

Dynamic Frequency Selection Test Report

EUT Name: Wireless Audio Headset

Model No.: Ear Force Stealth 600X

CFR 47 Part 15.407(h) 2017 and KDB 905462 D02 UNII DFS Compliance Procedures New
Rules v02

Prepared for:

Tim Blaney
Voyetra Turtle Beach, Inc.
100 Summit Lake Drive, Suite 100
Valhalla, New York 10595 USA
Tel: (530) 277-3482

Prepared by:

TUV Rheinland of North America, Inc.
1279 Quarry Lane, Ste. A
Pleasanton, CA 94566
Tel: (925) 249-9123
Fax: (925) 249-9124
<http://www.tuv.com/>

Report/Issue Date: June 2, 2017
Report Number: 31761682.001
Revision Number: 0
Job # 0000148495

Revisions

Note: Latest revision report will replace all previous reports.

Statement of Compliance

Manufacturer: Voyetra Turtle Beach, Inc.
100 Summit Lake Drive, Suite 100
Valhalla, New York 10595 USA
(530) 277-3482

Requester / Applicant: Tim Blaney

Name of Equipment: Wireless Audio Headset

Model No. Ear Force Stealth 600X (TB300-2015-01)

Type of Equipment: Intentional Radiator

Application of Regulations: CFR 47 Part 15.407(h) 2017 and KDB 905462 D02 UNII DFS
Compliance Procedures New Rules v02

Test Dates: May 28, 2017 to May 30, 2017

Guidance Documents:

Dynamic Frequency Selection: CFR47 Part 2 and 15.407(h), KDB 905462 D02 UNII DFS
Compliance Procedures New Rules v02

Test Methods:

Dynamic Frequency Selection: CFR47 Part 2 and 15.407(h), KDB 905462 D02 UNII DFS
Compliance Procedures New Rules v02

The Dynamic Frequency Selection test and documented data described in this report has been performed and recorded by TUV Rheinland, in accordance with the standards and procedures listed herein. As the responsible authorized agent of the EMC laboratory, I hereby declare that the equipment described above has been shown to be compliant with the EMC requirements of the stated regulations and standards based on these results. If any special accessories and/or modifications were required for compliance, they are listed in the Executive Summary of this report.

This report must not be used to claim product endorsement by A2LA or any agency of the U.S. Government. This report contains data that are not covered by A2LA accreditation. This report shall not be reproduced except in full, without the written authorization of TUV Rheinland of North America.

Jeremy Luong

June 2, 2017

Test Engineer

Date

David Spencer

June 2, 2017

Laboratory Signatory

Date

INDUSTRY
CANADA

Testing Cert #3331.02

US1131

2932M-1

1	<i>Executive Summary</i>	8
1.1	Scope	8
1.2	Purpose	8
1.3	Summary of Test Results	9
1.4	Special Accessories	9
1.5	Equipment Modifications	9
2	<i>Laboratory Information</i>	10
2.1	Accreditations & Endorsements	10
2.1.1	US Federal Communications Commission	10
2.1.2	A2LA	10
2.1.3	Canada – Industry Canada	10
2.1.4	Japan – VCCI	10
2.1.5	Acceptance by Mutual Recognition Arrangement	10
2.2	Test Facilities	11
2.2.1	Emission Test Facility	11
2.2.2	Immunity Test Facility	11
2.3	Measurement Uncertainty	12
2.3.1	Sample Calculation – radiated & conducted emissions	12
2.3.2	Measurement Uncertainty	12
2.3.3	Measurement Uncertainty Immunity	13
2.4	Calibration Traceability	13
3	<i>Product Information</i>	14
3.2	Equipment Configuration	14
3.3	DFS Operating Mode	14
3.4	EUT Transmit Power	14
3.5	EUT Operating Channels	15
3.6	Duty Cycle During DFS	15
4	<i>Dynamic Frequency Selection</i>	16
4.1	DFS Applicability	16
4.2	DFS Requirements	17
4.3	Test Setup Protocol	20
4.4	Radar Waveform Calibration Plot	21
4.5	In-Service Monitoring	23
4.8.1	Test Method	23
4.8.2	Results	24
5	<i>Test Equipment Use List</i>	31
6	<i>Test Setup Photo</i>	32

7 <i>DFS Test Plan</i>	34
 7.1 <i>Introduction</i>	34
 7.2 <i>Customer</i>	34
 7.3 <i>Equipment Under Test (EUT)</i>	35
 7.4 <i>Test Specification</i>	38

Figure 1: Radar Type 0 DFS Detection Threshold Level at 5300 MHz.....	21
Figure 2: Radar Type 0 DFS Detection Threshold Level at 5500 MHz.....	22
Figure 3: Channel Move Time and Channel Closing Transmission Time using Pulse Radar Waveform 0 at 5300 MHz, 20 MHz Bandwidth	25
Figure 4: Channel Move Time and Channel Closing Transmission Time using Pulse Radar Waveform 0 at 5300 MHz, 20 MHz Bandwidth (Close-up).....	26
Figure 5: Non-Occupancy Period using Waveform Type 0 at 5300 MHz, 20 MHz Bandwidth.....	27
Figure 6: Channel Move Time and Channel Closing Transmission Time using Pulse Radar Waveform 0 at 5500 MHz, 20 MHz Bandwidth	28
Figure 7: Channel Move Time and Channel Closing Transmission Time using Pulse Radar Waveform 0 at 5500 MHz, 20 MHz Bandwidth (Close-up).....	29
Figure 8: Non-Occupancy Period using Waveform Type 0 at 5500 MHz, 20 MHz Bandwidth.....	30
Figure 9: DFS Test Setup Photo (Rear).....	32
Figure 10: DFS Test Setup Photo for Master Mode (Front)	33

Table 1: Summary of Test Results for Master Device Mode	9
Table 2: Applicability of DFS Requirements Prior to Use of a Channel	16
Table 3: Applicability of DFS requirements during normal operation	16
Table 4: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection	17
Table 5: DFS Response Requirement Values	17
Table 6: Short Pulse Radar Test Waveforms	18
Table 7: Pulse Repetition Intervals Value for Test A	18
Table 8: Long Pulse Radar Test Waveform	19
Table 9: Frequency Hopping Radar Test Waveform	19
Table 10: In-Service Monitoring – Test Results	24
Table 11: Customer Information	34
Table 12: Technical Contact Information	34
Table 13: EUT Specifications	35
Table 14: EUT Channel Power Specifications	36
Table 15: Interface Specifications	37
Table 16: Supported Equipment	37
Table 17: Description of Sample used for Testing	37
Table 18: Test Mode for DFS	37
Table 19: Test Specifications	38

1 Executive Summary

1.1 Scope

This report is intended to document the status of conformance with the requirements of the CFR 47 Part 15.407(h) 2017 and KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02 based on the results of testing performed on May 28, 2017 through May 30, 2017 on the Wireless Audio Headset Model Ear Force Stealth 600X manufactured by Voyetra Turtle Beach, Inc.. This report only applies to the specific samples tested under the stated test conditions. It is the responsibility of the manufacturer to assure that additional production units of this model are manufactured with identical or EMI equivalent electrical and mechanical components. This report is further intended to document changes and modifications to the EUT throughout its life cycle. All documentation will be included as a supplement.

1.2 Purpose

Testing was performed to evaluate the dynamic frequency selection performance of the Wireless Audio Headset in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report.

1.3 Summary of Test Results

Table 1: Summary of Test Results for Client Device Mode

Requirements	Test Method KDB 905462	Description	Test Parameters	Measured Value	Result
20 MHz Bandwidth					
Detection Threshold	Sect. 7.8.1	EUT Min. Detection Level	-64 dBm \geq 200 mW -62 dBm $<$ 200 mW	Not Required*	N/A
Detection Bandwidth	Sect. 7.8.1	U-NII Detection Bandwidth	Min 100% of 99% BW.	Not Required*	N/A
Performance Requirements Check	Sect. 7.8.2.1	Initial Channel Check	CAC \geq 60s	Not Required*	N/A
	Sect. 7.8.2.2	Burst Radar at the beginning	150s (2.5min)	Not Required*	N/A
	Sect. 7.8.2.3	Burst Radar at the End	150s (2.5min)	Not Required*	N/A
In-Service Monitoring	Sect. 7.8.3	Channel Moving Time	CMT \leq 10s	155.9 ms	Complied
		Channel Closing Time Transmission	200 ms + an agg. Of 60 ms over remaining 10s.	15.3 ms	Complied
		Non-Occupancy Period	\geq 30 min.	> 30 min.	Complied
Radar Statistic Performance Check	Sect. 7.8.4	Waveform 1 - 4 Detections	60% in 30 trials 80% of Aggregate	Not Required*	N/A
		Waveform 5 Detections	80% in 30 trials	Not Required*	
		Waveform 6 Detections	70% in 30 trials	Not Required*	
Transmit Power Control	CFR47 15.407 (h)(1)		6 dB below 30 dBm EIRP or less than 500 mW.	Manufacturer's Statement	Complied
Uniform Spreading	CFR47 15.407 (h)(2)		Manufacturer's Statement		Complied

1.4 Special Accessories

No special accessories were necessary in order to achieve compliance.

