

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358

Web: www.mrt-cert.com

Report No.: 2204RSU037-U8 Report Version: V01 Issue Date: 2022-08-07

RF MEASUREMENT REPORT

FCC ID: XMR2022RG502NA

Application: Quectel Wireless Solutions Co., Ltd

Product: 5G Sub-6 GHz LGA Module

Model No.: RG520N-NA

Brand Name: Quectel

FCC Rule Part(s): Part 90 Subpart S

Test Procedure(s): ANSI C63.26: 2015

Result: Complies

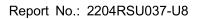
Test Date: 2022-04-26 ~ 2022-06-15

Reviewed By: Suny Sun

Sunny Sun

Approved By:

Rohin Wu



The test results relate only to the samples tested.

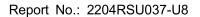
This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.26-2015. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co.. Ltd.

Template Version:0.0 1 of 56

Revision History

Report No.	Version	Description	Issue Date	Note
2203RSU046-U8	Rev. 01	Initial Report	2022-08-07	Valid



CONTENTS

Des	scription		Page
1.	Gener	ral Information	5
	1.1.	Applicant	5
	1.2.	Manufacturer	5
	1.3.	Testing Facility	5
	1.4.	Product Information	6
	1.5.	Radio Specification under Test	6
	1.6.	Description of Available Antennas	7
	1.7.	Test Methodology	8
	1.8.	Device Capabilities	9
2.	Test C	Configuration	10
	2.1.	Test Mode	10
	2.2.	Test System Connection Diagram	10
	2.3.	Test Environment Condition	10
3.	Meası	uring Instrument	11
4.	Decis	ion Rules and Measurement Uncertainty	13
	4.1.	Decision Rules	13
	4.2.	Measurement Uncertainty	13
5.	Test R	Result	14
	5.1.	Summary	14
	5.2.	Occupied Bandwidth Measurement	15
	5.2.1.	Test Limit	15
	5.2.2.	Test Procedure	15
	5.2.3.	Test Setting	15
	5.2.4.	Test Setup	15
	5.2.5.	Test Result	15
	5.3.	Frequency Stability Measurement	16
	5.3.1.	Test Limit	16
	5.3.2.	Test Procedure	16
	5.3.3.	Test Setting	16
	5.3.4.	Test Setup	17
	5.3.5.	Test Result	17
	5.4.	Conducted Output Power Measurement	18
	5.4.1.	Test Limit	18
	5.4.2.	Test Procedure	18

5.4.	3. Test Setting	18
5.4.	4. Test Setup	18
5.4.	5. Test Result	18
5.5.	Band Edge Measurement	19
5.5.	1. Test Limit	19
5.5.	2. Test Procedure	19
5.5.	3. Test Setting	19
5.5.	4. Test Setup	20
5.5.	5. Test Result	20
5.6.	Conducted Spurious Emissions Measurement	21
5.6.	1. Test Limit	21
5.6.	2. Test Procedure	21
5.6.	3. Test Setting	21
5.6.	4. Test Setup	22
5.6.	5. Test Result	22
5.7.	Radiated Spurious Emissions Measurement	23
5.7.	1. Test Limit	23
5.7.	2. Test Procedure	23
5.7.	3. Test Setting	23
5.7.	4. Test Setup	24
5.7.	5. Test Result	24
Appendi	ix A - Test Result	25
A.1	Occupied Bandwidth Test Result	25
A.2	Frequency Stability Test Result	29
A.3	Conducted Output Power Test Result	30
A.4	Band Edge Test Result	48
A.5	Conducted Spurious Emissions Test Result	51
A.6	Radiated Suprious Emissions Test Result	54
Appendi	ix B - Test Setup Photograph	55
Appendi	ix C - EUT Photograph	56

1. General Information

1.1. Applicant

Quectel Wireless Solutions Co., Ltd

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai, China 200233

1.2. Manufacturer

Quectel Wireless Solutions Co., Ltd

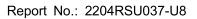
Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai, China 200233

1.3. Testing Facility

\boxtimes	Test Site - MRT Suzhou Laboratory				
	Laboratory Location (Suzhou - Wuzhong)				
	D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China				
	pu Rd., Shengpu Town, Suzhou Industrial Park, China				
	Laboratory Accreditations				
	A2LA: 3628.01	CNAS: L10551			
	FCC: CN1166	ISED: CN0001			
	VCCI: R-20025, G-20034, C-20020, T-200	020			
	Test Site - MRT Shenzhen Laboratory				
	Laboratory Location (Shenzhen)				
	1G, Building A, Junxiangda Building, Zhongshanyuan Road West, Nanshan District, Shenzhen, China				
	Laboratory Accreditations				
	A2LA: 3628.02	28.02 CNAS: L10551			
	FCC: CN1284 ISED: CN0105				
	Test Site - MRT Taiwan Laboratory				
	Laboratory Location (Taiwan)				
	No. 38, Fuxing 2 nd Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)				
	Laboratory Accreditations				
	TAF: L3261-190725				
	FCC: 291082, TW3261	ISED: TW3261			

1.4. Product Information

Product Name	5G Sub-6 GHz LGA Module	
Model No.	RG520N-NA	
Brand Name	Quectel	
IMEI	Conducted Measurement 1: 863109050007421	
	Conducted Measurement 2: 863109050005151	
	Radiated Measurement: 863109050007306	
E-UTRA Band	Band 2, 4, 5, 7, 12, 13, 14, 17, 25, 26, 30, 38, 41, 48, 66, 71	
5G NR Band	n2, n5, n7, n12, n13, n14, n25, n26, n30, n38, n41, n66, n71, n77, n78	
Operating Temperature	-30 ~ 75 ℃	
Power Type	3.3 ~ 4.4Vdc, typical 3.8Vdc	


Remark: The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1.5. Radio Specification under Test

Single Band	n26
EN-DC Band	n26
FDD T _X Frequency Range	814 ~ 824 MHz
FDD R _X Frequency Range	859 ~ 869 MHz
Support Bandwidth	5, 10, 15, 20MHz
SCS for NR cell	FDD Band: 15kHz
Modulation UL up to 256QAM, DL up to 256QAM	

Remark:

- 1. For other features of this EUT, test report will be issued separately.
- 2. LTE band 26 transmit frequency for part 90 rule is 814 ~ 824MHz and part 22 rule is 824 ~ 849MHz. ERP over 15MHz bandwidth complies the ERP limit line of part 22 rule, therefore ERP of the partial frequency spectrum which falls within part 22 also complies.

