 Digital Base Band Interface

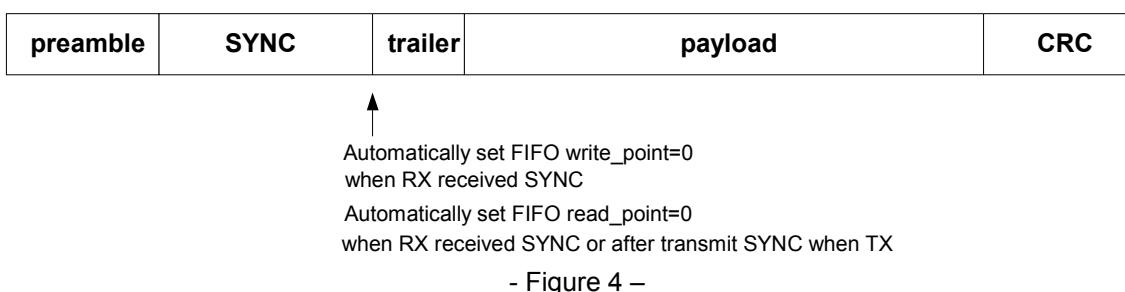
4.1 SPI Command Format

The SPI interface is used to program the IC via the 4 pins SPI_CLK, SPI_SS, SPI_MOSI and SPI_MISO. The SPI_MOSI and SPI_CLK pins are used to load data into an internal shift register. The SPI_MOSI and SPI_CLK pins are used to send data to microcontroller. The data are loaded into the shift register and sent to microcontroller on the falling edge of the clock SPI_CLK and latched on the rising edge of the SPI_SS signal. When the SPI_SS pin is high, the data stored in the shift register is retained even if a SPI_CLK is applied. When the SPI_SS pin is low the data can be rewritten and resent. Inputs timing of the SPI_CLK, SPI_SS, SPI_MOSI and SPI_MISOD are shown in the Fig.3.


Format 1

CKPHA = 0:

Format 2


CKPHA = 1:

- Fig. 3 -

4.2 Register Information

4.2.1 Package type define and FIFO point set

- Figure 4 -

- * Preamble: 1 ~ 8 bytes programmable
- * SYNC: 32/48/64 bits programmable as device syncword
- * Trailer: 4~16 bits programmable
- * Payload: TX/RX data, there are 4 data types: raw data, 8_10 bits, Manchester, interleave , with FEC option
- * CRC: 16 bit CRC is option

Note: For transmit, it is needed to clear FIFO write point before application write in data via access reg82[15].

4.2.2 Digital Interface

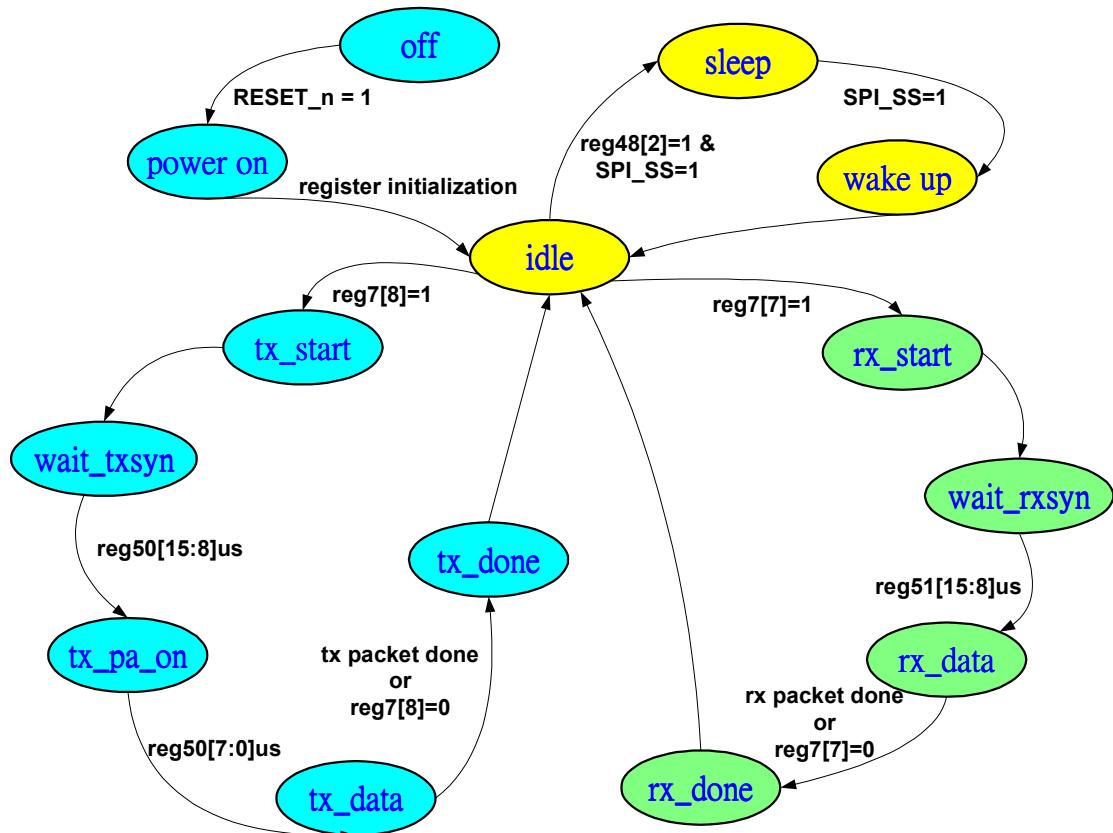
It is very simple interface with application, consisting of SPI interface plus two handshake signals (Table 3).