1.5 Equipment Modifications

None.

2 Laboratory Information

2.1 *Accreditations & Endorsements*

2.1.1 US Federal Communications Commission

TUV Rheinland of North America at 1279 Quarry Ln, Pleasanton, CA 94566 is recognized by the commission for performing testing services for the general public on a fee basis.

These laboratory test facilities have been fully described in reports submitted to and accepted by the FCC (US1131). The laboratory scope of accreditation includes: Title 47 CFR Parts 15, 18, and 90. The accreditation is updated every 3 years.

2.1.2 A2LA

TUV Rheinland of North America is accredited by the National Voluntary Laboratory Accreditation Program, which is administered under the auspices of the National Institute of Standards and Technology. The laboratory has been assessed and accredited in accordance with ISO Guide 17025:2005 and ISO 9002 (Lab Code US1131). The scope of laboratory accreditation includes emission and immunity testing. The accreditation is updated annually.

2.1.3 Canada – Industry Canada

TUV Rheinland of North America at the 1279 Quarry Ln, Pleasanton, CA 94566 address is accredited by Industry Canada for performing testing services for the general public on a fee basis. This laboratory test facilities have been fully described in reports submitted to and accepted by Industry Canada (File Number 2932M-1). This reference number is the indication to the Industry Canada Certification Officers that the site meets the requirements of RSS 212, Issue 1 (Provisional). The accreditation is updated every 3 years.

2.1.4 Japan – VCCI

The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) is a group that consists of Information Technology Equipment (ITE) manufacturers and EMC test laboratories. The purpose of the Council is to take voluntary control measures against electromagnetic interference from Information Technology Equipment, and thereby contribute to the development of a socially beneficial and responsible state of affairs in the realm of Information Technology Equipment in Japan. TUV Rheinland of North America at 1279 Quarry Ln, Pleasanton, CA 94566 has been assessed and approved in accordance with the Regulations for Voluntary Control Measures.

VCCI Registration No. for Pleasanton: A-0261

2.1.5 Acceptance by Mutual Recognition Arrangement

The United States has an established agreement with specific countries under the Asia Pacific Laboratory Accreditation Corporation (APLAC) Mutual Recognition Arrangement. Under this agreement, all TUV Rheinland at 1279 Quarry Lane, Pleasanton, CA 94566 test results and test reports within the scope of the laboratory A2LA accreditation will be accepted by each member country.

2.2 Test Facilities

All of the test facilities are located at 1279 Quarry Lane, Pleasanton, California 94566, USA.

2.2.1 Emission Test Facility

The Semi-Anechoic chamber and AC Line Conducted measurement facility used to collect the radiated and conducted data has been constructed in accordance with ANSI C63.7:1992. The site has been measured in accordance with and verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4-2014, at a test distance of 3 and 5 meters. The site is listed with the FCC and accredited by A2LA (Lab Code US1131). The 3/5-meter semi-anechoic chamber used to collect the radiated data has been verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4-2014, at a test distance of 3 meter and 5 meters. A report detailing this site can be obtained from TUV Rheinland of North America.

2.2.2 Immunity Test Facility

ESD, EFT, Surge, PQF: These tests are performed in an environmentally controlled room with a 3.7 m x 4.8 m x 3.175 mm thick aluminum floor connected to PE ground.

For ESD testing, tabletop equipment is placed on an insulated mat with a surface resistivity of 10^9 Ohms/square on a 1.6 m x 0.8 m x 0.8 m high non-conductive table with a 3.175 mm aluminum top (Horizontal Coupling Plane). The HCP is connected to the main ground plane via a low impedance ground strap through two 470-k Ω resistors. The Vertical Coupling Plane consists of an aluminum plate 50 cm x 50 cm x 3.175 mm thick. The VCP is connected to the main ground plane via a low impedance ground strap through two 470-k Ω resistors.

For EFT, Surge, PQF, the HCP and VCP are removed.

RF Field Immunity testing is performed in a 7.3m x 4.3m x 4.1m anechoic chamber.

RF Conducted and Magnetic Field Immunity testing is performed on a 4.8m x 3.7m x 3.175mm thick aluminum ground plane.

All test areas allow a minimum distance of 1 meter from the EUT to walls or conducting objects.

2.3 Measurement Uncertainty

Two types of measurement uncertainty are expressed in this report, per *ISO Guide To The Expression Of Uncertainty In Measurement*, 1st Edition, 1995.

The Combined Standard Uncertainty is the standard uncertainty of the result of a measurement when that result is obtained from the values of a number of other quantities; it is equal to the positive square root of the sum of the variances or co-variances of these other quantities, weighted according to how the measurement result varies with changes in these quantities. The term *standard uncertainty* is the result of a measurement expressed as a standard deviation.

2.3.1 Sample Calculation – radiated & conducted emissions

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

$$\text{Field Strength (dB}\mu\text{V/m)} = \text{RAW} - \text{AMP} + \text{CBL} + \text{ACF}$$

Where: RAW = Measured level before correction (dB μ V)

AMP = Amplifier Gain (dB)

CBL = Cable Loss (dB)

ACF = Antenna Correction Factor (dB/m)

$$\mu\text{V/m} = 10^{\frac{\text{dB}\mu\text{V/m}}{20}}$$

Sample radiated emissions calculation @ 30 MHz

Measurement +Antenna Factor–Amplifier Gain+Cable loss=Radiated Emissions (dB μ V/m)

$$25 \text{ dB}\mu\text{V/m} + 17.5 \text{ dB} - 20 \text{ dB} + 1.0 \text{ dB} = 23.5 \text{ dB}\mu\text{V/m}$$

2.3.2 Measurement Uncertainty

Per CISPR 16-4-2	U _{lab}	U _{cispr}
Radiated Disturbance @ 10 meters		
30 – 1,000 MHz	2.25 dB	4.51 dB
Radiated Disturbance @ 3 meters		
30 – 1,000 MHz	2.26 dB	4.52 dB
1 – 6 GHz	2.12 dB	4.25 dB
6 – 18 GHz	2.47 dB	4.93 dB
Conducted Disturbance @ Mains Terminals		
150 kHz – 30 MHz	1.09 dB	2.18 dB

Disturbance Power		
30 MHz – 300 MHz	3.92 dB	4.3 dB

Voltech PM6000A

The estimated combined standard uncertainty for harmonic current and flicker measurements is $\pm 5.0\%$.	Per CISPR 16-4-2 Methods
--	--------------------------

2.3.3 Measurement Uncertainty Immunity

The estimated combined standard uncertainty for ESD immunity measurements is $\pm 8.2\%$.	Per IEC 61000-4-2
The estimated combined standard uncertainty for radiated immunity measurements is ± 4.10 dB.	Per IEC 61000-4-3
The estimated combined standard uncertainty for conducted immunity measurements with CDN is ± 3.66 dB	Per IEC 61000-4-6
The estimated combined standard uncertainty for power frequency magnetic field immunity is $\pm 2.9\%$.	Per IEC 61000-4-8

Thermo KeyTek EMC Pro

The estimated combined standard uncertainty for EFT fast transient immunity measurements is $\pm 2.6\%$.
The estimated combined standard uncertainty for surge immunity measurements is $\pm 2.6\%$.
The estimated combined standard uncertainty for voltage variation and interruption measurements is $\pm 1.74\%$.

The expanded uncertainty at a level of 95% confidence is obtained by multiplying the combined standard uncertainty by a coverage factor of 2. Compliance criteria are not based on measurement uncertainty.

2.4 Calibration Traceability

All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Measurement method complies with ANSI/NCSL Z540-1-1994 and ISO Standard 17025:2005. Equipment calibration records are kept on file at the test facility.

3 Product Information

3.1 Product Description

The Stealth 600X is a completely wireless Xbox One audio gaming headset. It wirelessly connects directly to the Xbox One console over either a 2.4 GHz or 5.0 GHz Wi-Fi link. The functionality in the headset consists of 50mm speaker drivers, a flip up non-removable microphone, microphone monitoring (adjustable via EFAH) and game/chat mix controls on the headset. Additionally, it has a ProSpecs alternative glasses relief ear pad design. With the Microsoft integrated radio module, this headset is also capable of working with compatible Windows PCs in the future.

3.2 Equipment Configuration

A description of the equipment configuration is given in the Test Plan Section. The EUT was tested as called for in the test standard and was configured and operated in a manner consistent with its intended use. The EUT was connected to rated power and allowed to reach intended operating conditions. The placement of the EUT system components was guided by the test standard and selected to represent typical installation conditions.