1.6. Description of Available Antennas

Technology	Frequency Range (MHz)	Antenna Type	Max Peak Gain (dBi)
n2	1850 ~ 1910		1.37
n5	824 ~ 849		1.18
n7	2500 ~ 2570		2.07
n12	699 ~ 716		1.18
n13	777 ~ 787		1.18
n14	788 ~ 798		1.37
n25	1850 ~ 1915		1.18
n26	814-849	Dipole	1.11
n30	2305 ~ 2315		2.07
n38	2570 ~ 2620		1.37
n41	2496 ~ 2690		1.18
n66	1710 ~ 1780		1.37
n71	663 ~ 698		1.18
n77	3700 ~ 3980		0.58
n78	3300 ~ 3800		0.58

Note: All antenna information (Antenna type and Peak Gain) is provided by the manufacturer.

1.7. Test Methodology

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- ANSI C63.26:2015
- FCC CFR 47 Part 90
- FCC KDB 971168 D01 v03r01: Power Meas License Digital Systems
- FCC KDB 971168 D02 v02r01: Misc Rev Approv License Devices
- FCC KDB 412172 D01 v01r01: Determining ERP and EIRP

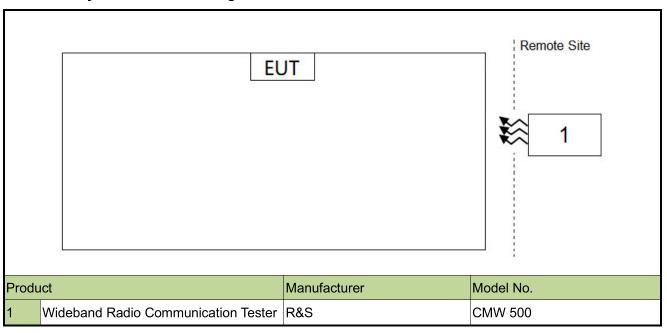
1.8. Device Capabilities

PI/2 BPSK modulation applied for 5G NR band frequencies and has the same tune up power as QPSK modulations.

The DFT-s-OFDM and CP-OFDM waveforms were investigated, and DFT-s-OFDM was found to be the worst case.

The worst-case scenario for all measurements is based on an engineering evaluation and QPSK was observed as the worst one and set for all conducted and radiated. Output power measurements were measured on PI/2 BPSK, QPSK, 16QAM, 64QAM, 256QAM modulations.

For EN-DC mode, 5G NR FR1 bands are tested in this report (Ouput Power, Conducted Band Edge, Radiated Spurious Emissions), all the other RF bands are tested in the other reports separately.

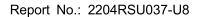


2. Test Configuration

2.1. Test Mode

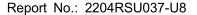
Test Item	Test	Channel	Modulation Type	RB#
	Channel	Bandwidth (MHz)		
Output Power & EIRP	L, M, H	5, 10, 15, 20	PI/2 BPSK, QPSK, 16QAM, 64QAM, 256QAM	1/Half/Full RB
Emission Bandwidth	M	5, 10, 15, 20	QPSK, 16QAM, 64QAM, 256QAM	Full RB
Frequency Stability	М	20	QPSK	Full RB
Band Edge / Mask	L, H	5, 10, 15, 20	QPSK	1 RB/Full RB
Conducted Spurious Emissions	L, M, H	5, 10, 15, 20	QPSK	1 RB
Radiated Spurious Emissions	L, M, H	5	QPSK	1 RB

2.2. Test System Connection Diagram


2.3. Test Environment Condition

Ambient Temperature	15 ~ 35 ℃
Relative Humidity	20% ~ 75%RH

3. Measuring Instrument


Instrument	Manufacturer	Model No.	Asset No.	Cali. Interval	Cali. Due Date	Test Site
Signal Analyzer	Keysight	N9010B	MRTSUE07028	1 year	2022-12-09	SIP-SR1
Signal Analyzer	Keysight	N9010B	MRTSUE06559	1 year	2023-06-01	SIP-SR1
Signal Analyzer	Keysight	N9010B	MRTSUE06603	1 year	2022-10-31	SIP-SR1
Signal Analyzer	Keysight	N9020B	MRTSUE06604	1 year	2022-09-07	SIP-SR1
Communication Tester	R&S	CMU 200	MRTSUE06009	1 year	2022-09-07	SIP-SR1
Communication Tester	R&S	CMW500	MRTSUE06243	1 year	2022-10-10	SIP-SR1
Signal Generator	Keysight	E8257D	MRTSUE06453	1 year	2023-06-01	SIP-SR1
Thermohygrometer	testo	622	MRTSUE06629	1 year	2023-01-06	SIP-SR1
5G Wireless Test Platform	Keysight	E7515B	MRTSUE06903	1 year	2022-11-23	SIP-SR1
Signal Generator	Keysight	E8257D	MRTSUE06904	1 year	2022-11-23	SIP-SR1
DC POWER MODULE	Keysight	N6743B	MRTSUE06905	N/A	N/A	SIP-SR1
DC POWER MODULE	Keysight	N6743B	MRTSUE06906	N/A	N/A	SIP-SR1
Low-Profile Modular Power System Mainframe	Keysight	N6700C	MRTSUE06907	N/A	N/A	SIP-SR1
FR1 Switching Unit	Keysight	C8880A	MRTSUE06908	N/A	N/A	SIP-SR1
Signal Analyzer	Keysight	N9021B	MRTSUE06915	1 year	2022-12-29	SIP-SR1
Temperature Chamber	BAOYT	BYG-80CL	MRTSUE06932	1 year	2023-02-27	SIP-SR1
Shielding Room	MIX-BEP	SIP-SR1	MRTSUE06948	N/A	N/A	SIP-SR1
Millimeter-Wave Transceiver for 5G	Keysight	M1740A	MRTSUE06954	3 years	2024-06-02	SIP-SR1
Millimeter-Wave Transceiver for 5G	Keysight	M1740A	MRTSUE06955	3 years	2024-06-02	SIP-SR1
5G Wireless Test Platform	Keysight	E7515B	MRTSUE06956	1 year	2023-06-01	SIP-SR1
Common Interface Unit	Keysight	E7770A	MRTSUE06957	N/A	N/A	SIP-SR1
Preamplifier	Schwarzbeck	BBV 9721	MRTSUE06121	1 year	2023-06-08	SIP-AC3
EMI Test Receiver	R&S	ESR3	MRTSUE06185	1 year	2022-12-29	SIP-AC3
Signal Analyzer	Keysight	N9010B	MRTSUE06559	1 year	2023-06-01	SIP-AC3
Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06598	1 year	2022-11-09	SIP-AC3
Signal Analyzer	Keysight	N9010B	MRTSUE06603	1 year	2022-10-31	SIP-AC3
Signal Analyzer	Keysight	N9020B	MRTSUE06604	1 year	2022-09-07	SIP-AC3
Horn Antenna	R&S	HF907	MRTSUE06611	1 year	2022-09-12	SIP-AC3
EMI Test Receiver	R&S	ESR3	MRTSUE06613	1 year	2023-06-01	SIP-AC3
Thermohygrometer	testo	608-H1	MRTSUE06619	1 year	2022-11-02	SIP-AC3
Thermohygrometer	testo	608-H1	MRTSUE06622	1 year	2022-11-28	SIP-AC3
Preamplifier	EMCI	EMC012645SE	MRTSUE06642	1 year	2023-01-13	SIP-AC3

