

FCC PART 15.247

TEST REPORT

For

Voyetra Turtle Beach, Inc.

100 Summit Lake Drive, Suite 100, Valhalla, New York, United States 10595

FCC ID: XGB-TB2291

Report Type: Original Report	Product Type: EAR FORCE TANGO Wireless LAN AP
Test Engineer: <u>Leon Chen</u>	<u>leon chen</u>
Report Number: <u>R1DG120808004-00A</u>	
Report Date: <u>2012-08-17</u>	
Reviewed By: <u>Ivan Cao</u> <u>EMC Engineer</u>	<u>Ivan Cao</u>
Test Laboratory: Bay Area Compliance Laboratories Corp. (Dongguan) No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn	

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan).

TABLE OF CONTENTS

GENERAL INFORMATION.....	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
OBJECTIVE	4
RELATED SUBMITTAL(S)/GRANT(S).....	4
TEST METHODOLOGY	4
TEST FACILITY	5
SYSTEM TEST CONFIGURATION.....	6
DESCRIPTION OF TEST CONFIGURATION	6
EUT EXERCISE SOFTWARE	6
EQUIPMENT MODIFICATIONS	6
LOCAL SUPPORT EQUIPMENT LIST AND DETAILS	6
EXTERNAL CABLE.....	6
EUT	6
EUT	6
BLOCK DIAGRAM OF TEST SETUP	7
SUMMARY OF TEST RESULTS.....	8
FCC §1.1307 (b) (1) & §2.1091 - MAXIMUM PERMISSIBLE EXPOSURE (MPE)	9
APPLICABLE STANDARD	9
FCC §15.203 - ANTENNA REQUIREMENT.....	10
APPLICABLE STANDARD	10
ANTENNA CONNECTOR CONSTRUCTION	10
FCC§15.207 - CONDUCTED EMISSIONS.....	11
MEASUREMENT UNCERTAINTY	11
EUT SETUP	11
EMI TEST RECEIVER SETUP.....	12
TEST PROCEDURE	12
TEST EQUIPMENT LIST AND DETAILS.....	12
TEST RESULTS SUMMARY	12
TEST DATA	12
FCC §15.209, §15.205 & §15.247(d) - Spurious Emissions	15
MEASUREMENT UNCERTAINTY	15
EUT SETUP	15
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	16
TEST PROCEDURE	16
CORRECTED AMPLITUDE & MARGIN CALCULATION	16
TEST EQUIPMENT LIST AND DETAILS.....	17
TEST RESULTS SUMMARY	17
TEST DATA	17
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH.....	20
APPLICABLE STANDARD	20
TEST PROCEDURE	20
TEST EQUIPMENT LIST AND DETAILS.....	20
TEST DATA	20
FCC §15.247(b) (3) - Maximum Peak Output Power.....	22

APPLICABLE STANDARD	22
TEST PROCEDURE	22
TEST EQUIPMENT LIST AND DETAILS.....	22
TEST DATA	22
FCC §15.247(d) – 100 kHz Bandwidth of Frequency Band Edge	24
APPLICABLE STANDARD	24
TEST PROCEDURE	24
TEST EQUIPMENT LIST AND DETAILS.....	24
TEST DATA	24
FCC §15.247(e) - Power Spectral Density.....	26
APPLICABLE STANDARD	26
TEST PROCEDURE	26
TEST EQUIPMENT LIST AND DETAILS.....	26
TEST DATA	26

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Voyetra Turtle Beach, Inc.* 's product, model number: *TB300-4291-01 (FCC ID: XGB-TB2291)* ("EUT") in this report was a *EAR FORCE TANGO Wireless LAN AP*, which was measured approximately: 9.0 cm (L) x 11 cm (W) x 23 cm (H), rated input voltage: DC 5V from USB port of system.

Frequency Range:

2.4G band:2462MHz
5.2G band:5180MHz-5240MHz

Antenna Gain:

2.4G band:-1.5dBi
5.2G band:3.3dBi

Output Power:

2.4G band:3.0dBm
5.2G band:3.78dBm

* All measurement and test data in this report was gathered from production sample serial number: 120808004 (Assigned by Dongguan BACL). The EUT was received on 2012-08-10.