3.3 DFS Operating Mode

DFS Mode	DFS Operating Range	
	5250 – 5350 MHz	5470 – 5725 MHz
Client without radar detection and ad hoc capability	Yes	Yes

3.4 EUT Transmit Power

Freq. Band (MHz)	Ant. Gain (dBi)	802.11a Mode		802.11n HT20 Mode	
		Output Pwr (dBm)	EIRP (dBm)	Output Pwr (dBm)	EIRP (dBm)
5250-5350	+4.9	+7.92	+12.82	+7.84	+12.74
5470-5725	+4.9	+7.90	+12.80	+7.99	+12.89

3.5 EUT Operating Channels

Band 1 (5150-5250MHz)		Band 2 (5250-5350MHz)		Band 3 (5470-5725MHz)		Band 4 (5725-5850MHz)	
No.	Channel Freq. (MHz)						
36	5180	52	5260	100	5500	149	5745
40	5200	56	5280	104	5520	153	5765
44	5220	60	5300	108	5540	157	5785
48	5240	64	5320	112	5560	161	5805
				116	5580	165	5825
				132	5660		
				136	5680		
				140	5700		

Note: EUT supports only 20 MHz bandwidth in 802.11a and 802.11n HT20 modes.

3.6 Duty Cycle During DFS

Mode	Duty Cycle	
	5300 MHz	5500 MHz
Streaming Audio	6.0%	9.4%

4 Dynamic Frequency Selection

Testing was performed in accordance with CFR47 Part 2 and 15.407(h), KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02. These test methods are listed under the laboratory's A2LA Scope of Accreditation. This test measures and verifies the characteristics and probability of EUT to switch to different operating channel, once the radar signal is detected. Procedures described in KDB 905462 D02 UNII DFS Compliance Procedure New Rules v02 were used.

4.1 DFS Applicability

All devices operated in the frequency range of 5250 MHz-5350 MHz and 5470 MHz-5725MHz must equip with the DFS mechanism. The Wireless Audio Headset Mode Ear Force Stealth 600X is a client device without radar detection capability, only channel closing transmission and channel move time requirements shall apply per KDB 905462 D02 procedures.

Table 2: Applicability of DFS Requirements Prior to Use of a Channel

Requirement	Operational Mode		
	Master	Client Without Radar Detection	Client With Radar Detection
Non-Occupancy Period	Yes	Not required	Yes
DFS Detection Threshold	Yes	Not required	Yes
Channel Availability Check Time	Yes	Not required	Not required
U-NII Detection Bandwidth	Yes	Not required	Yes

Table 3: Applicability of DFS requirements during normal operation

Requirement	Operational Mode		
	Master	Master Device or Client With Radar Detection	Client Without Radar Detection
DFS Detection Threshold	Yes	Yes	Not required
Channel Closing Transmission Time	Yes	Yes	Yes
Channel Move Time	Yes	Yes	Yes
U-NII Detection Bandwidth	Yes	Yes	Not required

Additional Requirements for device with multiple bandwidth modes	Master Device or Client With Radar Detection	Client Without Radar Detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW Modes must be tested	Not Required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW Mode	Testing using the widest BW mode available for the link
All other tests	Any single BW Mode	Not Required
Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channel and the channel center frequencies.		

4.2 DFS Requirements

Based on the applicability of Voyetra Turtle Beach, Inc., Model Ear Force Stealth 600X, the following parameters and probability must be tested for conformance.

Table 4: DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection

Maximum Transmit Power	Value
EIRP \geq 200 milliwatt	-64 dBm
EIRP $<$ 200 milliwatt and power spectral density $<$ 10 dBm/MHz	-62 dBm
EIRP $<$ 200 milliwatt that do not meet power spectral density requirement	-64 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.
 Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.
 Note 3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.
 Note 4: Ear Force Stealth 600X is a client device without radar detection. This requirements do not apply.

Table 5: DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds. See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3.

Note 1: Channel Move Time and the Channel Closing Transmission should be performed with Radar Type 0. The measurement timing begin at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 is used and for each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Table 6: Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (μsec)	PRI (μsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	60%	30
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI Values in Table 5a	Roundup{(1/360)*(19*10 ⁶ /PRI _{usec})}	60%	30
		Test B: 15 unique PRI values randomly selected within the range of 518-3066 uSec, with a minimum increment of 1 uSec, excluding PRI values selected in Test 1A			
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (Radar Types 1-4)				80%	120
Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time and channel closing time tests.					

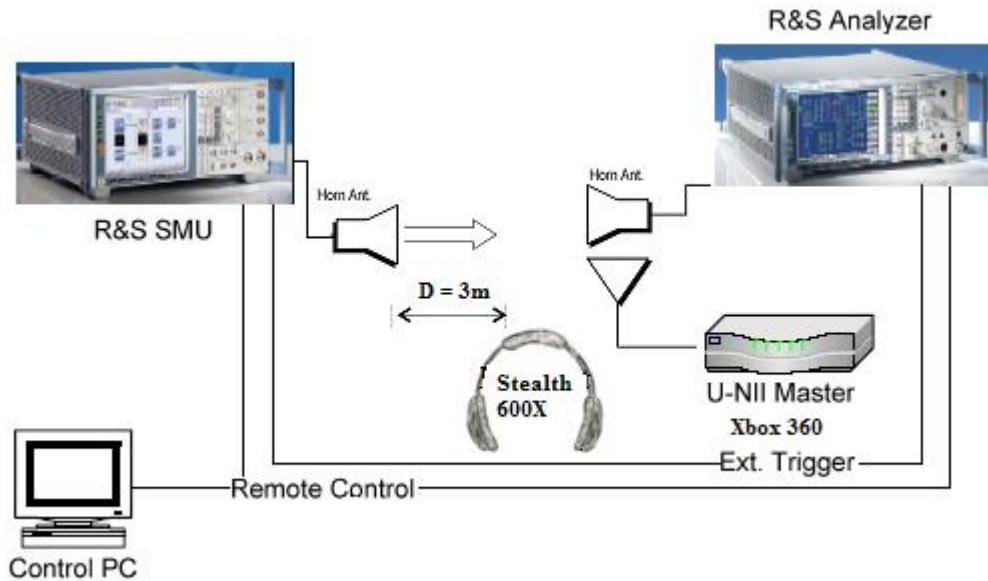
Table 7: Pulse Repetition Intervals Value for Test A

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulse per Second)	Pulse Repetition Interval (Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678

10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

Table 8: Long Pulse Radar Test Waveform

Radar Type	Pulse Width (μsec)	Chirp Width (MHz)	PRI (μsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30


Table 9: Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (μsec)	PRI (μsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

4.3 Test Setup Protocol

The following test setup was used to evaluate the Wireless Audio Headset Model Ear Force Stealth 600X for DFS conformance.

Dynamic Frequency Selection in Block Diagram: Radiated Setup

4.4 Radar Waveform Calibration Plot

The radar signal level must be -64 dBm applying to the master device; Xbox 360.

Note: These waveforms were compensated for the path loss as offset on spectrum analyzer.

Type 0 radar waveform verified at the 5300 MHz, and 5500 MHz center frequency using radiated method. These waveforms were compensated for the path loss and antenna gain as offset on spectrum analyzer.

The radar signal levels below are calibrated to be less than -64.00 dBm for EUT threshold detection.