Preamplifier	EMCI	EMC001330	MRTSUE06643	1 year	2023-01-13	SIP-AC3
TRILOG Antenna	Schwarzbeck	VULB 9168	MRTSUE06646	1 year	2022-08-26	SIP-AC3
Anechoic Chamber	RIKEN	SIP-AC3	MRTSUE06782	1 year	2022-12-23	SIP-AC3
Loop Antenna	Schwarzbeck	FMZB 1519 B	MRTSUE06937	1 year	2023-03-14	SIP-AC3
Signal Analyzer	Keysight	N9010B	MRTSUE07028	1 year	2022-12-09	SIP-AC3
Directional Coupler	ar	DC7200A	MRTSUE06147	N/A	N/A	SIP
Directional Coupler	ar	DC6080A	MRTSUE06148	N/A	N/A	SIP
Directional Coupler	narda	4226-10	MRTSUE06564	1 year	2022-10-11	SIP
Directional Coupler	PULSAR	CS10-23-436/20	MRTSUE06846	1 year	2023-06-02	SIP
Directional Coupler	PULSAR	CS10-23-436/20	MRTSUE06848	1 year	2023-06-02	SIP
Attenuator	MVE	MVE2213	MRTSUE11055	1 year	2023-06-09	SIP
Attenuator	MVE	MVE2213	MRTSUE11056	1 year	2023-06-09	SIP
Attenuator	MVE	MVE2213	MRTSUE11057	1 year	2023-06-09	SIP
Attenuator	MVE	MVE2213	MRTSUE11058	1 year	2023-06-09	SIP
Attenuator	MVE	MVE2213	MRTSUE11059	1 year	2023-06-09	SIP
Attenuator	MVE	MVE2213	MRTSUE11060	1 year	2023-06-09	SIP

Software	Version	Function
EMI Software	V3.0.0	EMI Test Software

4. Decision Rules and Measurement Uncertainty

4.1. Decision Rules

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4: 2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

4.2. Measurement Uncertainty

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Radiated Spurious Emissions

Measurement Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

Horizontal: 9kHz ~ 300MHz: 5.04dB

300MHz ~ 1GHz: 4.95dB 1GHz ~ 40GHz: 6.40dB

Vertical: 9kHz ~ 300MHz: 5.24dB

300MHz ~ 1GHz: 6.03dB 1GHz ~ 40GHz: 6.40dB

Conducted Spurious Emissions

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

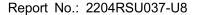
0.78dB

Output Power

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

1.13dB

Occupied Bandwidth

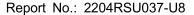

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

0.28%

Frequency Stability

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

76.2Hz


5. Test Result

5.1. Summary

FCC Part Section(s)	Test Description	Test Condition	Verdict
2.1049	Occupied Bandwidth		Pass
2.1055, 90.213	Frequency Stability		Pass
90.635	Conducted Output Power	Conducted	Pass
2.1051, 90.691(a)	Band Edge		Pass
2.1051, 90.691(a)	Spurious Emission		
2.1053, 90.691(a)	Spurious Emissions	Radiated	Pass

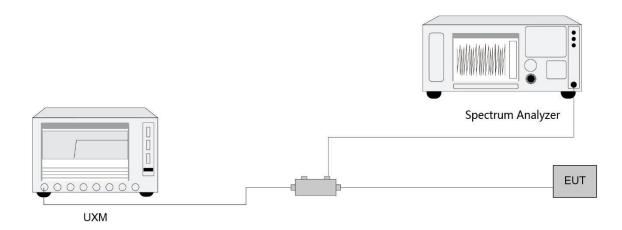
Notes:

- The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 2) All supported modulation types were evaluated. The worst-case emission of modulation was selected. Therefore, the Frequency Stability, Channel Band Edge, Radiated & Conducted Spurious Emission were presented worst-case in the test report.

5.2. Occupied Bandwidth Measurement

5.2.1. Test Limit

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.


5.2.2. Test Procedure

ANSI C63.26-2015 - Section 5.4

5.2.3. Test Setting

- 1. Set center frequency to the nominal EUT channel center frequency
- 2. RBW = The nominal RBW shall be in the range of 1% to 5% of the anticipated OBW
- 3. $VBW \ge 3 \times RBW$
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. Allow the trace to stabilize
- 8. Use the 99% power bandwidth function of the instrument and report the measured bandwidth.

5.2.4. Test Setup

5.2.5. Test Result

Refer to Appendix A.1.

5.3. Frequency Stability Measurement

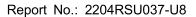
5.3.1. Test Limit

The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within ±0.00025% (±2.5ppm) of the center frequency.

5.3.2. Test Procedure

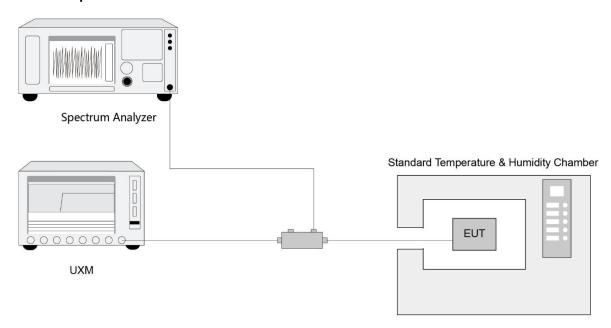
ANSI C63.26-2015 - Section 5.6

5.3.3. Test Setting

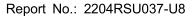

Frequency Stability Under Temperature Variations:

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20 °C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to highest. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10 °C decreased per stage until the lowest temperature reached.

Frequency Stability Under Voltage Variations:


Set chamber temperature to 20 ℃. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, recordthe maximum frequency change.



5.3.4. Test Setup

5.3.5. Test Result

Refer to Appendix A.2.

5.4. Conducted Output Power Measurement

5.4.1. Test Limit

The maximum output power of the transmitter for mobile stations is 100 watts (20dBw).


5.4.2. Test Procedure

ANSI C63.26-2015 - Section 5.2

5.4.3. Test Setting

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter.

5.4.4. Test Setup

5.4.5. Test Result

Refer to Appendix A.3.

