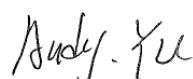


# TESTREPORT

Applicant Name : Franklin Technology Inc.  
Address : 906 JEI Platz, 186, Gasan digital 1-ro, Gumcheon-Gu Seoul  
South Korea  
Report Number: RA221101-50847E-RF-00E  
FCC ID: XHG-RG2102

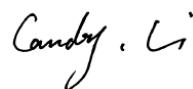
## Test Standard (s)

FCC PART 96


## Sample Description

Product Type: Mobile Hotspot  
Model No.: RG2102  
Multiple Model(s) No.: N/A  
Trade Mark: N/A  
Date Received: 2022/11/01  
Report Date: 2023/01/31

|              |       |
|--------------|-------|
| Test Result: | Pass* |
|--------------|-------|


\* In the configuration tested, the EUT complied with the standards above.

## Prepared and Checked By:



Andy Yu  
EMC Engineer

## Approved By:



Candy Li  
EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk ★.

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk \*. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

## Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

Tel: +86 755-26503290 Fax: +86 755-26503396 Web: [www.atc-lab.com](http://www.atc-lab.com)

## REVISION HISTORY

| Revision Number | Report Number          | Description of Revision   | Date of Revision |
|-----------------|------------------------|---------------------------|------------------|
| 0               | RA221101-50847E-RF-00E | Original Report           | 2022/12/29       |
| 1               | RA221101-50847E-RF-00E | Updated the summary table | 2023/01/31       |

## **TABLE OF CONTENTS**

|                                                                              |           |
|------------------------------------------------------------------------------|-----------|
| <b>GENERAL INFORMATION.....</b>                                              | <b>4</b>  |
| PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....                      | 4         |
| OBJECTIVE .....                                                              | 4         |
| TEST METHODOLOGY .....                                                       | 4         |
| MEASUREMENT UNCERTAINTY.....                                                 | 5         |
| TEST FACILITY .....                                                          | 5         |
| <b>SYSTEM TEST CONFIGURATION .....</b>                                       | <b>6</b>  |
| DESCRIPTION OF TEST CONFIGURATION .....                                      | 6         |
| EQUIPMENT MODIFICATIONS .....                                                | 6         |
| SUPPORT EQUIPMENT LIST AND DETAILS .....                                     | 6         |
| SUPPORT CABLE DESCRIPTION .....                                              | 6         |
| BLOCK DIAGRAM OF TEST SETUP .....                                            | 7         |
| <b>SUMMARY OF TEST RESULTS .....</b>                                         | <b>8</b>  |
| <b>TEST EQUIPMENT LIST .....</b>                                             | <b>9</b>  |
| <b>FCC §1.1310&amp; §2.1093 - RF EXPOSURE INFORMATION.....</b>               | <b>11</b> |
| FCC §2.1047 - MODULATION CHARACTERISTIC .....                                | 12        |
| FCC § 2.1046& §96.41(B) (G)- RF OUTPUT POWER.....                            | 13        |
| APPLICABLE STANDARD .....                                                    | 13        |
| TEST PROCEDURE .....                                                         | 13        |
| TEST DATA .....                                                              | 13        |
| <b>FCC §2.1053&amp; §96.41(E) (2) (3) - SPURIOUS RADIATED EMISSIONS.....</b> | <b>15</b> |
| APPLICABLE STANDARD .....                                                    | 15        |
| TEST PROCEDURE .....                                                         | 15        |
| TEST DATA .....                                                              | 15        |

## GENERAL INFORMATION

### Product Description for Equipment under Test (EUT)

|                        |                                                                                             |
|------------------------|---------------------------------------------------------------------------------------------|
| Frequency Range        | LTE Band 48: 3550-3700MHz (TX/RX)                                                           |
| Modulation Technique   | 4G: QPSK, 16QAM                                                                             |
| Carrier Aggregation    | None Carrier aggregation                                                                    |
| Antenna Specification* | LTE Band 48: -1.71dBi (provided by the applicant)                                           |
| Voltage Range          | DC 3.8V from battery or DC 5V from adapter                                                  |
| Sample serial number   | 1OJ3-1 for Radiated Emissions<br>1OJ4-2 for RF Conducted Test<br>(Assigned by ATC)          |
| Sample/EUT Status      | Good condition                                                                              |
| Adapter Information    | Model: PD018W-G<br>Input: 100-240V,50/60Hz,0.5A Max<br>Output: 5.0V,3.0A;9.0V,2.0A;12V,1.5A |

### Objective

This test report is in accordance with Part 2-Subpart J and Part 96 of the Federal Communication Commission's rules.