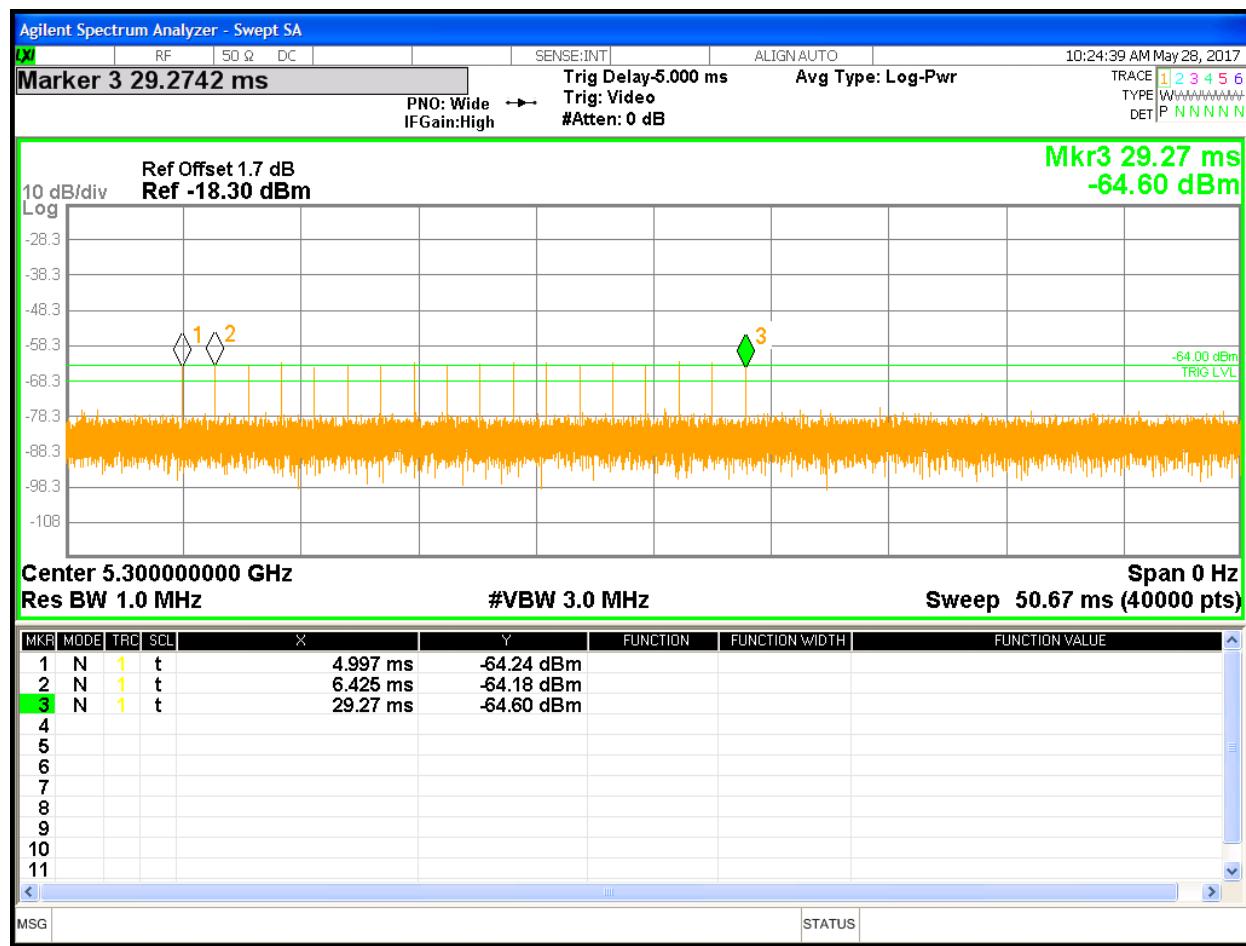
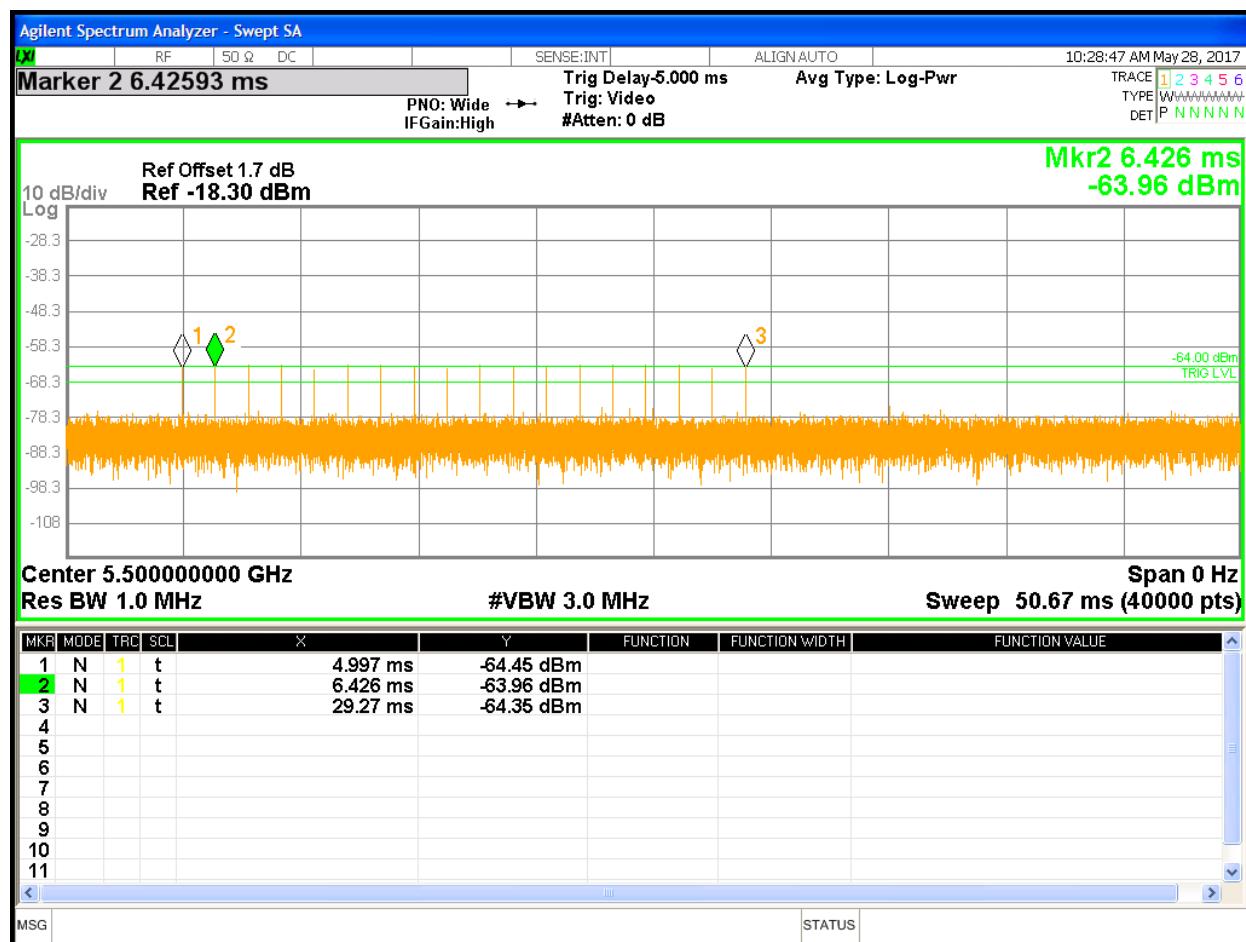



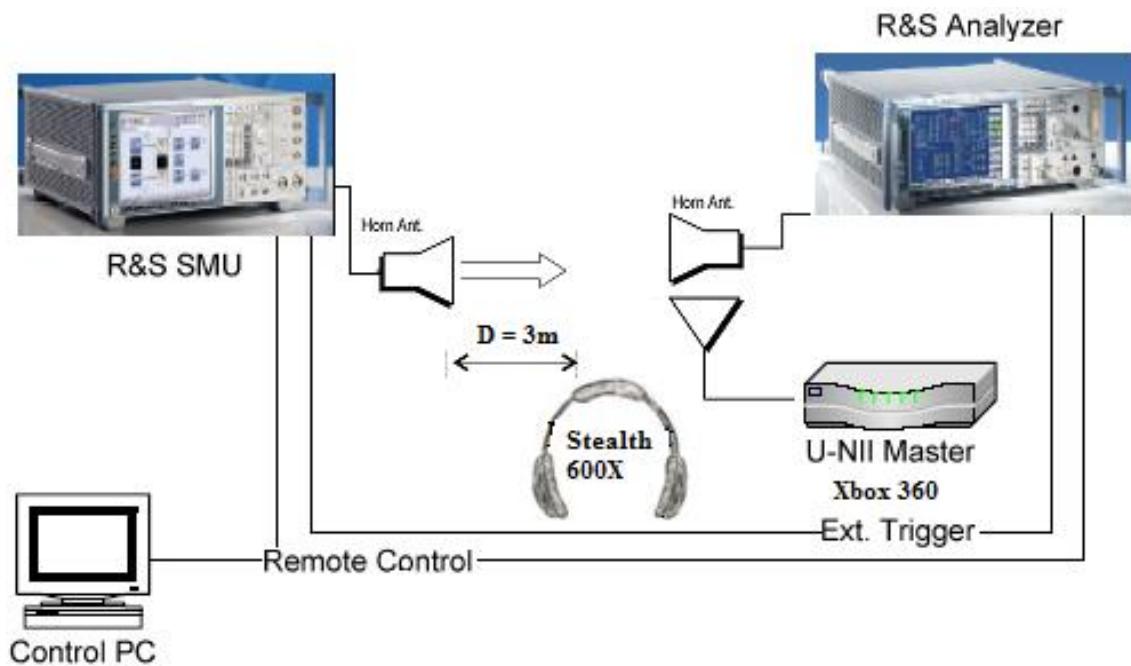
Figure 1: Radar Type 0 DFS Detection Threshold Level at 5300 MHz

Figure 2: Radar Type 0 DFS Detection Threshold Level at 5500 MHz

4.5 In-Service Monitoring

In-service monitoring performance checks consist of the channel move time, channel closing transmission time, and non-occupancy period. These parameters of the Wireless Audio Headset, Model Ear Force Stealth 600X are verified to give the radar system the priority of the frequency and minimize the interference with nearby radar systems when the Wireless Audio Headset, Model Ear Force Stealth 600X is being used with Xbox 360 host system.

The Ear Force Stealth 600X is a client device without any radar detection capability.


Upon the detection of radar signal on the operating channel, the Ear Force Stealth 600X with Xbox 360 gaming system must move to another operating channel with move time less than 10 seconds. The total channel closing transmission time must be 200 mS with an aggregate 60 mS over the remaining 10 second period. The radar detected channel must not have any transmission from EUT for the minimum of 30 minutes.