5.5. Band Edge Measurement

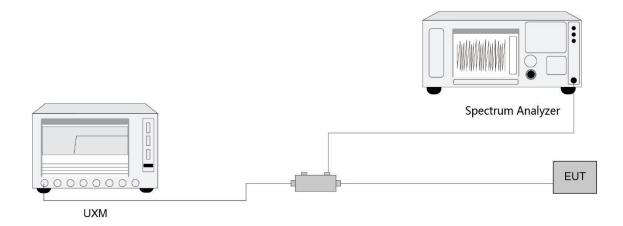
5.5.1. Test Limit

Out-of-band emission requirement shall apply only to the "outer" channels included in an EA license and to spectrum adjacent to interior channels used by incumbent licensees. The emission limits are as follows:

- (1) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log(f/6.1) decibels or 50 + 10 Log(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.
- (2) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

5.5.2. Test Procedure

ANSI C63.26-2015 - Section 5.7


5.5.3. Test Setting

- 1. Set the analyzer frequency to low or high channel
- 2. RBW ≥ The nominal RBW shall be in the range of 1% of the anticipated OBW (in the 1MHz band immediately outside and adjacent to the band edge). For improvement of the accuracy in the measurement of the average power of a noise-like emission, a RBW narrower than the specified reference bandwidth can be used (generally limited to no less than 1% of the OBW), provided that a subsequent integration is performed over the full required measurement bandwidth. This integration should be performed using the spectrum analyzer's band power functions.
- 3. VBW ≥ 3*RBW
- 4. Sweep time = auto
- 5. Detector = power averaging (rms)
- 6. Set sweep trigger to "free run."
- 7. User gate triggered such that the analyzer only sweeps when the device is transmitting at full power
- 8. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. To accurately determine the average power over the on and off time of the transmitter, it can be necessary to

increase the number of traces to be averaged above 100, or if using a manually configured sweep time, increase the sweep time.

5.5.4. Test Setup

5.5.5. Test Result

Refer to Appendix A.4.

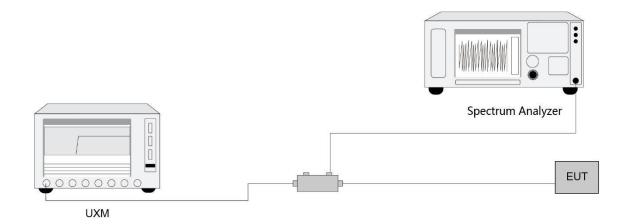
5.6. Conducted Spurious Emissions Measurement

5.6.1. Test Limit

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst-case configuration. All modes of operation were investigated, and the worst-case configuration results are reported in this section.

For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

5.6.2. Test Procedure


ANSI C63.26-2015 - Section 5.7

5.6.3. Test Setting

- 1. Set the analyzer frequency to low, mid, high channel.
- 2. RBW = 1MHz
- 3. VBW ≥ 3*RBW
- 4. Sweep time = auto
- 5. Detector = power averaging (rms)
- 6. Set sweep trigger to "free run."
- 7. User gate triggered such that the analyzer only sweeps when the device is transmitting at full power.
- 8. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. To accurately determine the average power over the on and off time of the transmitter, it can be necessary to increase the number of traces to be averaged above 100, or if using a manually configured sweep time, increase the sweep time.

5.6.4. Test Setup

5.6.5. Test Result

Refer to Appendix A.5.

5.7. Radiated Spurious Emissions Measurement

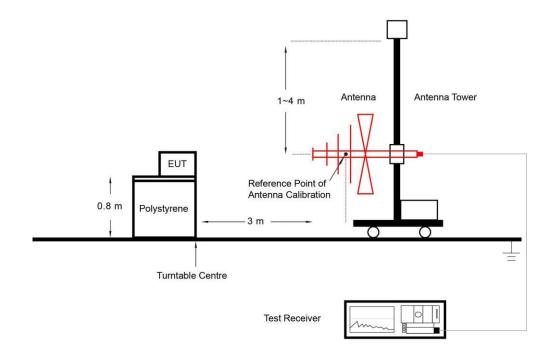
5.7.1. Test Limit

Out of band emissions: The power of any emission outside of theauthorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The emission limit equal to -13dBm.

E (dB μ V/m) = EIRP (dBm) - 20 log D + 104.8; where D is the measurement distance in meters. The emission limit equal to 82.3dB μ V/m.

5.7.2. Test Procedure

ANSI C63.26-2015 - Section 5.2.7 & 5.5


5.7.3. Test Setting

- 1. RBW = 1MHz
- 2. VBW ≥ 3*RBW
- 3. Sweep time ≥ 10 × (number of points in sweep) × (transmission symbol period)
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. The trace was allowed to stabilize

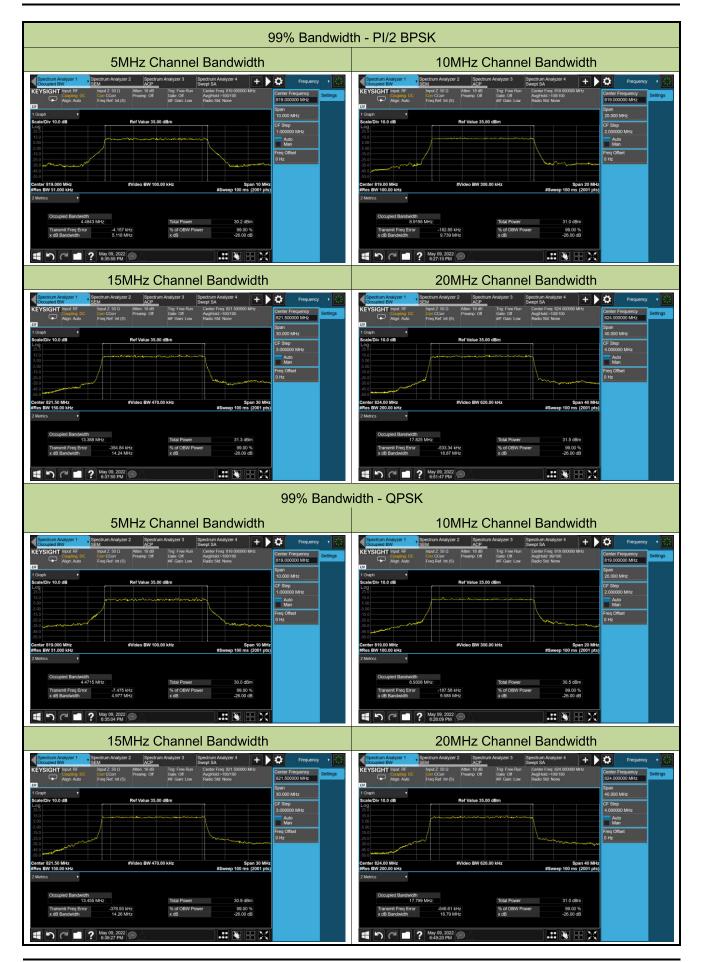
5.7.4. Test Setup

Below 1GHz Test Setup:

