

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 7 CERTIFICATION TEST REPORT CLASS II PERMISSIVE CHANGE

FOR

EBOOK, WLAN, AND USB PORTS WITHOUT WWAN

MODEL NUMBER: BNRV100

FCC ID: XHHBNRV100 IC: 8961A-BNRV100

REPORT NUMBER: 10U13106-1

ISSUE DATE: JUNE 02, 2010

Prepared for

BARNES AND NOBLE 400 HAMILTON AVENUE PALO ALTO, CA 94301, U.S.A.

Prepared by

COMPLIANCE CERTIFICATION SERVICES
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

Rev.	Issue Rev. Date Revisions		Revised By
	06/2/10	Initial Issue	T. Chan

TABLE OF CONTENTS

1.		ATTI	ESTATION OF TEST RESULTS	5
2		TES	Т METHODOLOGY	6
3		FAC	ILITIES AND ACCREDITATION	6
4		CAL	IBRATION AND UNCERTAINTY	6
	4.	1.	MEASURING INSTRUMENT CALIBRATION	6
	4.	2.	SAMPLE CALCULATION	6
	4.	3.	MEASUREMENT UNCERTAINTY	6
5.		EQU	IPMENT UNDER TEST	7
	5.	1.	DESCRIPTION OF EUT	7
	5.	2.	MAXIMUM OUTPUT POWER	7
	5.	3.	DESCRIPTION OF CLASS II PERMISSIVE CHANGE	7
	5.	4.	DESCRIPTION OF AVAILABLE ANTENNAS	7
	5.	5.	SOFTWARE AND FIRMWARE	7
	5.	6.	WORST-CASE CONFIGURATION AND MODE	7
	5.	7.	DESCRIPTION OF TEST SETUP	8
6		TES	T AND MEASUREMENT EQUIPMENT	.10
7.		ANT	ENNA PORT TEST RESULTS	.11
	7.	1.	802.11b MODE IN THE 2.4 GHz BAND	
		7.1.1 7.1.2		
		7.1.2	POWER SPECTRAL DENSITY	.17
		7.1.4		
			802.11g MODE IN THE 2.4 GHz BAND	
		7.2.1 7.2.2		
		7.2.3		
		7.2.4	. CONDUCTED SPURIOUS EMISSIONS	.33
8		RAD	IATED TEST RESULTS	.37
	8.	1.	LIMITS AND PROCEDURE	.37
		2.	TRANSMITTER ABOVE 1 GHz	
		8.2.1 8.2.2		
	8.	3.	RECEIVER ABOVE 1 GHz	48
	8.	4.	WORST-CASE BELOW 1 GHz	49
9.		AC F	POWER LINE CONDUCTED EMISSIONS	.52
		_	Page 3 of 64	·

REPORT NO: 10U13106-1	
FCC ID: XHHBNRV100	

DATE: JUNE 02, 2010 IC: 8961A-BNRV100

10.	MAXIMUM PERMISSIBLE EXPOSURE	58
11	SETUP PHOTOS	61

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: BARNES AND NOBLE

400 Hamilton Avenue

PALO ALTO, CA 94301, U.S.A.

EUT DESCRIPTION: EBOOK, WLAN, AND USB PORTS WITHOUT WWAN

MODEL: BNRV100

SERIAL NUMBER: 1001150000270048

DATE TESTED: APRIL 14-23, 2010

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Pass

Industry Canada RSS-210 Issue 7 Annex 8 Pass

Industry Canada RSS-GEN Issue 2 Pass

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For CCS By: Tested By:

THU CHAN

COMPLIANCE CERTIFICATION SERVICES

EMC MANAGER

CHIN PANG EMC ENGINEER

Chin Pany

COMPLIANCE CERTIFICATION SERVICES

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 2, and RSS-210 Issue 7.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an.eBook, WLAN, and USB port device without WWAN. The radio module is manufactured by Marvel.

5.2. MAXIMUM OUTPUT POWER

The test measurement passed within ± 0.5dBm of the original output power.

5.3. DESCRIPTION OF CLASS II PERMISSIVE CHANGE

The following changes filed under this application are for cost reduction purposes.

- 1. Booting Micro-SD is replaced by iNAND.
- 2. The EPD power that is powered by discrete components are replaced by PMIC.

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a chip antenna, with a maximum peak gain of 1.3 dBi.

5.5. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was Usbnet driver and bumin1 tool v0.12 The test utility software used during testing was telnet 192.168.0.17.

5.6. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power.

802.11b Mode (20 MHz BW operation): 11 Mbps, CCK. 802.11g Mode (20 MHz BW operation): 54 Mbps, OFDM.

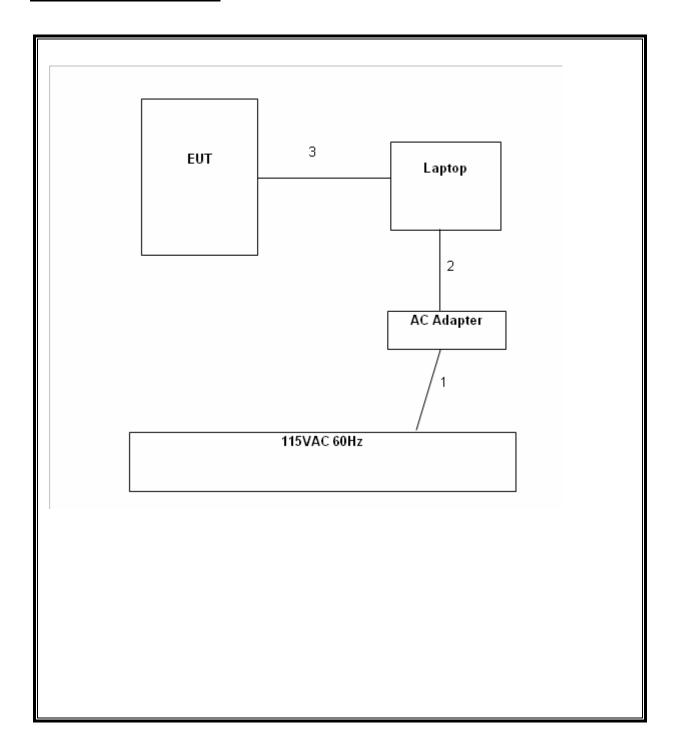
The EUT is a portable device that has three orientations; therefore X, Y and Z orientations have been investigated. The worst case was found to be Z orientation.

For radiated emissions below 1 GHz the worst-case configuration is determined to be the mode and channel with the highest output power.

5.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST						
Description	Description Manufacturer Model Serial Number FCC ID					
Laptop	Dell	Latitude D620	NA	Doc		
AC Adapter	Dell	PA-1650-08D3	CN-ODF263-71615-72M-2925	Doc		


I/O CABLES

	I/O CABLE LIST						
Cable	Port	# of	Connector	Cable	Cable	Remarks	
No.		Identic	Туре	Туре	Length		
		Ports					
1	AC	1	US 115V	Un-shielded	2m	NA	
2	DC	1	DC	Un-shielded	1m	NA	
3	USB	1	EUT	Un-shielded	2m	NA	

TEST SETUP

The EUT is installed in a host laptop computer during the tests. Test software exercised the radio card.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report.