4.8.1 Test Method

The KDB 905462 D02 UNII DFS Compliance Procedure New Rules v02 Section 7.8.3 Performance Requirements Check was used.

The Ear Force Stealth 600X S/N PP#3 was used as slave device and configured to operate at 5300 MHz and 5500 MHz for 20 MHz bandwidth. The final results indicated below.

Test Setup:

4.8.2 Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

Table 10: In-Service Monitoring – Test Results

Test Date: May 30, 2017	Test Method: Radiated							
Center Frequency: 5300 MHz and 5500 MHz	EUT State: Streaming Audio							
Min. Antenna Gain: +4.9 dBi	Max. Transmitted Power: 8 dBm							
Injection Radar Waveform Type: 0	Detection Threshold: -64 dBm							
Ambient Temperature: 23°C	Relative Humidity: 34% RH							
20 MHz Bandwidth								
Frequency (MHz)	CCTT		CMT		Non-Occupancy		Plots	Results
	Meas.	Limit	Meas.	Limit	Meas.	Limit		
5300	12.9ms	260 ms	155.9 ms	10s	>30min	30 min.	3,4,5	Complies
5500	15.3ms	260 ms	155.3 ms	10s	>30min	30 min.	6,7,8	Complies
<i>CCTT= Channel Closing Transmission Time.</i>								
<i>CMT= Channel Move Time</i>								

Figure 3: Channel Move Time and Channel Closing Transmission Time using Pulse Radar Waveform 0 at 5300 MHz, 20 MHz Bandwidth

Note: Spectrum Analyzer was triggered to capture Waveform Type 0 radar pulse and EUT transmission afterward. The Test Audio had a quick pause, and it resumed with the system operated at Non-DFS Channel 161, 5805 MHz.

Figure 4: Channel Move Time and Channel Closing Transmission Time using Pulse Radar Waveform 0 at 5300 MHz, 20 MHz Bandwidth (Close-up)

Note: 1. Agilent Analyzer was triggered with 40000 single sweep points (Bins) Fig. 4 was a zoom-in plot from Fig. 3.

2. The last radar pulse of Waveform Type 0 was denoted by Marker 1 at 173.7 ms

3. There are total 43 spectrum analyzer bins above the noise floor level after 173.7 ms.

$$\begin{aligned}
 \text{CCTT} &= \# \text{ Bins} * (12000 \text{ mS} / 40000 \text{ Bins}) \\
 &= 43 \text{ bins} * (12000 \text{ mS} / 40000 \text{ Bins}) \\
 &= 12.9 \text{ mS}.
 \end{aligned}$$

4. Channel Move Time (CMT) is defined as the delta of EUT's last transmission to the last pulse of radar burst.

$$\text{Last Radar Pulse} = 173.7 \text{ mS}$$

$$\text{Last Transmission} = 329.6 \text{ mS}$$

$$\text{Channel Move Time} = \text{Last Transmission} - \text{Last Radar Pulse} = 155.9 \text{ ms}$$

5. No transmission happened after 200 mS, no aggregate.

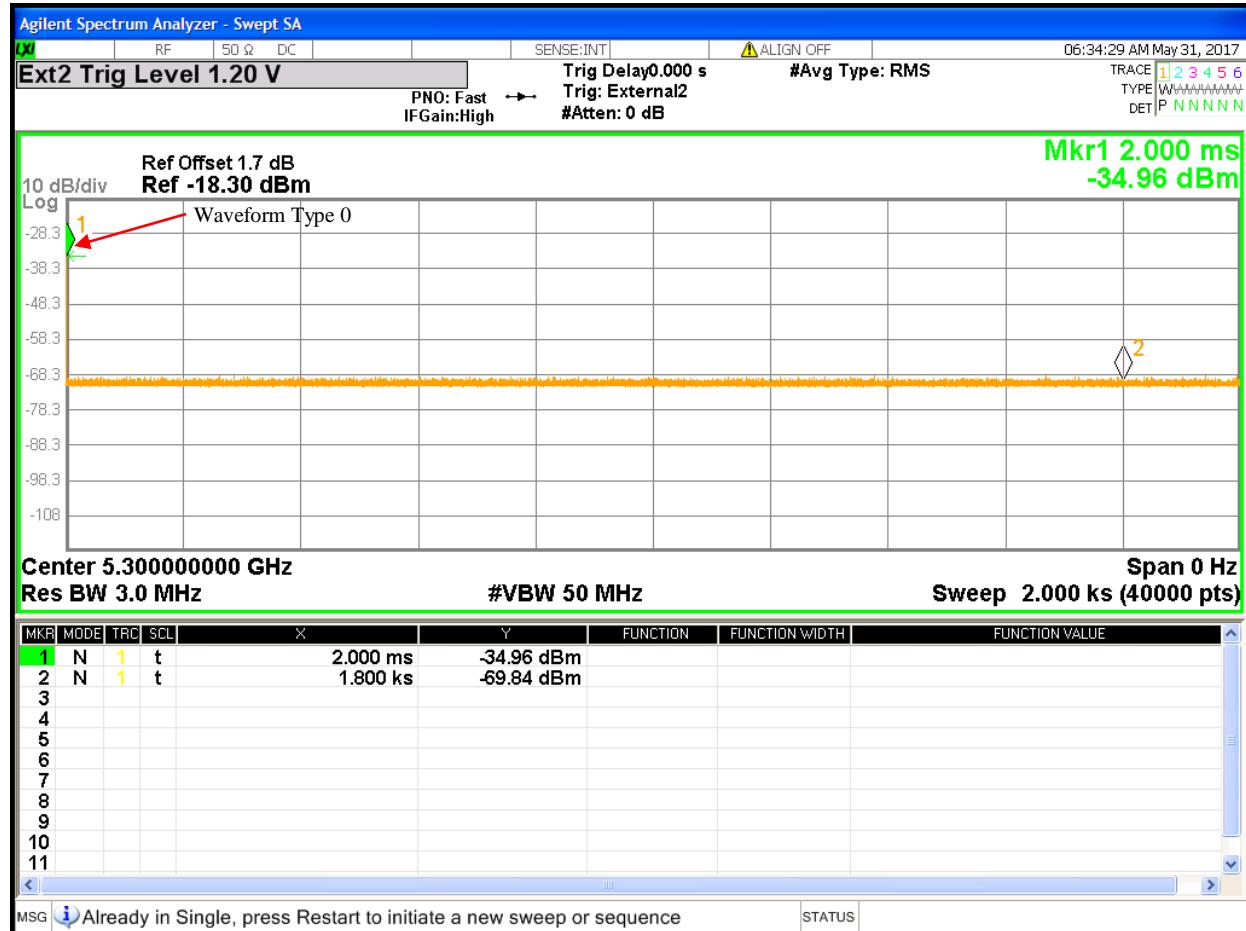
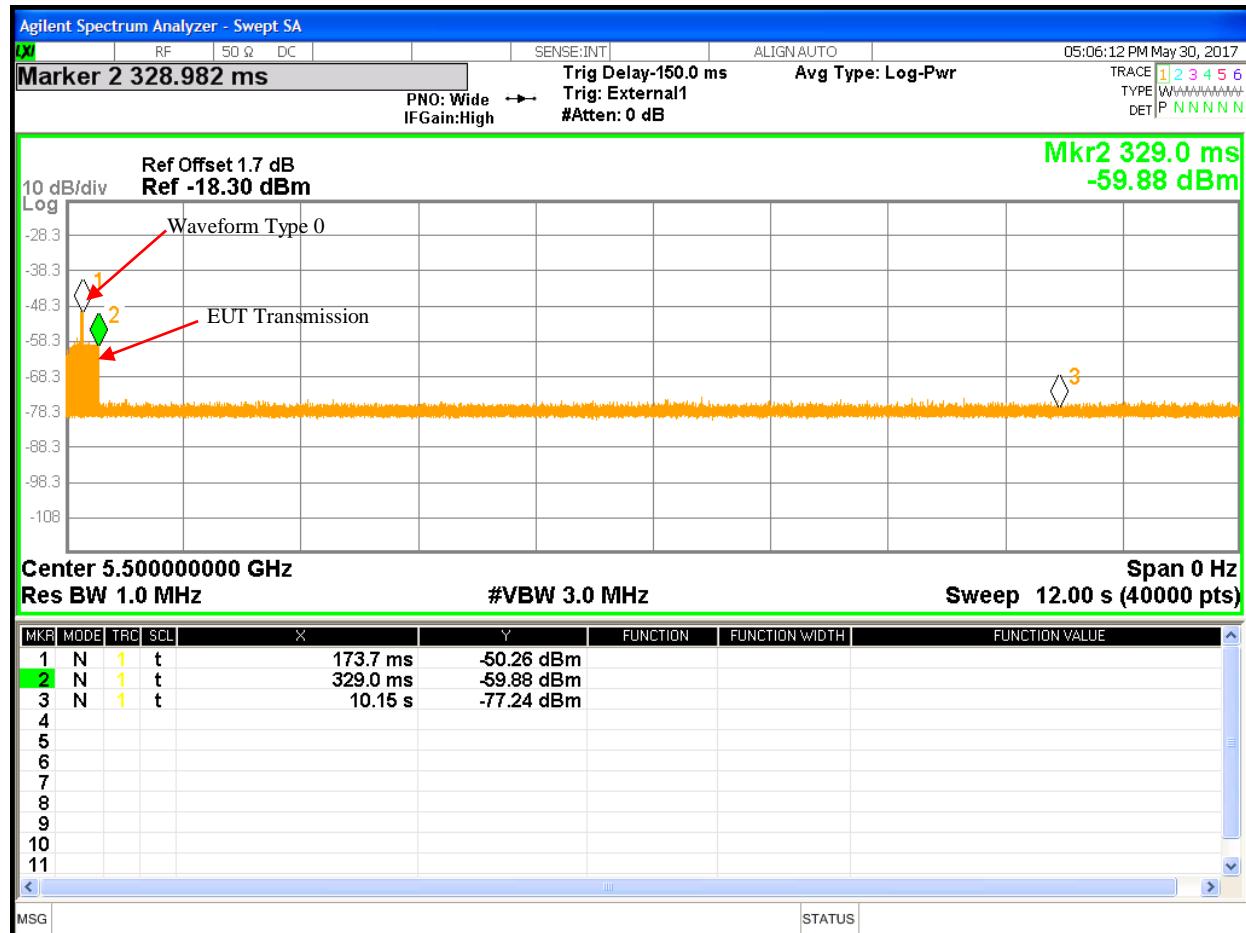
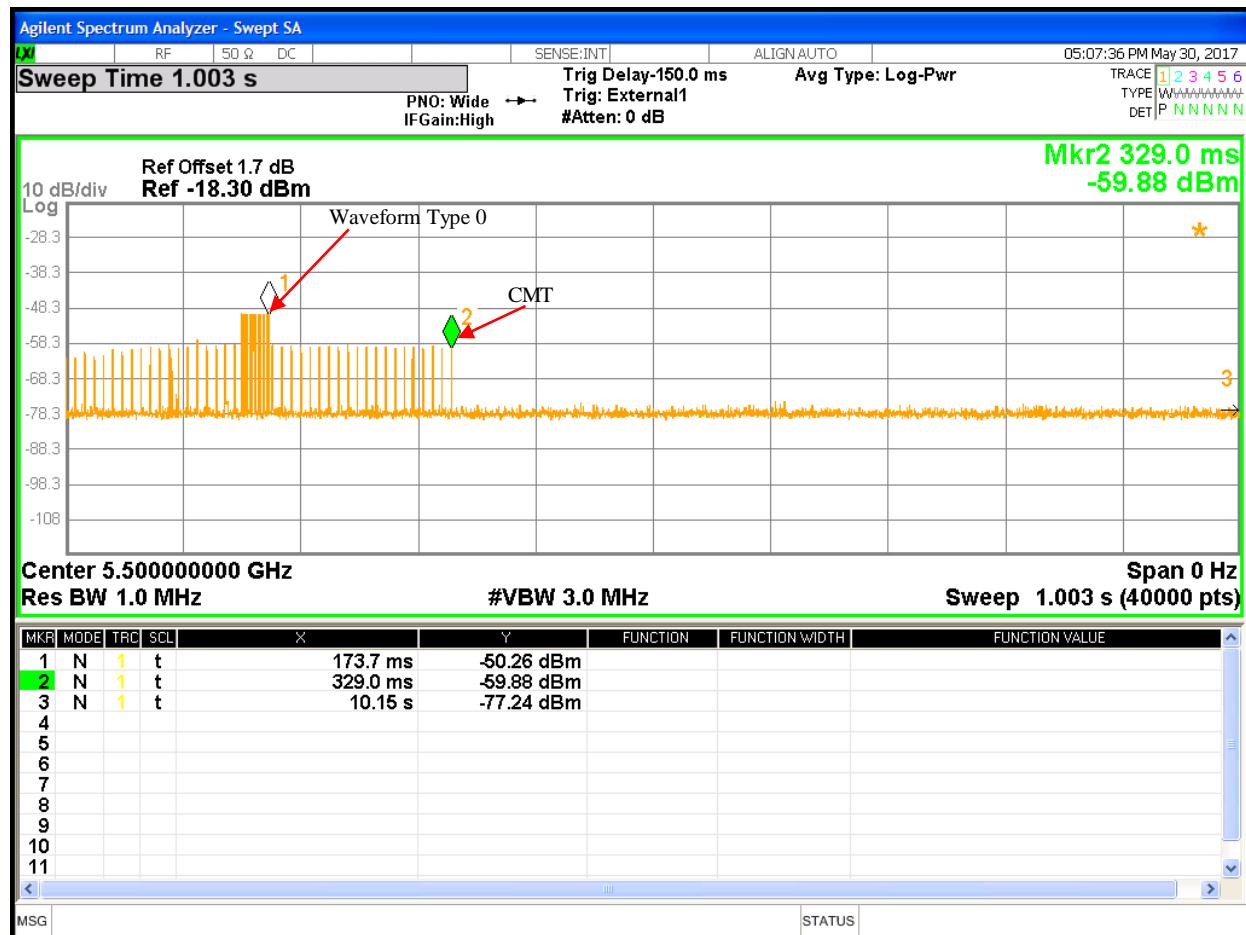