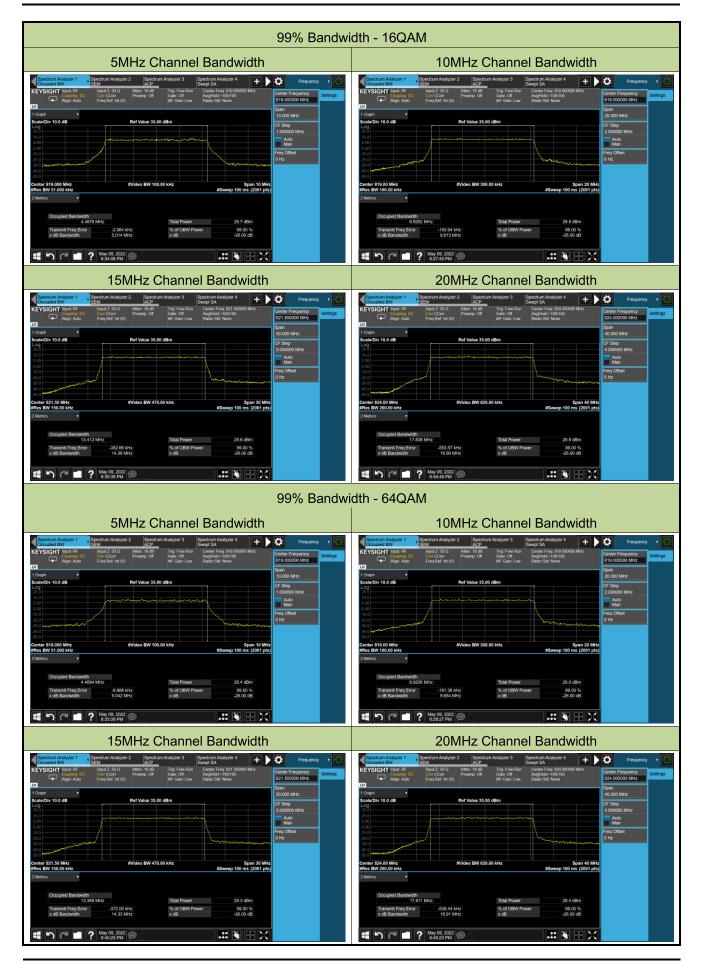
Above 1GHz Test Setup:

5.7.5. Test Result

Refer to Appendix A.6.


Appendix A - Test Result

A.1 Occupied Bandwidth Test Result


Test Site	SIP-SR1	Test Engineer	Allen Zou
Test Date	2022/05/09	Test Band	NR n26

Frequency	Bandwidth	99% Bandwidth
(MHz)	(MHz)	(MHz)
PI/2 BPSK		
819.0	5	4.48
819.0	10	8.92
821.5	15	13.39
824.0	20	17.83
QPSK		
819.0	5	4.47
819.0	10	8.93
821.5	15	13.46
824.0	20	17.80
16QAM		
819.0	5	4.47
819.0	10	8.93
821.5	15	13.41
824.0	20	17.84
64QAM		
819.0	5	4.47
819.0	10	8.92
821.5	15	13.39
824.0	20	17.81
256QAM		
819.0	5	4.48
819.0	10	8.92
821.5	15	13.40
824.0	20	17.81

A.2 Frequency Stability Test Result

Test Site	SIP-SR1	Test Engineer	Allen Zou
Test Date	2022/05/09	Test Band	NR n26

Power (Vdc)	Temp. (℃)	Frequency Tolerance (ppm)
	- 30	-0.0142
	- 20	-0.0122
	- 10	-0.0080
	0	-0.0118
3.8	+ 10	-0.0128
	+ 20	-0.0142
	+ 30	-0.0122
	+ 40	-0.0080
	+ 50	-0.0118
4.4	+ 20	-0.0128
3.3	+ 20	-0.0142

A.3 Conducted Output Power Test Result

Test Site	SIP-SR1	Test Engineer	Allen Zou
Test Date	2022/05/21	Test Band	NR n26

Channel	Frequency	RB	RB	Output	Output	Limit			
Bandwidth	(MHz)	Size	Offset	Power	Power (W)	(W)			
(MHz)				(dBm)					
DFT-s-OFDM I	DFT-s-OFDM PI/2 BPSK								
		12	6	22.82	0.1914	<100			
		1	1	22.82	0.1914	<100			
	046 F	1	23	22.82	0.1914	<100			
	816.5	25	0	22.86	0.1932	<100			
		1	24	22.86	0.1932	<100			
		1	6	22.86	0.1932	<100			
		12	6	22.84	0.1923	<100			
		1	1	22.89	0.1945	<100			
_	040.0	1	23	22.88	0.1941	<100			
5	819.0	25	0	22.94	0.1968	<100			
		1	24	23.02	0.2004	<100			
		1	6	22.81	0.1910	<100			
		12	6	22.78	0.1897	<100			
		1	1	22.84	0.1923	<100			
	004.5	1	23	22.89	0.1945	<100			
	821.5	25	0	22.97	0.1982	<100			
		1	24	22.99	0.1991	<100			
		1	6	22.94	0.1968	<100			
		25	12	22.79	0.1901	<100			
		1	1	22.88	0.1941	<100			
10	040.0	1	50	22.89	0.1945	<100			
10	819.0	50	0	22.85	0.1928	<100			
		1	51	22.82	0.1914	<100			
		1	0	22.96	0.1977	<100			

		36	18	22.96	0.1977	<100
		1	1	22.97	0.1982	<100
4.5	004.5	1	77	23.05	0.2018	<100
15	821.5	75	0	22.95	0.1972	<100
		1	78	23.01	0.2000	<100
		1	0	23.01	0.2000	<100
		50	25	23.01	0.2000	<100
		1	1	22.97	0.1982	<100
00	004.0	1	104	22.93	0.1963	<100
20	824.0	100	0	22.93	0.1963	<100
		1	105	23.13	0.2056	<100
		1	0	23.07	0.2028	<100

Channel	Frequency	RB	RB	Output	Output	Limit		
Bandwidth	(MHz)	Size	Offset	Power	Power (W)	(W)		
(MHz)				(dBm)				
DFT-s-OFDM QPSK								
		12	6	22.45	0.1758	<100		
		1	1	22.98	0.1986	<100		
	040.5	1	23	23.02	0.2004	<100		
	816.5	25	0	22.40	0.1738	<100		
		1	24	22.42	0.1746	<100		
		1	6	22.87	0.1936	<100		
		12	6	22.39	0.1734	<100		
		1	1	23.06	0.2023	<100		
_	040.0	1	23	22.85	0.1928	<100		
5	819.0	25	0	22.49	0.1774	<100		
		1	24	22.36	0.1722	<100		
		1	6	22.93	0.1963	<100		
		12	6	22.36	0.1722	<100		
		1	1	22.75	0.1884	<100		
	004.5	1	23	23.09	0.2037	<100		
	821.5	25	0	22.39	0.1734	<100		
		1	24	22.44	0.1754	<100		
		1	6	23.03	0.2009	<100		
		25	12	22.43	0.1750	<100		
		1	1	22.76	0.1888	<100		
10	819.0	1	50	22.86	0.1932	<100		
10	019.0	50	0	22.37	0.1726	<100		
		1	51	22.39	0.1734	<100		
		1	0	22.92	0.1959	<100		

