

TEST REPORT

Applicant: ooma, Inc.

Address: 525 Almanor Ave, Suite 200, Sunnyvale, CA 94085, United States

FCC ID: XFT-TELO106

Product Name: Telo Air 2, Telo

Standard(s): FCC PART 15D
ANSI C63.17-2013

The above device has been tested and found compliant with the requirement of the relative standards by China Certification ICT Co., Ltd (Dongguan)

Report Number: CR231062962-00A

Date Of Issue: 2023/12/22

Reviewed By: Calvin Chen

A handwritten signature of 'Calvin Chen'.

Title: RF Engineer

Approved By: Sun Zhong

A handwritten signature of 'Sun Zhong'.

Title: Manager

Test Laboratory: China Certification ICT Co., Ltd (Dongguan)

No. 113, Pingkang Road, Dalang Town, Dongguan,
Guangdong, China
Tel: +86-769-82016888

Test Facility

The Test site used by China Certification ICT Co., Ltd (Dongguan) to collect test data is located on the No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 442868, the FCC Designation No. : CN1314.

Declarations

China Certification ICT Co., Ltd (Dongguan) is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol “▲”. Customer model name, addresses, names, trademarks etc. are not considered data.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk “★”.

CONTENTS

DOCUMENT REVISION HISTORY	5
1. GENERAL INFORMATION	6
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	6
1.2 DESCRIPTION OF TEST CONFIGURATION.....	7
1.2.1 EUT Operation Condition:.....	7
1.2.2 Support Equipment List and Details	7
1.2.3 Support Cable List and Details	7
1.2.4 Block Diagram of Test Setup.....	8
1.3 MEASUREMENT UNCERTAINTY	9
2. SUMMARY OF TEST RESULTS	10
3. REQUIREMENTS AND TEST PROCEDURES	11
3.1 CONDUCTED EMISSIONS.....	11
3.1.1 Applicable Standard.....	11
3.1.2 EUT Setup.....	11
3.1.3 EMI Test Receiver Setup	11
3.1.4 Test Procedure	12
3.1.5 Corrected Amplitude & Margin Calculation.....	12
3.2 RADIATED SPURIOUS EMISSIONS.....	13
3.2.1 Applicable Standard.....	13
3.2.2 EUT Setup.....	13
3.2.3 EMI Test Receiver & Spectrum Analyzer Setup	14
3.2.4 Test Procedure	15
3.2.5 Corrected Amplitude & Margin Calculation.....	15
3.3 EMISSION BANDWIDTH:	16
3.2.1 Applicable Standard.....	16
3.3.2 EUT Setup.....	16
3.3.3 Test Procedure	16
3.4 PEAK TRANSMIT POWER:	17
3.4.1 Applicable Standard.....	17
3.4.2 EUT Setup.....	17
3.4.3 Test Procedure	17
3.5 POWER SPECTRAL DENSITY:	18
3.5.1 Applicable Standard.....	18
3.5.2 EUT Setup.....	18
3.5.3 Test Procedure	18
3.6 EMISSION INSIDE AND OUTSIDE THE SUB-BAND:	20
3.6.1 Applicable Standard.....	20
3.6.2 EUT Setup.....	20
3.6.3 Test Procedure	20
3.7 FREQUENCY STABILITY:	22
3.7.1 Applicable Standard.....	22
3.7.2 EUT Setup.....	22

3.7.3 Test Procedure	22
3.8 SPECIFIC REQUIREMENTS FOR UPCS DEVICE:	23
3.8.1 Applicable Standard.....	23
3.8.2 EUT Setup.....	25
3.8.3 Test Procedure	25
4. Test DATA AND RESULTS	27
4.1 CONDUCTED EMISSIONS.....	27
4.2 RADIATED EMISSIONS:	30
4.3 EMISSION BANDWIDTH:	48
4.4 PEAK TRANSMIT POWER:	50
4.5 POWER SPECTRAL DENSITY:	53
4.6 EMISSION INSIDE AND OUTSIDE THE SUB-BAND:	57
4.7 FREQUENCY STABILITY:	65
4.8 SPECIFIC REQUIREMENTS FOR UPCS DEVICE:.....	66
5. RF EXPOSURE EVALUATION	72
5.1 APPLICABLE STANDARD.....	72
5.2 MEASUREMENT RESULT	72
6. EUT PHOTOGRAPHS	74
7. TEST SETUP PHOTOGRAPHS	75

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
1.0	CR230309652-00A	Original Report	2023/12/7
2.0	CR230309652-00A	Add transmission simultaneously data	2023/12/22

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

EUT Name:	Telo Air 2
EUT Model:	TELOAIR106
Multiple EUT Model:	Telo
Multiple Model:	TELO106: (An Azurewave Wifi module is not installed in the unit)
Operation Frequency:	1921.536-1928.448 MHz
Maximum Peak Output Power (Conducted):	19.84dBm
Modulation Type:	GFSK
Rated Input Voltage:	5Vdc from adapter
Serial Number:	2CSP-3(For Conducted Emissions Test and Radiated Emission Test) 2CSP-1(For RF Conducted Test)
EUT Received Date:	2023/10/30
EUT Received Status:	Good

Note: The Multiple models are electrically identical with the test model. Please refer to the declaration letter for more detail, which was provided by manufacturer.