Figure 5: Non-Occupancy Period using Waveform Type 0 at 5300 MHz, 20 MHz Bandwidth


Note:

1. Marker #1 denotes the end of radar pulse.
2. Marker #2 denotes the 30 minutes limit on Channel 5300 MHz.
3. No transmission of 30 minutes after the last aggregates on the original channel.
4. The audio file was interrupted for 1 s.
5. EUT transmission moved to Non-DFS Channel 161 (5805 MHz).

Figure 6: Channel Move Time and Channel Closing Transmission Time using Pulse Radar Waveform 0 at 5500 MHz, 20 MHz Bandwidth

Note: Spectrum Analyzer was triggered to capture Waveform Type 0 radar pulse and EUT transmission afterward. The Test Audio had a quick pause, and it resumed with the system operated at Non-DFS Channel 44, 5220 MHz.

Figure 7: Channel Move Time and Channel Closing Transmission Time using Pulse Radar Waveform 0 at 5500 MHz, 20 MHz Bandwidth (Close-up)

Note: 1. Agilent Analyzer was triggered with 40000 single sweep points (Bins) Fig. 7 was a zoom-in plot from Fig. 6.

2. The last radar pulse of Waveform Type 0 was denoted by Marker 1 at 173.7 ms

3. There are total 51 spectrum analyzer bins above the noise floor level after 173.7 ms.

$$\begin{aligned}
 \text{CCTT} &= \# \text{ Bins} * (12000 \text{ mS} / 40000 \text{ Bins}) \\
 &= 51 \text{ bins} * (12000 \text{ mS} / 40000 \text{ Bins}) \\
 &= 15.3 \text{ mS}.
 \end{aligned}$$

4. Channel Move Time (CMT) is defined as the delta of EUT's last transmission to the last pulse of radar burst.

$$\begin{aligned}
 \text{Last Radar Pulse} &= 173.7 \text{ mS} \\
 \text{Last Transmission} &= 329.0 \text{ mS}
 \end{aligned}$$

$$\text{Channel Move Time} = \text{Last Transmission} - \text{Last Radar Pulse} = 155.3 \text{ ms}$$