The EM198810 SPI can only support slave mode.

Pin	Description
SPI_CLK	SPI clock input
SPI_SS	SPI slave select input
SPI_MOSI	SPI data in
SPI_MISO	SPI data out
PKT_FLAG	Packet TX/RX flag
FIFO_FLAG	FIFO full/empty
RESET_n	Reset input, active low

- Table 3 -

4.2.3 Typical Register Values


EM198810AW recommended setting table (Table 4).

Reg. address	Read/Write	Default value (Hexadecimal)	Recommend value (12MHz crystal frequency) (Hexadecimal)
0	R/W	0000	CD51
2	R/W	00C1	0061
4	R/W	0688	3CD0
5	R/W	0041	00A1
9	R/W	0003	3003
14	R/W	6617	6697
16	R/W	0000	F000
18	R/W	FC00	E000
19	R/W	0014	2114
20	R/W	8103	819C
21	R/W	0962	6962
22	R/W	2602	0402
23	R/W	2602	0802
24	R/W	30C0	B080
25	R/W	3814	7819
26	R/W	5304	6704
48	R/W	1800	5800
51	R/W	4000	A000
56	R/W	4407	4407
57	R/W	B000	E000*

- Table 4 -

For the latest register value recommendations, please contact Elan Microelectronics technical group.

4.2.4 State Diagram

- Figure 5 -

5. Electrical Characteristics

5.1 Absolute Maximum Rating

Parameter	Symbol	Rating			Unit
		Min.	Typ.	Max.	
Operating Temp.	T_{OP}	-40		+85	°C
Storage Temp.	$T_{STORAGE}$	-55		+125	°C
V_{DD_IO} Supply Voltage	V_{DDIO_MAX}			+3.7	VDC
V_{DD} Supply Voltage	V_{DD_MAX}			+2.5	VDC
Applied Voltages to Other Pins	V_{OTHER}	-0.3		+3.7	VDC
Input RF Level	P_{IN}			+10	dBm
Output Load mismatch ($Z_0=50$ ohm)	$VSWR_{OUT}$			10:1	VSWR

- Table 5 -

Note: 1. Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended operating conditions indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics section below.