The objective is to determine the compliance of the EUT with FCC rules for output power, modulation characteristic, occupied bandwidth, and spurious emission at antenna terminal, spurious radiated emission, frequency stability and band edge.

### Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2-Subpart J as well as the following parts:

Part 96 –Citizens Broadband Radio Service

ANSI C63.26-2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

## Measurement Uncertainty

| Parameter                          | Uncertainty            |        |
|------------------------------------|------------------------|--------|
| Occupied Channel Bandwidth         | 5%                     |        |
| RF Frequency                       | $0.082 \times 10^{-7}$ |        |
| RF output power, conducted         | 0.73dB                 |        |
| Unwanted Emission, conducted       | 1.6dB                  |        |
| AC Power Lines Conducted Emissions | 2.72dB                 |        |
| Emissions, Radiated                | 9kHz - 30MHz           | 2.66dB |
|                                    | 30MHz - 1GHz           | 4.28dB |
|                                    | 1GHz - 18GHz           | 4.98dB |
|                                    | 18GHz - 26.5GHz        | 5.06dB |
|                                    | 26.5GHz - 40GHz        | 4.72dB |
| Temperature                        | 1°C                    |        |
| Humidity                           | 6%                     |        |
| Supply voltages                    | 0.4%                   |        |

*Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.*

## Test Facility

The Test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISED), the Registration Number is 5077A.