5. No transmission happened after 200 mS, no aggregate.

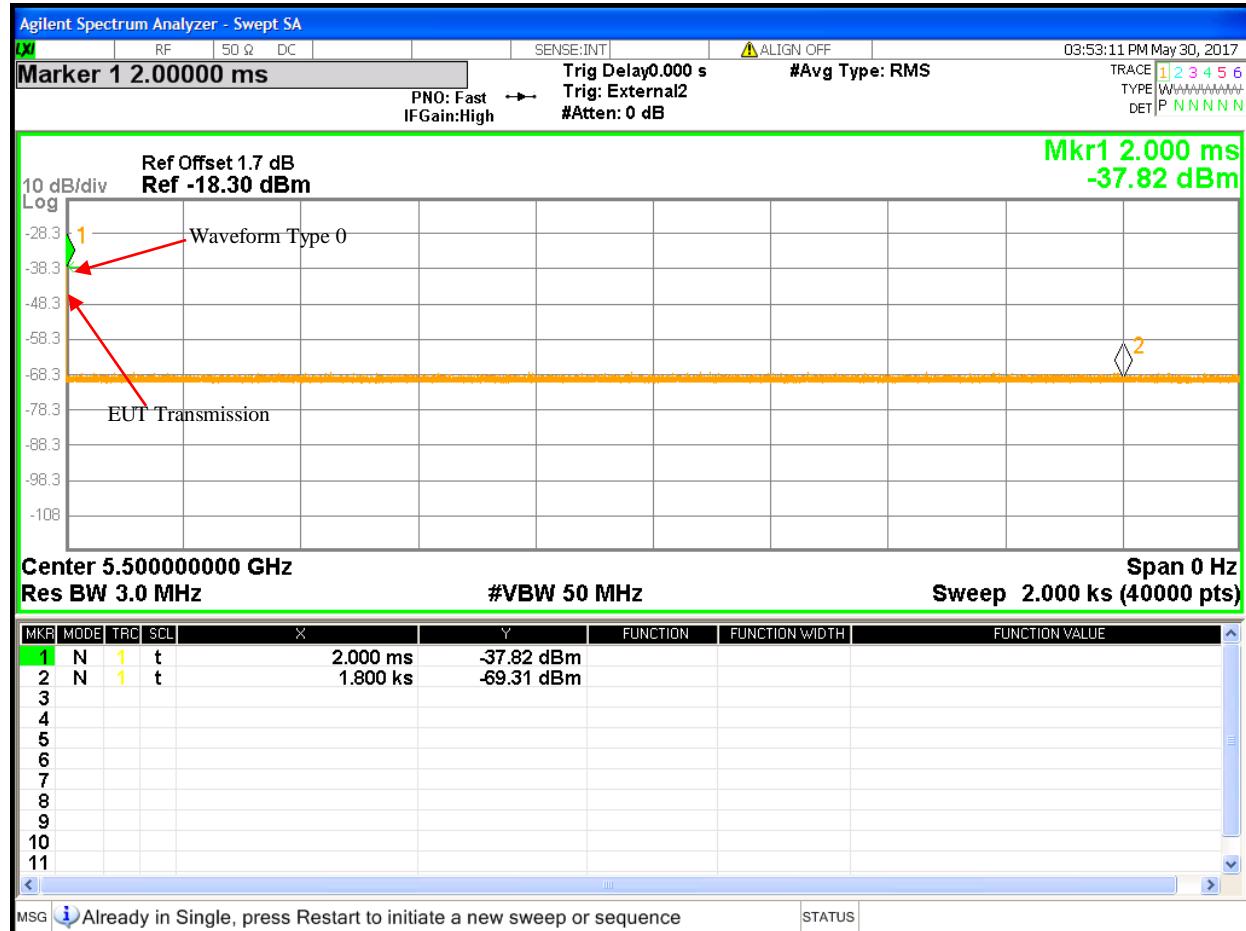
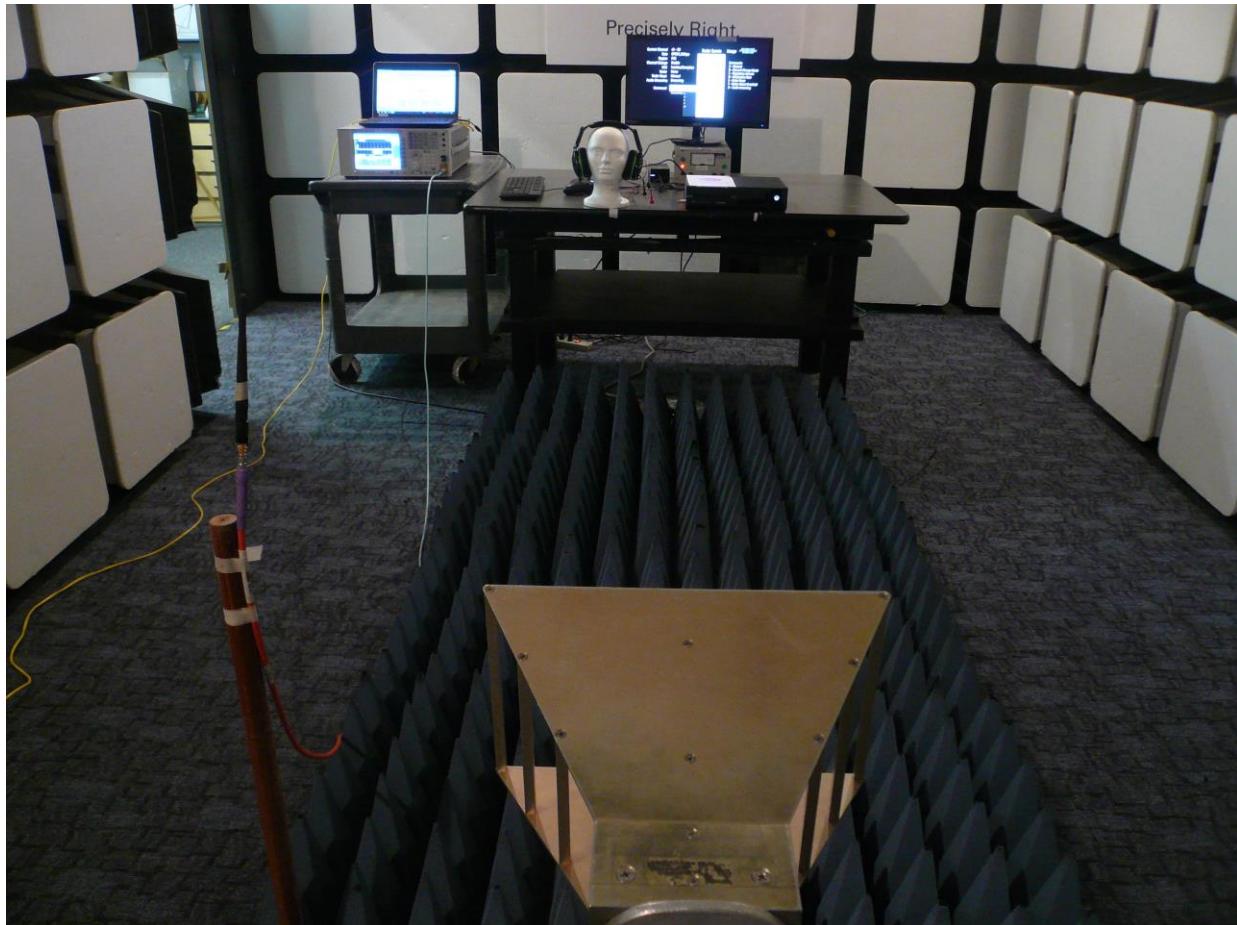
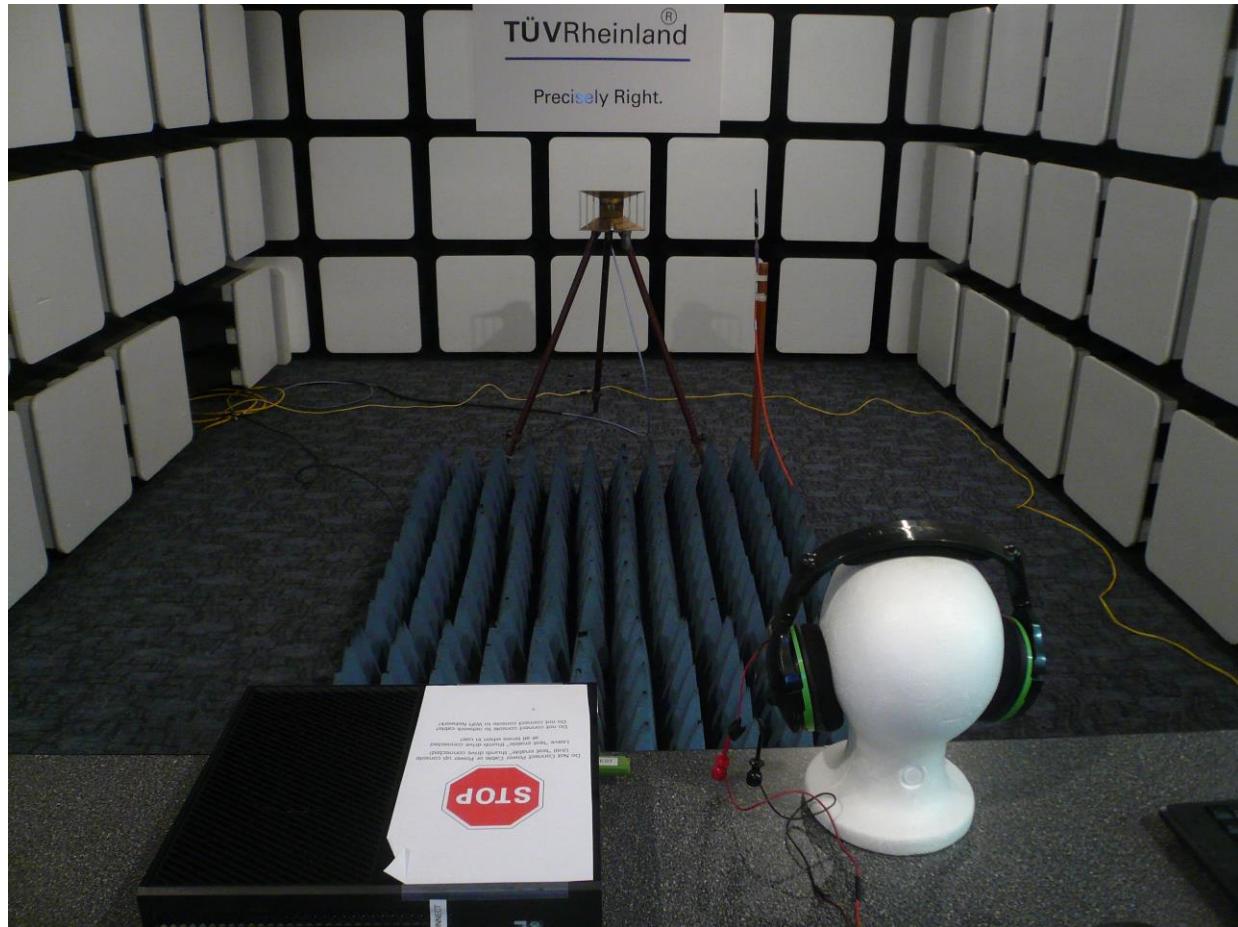