Objective

This report is prepared on behalf of *Voyetra Turtle Beach, Inc.* in accordance with Part 2-Subpart J, Part 15-Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine the compliance of the EUT with FCC Part 15-Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

15.407 NII submissions with ID: XGB-TB2291

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2009, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

The uncertainty of any RF tests which use conducted method measurement is ± 0.96 dB, the uncertainty of any radiation on emissions measurement is ± 4.0 dB.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China

Test site at Bay Area Compliance Laboratories Corp. (Dongguan) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 02, 2012. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 273710. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

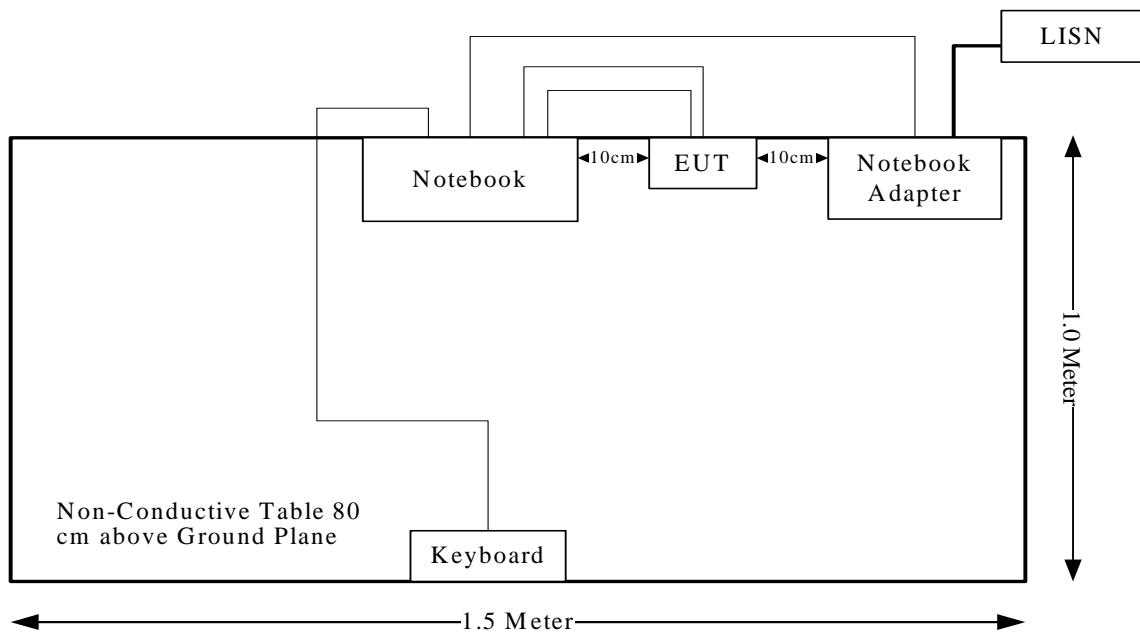
The EUT was configured for testing in an engineering mode which was provided by the manufacturer. For 2.4G band, 1 channel was provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2462	/	/

EUT Exercise Software

Test software: Docklight scripting

Equipment Modifications


No modifications were made to the EUT.

Local Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
Dell	Notebook	PP11L	N/A
Dell	keyboard	L100	CNORH656658907BL05D C

External Cable

Cable Description	Length (m)	From Port	To
Unshielded USB Cable	1.2	USB Port of Notebook	EUT
Unshielded Audio Cable	1.5	Audio output Port of Notebook	EUT

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §2.1091	Maximum Permissible Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Compliance
§15.247(d)	Spurious Emissions at Antenna Port	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliance
§15.247(b)(3)	Maximum Peak Output Power	Compliance
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance
§15.247(e)	Power Spectral Density	Compliance

FCC §1.1307 (b) (1) & §2.1091 - MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247(i) and subpart §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure				
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)
0.3–1.34	614	1.63	*(100)	30
1.34–30	824/f	2.19/f	*(180/f ²)	30
30–300	27.5	0.073	0.2	30
300–1500	/	/	f/1500	30
1500–100,000	/	/	1.0	30

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

$S = PG/4\pi R^2$ = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

Frequency (MHz)	Antenna Gain		Conducted Power		Evaluation Distance (cm)	Power Density (mW/cm ²)	MPE Limit (mW/cm ²)
	(dBi)	(numeric)	(dBm)	(mW)			
2462	-1.5	0.71	3.00	2.00	20	0.0003	1.0

Result: The device meet FCC MPE at 20cm distance

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

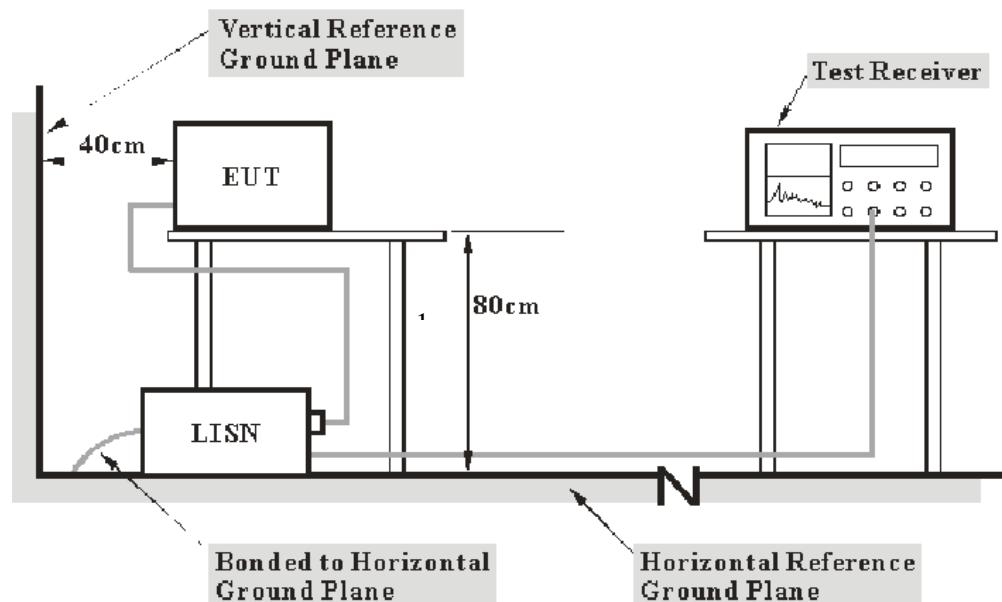
Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (i), Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi

Antenna Connector Construction

The EUT has a ceramic antenna permanently soldered on the printed circuit boards, which complied with 15.203, the maximum gain is -1.5 dBi in 2400MHz-2483.5MHz; please refer to the internal photos.

Result: Compliance.


FCC§15.207 - CONDUCTED EMISSIONS

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on CISPR 16-4-4, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at Bay Area Compliance Laboratories Corp. (Dongguan) is 2.4 dB (k=2, 95% level of confidence).

EUT Setup

Note:

1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.4-2009 measurement procedure. The specification used was with the FCC 15.207 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

The adapter of notebook was connected to an AC 120V/60 Hz power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

<u>Frequency Range</u>	<u>IF B/W</u>
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter of notebook was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Test Equipment List and Details

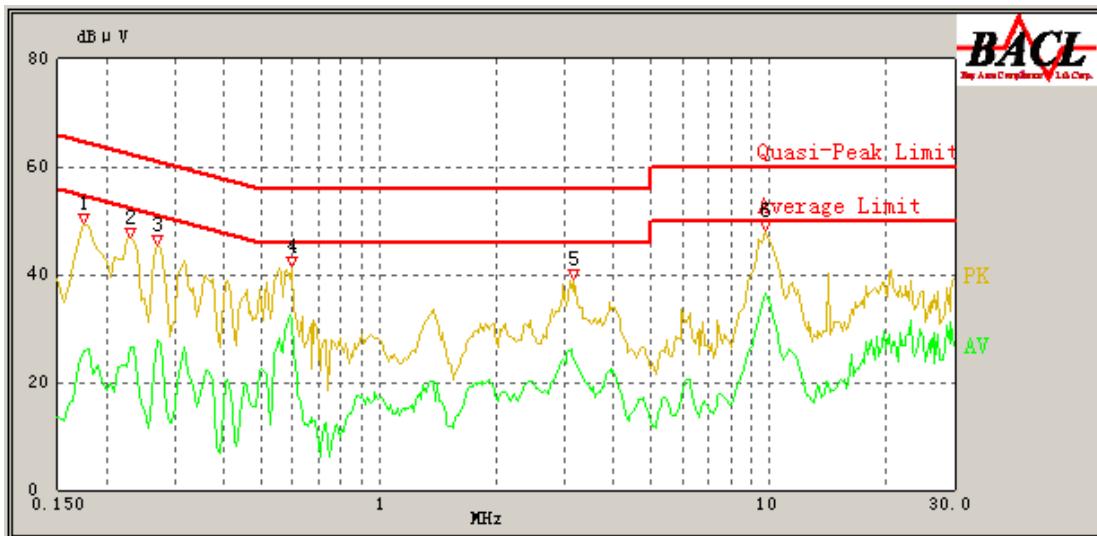
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS 30	830245/006	2011-10-8	2012-10-7
Rohde & Schwarz	LISN	ESH3-Z5	843331/015	2011-10-8	2012-10-7

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15 .207, with the worst margin reading of:

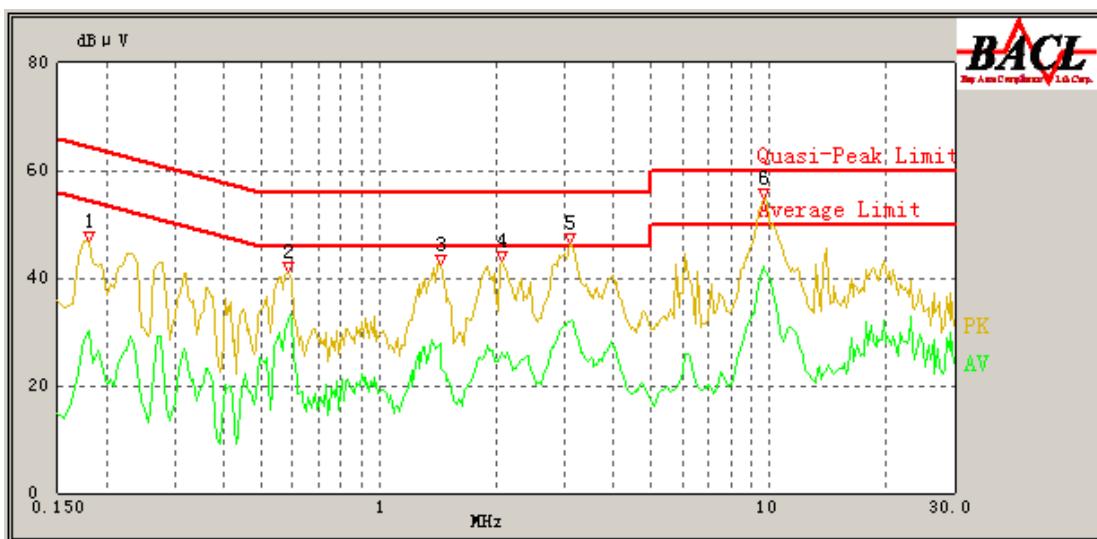
7.93 dB at 9.730 MHz in the **Neutral** line conducted mode

Test Data


Environmental Conditions

Temperature:	20 °C
Relative Humidity:	48 %
ATM Pressure:	100.0 kPa

The testing was performed by Leon Chen on 2012-08-16.


EUT Operation Mode: Transmitting

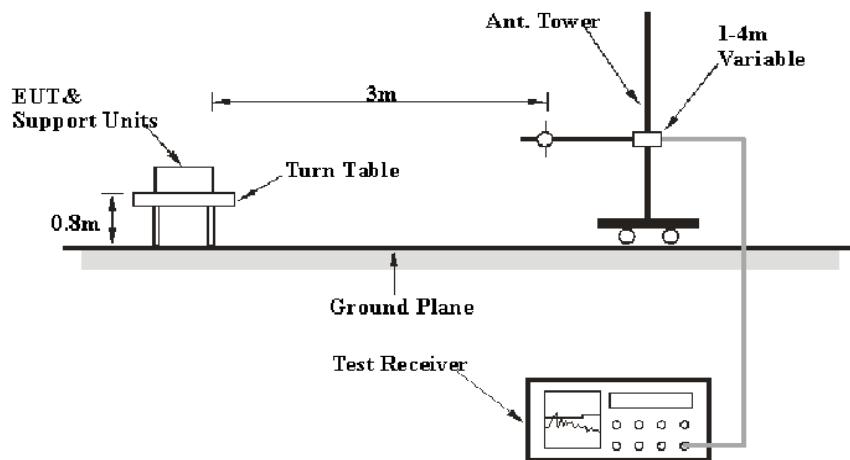
AC 120V/60 Hz, Line

Frequency (MHz)	Corrected Amplitude (dB μ V)	Correction Factor (dB)	Limit (dB μ V)	Margin (dB)	Detector (PK/ QP/Ave.)
9.840	36.58	0.66	50.00	13.42	Ave.
0.595	31.87	0.43	46.00	14.13	Ave.
9.815	40.25	0.66	60.00	19.75	QP
0.595	36.05	0.43	56.00	19.95	QP
0.175	43.94	0.41	65.29	21.35	QP
3.160	24.60	0.49	46.00	21.40	Ave.
0.230	41.10	0.42	63.71	22.61	QP
0.270	39.91	0.42	62.57	22.66	QP
3.160	31.22	0.49	56.00	24.78	QP
0.270	27.77	0.42	52.57	24.80	Ave.
0.230	26.48	0.42	53.71	27.23	Ave.
0.175	25.74	0.41	55.29	29.55	Ave.