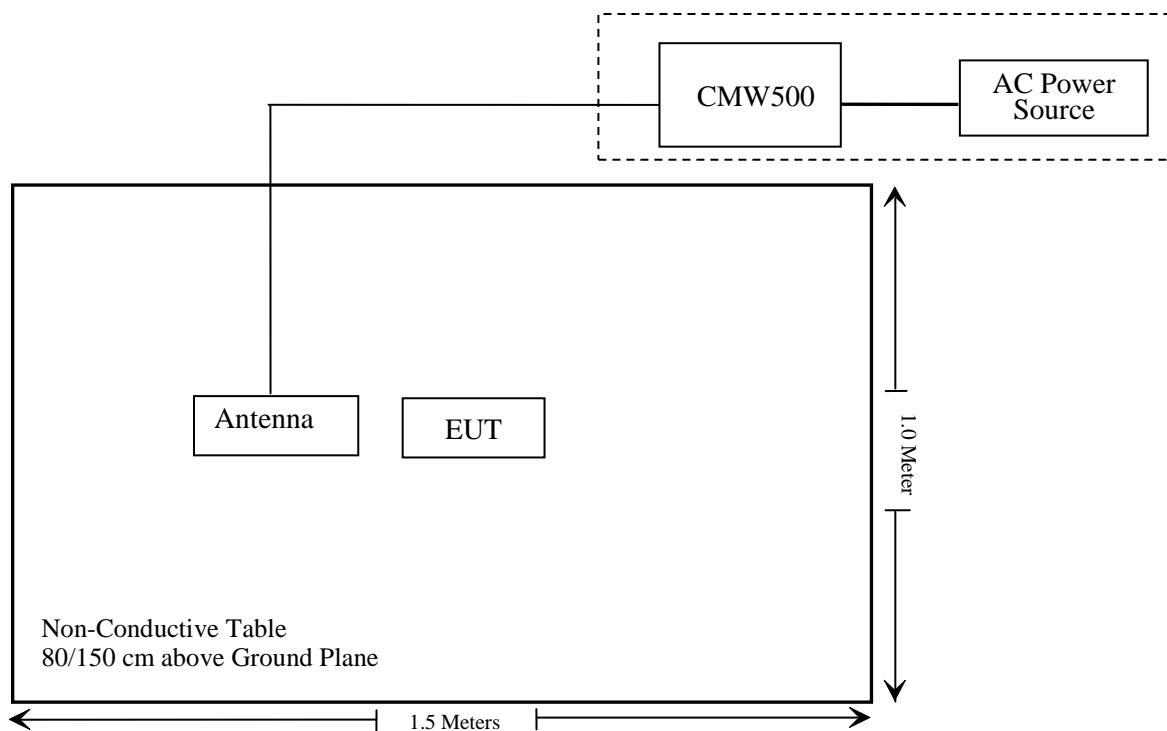
## SYSTEM TEST CONFIGURATION

### Description of Test Configuration

The final qualification test was performed with the EUT operating at normal mode.

| Frequency band | Bandwidth (MHz) | Test Frequency(MHz) |        |        |
|----------------|-----------------|---------------------|--------|--------|
|                |                 | Low                 | Middle | High   |
| LTE B48        | 5               | 3552.5              | 3625.0 | 3697.5 |
|                | 10              | 3555                | 3625.0 | 3695   |
|                | 15              | 3557.5              | 3625   | 3692.5 |
|                | 20              | 3560                | 3625   | 3690   |

### Equipment Modifications


No modification was made to the EUT.

### Support Equipment List and Details

| Manufacturer    | Description                         | Model  | Serial Number |
|-----------------|-------------------------------------|--------|---------------|
| Rohde & Schwarz | Wideband Radio Communication Tester | CMW500 | 154606        |

### Support Cable Description

| Cable Description                 | Length (m) | From / Port | To    |
|-----------------------------------|------------|-------------|-------|
| Unshielded Un-detachable AC cable | 1.2        | AC Power    | CMW50 |

**Block Diagram of Test Setup**

## SUMMARY OF TEST RESULTS

| FCC Rules               | Description of Test                    | Result         | Remark   |
|-------------------------|----------------------------------------|----------------|----------|
| § 1.1307 ,§2.1093       | RF Exposure (SAR)                      | Compliant      | -        |
| §2.1046; §96.41 (b) (g) | RF Output Power                        | Reporting only | -        |
| § 2.1047                | Modulation Characteristics             | Not Applicable | /        |
| § 2.1049; §96.41        | Occupied Bandwidth                     | -              | See Note |
| § 2.1051; §96.41        | Spurious Emissions at Antenna Terminal | -              | See Note |
| § 2.1053; §96.41        | Field Strength of Spurious Radiation   | Compliant      | -        |
| §2.1049, §96.41(e)      | Out-Of-Band Emissions and Band Edge    | -              | See Note |
| § 2.1055; §96.41        | Frequency stability                    | -              | See Note |

Note:

- 1: The manufacturer declared the WWAN module installed in EUT is identical to the certified module (FCC ID: XHG-M2500), which granted on 08/30/2022 and 01/09/2023.
- 2: The RF output power was spot checked and it's consistently with the module report.
- 3: The ATC is responsible for all the information provided in this report, except when information is provided by the customer as identified in this report.