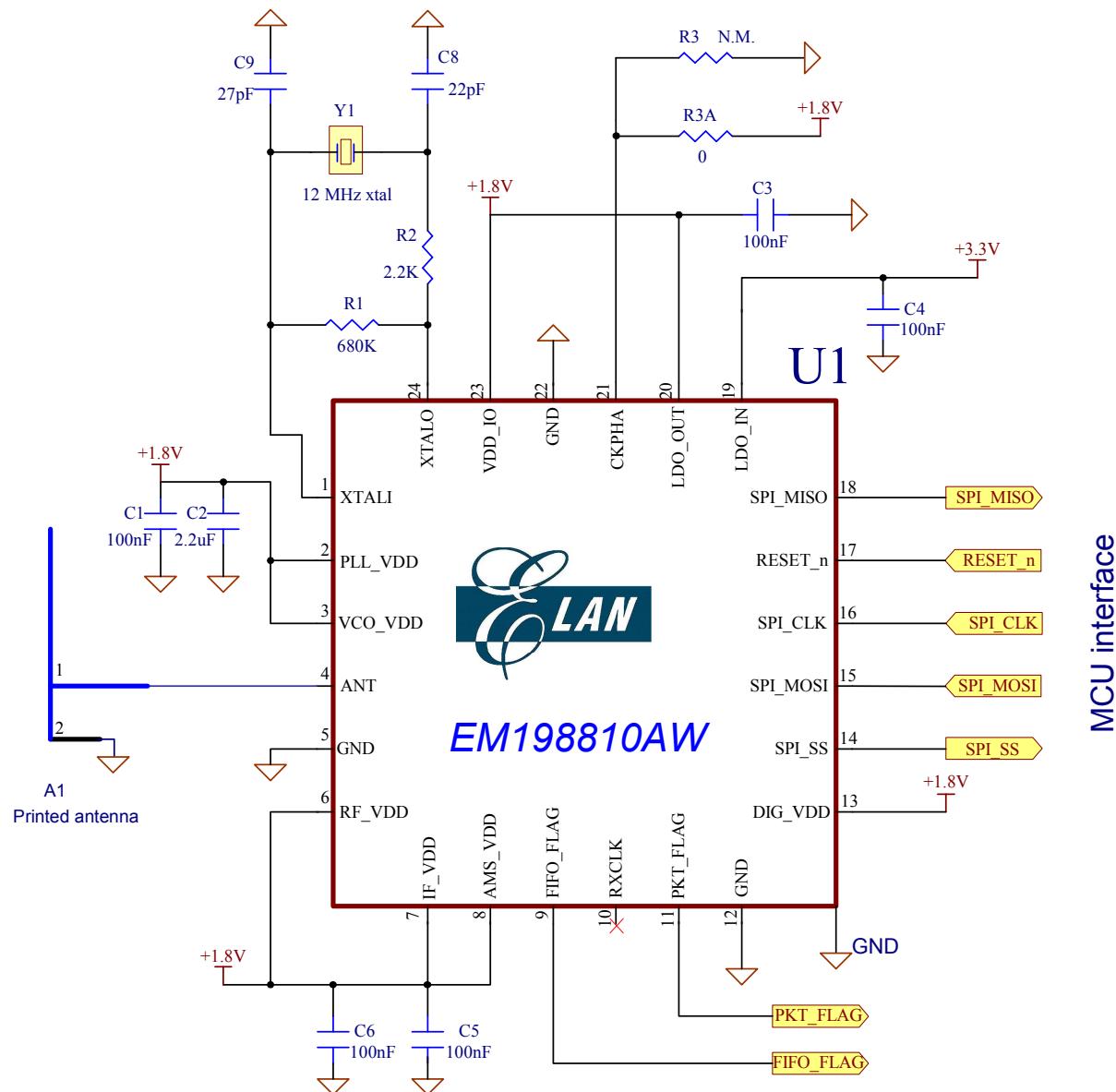
2. These devices are electro-static sensitive. Devices should be transported and stored in anti-static containers. Equipment and personnel contacting the devices need to be properly grounded. Cover workbenches with grounded conductive mats.

5.2 Characteristics

The following specifications are guaranteed for $TA=25^\circ\text{C}$, $V_{DD}=1.80\pm0.18\text{VDC}$, unless otherwise noted:

Parameter	Symbol	Specification			Unit	Test Condition and Notes
		Min.	Typ.	Max.		
Current Consumption						
Current Consumption - TX	I_{DD_TX}		27		mA	P_{OUT} = nominal output power
Current Consumption - RX	I_{DD_RX}		25		mA	
Current Consumption – DEEP IDLE	$I_{DD_D_IDLE}$		1.9		mA	RF Synthesizer and VCO: OFF (see Reg. 21)
Current Consumption – SLEEP	I_{DD_SLP}		8.5		uA	
Digital Inputs						
Logic input high	V_{IH}	0.8 V_{DD_IN}		1.2 V_{DD_IN}	V	
Logic input low	V_{IL}	0		0.8	V	
Input Capacitance	C_{IN}			10	pF	
Input Leakage Current	I_{LEAK_IN}			10	uA	
Digital Outputs						
Logic output high	V_{OH}	0.8 V_{DD_IN}		V_{DD_IN}	V	
Logic output low	V_{OL}			0.4	V	
Output Capacitance	C_{OUT}			10	pF	
Output Leakage Current	I_{LEAK_OUT}			10	uA	
Rise/Fall Time	T_{RISE_OUT}			5	nS	
Clock Signals						
SPI_CLK rise, fall time	T_{r_spi}			25	nS	Requirement for error-free register reading, writing.
SPI_CLK frequency range	F_{SPI}	0	12		MHz	
Overall Transceiver						
Operating Frequency Range	F_{OP}	2400		2482	MHz	
Antenna port mismatch ($Z_0=50\Omega$)	$VSWR_{-1}$		<2:1		VSWR	Receive mode.
	$VSWR_{-0}$		<2:1		VSWR	Transmit mode.