TEST EQUIPMENT LIST					
Description	Manufacturer	Model	Asset	Cal Due	
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00778	07/06/10	
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01063	08/04/10	
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	07/14/10	
Antenna, Horn, 18 GHz	EMCO	3115	C00783	07/29/10	
EM Test Receiver, 30 MHz	R&S	ESHS 20	N02396	05/06/11	
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	11/06/10	
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01178	08/31/10	
Peak Power Meter	Boonton	4541	C01189	03/01/11	
Peak Power Sensor	Boonton	57318	NA	02/24/11	

7. ANTENNA PORT TEST RESULTS

7.1. 802.11b MODE IN THE 2.4 GHz BAND

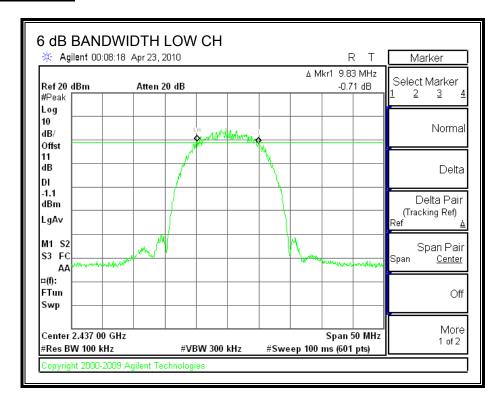
7.1.1. 6 dB BANDWIDTH

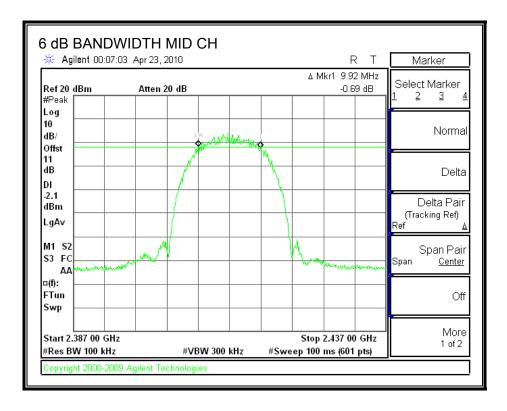
LIMITS

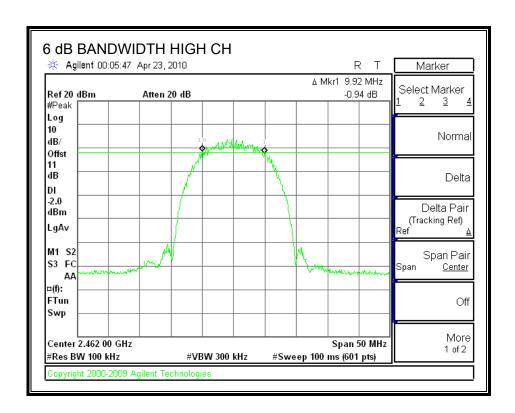
FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.


RESULTS

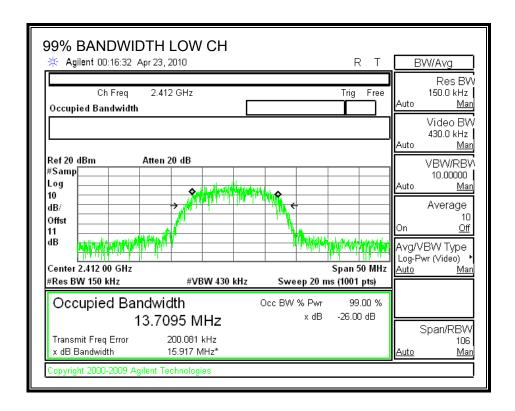
Channel	annel Frequency 6 dB Bandwidth		Minimum Limit	
	(MHz)	(MHz)	(MHz)	
Low	2412	9.83	0.5	
Middle	2437	9.92	0.5	
High	2462	9.92	0.5	

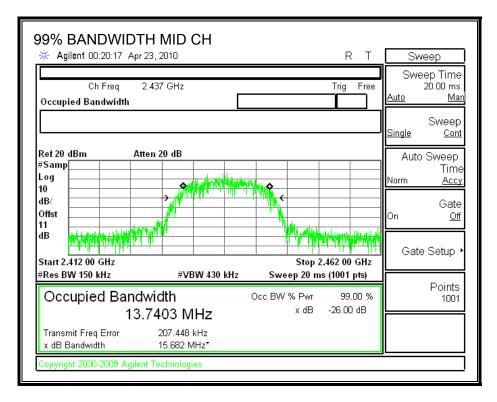
6 dB BANDWIDTH

7.1.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.


TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	13.710
Middle	2437	13.740
High	2462	13.730

99% BANDWIDTH

DATE: JUNE 02, 2010

IC: 8961A-BNRV100

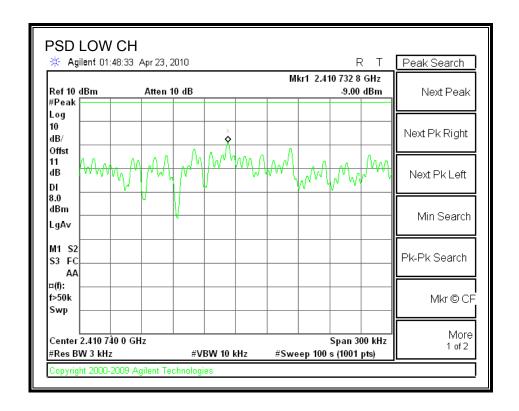
7.1.3. POWER SPECTRAL DENSITY

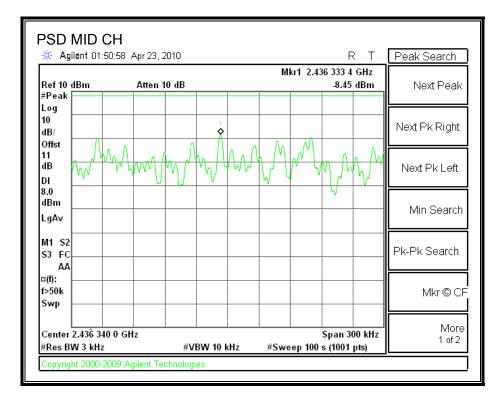
LIMITS

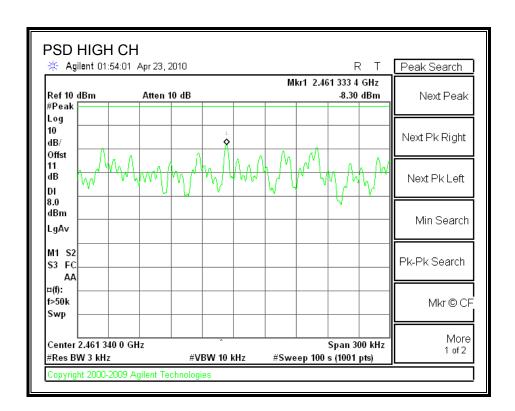
FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


TEST PROCEDURE


Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.