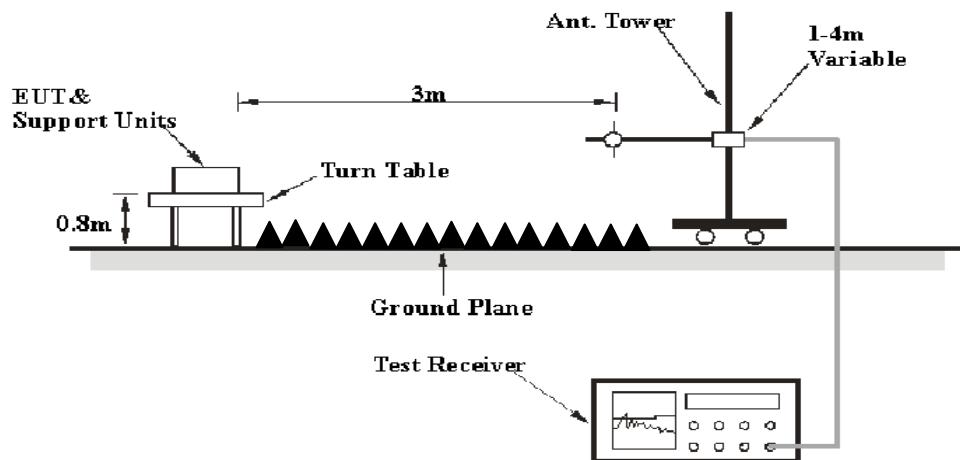
AC 120V/60 Hz, Neutral

Frequency (MHz)	Corrected Amplitude (dB μ V)	Correction Factor (dB)	Limit (dB μ V)	Margin (dB)	Detector (PK/ QP/Ave.)
9.730	42.07	0.66	50.00	7.93	Ave.
9.710	47.46	0.66	60.00	12.54	QP
0.585	32.23	0.43	46.00	13.77	Ave.
3.105	31.85	0.49	46.00	14.15	Ave.
3.085	39.87	0.49	56.00	16.13	QP
0.585	37.90	0.43	56.00	18.10	QP
2.085	25.55	0.48	46.00	20.45	Ave.
1.445	35.49	0.46	56.00	20.51	QP
2.070	35.47	0.48	56.00	20.53	QP
0.180	42.56	0.41	65.14	22.58	QP
1.445	23.20	0.46	46.00	22.80	Ave.
0.180	30.26	0.41	55.14	24.88	Ave.

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS


Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.


Based on CISPR 16-4-4, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Bay Area Compliance Laboratories Corp. (Dongguan) is ± 4.0 dB($k=2$, 95% level of confidence).

EUT Setup

Below 1GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.4-2009. The specification used was the FCC 15.209, and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

The adapter of notebook was connected to an AC 120V/60 Hz power source

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

<u>Frequency Range</u>	<u>RBW</u>	<u>Video B/W</u>	<u>Detector</u>
30 MHz – 1000 MHz	100 kHz	300 kHz	QP
1000 MHz – 25 GHz	1 MHz	3 MHz	PK
1000 MHz – 25 GHz	1 MHz	10 Hz	Ave.

Test Procedure

During the radiated emission test, the adapter of notebook was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

$$\text{Corrected Amplitude} = \text{Meter Reading} + \text{Antenna Factor} + \text{Cable Loss} - \text{Amplifier Gain}$$

The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Corrected Amplitude}$$

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100224	2012-5-13	2013-5-12
Sunol Sciences	Hybrid Antennas	JB3	A060611-1	2011-9-6	2012-9-5
HP	Pre-amplifier	8447E	2434A02181	2011-10-8	2012-10-7
Rohde & Schwarz	Spectrum Analyzer	FSEM	1079 8500	2011-10-9	2012-10-8
Dayang	Horn Antenna	OMCDH10180	10279001B	2011-7-30	2013-7-29
mini-circuits	Wideband Amplifier	ZVA-183-S+	96901149	2012-4-24	2013-4-23
Electro-Mechanics Co.	Horn Antenna	3116	9510-2270	2010-10-14	2013-10-13

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247, with the worst margin reading of:

3.96 dB at 2483.5 MHz in the **Vertical** polarization

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa

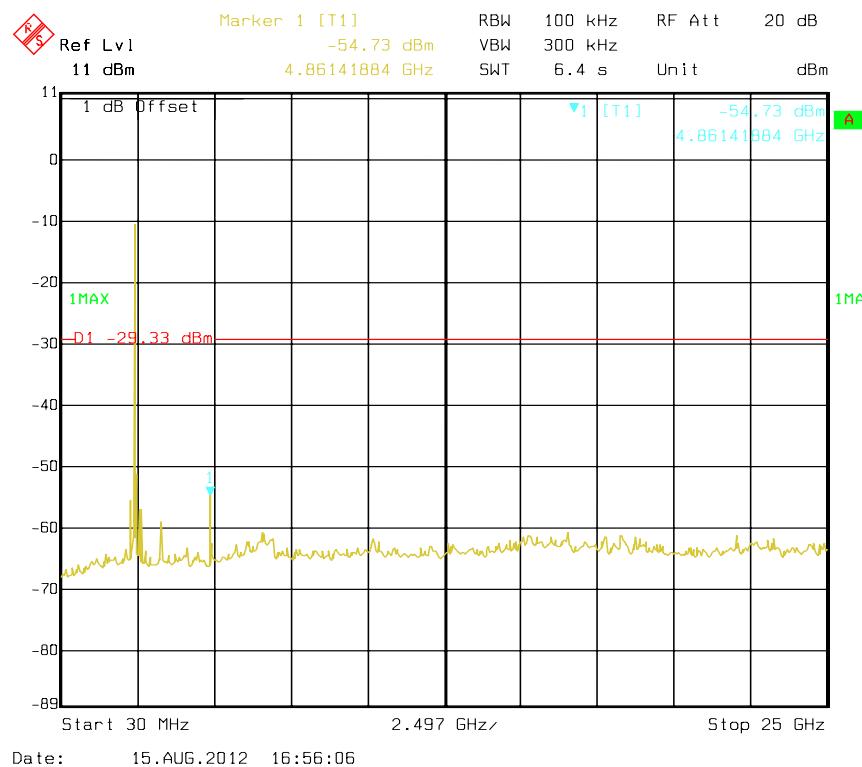
The testing was performed by Leon Chen on 2012-08-11.