Antenna Information Detail▲:

Antenna	Antenna Type	input impedance (Ohm)	Frequency Range	Antenna Gain
ANT0	PCB	50	1920-1930MHz	3.5dBi
ANT1	PCB	50	1920-1930MHz	3.5dBi

The Method of §15.203 Compliance:

- Antenna was permanently attached to the unit.
- Antenna use a unique type of connector to attach to the EUT.
- Unit was professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

Accessory Information:

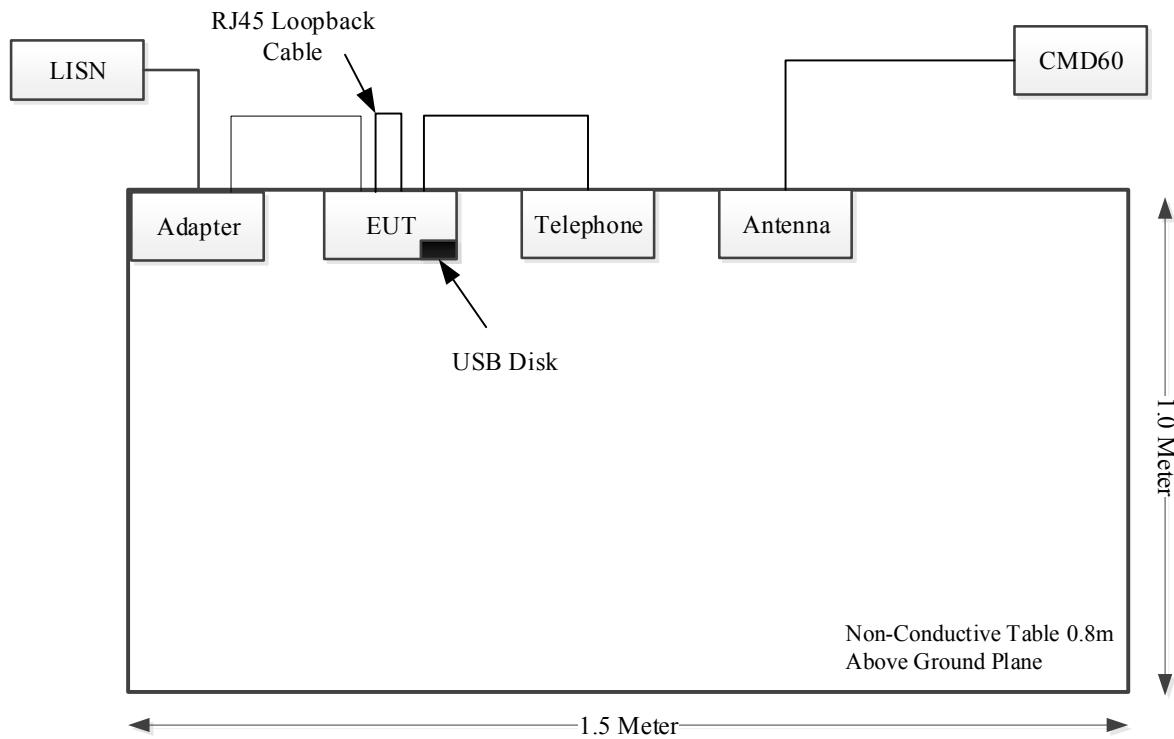
Accessory Description	Manufacturer	Model
Adapter	Unknown	AD018A050300UV