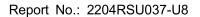
		36	18	22.36	0.1722	<100
		1	1	22.90	0.1950	<100
4.5	004.5	1	77	22.88	0.1941	<100
15	821.5	75	0	22.42	0.1746	<100
		1	78	22.56	0.1803	<100
		1	0	23.02	0.2004	<100
		50	25	22.43	0.1750	<100
		1	1	22.94	0.1968	<100
20	004.0	1	104	22.82	0.1914	<100
20	824.0	100	0	22.32	0.1706	<100
		1	105	22.59	0.1816	<100
		1	0	23.15	0.2065	<100

Channel	Frequency	RB	RB	Output	Output	Limit				
Bandwidth	(MHz)	Size	Offset	Power	Power (W)	(W)				
(MHz)				(dBm)						
DFT-s-OFDM	DFT-s-OFDM 16QAM									
		12	6	21.26	0.1337	<100				
		1	1	22.26	0.1683	<100				
	040.5	1	23	22.18	0.1652	<100				
	816.5	25	0	21.31	0.1352	<100				
		1	24	21.44	0.1393	<100				
		1	6	22.54	0.1795	<100				
		12	6	21.33	0.1358	<100				
		1	1	22.24	0.1675	<100				
5	819.0	1	23	22.34	0.1714	<100				
5	019.0	25	0	21.42	0.1387	<100				
		1	24	21.49	0.1409	<100				
		1	6	22.51	0.1782	<100				
		12	6	21.24	0.1330	<100				
		1	1	22.28	0.1690	<100				
	821.5	1	23	22.34	0.1714	<100				
	021.5	25	0	21.33	0.1358	<100				
		1	24	21.47	0.1403	<100				
		1	6	22.54	0.1795	<100				
		25	12	21.24	0.1330	<100				
		1	1	22.22	0.1667	<100				
10	819.0	1	50	22.32	0.1706	<100				
10	019.0	50	0	21.31	0.1352	<100				
		1	51	21.36	0.1368	<100				
		1	0	22.30	0.1698	<100				

		36	18	21.28	0.1343	<100
		1	1	22.37	0.1726	<100
4.5	004.5	1	77	22.41	0.1742	<100
15	821.5	75	0	21.37	0.1371	<100
		1	78	21.58	0.1439	<100
		1	0	22.56	0.1803	<100
		50	25	21.44	0.1393	<100
		1	1	22.34	0.1714	<100
00	004.0	1	104	22.27	0.1687	<100
20	824.0	100	0	21.31	0.1352	<100
		1	105	21.55	0.1429	<100
		1	0	22.61	0.1824	<100

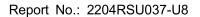
Channel	Frequency	RB	RB	Output	Output	Limit
Bandwidth	(MHz)	Size	Offset	Power	Power (W)	(W)
(MHz)				(dBm)		
DFT-s-OFDM 64QAM						
5	816.5	12	6	20.70	0.1175	<100
		1	1	20.65	0.1161	<100
		1	23	20.68	0.1169	<100
		25	0	20.64	0.1159	<100
		1	24	20.90	0.1230	<100
		1	6	20.84	0.1213	<100
	819.0	12	6	20.63	0.1156	<100
		1	1	20.74	0.1186	<100
		1	23	20.75	0.1189	<100
		25	0	20.74	0.1186	<100
		1	24	20.96	0.1247	<100
		1	6	20.81	0.1205	<100
	821.5	12	6	20.70	0.1175	<100
		1	1	20.69	0.1172	<100
		1	23	20.74	0.1186	<100
		25	0	20.66	0.1164	<100
		1	24	21.03	0.1268	<100
		1	6	20.91	0.1233	<100
10	819.0	25	12	21.18	0.1312	<100
		1	1	21.14	0.1300	<100
		1	50	21.13	0.1297	<100
		50	0	21.13	0.1297	<100
		1	51	20.83	0.1211	<100
		1	0	21.01	0.1262	<100

			18	21.02	0.1265	<100
		1	1	20.87	0.1222	<100
4.5	004.5	1	77	20.87	0.1222	<100
15	821.5	75	0	20.88	0.1225	<100
		1	78	21.02	0.1265	<100
		1	0	20.99	0.1256	<100
		50	25	21.27	0.1340	<100
		1	1	21.33	0.1358	<100
00	004.0	1	104	21.32	0.1355	<100
20	824.0	100	0	21.31	0.1352	<100
		1	105	21.17	0.1309	<100
		1	0	21.07	0.1279	<100


Channel	Frequency	RB	RB	Output	Output	Limit			
Bandwidth	(MHz)	Size	Offset	Power	Power (W)	(W)			
(MHz)				(dBm)					
DFT-s-OFDM 256QAM									
		12	6	18.55	0.0716	<100			
		1	1	18.64	0.0731	<100			
	040.5	1	23	18.54	0.0714	<100			
	816.5	25	0	18.49	0.0706	<100			
		1	24	18.82	0.0762	<100			
		1	6	18.75	0.0750	<100			
		12	6	18.55	0.0716	<100			
		1	1	18.55	0.0716	<100			
E	040.0	1	23	18.61	0.0726	<100			
5	819.0	25	0	18.60	0.0724	<100			
		1	24	18.79	0.0757	<100			
		1	6	18.73	0.0746	<100			
		12	6	18.57	0.0719	<100			
		1	1	18.54	0.0714	<100			
	821.5	1	23	18.64	0.0731	<100			
	021.5	25	0	18.63	0.0729	<100			
		1	24	18.93	0.0782	<100			
		1	6	18.91	0.0778	<100			
		25	12	18.51	0.0710	<100			
		1	1	18.51	0.0710	<100			
10	819.0	1	50	18.60	0.0724	<100			
10	018.0	50	0	18.56	0.0718	<100			
		1	51	18.83	0.0764	<100			
		1	0	18.81	0.0760	<100			

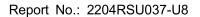
			18	18.68	0.0738	<100
		1	1	18.65	0.0733	<100
4.5	004.5	1	77	18.75	0.0750	<100
15	821.5	75	0	18.73	0.0746	<100
		1	78	18.97	0.0789	<100
		1	0	18.97	0.0789	<100
		50	25	18.69	0.0740	<100
		1	1	18.65	0.0733	<100
20	004.0	1	104	18.64	0.0731	<100
20	824.0	100	0	18.64	0.0731	<100
		1	105	19.20	0.0832	<100
		1	0	19.05	0.0804	<100