Test Mode: Transmitting

30MHz-25 GHz:

Frequency (MHz)	Receiver		Rx Antenna		Cable loss (dB)	Amplifier Gain (dB)	Corrected Amplitude (dB μ V/m)	FCC 15.247	
	Reading (dB μ V)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)				Limit (dB μ V/m)	Margin (dB)
TX channel: 2462 MHz									
2483.5	14.74	AV	V	31.51	3.8	0	50.04	54	3.96
2483.5	30.43	PK	V	31.51	3.8	0	65.73	74	8.27
9848	18.24	AV	V	39	8.49	26.63	39.1	54	14.9
7386	17.82	AV	V	38.99	6.84	26.73	36.93	54	17.07
467.2	29.8	QP	V	17.71	2.62	21.94	28.19	46	17.81
9848	31.09	PK	V	39	8.49	26.63	51.95	74	22.05
1256.6	51.18	PK	V	25.26	2.69	27.2	51.93	74	22.07
7386	30.96	PK	V	38.99	6.84	26.73	50.07	74	23.93
1256.6	28.99	AV	V	25.26	2.69	27.2	29.74	54	24.26
4924	18.74	AV	V	33.43	4.7	27.17	29.71	54	24.29
4924	34.39	PK	V	33.43	4.7	27.17	45.36	74	28.64
2462	43.01	AV	H	31.39	3.93	0	78.33	N/A	N/A
2462	56.44	PK	H	31.39	3.93	0	91.76	N/A	N/A
2462	43.5	AV	V	31.39	3.93	0	78.82	N/A	N/A
2462	57.34	PK	V	31.39	3.93	0	92.66	N/A	N/A

Conducted Spurious Emissions at Antenna Port


Test Procedure

Measurement Procedure – Reference Level

1. Set the RBW = 100 kHz.
2. Set the VBW ≥ 300 kHz.
3. Set the span to 5-30 % greater than the EBW.
4. Detector = peak.
5. Sweep time = auto couple.
6. Trace mode = max hold.
7. Allow trace to fully stabilize.
8. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW. Next, determine the power in 100 kHz band segments outside of the authorized frequency band using the following measurement:

Measurement Procedure - Unwanted Emissions

1. Set RBW = 100 kHz.
2. Set VBW ≥ 300 kHz.
3. Set span to encompass the spectrum to be examined.
4. Detector = peak.
5. Trace Mode = max hold.
6. Sweep = auto couple.
7. Allow the trace to stabilize (this may take some time, depending on the extent of the span).

FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

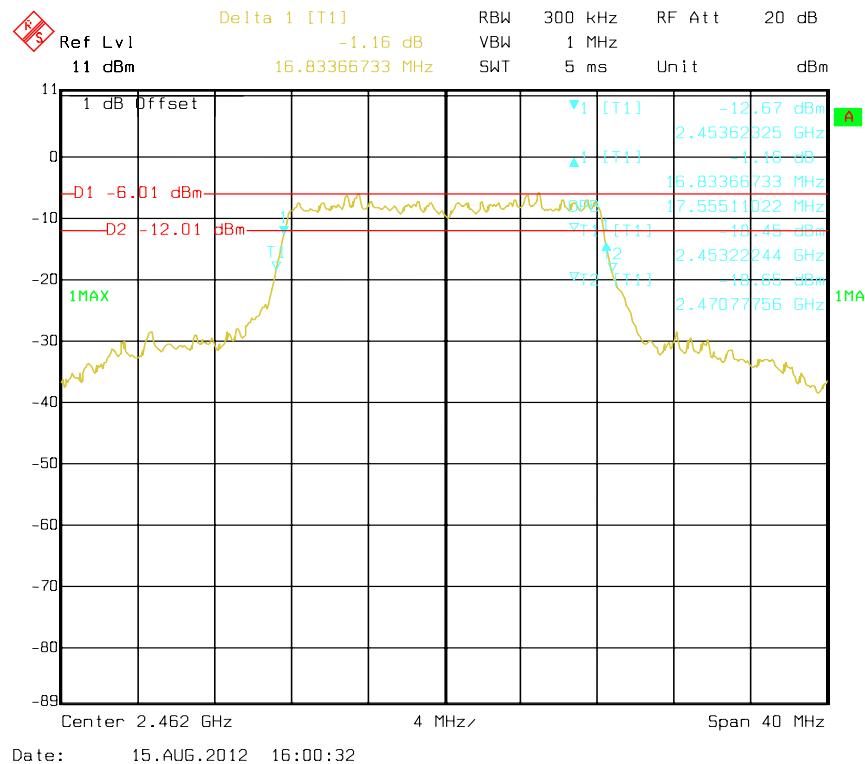
1. Set resolution bandwidth (RBW) = 1-5 % of the emission bandwidth (EBW).
2. Set the video bandwidth (VBW) $\geq 3 \times$ RBW.
3. Detector = Peak.
4. Trace mode = max hold.
5. Sweep = auto couple.
6. Allow the trace to stabilize.
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Compare the resultant bandwidth with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is 1-5 %.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSEM	1079 8500	2011-10-9	2012-10-8