RESULTS

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-9.00	8	-17.00
Middle	2437	-8.45	8	-16.45
High	2462	-8.30	8	-16.30

POWER SPECTRAL DENSITY

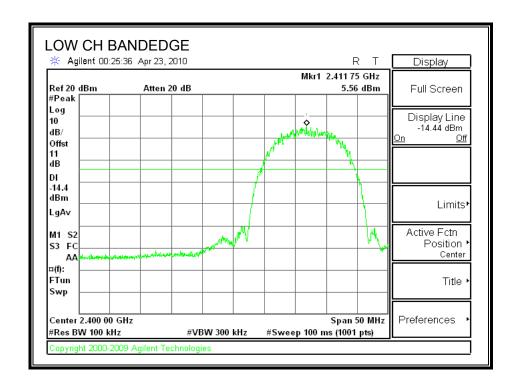
7.1.4. CONDUCTED SPURIOUS EMISSIONS

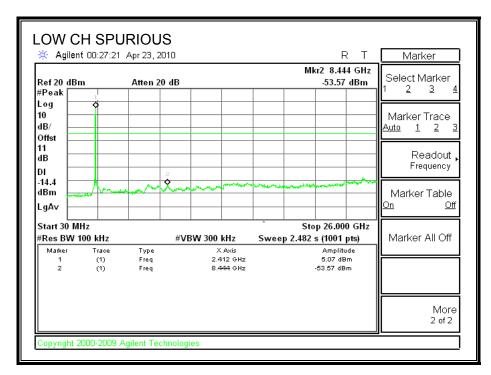
LIMITS

FCC §15.247 (d)

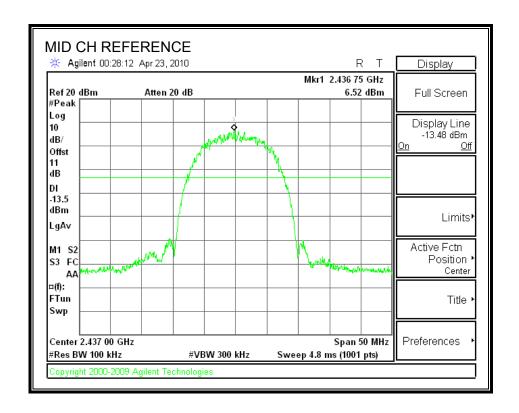
IC RSS-210 A8.5

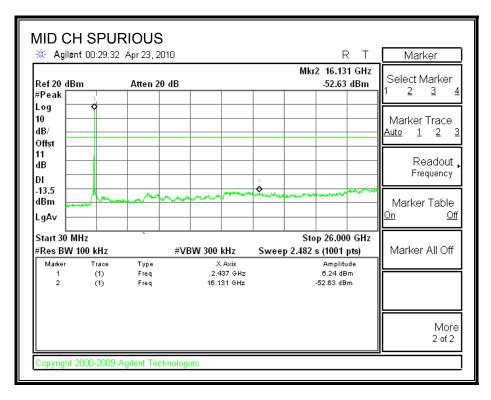
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

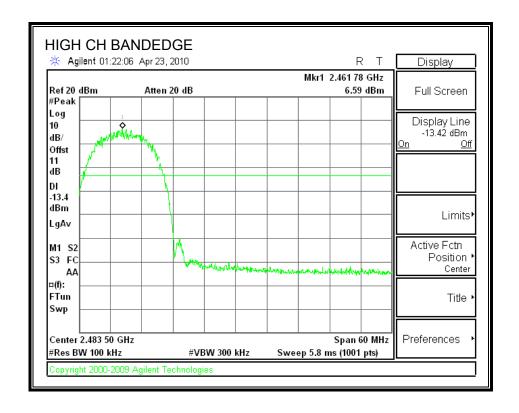

TEST PROCEDURE

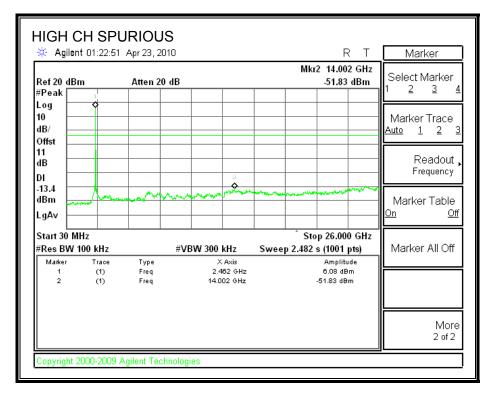

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


<u>RESULTS</u>


SPURIOUS EMISSIONS, LOW CHANNEL




SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

7.2. 802.11g MODE IN THE 2.4 GHz BAND

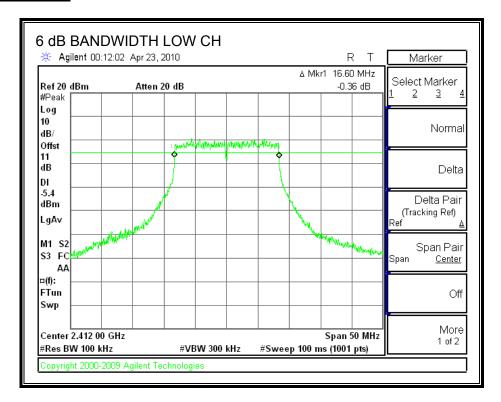
7.2.1. 6 dB BANDWIDTH

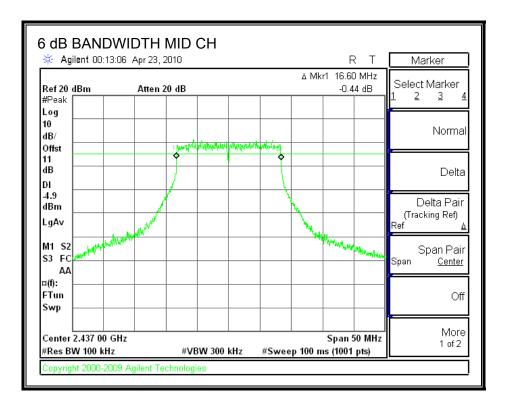
LIMITS

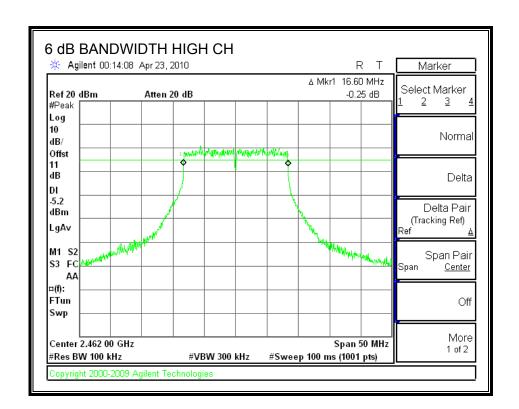
FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.