Channel	Frequency	RB	RB	Output	Output	Limit			
Bandwidth	(MHz)	Size	Offset	Power	Power (W)	(W)			
(MHz)				(dBm)					
CP-OFDM QPSK									
		12	6	20.34	0.1081	<100			
		1	1	21.65	0.1462	<100			
	046.5	1	23	21.89	0.1545	<100			
	816.5	25	0	20.49	0.1119	<100			
		1	24	20.41	0.1099	<100			
		1	6	21.67	0.1469	<100			
		12	6	20.32	0.1076	<100			
		1	1	21.64	0.1459	<100			
5	819.0	1	23	21.80	0.1514	<100			
5	019.0	25	0	20.38	0.1091	<100			
		1	24	20.39	0.1094	<100			
		1	6	21.78	0.1507	<100			
		12	6	20.25	0.1059	<100			
		1	1	21.60	0.1445	<100			
	821.5	1	23	21.80	0.1514	<100			
	021.5	25	0	20.31	0.1074	<100			
		1	24	20.43	0.1104	<100			
		1	6	21.81	0.1517	<100			
		25	12	20.35	0.1084	<100			
		1	1	21.80	0.1514	<100			
10	819.0	1	50	21.85	0.1531	<100			
10	018.0	50	0	20.37	0.1089	<100			
		1	51	20.38	0.1091	<100			
		1	0	21.95	0.1567	<100			



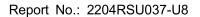
		20	10	20.40	0.4400	-100
		36	18	20.42	0.1102	<100
		1	1	21.75	0.1496	<100
15	004 5	1	77	21.89	0.1545	<100
15	821.5	75	0	20.39	0.1094	<100
		1	78	20.56	0.1138	<100
		1	0	22.03	0.1596	<100
		50	25	20.45	0.1109	<100
		1	1	21.79	0.1510	<100
00	004.0	1	104	21.88	0.1542	<100
20	824.0	100	0	20.37	0.1089	<100
		1	105	20.67	0.1167	<100
		1	0	22.15	0.1641	<100

Channel	Frequency	RB	RB	Output	Output	Limit				
Bandwidth	(MHz)	Size	Offset	Power	Power (W)	(W)				
(MHz)				(dBm)						
CP-OFDM 160	CP-OFDM 16QAM									
		12	6	20.39	0.1094	<100				
		1	1	21.24	0.1330	<100				
	040.5	1	23	21.30	0.1349	<100				
	816.5	25	0	20.31	0.1074	<100				
		1	24	20.45	0.1109	<100				
		1	6	21.51	0.1416	<100				
		12	6	20.36	0.1086	<100				
		1	1	21.24	0.1330	<100				
E	010.0	1	23	21.40	0.1380	<100				
5	819.0	25	0	20.42	0.1102	<100				
		1	24	20.41	0.1099	<100				
		1	6	21.48	0.1406	<100				
		12	6	20.28	0.1067	<100				
		1	1	21.28	0.1343	<100				
	004 5	1	23	21.40	0.1380	<100				
	821.5	25	0	20.35	0.1084	<100				
		1	24	20.39	0.1094	<100				
		1	6	21.50	0.1413	<100				
		25	12	20.33	0.1079	<100				
		1	1	21.26	0.1337	<100				
10	010.0	1	50	21.44	0.1393	<100				
10	819.0	50	0	20.30	0.1072	<100				
		1	51	20.36	0.1086	<100				
		1	0	21.33	0.1358	<100				

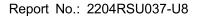


			18	20.18	0.1042	<100
		1	1	21.59	0.1442	<100
45	004.5	1	77	21.70	0.1479	<100
15	821.5	75	0	20.14	0.1033	<100
		1	78	20.46	0.1112	<100
		1	0	21.45	0.1396	<100
		50	25	20.40	0.1096	<100
		1	1	21.29	0.1346	<100
20	004.0	1	104	21.51	0.1416	<100
20	824.0	100	0	20.30	0.1072	<100
		1	105	20.66	0.1164	<100
		1	0	21.56	0.1432	<100

Channel	Frequency	RB	RB	Output	Output	Limit
Bandwidth	(MHz)	Size	Offset	Power	Power (W)	(W)
(MHz)				(dBm)		
CP-OFDM 640	QAM					
		12	6	19.66	0.0925	<100
		1	1	19.60	0.0912	<100
	916 F	1	23	19.62	0.0916	<100
	816.5	25	0	19.64	0.0920	<100
		1	24	19.89	0.0975	<100
		1	6	19.84	0.0964	<100
		12	6	19.73	0.0940	<100
		1	1	19.59	0.0910	<100
5	819.0	1	23	19.72	0.0938	<100
5	019.0	25	0	19.74	0.0942	<100
		1	24	19.84	0.0964	<100
		1	6	19.85	0.0966	<100
		12	6	19.55	0.0902	<100
		1	1	19.64	0.0920	<100
	004 5	1	23	19.72	0.0938	<100
	821.5	25	0	19.66	0.0925	<100
		1	24	20.02	0.1005	<100
		1	6	19.95	0.0989	<100
		25	12	19.91	0.0979	<100
		1	1	19.85	0.0966	<100
10	010.0	1	50	19.99	0.0998	<100
10	819.0	50	0	19.97	0.0993	<100
		1	51	19.92	0.0982	<100
		1	0	19.92	0.0982	<100

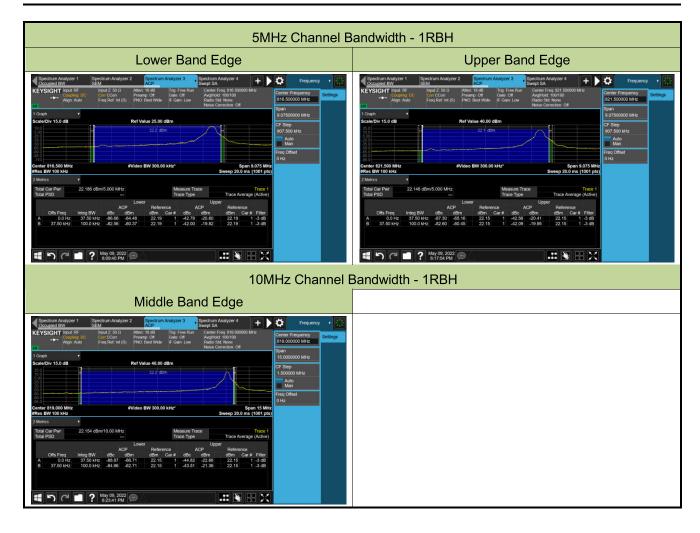


		36	18	19.79	0.0953	<100
		1	1	19.81	0.0957	<100
45	004.5	1	77	19.87	0.0971	<100
15	821.5	75	0	19.82	0.0959	<100
		1	78	20.01	0.1002	<100
		1	0	20.00	0.1000	<100
		50	25	20.11	0.1026	<100
		1	1	20.02	0.1005	<100
00	004.0	1	104	20.03	0.1007	<100
20	824.0	100	0	19.92	0.0982	<100
		1	105	20.17	0.1040	<100
		1	0	20.20	0.1047	<100