Test Data

Environmental Conditions


Temperature:	25 °C
Relative Humidity:	56%
ATM Pressure:	100.0kPa

The testing was performed by Leon Chen on 2012-08-15.

Test Result: Pass.

Please refer to the following table and plot.

Frequency (MHz)	6dB Bandwidth (MHz)	Limit (kHz)
2462	16.83	>500

FCC §15.247(b) (3) - MAXIMUM PEAK OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

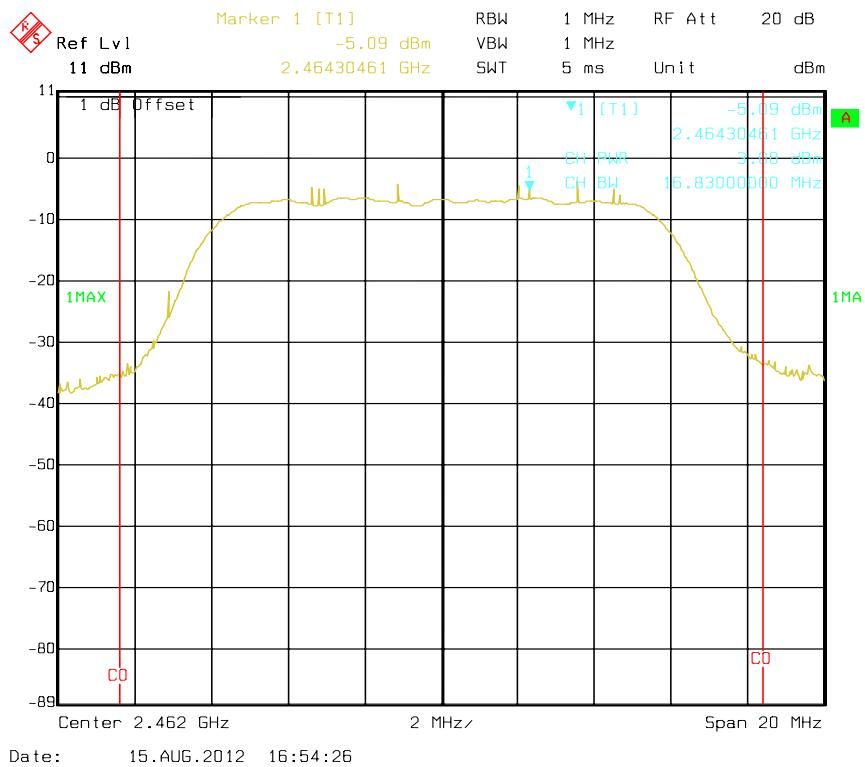
1. This procedure provides an integrated measurement alternative when the maximum available RBW < EBW
2. Set the RBW = 1 MHz
3. Set the VBW = 3 MHz
4. Set the span to a value that is 5-30 % greater than the EBW.
5. Detector = peak.
6. Sweep time = auto couple.
7. Trace mode = max hold.
8. Allow trace to fully stabilize.
9. Use the spectrum analyzer's integrated band power measurement function with band limits set equal to the EBW band edges (for some analyzers, this may require a manual override to ensure use of peak detector). If the spectrum analyzer does not have a band power function, sum the spectrum levels (in linear power units) at 1 MHz intervals extending across the EBW of the spectrum.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSEM	1079 8500	2011-10-9	2012-10-8

Test Data

Environmental Conditions


Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa

The testing was performed by Leon Chen on 2012-08-15.

Test Mode: Transmitting

Frequency (MHz)	Conducted Output Power (dBm)	Limit (dBm)	Result
2462	3.00	30	pass