Receive Section: @ BER $\leq 0.1\%$						
Receiver sensitivity			-85	-80	dBm	Meas. at antenna pin.
Maximum useable signal		-20	+5		dBm	
Data (Symbol) rate	T _s		1		uS	
Min. Carrier/Interference ratio: @ BER $\leq 0.1\%$						
Co-Channel Interference	CI_cochannel		+9		dB	-60 dBm desired signal.
Adjacent Ch. Interference, 1MHz offset	CI_1		+6		dB	-60 dBm desired signal.
Adjacent Ch. Interference, 2MHz offset	CI_2		-12		dB	-60 dBm desired signal.
Adjacent Ch. Interference, \geq 3MHz offset	CI_3		-24		dB	-67 dBm desired signal.
Out-of-Band Blocking	OBB_1	-10			dBm	30 MHz to 2000 MHz
	OBB_2	-27			dBm	2000 MHz to 2400 MHz
	OBB_3	-27			dBm	2500 MHz to 3000 MHz
	OBB_4	-10			dBm	3000 MHz to 12.75 GHz
Transmit Section: Reg. 9, bits 15-8 set to 00000000						
RF Output Power	P _{AV}			+2	dBm	Power Level 0 (Max. power setting).
Second Harmonic			-25		dBm	Conducted to ANT pin.
Third Harmonic			-50		dBm	Conducted to ANT pin.
Modulation Characteristics						
Peak FM Demodulation.	00001111 pattern	$\Delta f_{1\text{avg}}$		280		KHz
	01010101 pattern	$\Delta f_{2\text{max}}$		225		KHz
In-Band Spurious Emission						
2MHz offset	IBS_2			-40	dBm	
>3MHz offset	IBS_3			-60	dBm	
Out-of-Band Spurious Emission						
Operation	OBS_O_1			-36	dBm	30 MHz ~ 1 GHz
	OBS_O_2		-45	-30	dBm	1 GHz ~ 12.75 GHz, excludes desired signal.
	OBS_O_3		<-60	-47	dBm	1.8 GHz ~ 1.9 GHz
	OBS_O_4		<-65	-47	dBm	5.15 GHz ~ 5.3 GHz
RF VCO and PLL Section						
Typical PLL lock range	F _{LOCK}	2366		2516	MHz	
TX, RX Frequency Tolerance			--		ppm	Same as XTAL pins frequency tolerance
Channel (Step) Size			1		MHz	
SSB Phase Noise			-95		dBc/Hz	550KHz offset
			-115		dBc/Hz	2MHz offset
Crystal oscillator freq. range (Reference Frequency)			12		MHz	Designed for 12 MHz crystal reference freq.
Crystal oscillator digital trim range, typ.		-5		+5	ppm	
RF PLL Settling Time	T _{HOP}		75	150	uS	Settle to within 30KHz of final value
Spurious Emissions	OBS_1		<-75	-57	dBm	30 MHz ~ 1 GHz
	OBS_2		-68	-47	dBm	1 GHz ~ 12.75 GHz
LDO Voltage Regulator Section						
Dropout Voltage	V _{do}			0.5	V	Measured during Receive state
Quiescent current	I _q		8		uA	No-load current consumed by LDO reg.