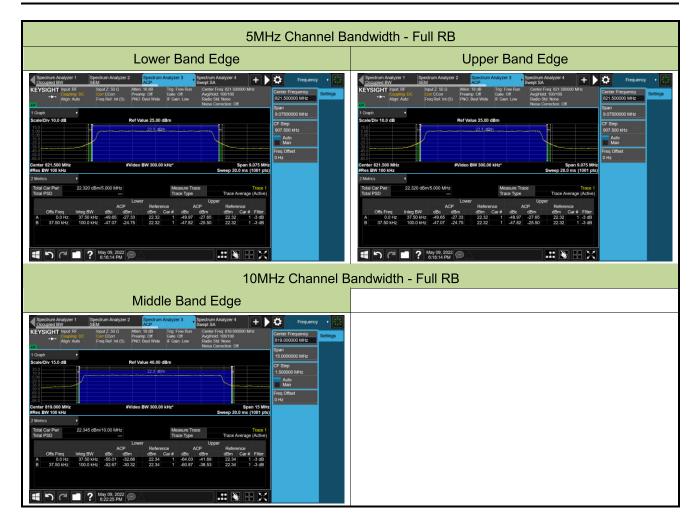


Channel	Frequency	RB	RB	Output	Output	Limit			
Bandwidth	(MHz)	Size	Offset	Power	Power (W)	(W)			
(MHz)				(dBm)					
CP-OFDM 256QAM									
		12	6	16.62	0.0459	<100			
		1	1	16.68	0.0466	<100			
	016 5	1	23	16.76	0.0474	<100			
	816.5	25	0	16.83	0.0482	<100			
		1	24	16.59	0.0456	<100			
		1	6	16.46	0.0443	<100			
		12	6	16.64	0.0461	<100			
		1	1	16.58	0.0455	<100			
5	819.0	1	23	16.83	0.0482	<100			
5	019.0	25	0	16.72	0.0470	<100			
		1	24	16.71	0.0469	<100			
		1	6	16.50	0.0447	<100			
		12	6	16.77	0.0475	<100			
		1	1	16.78	0.0476	<100			
	821.5	1	23	16.77	0.0475	<100			
	021.5	25	0	16.79	0.0478	<100			
		1	24	16.66	0.0463	<100			
		1	6	16.58	0.0455	<100			
		25	12	16.92	0.0492	<100			
		1	1	17.01	0.0502	<100			
10	819.0	1	50	17.05	0.0507	<100			
10	018.0	50	0	17.00	0.0501	<100			
		1	51	16.62	0.0459	<100			
		1	0	16.52	0.0449	<100			

		36	18	16.94	0.0494	<100
		1	1	16.86	0.0485	<100
45	004.5	1	77	16.98	0.0499	<100
15	821.5	75	0	16.99	0.0500	<100
		1	78	16.78	0.0476	<100
		1	0	16.86	0.0485	<100
		50	25	17.19	0.0524	<100
		1	1	17.14	0.0518	<100
00	004.0	1	104	17.26	0.0532	<100
20	824.0	100	0	17.16	0.0520	<100
		1	105	16.77	0.0475	<100
		1	0	16.71	0.0469	<100

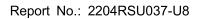


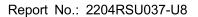
A.4 Band Edge Test Result


Test Site	SIP-SR1	Test Engineer	Candy Luo
Test Date	2022/05/09	Test Band	NR n26

A.5 Conducted Spurious Emissions Test Result

Test Site	SIP-SR1	Test Engineer	Allen Zou
Test Date	2022/05/17	Test Band	LTE Band 26


Frequency	Channel	Frequency	Max Spurious	Limit	Result
(MHz)	Bandwidth	Range	Emissions	(dBm)	
	(MHz)	(MHz)	(dBm)		
QPSK					
816.5	5	30 ~ 10000	-38.48	≤ -13.00	Pass
819.0	5	30 ~ 10000	-33.71	≤ -13.00	Pass
821.5	5	30 ~ 10000	-29.42	≤ -13.00	Pass
819.0	10	30 ~ 10000	-38.23	≤ -13.00	Pass
821.5	15	30 ~ 10000	-38.65	≤ -13.00	Pass
824.0	20	30 ~ 10000	-38.28	≤ -13.00	Pass



A.6 Radiated Suprious Emissions Test Result

Test Site	WZ-AC2	Test Engineer	Lucas Wang
Test Date	2022/05/22	Test Band	NR n26, 5MHz, 1RB

Frequency	Reading Level	Factor	Measure Level	Limit	Margin	Detector	Polarization
(MHz)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)		
Low Channel	Low Channel						
46.5	14.3	20.6	34.9	82.3	-47.4	Peak	Horizontal
893.3	16.1	31.1	47.2	82.3	-35.1	Peak	Horizontal
56.7	14.9	20.1	35.0	82.3	-47.3	Peak	Vertical
989.8	15.7	31.8	47.5	82.3	-34.8	Peak	Vertical
11072.5	35.1	16.8	51.9	82.3	-30.4	Peak	Horizontal
14243.0	33.8	20.0	53.8	82.3	-28.5	Peak	Horizontal
11081.0	34.6	16.7	51.3	82.3	-31.0	Peak	Vertical
14149.5	34.5	19.4	53.9	82.3	-28.4	Peak	Vertical
Middle Channel					,		
56.7	14.9	20.1	35.0	82.3	-47.3	Peak	Horizontal
720.2	17.4	28.7	46.1	82.3	-36.2	Peak	Horizontal
50.4	14.3	20.8	35.1	82.3	-47.2	Peak	Vertical
718.7	17.0	28.7	45.7	82.3	-36.6	Peak	Vertical
11242.5	33.5	17.2	50.7	82.3	-31.6	Peak	Horizontal
14897.5	33.9	19.7	53.6	82.3	-28.7	Peak	Horizontal
11081.0	34.1	16.7	50.8	82.3	-31.5	Peak	Vertical
14362.0	34.3	19.3	53.6	82.3	-28.7	Peak	Vertical
High Channel							
55.7	14.3	20.2	34.5	82.3	-47.8	Peak	Horizontal
716.3	17.4	28.7	46.1	82.3	-36.2	Peak	Horizontal
32.4	18.7	17.5	36.2	82.3	-46.1	Peak	Vertical
723.1	16.6	28.8	45.4	82.3	-36.9	Peak	Vertical
11514.5	34.0	17.6	51.6	82.3	-30.7	Peak	Horizontal
14574.5	33.8	19.6	53.4	82.3	-28.9	Peak	Horizontal
11514.5	34.0	17.6	51.6	82.3	-30.7	Peak	Vertical
14702.0	34.2	19.9	54.1	82.3	-28.2	Peak	Vertical
Note: Measure Level (dBμV/m) = Reading Level (dBμV) + Factor (dB/m).							

Appendix B - Test Setup Photograph

Refer to "2204RSU037-UT" file.

Appendix C - EUT Photograph

Refer to "2204RSU037-UE" file.

The End