## TEST EQUIPMENT LIST

| Manufacturer           | Description       | Model               | Serial Number          | Calibration Date | Calibration Due Date |
|------------------------|-------------------|---------------------|------------------------|------------------|----------------------|
| Radiated Emission Test |                   |                     |                        |                  |                      |
| Rohde& Schwarz         | Test Receiver     | ESR                 | 102725                 | 2022/11/25       | 2023/11/24           |
| Rohde&Schwarz          | Spectrum Analyzer | FSV40               | 101949                 | 2022/11/25       | 2023/11/24           |
| SONOMA INSTRUMENT      | Amplifier         | 310 N               | 186131                 | 2022/11/08       | 2023/11/07           |
| A.H. Systems, inc.     | Preamplifier      | PAM-0118P           | 135                    | 2022/11/08       | 2023/11/07           |
| Quinstar               | Amplifier         | QLW-184055<br>36-J0 | 15964001002            | 2022/11/08       | 2023/11/07           |
| Unknown                | RF Coaxial Cable  | No.10               | N050                   | 2022/11/25       | 2023/11/24           |
| Unknown                | RF Coaxial Cable  | No.11               | N1000                  | 2022/11/25       | 2023/11/24           |
| Unknown                | RF Coaxial Cable  | No.12               | N040                   | 2022/11/25       | 2023/11/24           |
| Unknown                | RF Coaxial Cable  | No.13               | N300                   | 2022/11/25       | 2023/11/24           |
| Unknown                | RF Coaxial Cable  | No.14               | N800                   | 2022/11/25       | 2023/11/24           |
| Unknown                | RF Coaxial Cable  | No.15               | N600                   | 2022/11/25       | 2023/11/24           |
| Unknown                | RF Coaxial Cable  | No.16               | N650                   | 2022/11/25       | 2023/11/24           |
| Schwarzbeck            | Bilog Antenna     | VULB9163            | 9163-194               | 2020/01/05       | 2023/01/04           |
| Schwarzbeck            | Bilog Antenna     | VULB9163            | 9163-323               | 2021/07/06       | 2024/07/05           |
| Schwarzbeck            | Horn Antenna      | BBHA9120D           | 9120D-655              | 2020/01/05       | 2023/01/04           |
| Schwarzbeck            | Horn Antenna      | BBHA9120D           | 9120D-1067             | 2020/01/05       | 2023/01/04           |
| PASTERNACK             | Horn Antenna      | PE9852/2F-20        | 1120<br>(ATC-BA-024-1) | 2020/01/05       | 2023/01/04           |
| PASTERNACK             | Horn Antenna      | PE9852/2F-20        | 1120<br>(ATC-BA-025-1) | 2020/01/05       | 2023/01/04           |
| PASTERNACK             | Horn Antenn       | PE9850/2F-20        | 720<br>(ATC-BA-024)    | 2020/01/05       | 2023/01/04           |
| PASTERNACK             | Horn Antenn       | PE9850/2F-20        | 720<br>(ATC-BA-025)    | 2020/01/05       | 2023/01/04           |
| Unknown                | RFCoaxialCable    | No.16               | N200                   | 2022/11/25       | 2023/11/24           |
| Agilent                | Signal Generator  | N5183A              | MY51040755             | 2022/11/25       | 2023/11/24           |

| Manufacturer      | Description                         | Model  | Serial Number | Calibration Date | Calibration Due Date |
|-------------------|-------------------------------------|--------|---------------|------------------|----------------------|
| RF Conducted Test |                                     |        |               |                  |                      |
| WEINSCHEL         | 10dB Attenuator                     | 5324   | AU 3842       | 2022/11/25       | 2023/11/24           |
| Rohde & Schwarz   | Wideband Radio Communication Tester | CMW500 | 154606        | 2022/11/25       | 2023/11/24           |
| Unknown           | RF Coaxial Cable                    | No.31  | RF-01         | Each time        |                      |

\* Statement of Traceability: Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

## **FCC §1.1310& §2.1093 - RF EXPOSURE INFORMATION**

### **Applicable Standard**

FCC§1.1310 and §2.1093.

### **Test Result**

Compliant, please refer to the SAR report: RA221101-50847E-SA.

## **FCC §2.1047 - MODULATION CHARACTERISTIC**

---

According to FCC § 2.1047(d), Part 96, there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

## FCC §2.1046& §96.41(b) (g)- RF OUTPUT POWER

### Applicable Standard

According to §96.41

(b)Power limits:Unless otherwise specified in this section, the maximum effective isotropic radiated power (EIRP) and maximum Power Spectral Density (PSD) of any CBSD and End User Device must comply with the limits shown in the table in this paragraph (b):

| Device must comply with the limits shown in the table in this paragraph (b). |                                    |                          |
|------------------------------------------------------------------------------|------------------------------------|--------------------------|
| Device                                                                       | Maximum EIRP<br>(dBm/10 megahertz) | Maximum PSD<br>(dBm/MHz) |
| End User Device                                                              | 23                                 | n/a                      |
| Category A CBSD                                                              | 30                                 | 20                       |
| Category B CBSD <sup>1</sup>                                                 | 47                                 | 37                       |

<sup>1</sup>Category B CBSDs will only be authorized for use after an ESC is approved and commercially deployed consistent with §§96.15 and 96.67.