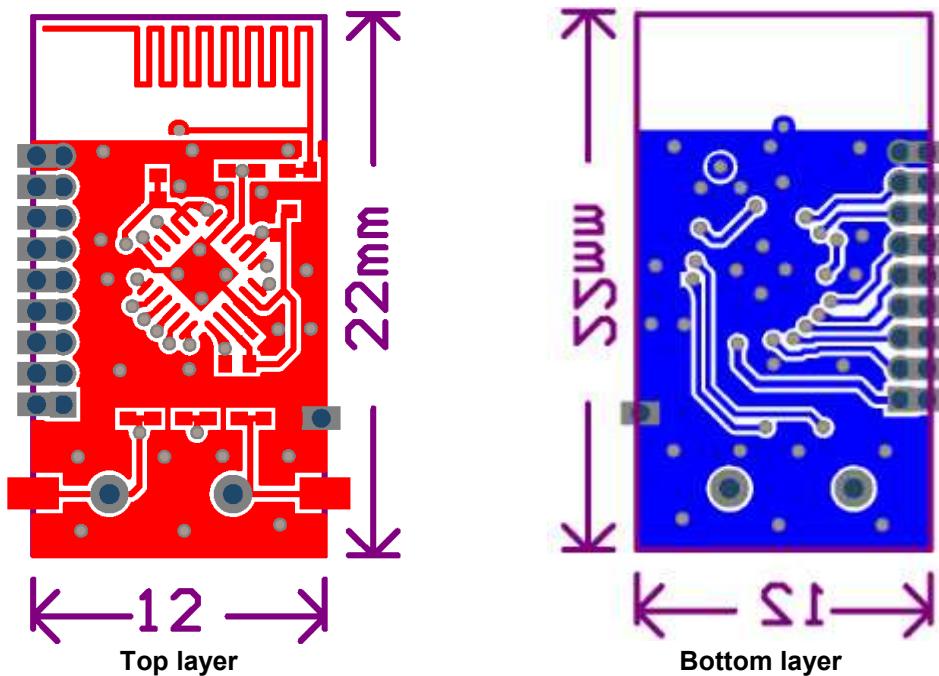

- Table 6 -

6. Application Circuit

Typical Application

Note: Different crystals or layout changes may require different R/C values.

Note 1: Jumper CKPHA pin 21 to +1.8V or GND to set SPI clock phase as desired.



- Figure 6 -


BOM list

Comment	Description	Designator	Quantity	Footprint
22pF*	Capacitor	C8	1	SMD-0603
27pF*	Capacitor	C9	1	SMD-0603
100nF	Capacitor	C1 C3 C4 C5 C6	5	SMD-0603
2.2uF	Capacitor	C2	1	SMD-0603
0 ohm	Resistor	R3A	1	SMD-0603
2.2k	Resistor	R2	1	SMD-0603
680k	Resistor	R1	1	SMD-0603
12MHz	Crystal	Y1	1	OSC 5x3.2
EM198810AW	IC	U1	1	QFN 24 4x4