Output Power

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

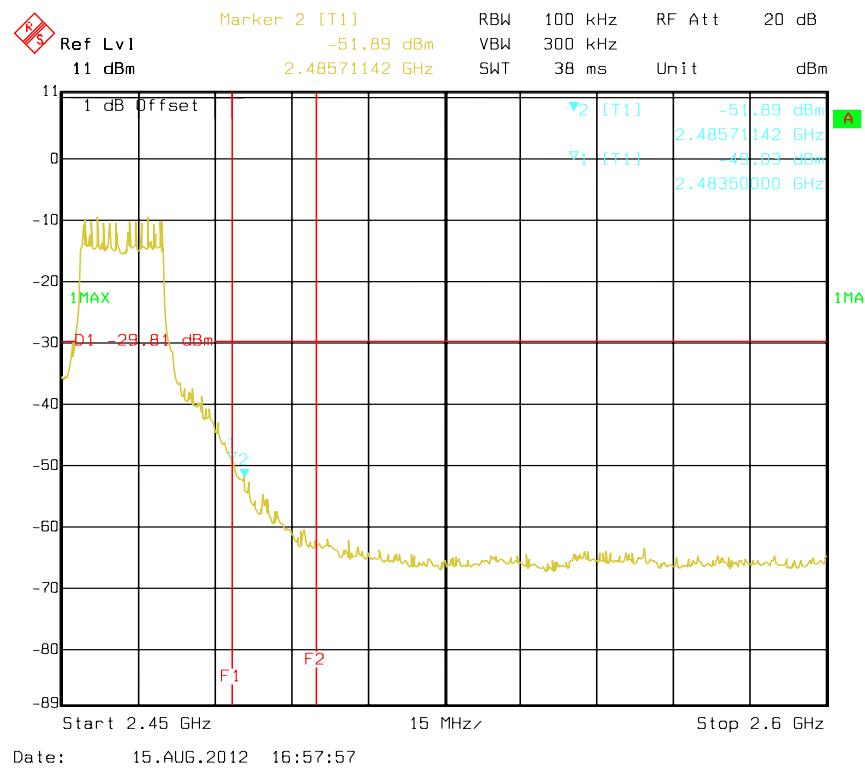
Test Procedure

1. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge;
2. Measure the highest amplitude appearing on spectral display and set it as a reference level;
3. Repeat above procedures until all measured frequencies were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSEM	1079 8500	2011-10-9	2012-10-8

Test Data


Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa

The testing was performed by Leon Chen on 2012-08-15

Test Result: *Compliance*

Please refer to following plots.

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

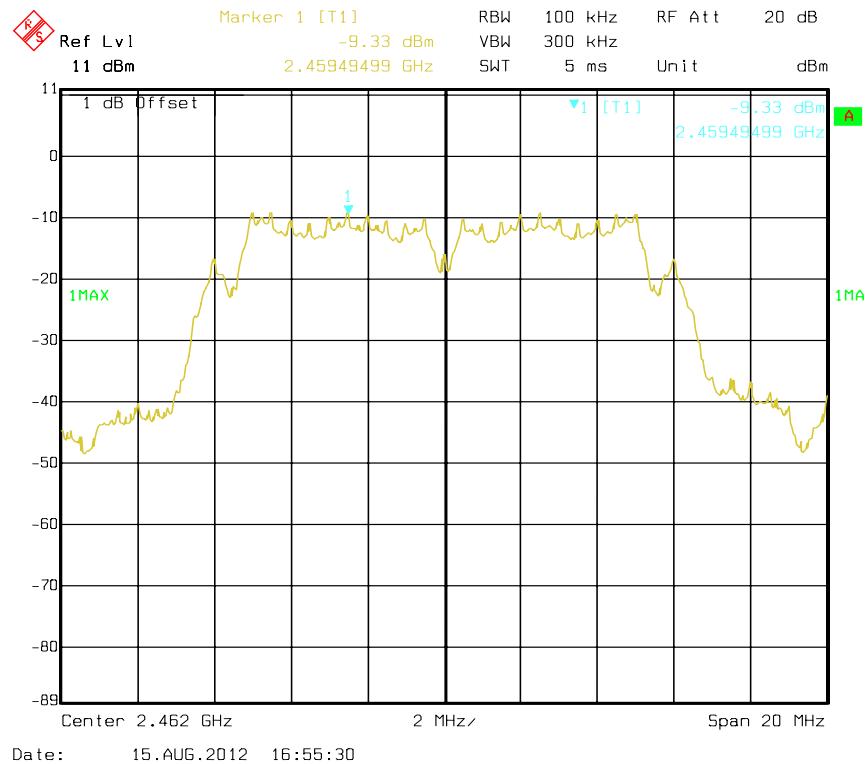
1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
3. According to KDB 558074 D01 DTS Meas Guidance v01, set the RBW = 100 kHz, VBW ≥ 300 kHz, set the span to 5-30 % greater than the EBW.
4. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.
5. Scale the observed power level to an equivalent value in 3 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where $BWCF = 10\log(3\text{ kHz}/100\text{ kHz}) = -15.2\text{ dB}$.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSEM	1079 8500	2011-10-9	2012-10-8

Test Data

Environmental Conditions


Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa

The testing was performed by Leon Chen on 2012-08-15.

Test Mode: Transmitting

Test Result: Pass

Frequency (MHz)	Reading Level (dBm/100kHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result
2462	-9.33	-24.53	8	pass

******* END OF REPORT *******