RESULTS

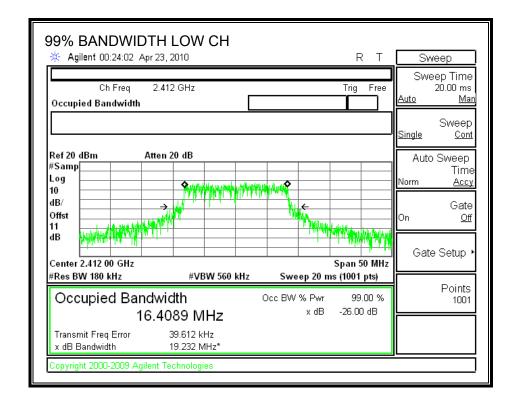
Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	16.6	0.5
Middle	2437	16.6	0.5
High	2462	16.6	0.5

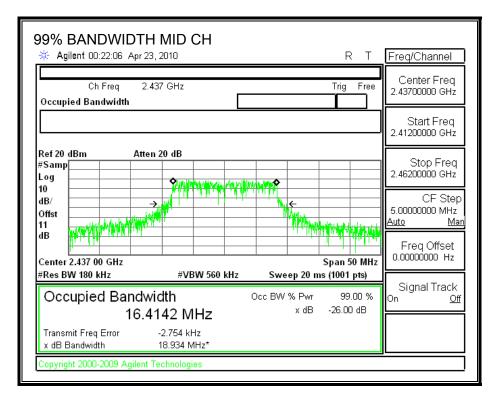
6dB BANDWIDTH

7.2.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.


TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS

Channel	Frequency	99% Bandwidth	
	(MHz)	(MHz)	
Low	2412	16.4089	
Middle	2437	16.4142	
High	2462	16.4045	

99% BANDWIDTH

DATE: JUNE 02, 2010

IC: 8961A-BNRV100

7.2.3. POWER SPECTRAL DENSITY

LIMITS

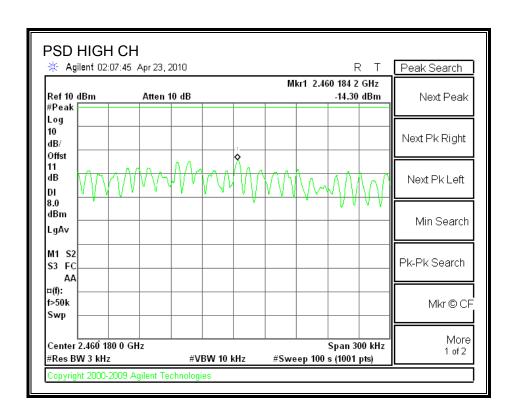
FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.


RESULTS

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-13.58	8	-21.58
Middle	2437	-14.88	8	-22.88
High	2462	-14.30	8	-22.30

POWER SPECTRAL DENSITY

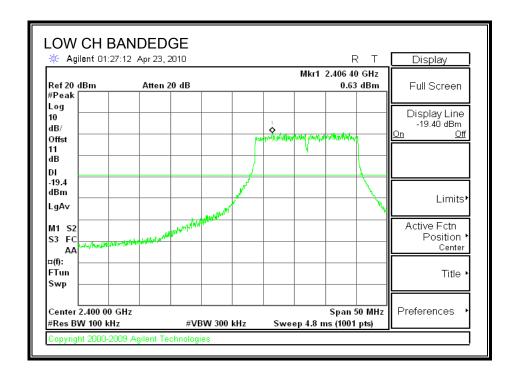
7.2.4. CONDUCTED SPURIOUS EMISSIONS

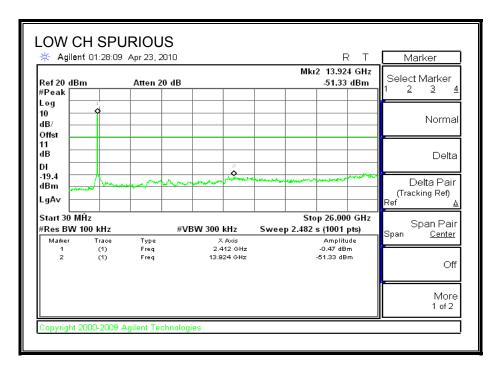
LIMITS

FCC §15.247 (d)

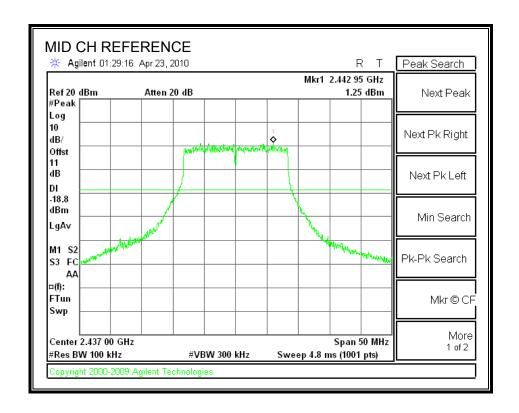
IC RSS-210 A8.5

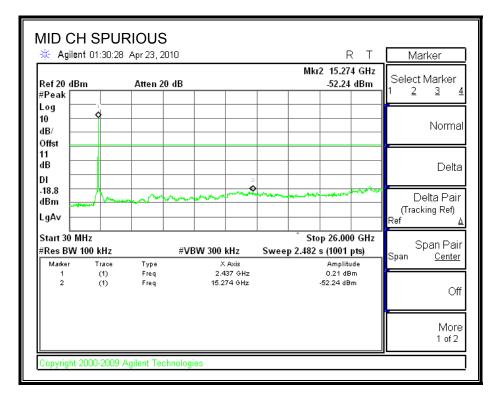
Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

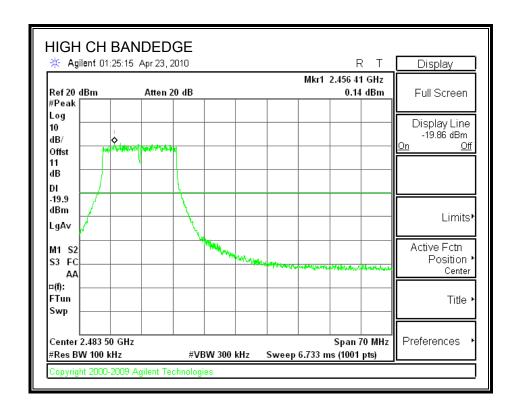

TEST PROCEDURE

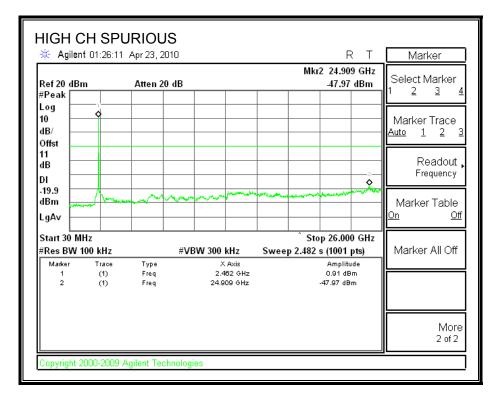

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.