- Table 7 -

PCB layout

- Figure 7 -

Wireless Personal Area Network Solution

Elan Wireless personal area network Total Solution

- Fig. 8 -

7. SOLDERING

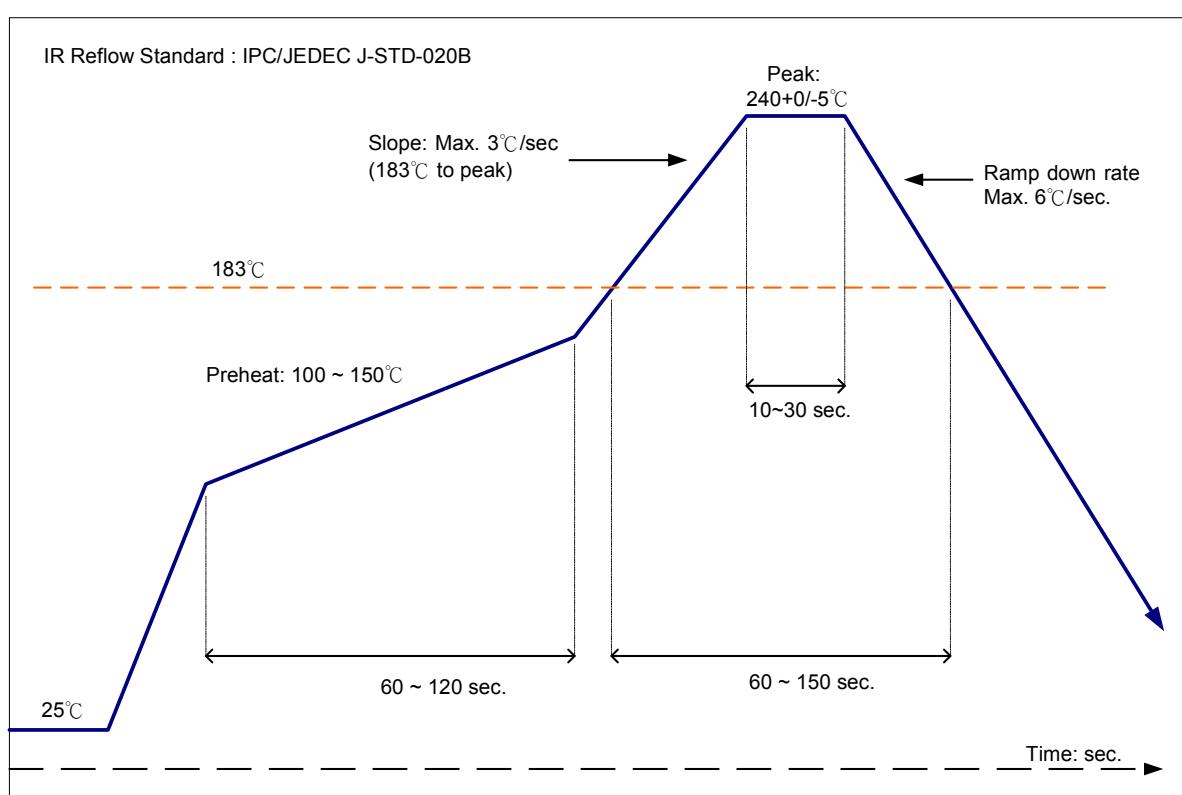
Reflow soldering requires paste to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Several methods exist for reflowing, throughput times vary between 100 and 300 seconds depending on heating method.

Recommendation: Follow IPC/JEDEC J-STD-020B

Condition: Average ramp-up rate (183°C to peak): 3°C/sec. max.

Preheat: 100 ~ 150°C 60 ~ 120 sec.

Temperature maintained above 183°C: 60 ~ 150sec.


Time within 5°C of actual peak temperature: 10 ~ 30sec.

Peak temperature: 240+0/-5°C

Ramp-down rate: 6°C/sec. max.

Time 25°C to peak temperature: 6 minutes max.

Cycle interval: 5 minutes

- Fig. 9 -

DATA SHEET STATUS

Data Sheet Status	Product Status	Definitions
Objective specification	Development	This data sheet contains data from the objective specification for product development. Elan Microelectronics reserves the right to change the specification in any manner without notice.
Preliminary specification	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Elan Microelectronics reserves the right to change the specification without notice in order to improve the design and supply the best possible product.
Product specification	Production	This data sheet contains data from the production specification. Elan Microelectronics reserves the right to make changes at any time in order to improve the design, manufacturing and supply.

DISCLAIMERS

Life support policy.—These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Elan Microelectronics customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Elan Microelectronics for any damages resulting from such application.

Right to make changes.—Elan Microelectronics reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Elan Microelectronics assumes no responsibility or liability for these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Headquarters:

No. 12, Innovation Road 1
Hsinchu Science Park
Hsinchu, TAIWAN 30077
Tel: +886 3 563-9977
Fax: +886 3 563-9966
<http://www.emc.com.tw>

Hong Kong:

Elan (HK) Microelectronics Corporation, Ltd.
Flat A, 19F., World Tech Centre,
95 How Ming Street, Kwun Tong
Kowloon, HONG KONG
Tel: +852 2723-3376
Fax: +852 2723-7780
elanhk@emc.com.hk

USA:

Elan Information Technology Group (U.S.A.)
1821 Saratoga Ave., Suite 250
Saratoga, CA 95070
USA
Tel: +1 408 366-8225
Fax: +1 408 366-8220

Shenzhen:

Elan Microelectronics Shenzhen, Ltd.
SSMEC Bldg., 3F, Gaoxin S. Ave.
Shenzhen Hi-Tech Industrial Park
Shenzhen, Guandong, CHINA
Tel: +86 755 2601-0565
Fax: +86 755 2601-0500

Shanghai:

Elan Microelectronics Shanghai, Ltd.
23/Bldg. #115 Lane 572, Bibo Road
Zhangjiang Hi-Tech Park
Shanghai, CHINA
Tel: +86 21 5080-3866
Fax: +86 21 5080-4600