(g)Power measurement:The peak-to-average power ratio (PAPR) of any CBSD transmitter output power must not exceed 13 dB. PAPR measurements should be made using either an instrument with complementary cumulative distribution function (CCDF) capabilities or another Commission approved procedure. The measurement must be performed using a signal corresponding to the highest PAPR expected during periods of continuous transmission.

### Test Procedure

*Conducted method:*

The RF output of the transmitter was connected to the CMW500 through sufficient attenuation.



Note: the path loss (cable loss and attenuator) was included to the test result.

### Test Data

#### Environmental Conditions

|                    |           |
|--------------------|-----------|
| Temperature:       | 27 °C     |
| Relative Humidity: | 49 %      |
| ATM Pressure:      | 101.0 kPa |

*The testing was performed by Cat Kang from 2022-12-07 to 2022-12-09.*

**LTE Band 48:**

| Bandwidth (MHz) | Modulation | RB size/<br>RB Offset | Conducted Average Output Power (dBm) |       |       | EIRP(dBm) |       |       |
|-----------------|------------|-----------------------|--------------------------------------|-------|-------|-----------|-------|-------|
|                 |            |                       | Low                                  | Mid   | High  | Low       | Mid   | High  |
| 5.0             | QPSK       | RB1#0                 | 21.23                                | 21.10 | 21.22 | 19.52     | 19.39 | 19.51 |
|                 | 16QAM      | RB1#0                 | 20.19                                | 20.33 | 20.43 | 18.48     | 18.62 | 18.72 |
| 10.0            | QPSK       | RB1#0                 | 21.23                                | 21.36 | 21.32 | 19.52     | 19.65 | 19.61 |
|                 | 16QAM      | RB1#0                 | 20.55                                | 20.29 | 20.32 | 18.84     | 18.58 | 18.61 |
| 15.0            | QPSK       | RB1#0                 | 21.18                                | 21.11 | 21.17 | 19.47     | 19.40 | 19.46 |
|                 | 16QAM      | RB1#0                 | 19.96                                | 20.24 | 20.35 | 18.25     | 18.53 | 18.64 |
| 20.0            | QPSK       | RB1#0                 | 21.13                                | 21.31 | 21.33 | 19.42     | 19.60 | 19.62 |
|                 |            | RB1#99                | 21.08                                | 21.16 | 21.15 | 19.37     | 19.45 | 19.44 |
|                 |            | RB100#0               | 20.15                                | 20.17 | 19.82 | 18.44     | 18.46 | 18.11 |
|                 | 16QAM      | RB1#0                 | 20.58                                | 20.19 | 20.03 | 18.87     | 18.48 | 18.32 |

Note: EIRP(dBm) = Conducted Power(dBm) + Antenna Gain(dBi)

For Band48: Antenna Gain =-1.71dBi

Limit: EIRP≤23dBm/10MHz

For 5MHz mode, the reference bandwidth(10MHz) is greater than the channel bandwidth(5MHz), so the channel power is equal to the test result in dBm/10MHz

For 10MHz mode, the channel power is equal to the test result in dBm/10MHz

For 15MHz/20MHz mode, the channel power is sum of 15MHz/20MHz bandwidth, the result is less than 23dBm, so in any 10MHz bandwidth, it will not exceed the limit

## **FCC §2.1053& §96.41(e) (2) (3) - SPURIOUS RADIATED EMISSIONS**

### **Applicable Standard**

FCC §2.1053 and §96.41(e) (2) (3).

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in §2.1051.