RESULTS


SPURIOUS EMISSIONS, LOW CHANNEL




SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

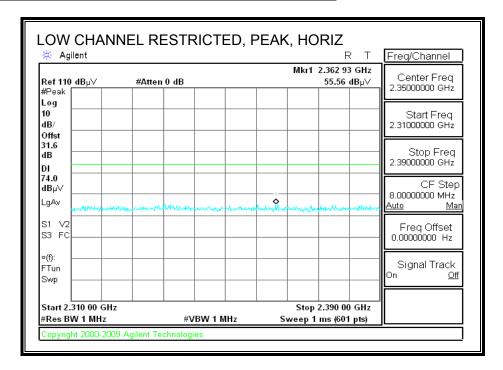
TEST PROCEDURE

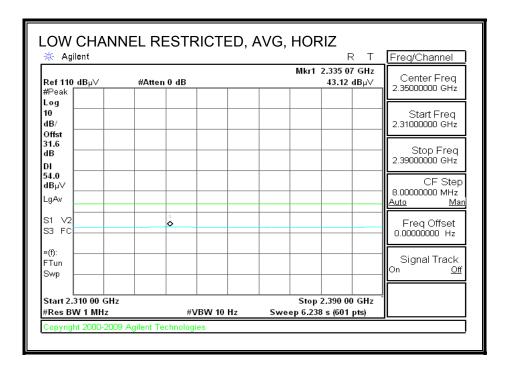
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

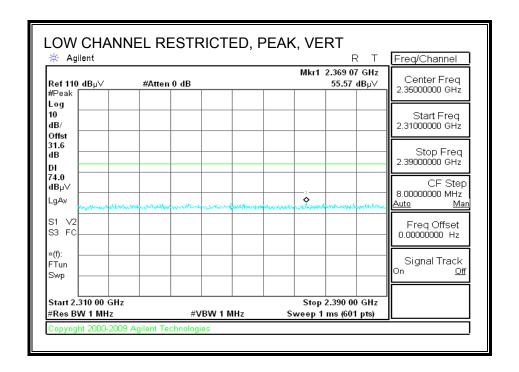
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

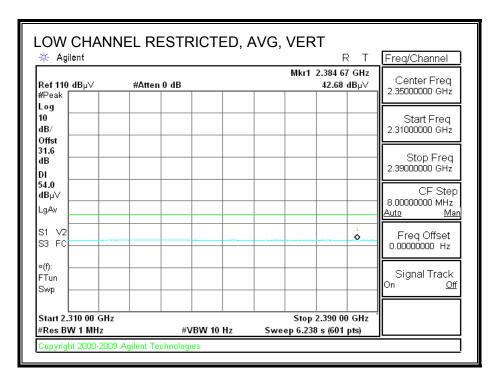
The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

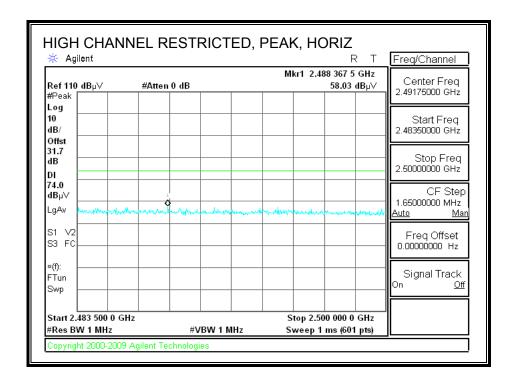

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

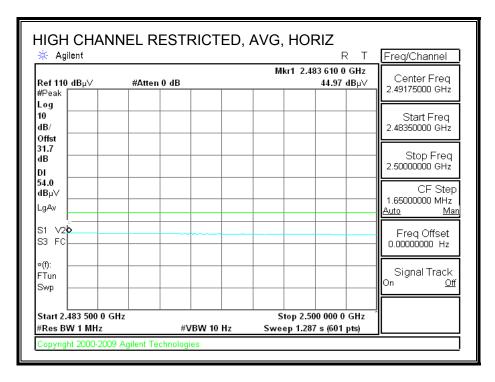

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

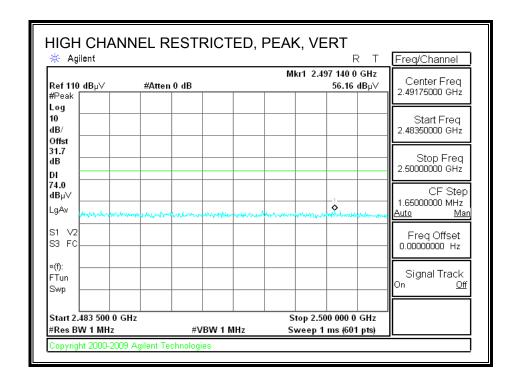
8.2. TRANSMITTER ABOVE 1 GHz

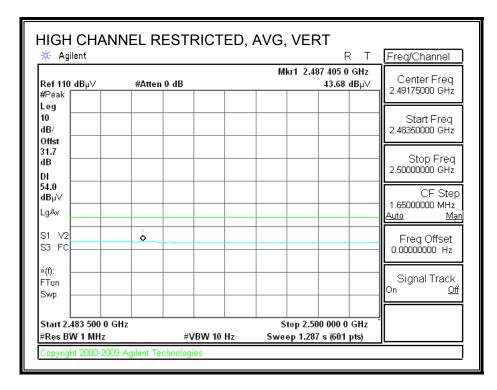

8.2.1. TRANSMITTER ABOVE 1 GHz FOR 802.11b MODE IN THE 2.4 GHz BAND


RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)




RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)




RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

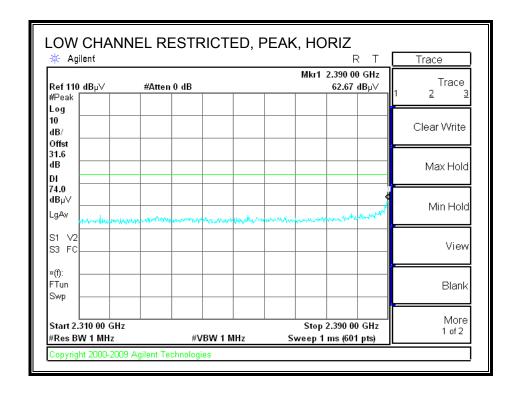
Chin Pang Test Engr: 04/14/10 Date: Project #: 10U13106 Barnes and Noble Company:

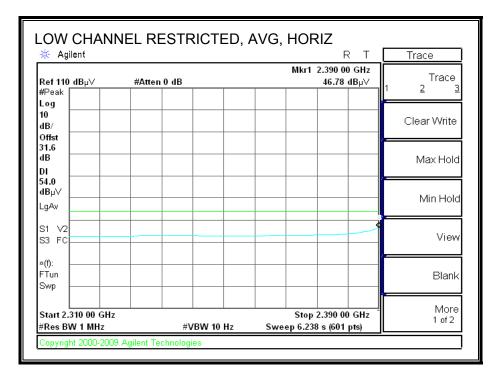
EUT Description: Ebook Reader with WLAN and USB ports

Configuration: EUT only TBD EUT M/N: Test Target: FCC 15.247 TX, b Mode Mode Oper:

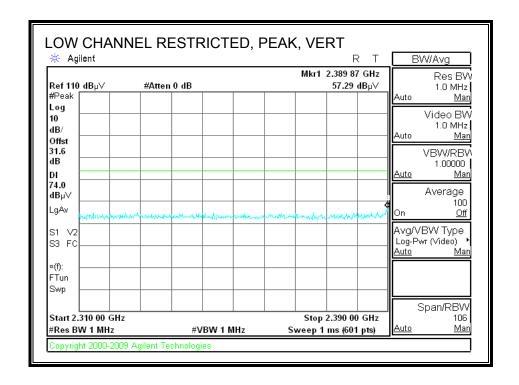
Average Field Strength Limit f Measurement Frequency Amp Preamp Gain Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Lin
Read Analyzer Reading Avg Average Field Strength @ 3 m

AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
CL Cable Loss HPF High Pass Filter Peak Field Strength Limit Margin vs. Average Limit

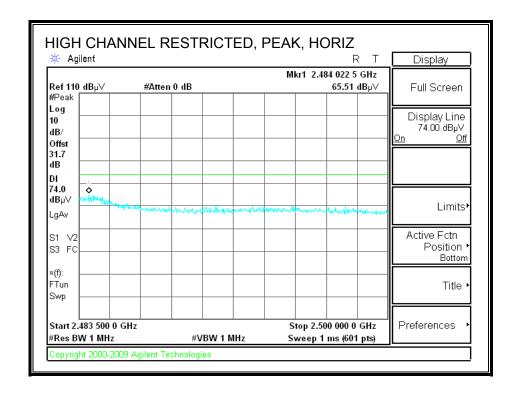

f GHz	Dist (m)	Read dBuV	AF dB/m	CL dB	Amp dB	D Corr dB			Limit dBuV/m		Ant. Pol. V/H	Det. P/A/QP	Notes
Low Ch. 2	<u></u>	,											
4.824	3.0	36.8	32.7	5.8	-34.8	0.0	0.0	40.5	74.0	-33.5	v	P	
4.824	3.0	24.2	32.7	5.8	-34.8	0.0	0.0	27.8	54.0	-26.2	v	Ā	
4.824	3.0	36.2	32.7	5.8	-34.8	0.0	0.0	39.9	74.0	-34.1	H	P	
4.824	3.0	24.2	32.7	5.8	-34.8	0.0	0.0	27.9	54.0	-26.1	н	Ā	
Mid Ch, 2	437МНь	<u> </u>											
4.874	3.0	35.6	32.7	5.8	-34.8	0.0	0.0	39.3	74.0	-34.7	v	P	
4.874	3.0	23.7	32.7	5.8	-34.8	0.0	0.0	27.4	54.0	-26.6	V	A	
7.311	3.0	35.4	35.5	7.3	-34.1	0.0	0.0	44.1	74.0	-29.9	V	P	
7.311	3.0	22.9	35.5	7.3	-34.1	0.0	0.0	31.5	54.0	-22.5	V	A	
4.874	3.0	36.1	32.7	5.8	-34.8	0.0	0.0	39.8	74.0	-34.2	Н	P	
4.874	3.0	23.7	32.7	5.8	-34.8	0.0	0.0	27.5	54.0	-26.5	H	A	
7.311	3.0	36.0	35.5	7.3	-34.1	0.0	0.0	44.6	74.0	-29.4	H	P	
7.311	3.0	22.8	35.5	7.3	-34.1	0.0	0.0	31.5	54.0	-22.5	H	A	
High Ch,	2462MH	Īz											
4.924	3.0	36.4	32.7	5.9	-34.8	0.0	0.0	40.2	74.0	-33.8	V	P	
4.924	3.0	24.0	32.7	5.9	-34.8	0.0	0.0	27.8	54.0	-26.2	V	A	
7.386	3.0	35.6	35.6	7.3	-34.1	0.0	0.0	44.4	74.0	-29.6	V	P	
7.386	3.0	23.1	35.6	7.3	-34.1	0.0	0.0	31.9	54.0	-22.1	V	A	
4.924	3.0	36.5	32.7	5.9	-34.8	0.0	0.0	40.3	74.0	-33.7	H	P	
4.924	3.0	24.0	32.7	5.9	-34.8	0.0	0.0	27.8	54.0	-26.2	H	A	
7.386	3.0	35.3	35.6	7.3	-34.1	0.0	0.0	44.1	74.0	-29.9	H	P	
7.386	3.0	23.2	35.6	7.3	-34.1	0.0	0.0	31.9	54.0	-22.1	H	A	

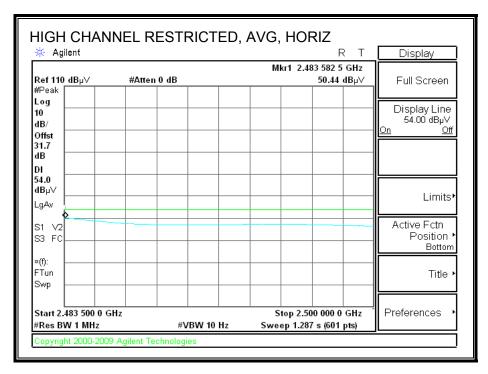

Rev. 4.1.2.7

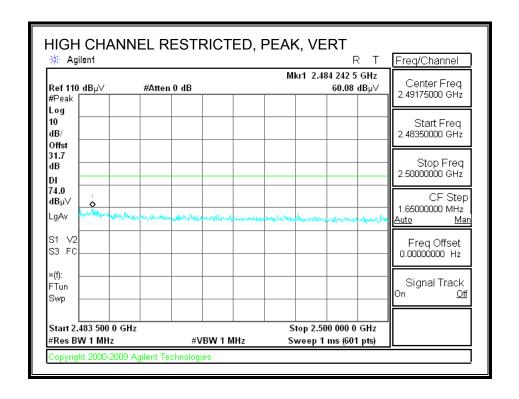
Note: No other emissions were detected above the system noise floor.

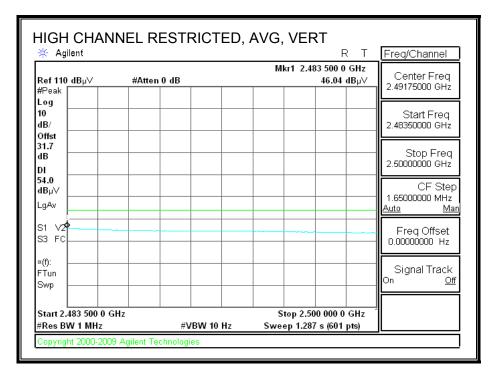

8.2.2. TRANSMITTER ABOVE 1 GHz FOR 802.11g MODE IN THE 2.4 GHz BAND

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)




RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)




RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Chin Pang
Date: 04/14/10
Project #: 10U13106
Company: Barnes and Noble

EUT Description: eBook Reader with WLAN and USB ports

Configuration: EUT only
EUT M/N: TBD
Test Target: FCC 15.247
Mode Oper: TX, g mode

CL

Cable Loss

 f
 Measurement Frequency Amp
 Preamp Gain
 Average Field Strength Limit

 Dist
 Distance to Antenna
 D Corr
 Distance Correct to 3 meters
 Peak Field Strength Limit

 Read
 Analyzer Reading
 Avg
 Average Field Strength @ 3 m
 Margin vs. Average Limit