Figure 8: Non-Occupancy Period using Waveform Type 0 at 5500 MHz, 20 MHz Bandwidth

Note:


1. Marker #1 denotes the end of radar pulse.
2. Marker #2 denotes the 30 minutes limit on Channel 5300 MHz.
3. No transmission of 30 minutes after the last aggregates on the original channel.
4. The audio file was interrupted for 1 s.
5. EUT transmission moved to Non-DFS Channel 161 (5805 MHz).

5 Test Equipment Use List


Equipment	Manufacturer	Model #	Serial/Inst #	Last Cal mm/dd/yyyy	Next Cal mm/dd/yyyy
Horn Antenna	EMCO	3115	9710-5301	01/15/2016	01/15/2018
Horn Antenna	Sunol Science	DRH118	A040806	11/11/2016	11/11/2018
Multimeter	Fluke	177	92780312	01/11/2017	01/11/2018
Power Meter	Agilent	E4418B	MY45103902	01/11/2017	01/11/2018
Power Sensor	Hewlett Packard	8482A	1925A04647	01/01/2017	01/01/2018
Spectrum Analyzer	Rohde & Schwarz	FSL6	100169	01/13/2017	01/13/2018
Spectrum Analyzer	Agilent	N9038A	MY552260210	01/16/2017	01/16/2018
Vector Signal Generator	Rhode Schwarz	SMU 200A	1141.2005.02	03/28/2017	03/28/2018
Signal Generator	Rohde & Schwarz	SMF100A	1167.0000K02	09/06/2016	09/06/2017
Signal Generator	Rohde & Schwarz	SMBV100A	1407.6004K02	09/06/2016	09/06/2017
Power Sensors	Rohde & Schwarz	OSP120	1420.9010.02	09/06/2016	09/06/2017

* Calibration of equipment past due for re-calibration will be performed expeditiously. If any equipment is found to be out of tolerance at that time, affected customers will be notified accordingly.

6 Test Setup Photo

Figure 9: DFS Test Setup Photo (Rear)

Figure 10: DFS Test Setup Photo for Master Mode (Front)

7 DFS Test Plan

7.1 *Introduction*

This section provides a description of the Equipment Under Test (EUT), configurations, operating conditions, and performance acceptance criteria. It is an overview of information provided by the manufacturer so that the test laboratory may perform the requested testing.

7.2 *Customer*

Table 11: Customer Information

Company Name	Voyetra Turtle Beach, Inc.
Address	100 Summit Lake Drive, Suite 100
City, State, Zip	Valhalla, New York 10595 USA
Country	U.S.A
Phone	(530) 277-3482
Fax	None

Table 12: Technical Contact Information

Name	Tim Blaney
E-mail	tim@commcepts.net
Phone	(530) 277-3482
Fax	(530) 478-5607

7.3 Equipment Under Test (EUT)

Table 13: EUT Specifications

EUT Specifications	
Dimensions	225mm (8.9") x 252mm (9.9") x 115mm (4.5")
DC Input	Headset Input Voltage: 3.7 Vdc (battery)
Environment	Indoor
Operating Temperature Range:	0 to 50 degrees C
Multiple Feeds:	<input type="checkbox"/> Yes and how many <input checked="" type="checkbox"/> No
Product Marketing Name (PMN)	Ear Force Stealth 600X
Hardware Version Identification Number (HVIN)	Stealth 600X
Firmware Version Identification Number (FVIN)	1.0.2
802.11-radio modules	
Operating Mode	802.11a, b, g, 802.11n HT20
Transmitter Frequency Band	2.4 GHz – 2.4835 GHz 5.15 GHz – 5.35 GHz 5.47 GHz – 5.75 GHz 5.725GHz – 5.85 GHz
Max. Rated Power Output	8.00 dBm
Power Setting @ Operating Channel	See Channel Planning Table.
Antenna Type	PCB Chip
Antenna Gain	+1.8 dBi at 2.4 GHz +4.9 dBi at 5 GHz
Modulation Type	<input type="checkbox"/> Thread (Zigbee) <input type="checkbox"/> BLE <input checked="" type="checkbox"/> DSSS <input checked="" type="checkbox"/> OFDM <input checked="" type="checkbox"/> Other describe: 16QAM
Data Rate	802.11b: 1, 2, 5.5, and 11 Mbps 802.11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps 802.11a: 6, 9, 12, 18, 24, 36, 48, 54 Mbps 802.11n HT20: 6.5, 13, 19.5, 26, 39, 52, 58.5, 65 Mbps
TX/RX Chain (s)	1
Directional Gain Type	<input type="checkbox"/> Correlated <input type="checkbox"/> Beam-Forming <input checked="" type="checkbox"/> Other describe: No beam-forming or correlated.
Type of Equipment	<input type="checkbox"/> Table Top <input type="checkbox"/> Wall-mount <input type="checkbox"/> Floor standing cabinet <input checked="" type="checkbox"/> Other: Head wear device.
Note: The radio can only operate in one band and on one channel at a time.	

Table 14: EUT Channel Power Specifications

No.	Frequency (MHz)	Target Power Level in ART2				
		802.11b	802.11g	802.11a	802.11n HT20	802.11n HT40
1	2412	4.5	4.0		4.0	
2	2417					
3	2422					
4	2427					
5	2432					
6	2437	4.5	4.0		4.0	
7	2442					
8	2447					
9	2452					
10	2457					
11	2462	4.5	4.0		4.0	
36	5180			85	86	
40	5200			85	86	
44	5220					
48	5240			84	85	
52	5260			83	79	
56	5280					
60	5300			81	78	
64	5320			76	76	
100	5500			3.5	4.0	
104	5520					
108	5540					
112	5560					
116	5580			4.0	4.0	
120	5600					
124	5620					
128	5640					
132	5660					
136	5680					
140	5700			6.0	6.0	
144	5720					
149	5745			6.0	6.0	
153	5765					
157	5785			7.0	7.0	
161	5805					
165	5825			8.0	8.0	

Note: 2.4GHz, UNII2C, and UNII3 power outputs are set using TX power, and UNII1 and UNII2A power outputs are set using TX Gain in the ART2.

Table 15: Interface Specifications

Interface Type	Cabled with what type of cable?	Is the cable shielded?	Maximum potential length of the cable?	Metallic (M), Coax (C), Fiber (F), or Not Applicable?
None	--	<input type="checkbox"/> Yes	<input type="checkbox"/> Metric:3m	<input type="checkbox"/> M

Note: The EUT powered by external 3.7VDC or internal battery. EUT communicated with Xbox via wireless connection.

Table 16: Supported Equipment

Equipment	Manufacturer	Model	Serial	Used for
Console	Microsoft	1540	057740543748	Configure as master device
Monitor	ASUS	VS248	G3LMQS040337	Display the Xbox gaming console
Keyboard	Dell	SK-8120	CN-0C638N-71616-42M-1HUD-A00	Enter DFS command.
Controller	Microsoft	1537	02980119224432	Enter DFS command.
DC Supply	HP	6282A	2134A-04177	Supply 3.7Vdc to EUT
Note: None.				

Table 17: Description of Sample used for Testing

Device	Serial	KDB 905462	RF Connection
Slave	PP#3	Use for 20 MHz bandwidth DFS tests	Wireless via 5 GHz.

Table 18: Test Mode for DFS

Test	20 MHz BW	40 MHz BW	80 MHz BW	Comments
DFS Detection Threshold				
U-NII Detection Bandwidth				
Performance Requirements Checks				
In-Service Monitoring	5300 MHz, and 5500 MHz.			Stream/ play the audio on the Stealth 600X headset.
Radar Statistic Performance Check				
Note: 5300 MHz and 5500 MHz were selected to represent 20 MHz bandwidth DFS characteristics of EUT.				

7.4 **Test Specification**

Table 19: Test Specifications

Dynamic Frequency Selection	
Standard	Requirement
CFR 47 Part 15.407(h) 2017 and KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02	All
RSS 247 Issue 2, 2017	All

END OF REPORT