### **Test Procedure**

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the receiving antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

### **Test Data**

#### **Environmental Conditions**

|                           |              |
|---------------------------|--------------|
| <b>Temperature:</b>       | 24.5~25.5 °C |
| <b>Relative Humidity:</b> | 52 ~54%      |
| <b>ATM Pressure:</b>      | 101.0 kPa    |

*The testing was performed by Jimi Zheng from 2022-12-03 to 2022-12-19*

*EUT operation mode: Transmitting (Scan with X-AXIS, Y-AXIS, Z-AXIS, the worst case Y-AXIS was recorded)*

*The worst case is as below:*

**LTE Bands:** (pre-scan all bandwidth/modulation, the worst case as below)

| Frequency<br>(MHz)                             | Receiver<br>Reading<br>(dBm) | Turntable<br>Degree | Rx Antenna    |                | Substituted<br>Factor<br>(dB) | Absolute<br>Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |  |  |  |  |  |  |
|------------------------------------------------|------------------------------|---------------------|---------------|----------------|-------------------------------|----------------------------|----------------|----------------|--|--|--|--|--|--|
|                                                |                              |                     | Height<br>(m) | Polar<br>(H/V) |                               |                            |                |                |  |  |  |  |  |  |
| LTE Band 48, Test frequency range: 30MHz-38GHz |                              |                     |               |                |                               |                            |                |                |  |  |  |  |  |  |
| QPSK,5MHz,3552.5MHz                            |                              |                     |               |                |                               |                            |                |                |  |  |  |  |  |  |
| 239.87                                         | -58.46                       | 12                  | 1.8           | H              | 7.4                           | -51.06                     | -40            | -11.06         |  |  |  |  |  |  |
| 634.25                                         | -48.17                       | 340                 | 2.4           | V              | 7.0                           | -41.17                     | -40            | -1.17          |  |  |  |  |  |  |
| 7105                                           | -65.1                        | 103                 | 2             | H              | 16.8                          | -48.30                     | -40            | -8.30          |  |  |  |  |  |  |
| 7105                                           | -67.2                        | 121                 | 2.4           | V              | 16.7                          | -50.50                     | -40            | -10.50         |  |  |  |  |  |  |
| QPSK, 5MHz,3625MHz                             |                              |                     |               |                |                               |                            |                |                |  |  |  |  |  |  |
| 239.13                                         | -58.53                       | 308                 | 2.2           | H              | 7.4                           | -51.13                     | -40            | -11.13         |  |  |  |  |  |  |
| 633.91                                         | -48.31                       | 174                 | 1.8           | V              | 7.0                           | -41.31                     | -40            | -1.31          |  |  |  |  |  |  |
| 7250                                           | -68.3                        | 340                 | 2             | H              | 18.9                          | -49.40                     | -40            | -9.40          |  |  |  |  |  |  |
| 7250                                           | -69.8                        | 206                 | 1.8           | V              | 18.5                          | -51.30                     | -40            | -11.30         |  |  |  |  |  |  |
| QPSK, 5MHz,3697.5MHz                           |                              |                     |               |                |                               |                            |                |                |  |  |  |  |  |  |
| 239.29                                         | -58.08                       | 220                 | 1.3           | H              | 7.4                           | -50.68                     | -40            | -10.68         |  |  |  |  |  |  |
| 634.67                                         | -48.15                       | 237                 | 1.7           | V              | 7.0                           | -41.15                     | -40            | -1.15          |  |  |  |  |  |  |
| 7395                                           | -68.9                        | 281                 | 1.4           | H              | 19.8                          | -49.10                     | -40            | -9.10          |  |  |  |  |  |  |
| 7395                                           | -69.91                       | 29                  | 2.3           | V              | 19.01                         | -50.90                     | -40            | -10.90         |  |  |  |  |  |  |

**Note:**

Absolute Level = Reading Level + Substituted Factor

Substituted Factor contains: SG Level - Cable loss+ Antenna Gain

Margin = Limit - Absolute Level

For WWAN and WLAN transmit simultaneously condition, please refer to DTS report.

**\*\*\*\*\* END OF REPORT \*\*\*\*\***