 AF
 Antenna Factor
 Peak
 Calculated Peak Field Strength
 Margin vs. Peak Limit

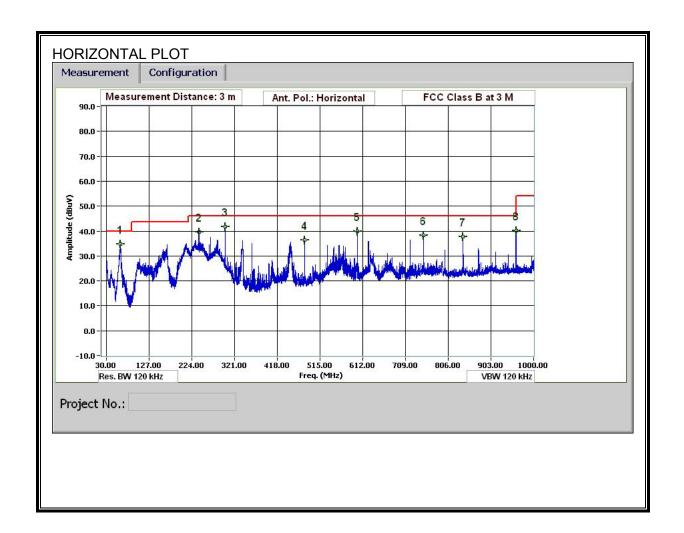
High Pass Filter

HPF

AF CL Amp Dist Read D Corr Fltr Corr. Limit Margin Ant. Pol. Det. Notes GHz dBuV dB/mđВ đВ đВ dB dBuV/m dBuV/m đВ V/H P/A/QP (m) Low Ch, 2412MHz 4.824 3.0 36.5 32.7 5.8 -34.8 0.0 0.0 40.1 74.0 -33.9 v Р 4.824 3.0 24.1 32.7 5.8 -34.8 0.0 0.027.7 54.0 26.3 V A 32.7 74.0 Р 4.824 3.0 37.4 5.8 -34.8N.N 0.0 41.0 -33.0 н 4.824 3.0 24.1 32.7 5.8 -34.8 0.027.7 54.0 -26.3 Н A Mid Ch, 2437MHz 4.874 3.0 36.0 32.7 5.8 -34.8 0.039.7 74.0 -34.3 -34.8 \mathbf{v} 4.874 3.0 23.6 32.7 5.8 0.0 0.0 27.3 54.0 -26.7 А 7.311 74.0 V P 3.0 35.5 7.3 -34.1 0.0 0.0 44.2 7.311 3.0 31.5 -22.522.8 35.5 7.3 -34.1 0.0 0.0 54.0 A 4.874 3.0 37.2 32.7 5.8 -34.8 0.0 0.040.9 74.0 -33.1 Н Р 4.874 3.0 -34.8 0.0 0.0 27.3 54.0 Н A 23.6 32.7 5.8 -26.7 7.3 -29.9 7.311 3.0 35.5 35.5 -34.1 0.0 0.044.1 74.0 н Р 7.311 7.3 -34.1 31.4 54.0 -22.6 A High Ch, 2462MHz 4.924 3.0 32.7 5.9 -34.8 0.0 41.0 74.0 -33.0 4.924 3.0 23.9 32.7 5.9 -34.8 0.0 0.027.7 54.0 -26.3 v A 7.386 V P 3.0 35.6 7.3 -34.1 0.0 0.0 43.8 74.0 -30.2 7.386 3.0 23.0 35.6 7.3 -34.10.0 0.031.8 54.0 -22.2 A 4.924 3.0 36.5 32.7 5.9 -34.8 0.00.040.3 74.0 -33.7 Н P 4.924 3.0 23.9 5.9 0.00.027.7 54.0 Н 32.7 -34.8 -26.3 A 7.3 7.386 3.0 35.0 35.6 -34.1N.N 0.043.8 74.0 -30.2 н Р 7.386 23.1 35.6 7.3 -34.1 54.0 -22.1 A

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.


8.3. RECEIVER ABOVE 1 GHz

Note: No emissions were found within above 1GHz of 20dB below the system noise floor.

8.4. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE)

	ce Cerm	fication Se	rvices, ri	remon	təm Cna	amber							
Test Engr		Chin Par	v										
Date:		04/14/10											
Project #:		10U1310	-										
Company EUT Desci		Barnes a eBook re		_	N	ed D		. 137137 A NI					
Configura		EUT only		n WL	uv and U	3D Ports	withou	t w wan					
CONHEUN EUT M/N:	inon:	TBD											
Cor Wille. Fest Targe		FCC 15.2	47										
Mode Ope		TX (Wors											
opc	f	Measurem	-	encv	Amp	Preamp (Gain			Margin	Margin vs.	Limit	
	Dist	Distance t	-					to 3 meters					
	Read	Analyzer i	Reading		Filter	Filter Ins	ert Loss						
	AF	Antenna I	actor		Corr.	Calculate	d Field S	trength					
	CL	Cable Los:	;		Limit	Field Stre	ngth Lir	nit					
f	Dist	Read	AF	CL	Amp	D Corr	Filter	Corr.	Limit	Margin	Ant Pol	Det.	Notes
MHz	(m)	dBuV	dB/m	dВ	dВ	dВ	dВ	dBuV/m	dBuV/m	dВ	V/H	P/A/QP	
61.561	3.0	54.3	8.0	0.7	28.3	0.0	0.0	34.6	40.0	-5.4	н	P	
240.009	3.0	53.9	11.8	1.3	27.4	0.0	0.0	39.6	46.0	-6.4	H	P	
299.411	3.0	54.2	13.5	1.5	27.4	0.0	0.0	41.8	46.0	-4.2	H	P	
480.019	3.0	46.5	16.5	1.9	28.5	0.0	0.0	36.4	46.0	-9.6	H	P	
600.024	3.0	47.9	18.5	2.2	28.6	0.0	0.0	39.9	46.0	-6.1	H	P	
749.910	3.0	44.2	19.9	2.5	28.4	0.0	0.0	38.2	46.0	-7.8	H	P	
840.033	3.0	41.9	21.4	2.6	28.1	0.0	0.0	37.8	46.0	-8.2	H	P	
960.038	3.0	42.5	22.5	2.8	27.7	0.0	0.0	40.1	54.0	-13.9 -6.4	H V	P P	
42.841 61.681	3.0 3.0	49.0 53.2	12.4 8.0	0.6 0.7	28.4 28.3	0.0 0.0	0.0 0.0	33.6 33.6	40.0 40.0	-6.4 -6.4	v	P	
	3.0	50.9	9.6	0.7	28.2	0.0	0.0	33.1	43.5	-0.4 -10.4	v	P	
101.163	3.0	49.0	13.5	1.5	27.4	0.0	0.0	36.6	46.0	-9.4	v	P	
	3.0	46.3	14.4	1.6	27.8	0.0	0.0	34.6	46.0	-11.4	v	P	
299.411	3.0	47.4	15.9	1.9	28.3	0.0	0.0	36.8	46.0	-9.2	v	P	
101.163 299.411 360.014 448.817											v	P	
299.411 360.014	3.0	40.2											

DATE: JUNE 02, 2010

IC: 8961A-BNRV100

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 *	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

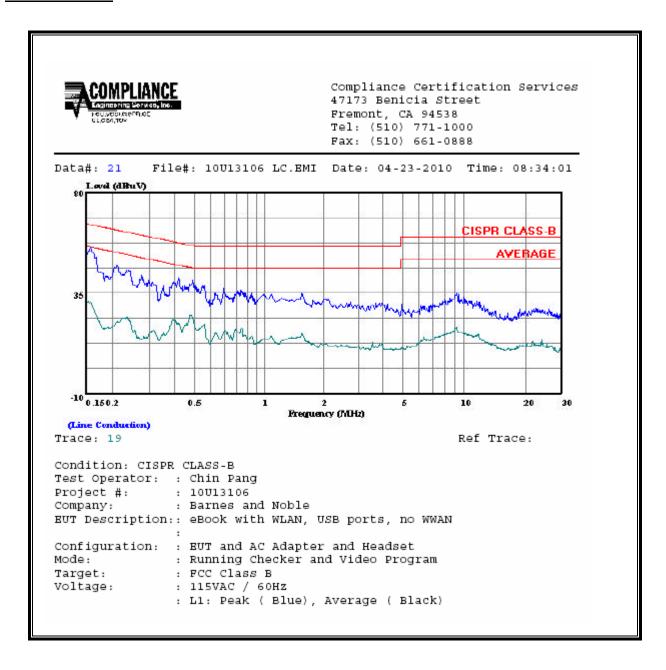
Decreases with the logarithm of the frequency.

TEST PROCEDURE

ANSI C63.4

RESULTS

EUT AND AC ADAPTER WITH HEADSET


	CONDUCTED EMISSIONS DATA (115VAC 60Hz)											
Freq.		Reading		Closs	Limit	EN_B	Marg	gin	Remark			
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1 / L2			
0.16	55.38		29.90	0.00	65.52	55.52	-10.14	-25.62	L1			
0.48	41.80		25.09	0.00	56.32	46.32	-14.52	-21.23	L1			
9.30	34.78		19.47	0.00	60.00	50.00	-25.22	-30.53	L1			
0.15	47.79		24.65	0.00	65.89	55.89	-18.10	-31.24	L2			
0.48	41.92		21.66	0.00	56.36	46.36	-14.44	-24.70	L2			
2.78	28.92		14.78	0.00	56.00	46.00	-27.08	-31.22	L2			
6 Worst	 Data 											

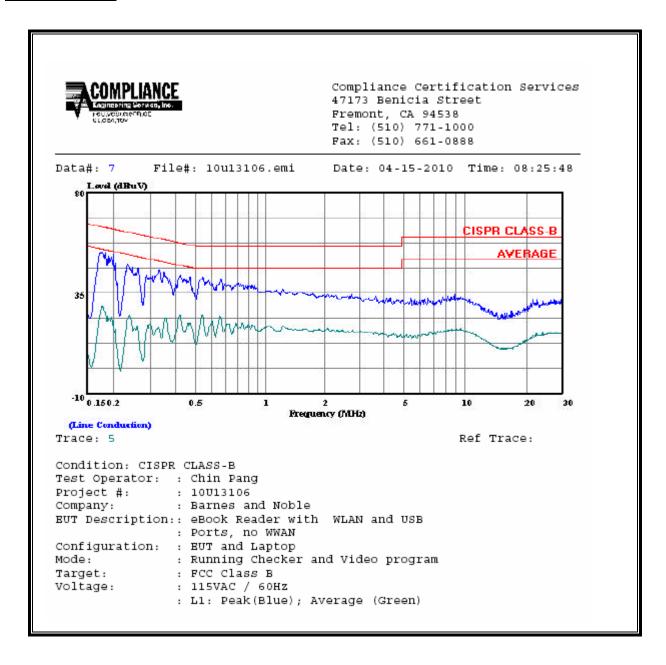
EUT AND LAPTOP WITH HEADSET

	CONDUCTED EMISSIONS DATA (115VAC 60Hz)											
Freq.		Closs	Limit	EN_B	Mar	gin	Remark					
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1 / L2			
0.18	52.93		28.79	0.00	64.58	54.58	-11.65	-25.79	L1			
0.24	47.40		24.73	0.00	62.10	52.10	-14.70	-27.37	L1			
0.66	41.18		24.58	0.00	56.00	46.00	-14.82	-21.42	L1			
0.20	47.16		27.36	0.00	63.69	53.69	-16.53	-26.33	L2			
0.33	47.37		28.03	0.00	59.45	49.45	-12.08	-21.42	L2			
0.53	45.11		30.47	0.00	56.00	46.00	-10.89	-15.53	L2			
6 Worst I	 Data 											

EUT AND AC ADAPTER WITH HEADSET

LINE 1 RESULTS

LINE 2 RESULTS


Compliance Certification Services 47173 Benicia Street Fremont, CA 94538 Tel: (510) 771-1000 Fax: (510) 661-0888 Data#: 28 File#: 10U13106 LC.EMI Date: 04-23-2010 Time: 08:40:19 Lord (dBuV) CISPR CLASS-B AVERAGE 0.150.2 0.5 5 10 20 30 Frequency (MHz) (Line Conduction) Ref Trace: Trace: 26 Condition: CISPR CLASS-B Test Operator: : Chin Pang Project #: : 10U13106 Company: : Barnes and Noble EUT Description:: eBook with WLAN, USB ports, no WWAN Configuration: : EUT and AC Adapter with Headset Mode: : Running Checker and Video Program Target: : FCC Class B Voltage: : 115VAC / 60Hz : L2: Peak (Blue), Average (Black)

DATE: JUNE 02, 2010

IC: 8961A-BNRV100

EUT AND LAPTOP WITH HEADSET

LINE 1 RESULTS

LINE 2 RESULTS

Compliance Certification Services 47173 Benicia Street Fremont, CA 94538 Tel: (510) 771-1000 Fax: (510) 661-0888 Data#: 14 File#: 10u13106.emi Date: 04-15-2010 Time: 08:41:39 Level (dBuV) CISPR CLASS-B AVERAGE -10 0.150.2 Frequency (MHz) (Line Conduction) Trace: 12 Ref Trace: Condition: CISPR CLASS-B Test Operator: : Chin Pang Project #: : 10013106 : Barnes and Noble Company: BUT Description:: eBook Reader with WLAN and USB : Ports, no WWAN Configuration: : EUT and Laptop Mode: : Running Checker and Video program Target: : FCC Class B Voltage: : 115VAC / 60Hz : L2: Peak(Blue); Average (Green)

DATE: JUNE 02, 2010

IC: 8961A-BNRV100

MAXIMUM PERMISSIBLE EXPOSURE **10**.

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	I/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842# 61.4	1.63 4.89/f 0.163	*(100) *(900/f2) 1.0 f/300	6 6 6 8
	for General Populati	on/Uncontrolled Ex	posure	
0.3–1.34	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30	

f = frequency in MHz

* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	1.585 $f^{0.5}$	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158 <i>f</i> ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

^{*} Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

2. A power density of 10 W/m² is equivalent to 1 mW/cm².

A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

EQUATIONS

Power density is given by:

$$S = EIRP / (4 * Pi * D^2)$$

where

 $S = Power density in W/m^2$

EIRP = Equivalent Isotropic Radiated Power in W

D = Separation distance in m

Power density in units of W/m² is converted to units of mWc/m² by dividing by 10.

Distance is given by:

where

D = Separation distance in m

EIRP = Equivalent Isotropic Radiated Power in W

 $S = Power density in W/m^2$

For multiple colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the Power * Gain product (in linear units) of each transmitter.

where

Px = Power of transmitter x

Gx = Numeric gain of antenna x

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

LIMITS

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm²

From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m²

RESULTS

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	Power	Gain	Density	Density
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)
2.4 GHz	WLAN	0.20	20.90	1.94	0.38	0.038