1.2 Description of Test Configuration

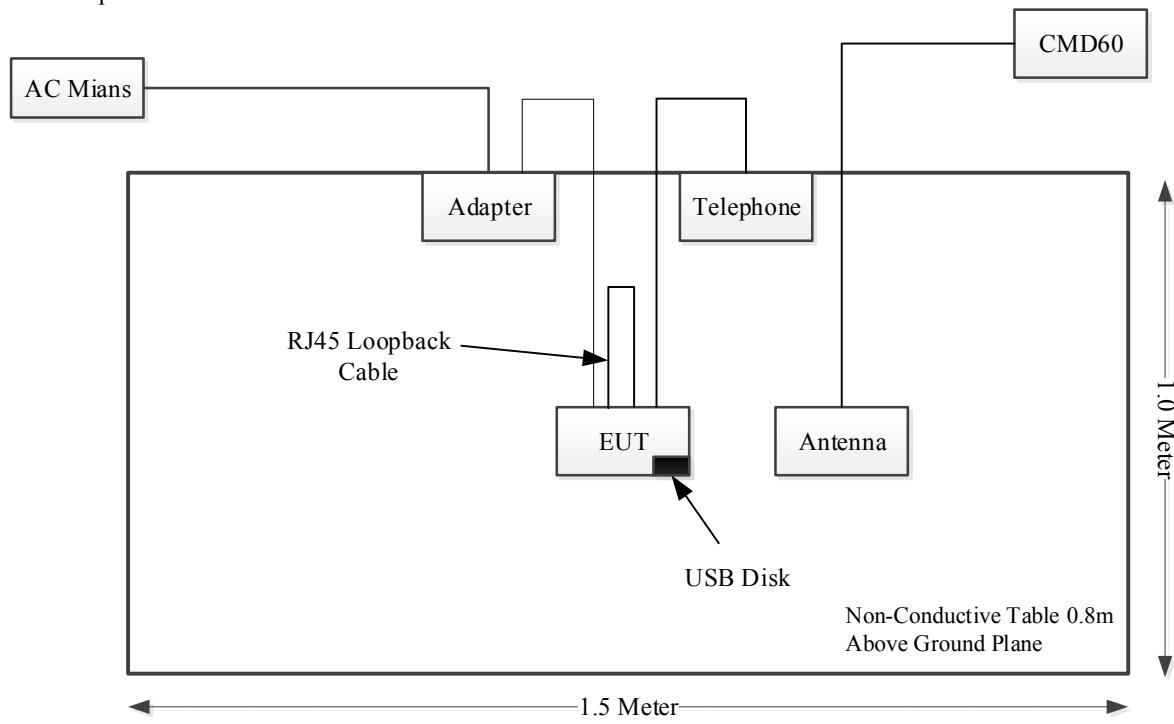
1.2.1 EUT Operation Condition:

EUT Operation Mode:	The system was configured for testing in Engineering Mode, which was provided by the manufacturer. The device has EUT have two antennas and cannot transmit simultaneously, pre-scan output power of the two antennas, the worst case ANT0 was select to test except Radiated Emission.
Equipment Modifications:	No
EUT Exercise Software:	No
The engineering mode was provided by manufacturer. The maximum power was configured default, that was provided by the manufacturer▲:	

1.2.2 Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
Ooma	Adapter	AD018A050300UV	Unknown
Kingston	USB Disk	DTI/2GB	CH 031308
AT&T	Telephone	210	Y071120017332306
Unknown	Antenna	Unknown	Unknown
R&S	Digital Radio communication Tester	CMD 60M	846956/010

1.2.3 Support Cable List and Details


Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	To
Power Cable	No	No	1.2	Adapter	EUT
RJ45 Loopback Cable	No	No	1.2	EUT	EUT
Telephone Cable	No	No	1	EUT	Telephone
Antenna Cable	No	No	2	Antenna	CMD 60M

1.2.4 Block Diagram of Test Setup

AC line conducted emissions:

Radiated Spurious Emissions:

1.3 Measurement Uncertainty

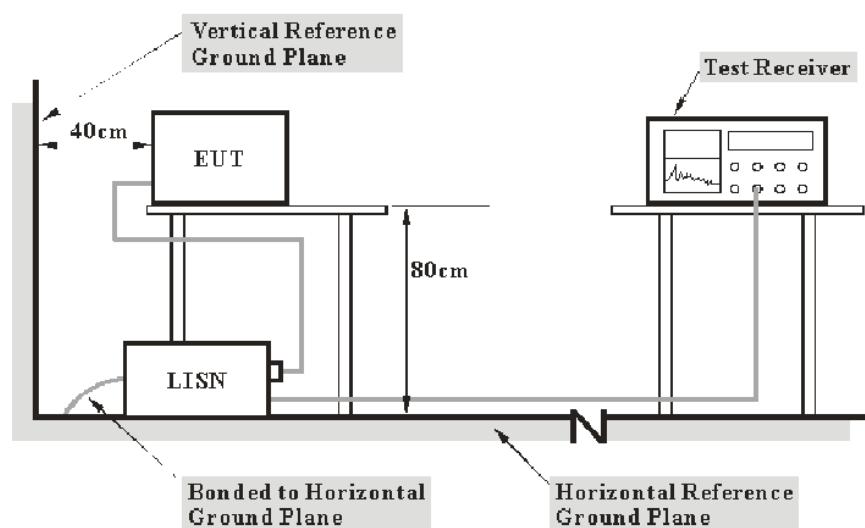
Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.61dB
Power Spectral Density, conducted	±0.61 dB
Unwanted Emissions, radiated	30M~200MHz: 4.15 dB, 200M~1GHz: 5.61 dB, 1G~6GHz: 5.14 dB, 6G~18GHz: 5.93 dB, 18G~26.5G: 5.47 dB, 26.5G~40G: 5.63 dB
Unwanted Emissions, conducted	±1.26 dB
Temperature	±1 °C
Humidity	±5%
DC and low frequency voltages	±0.4%
Duty Cycle	1%
AC Power Lines Conducted Emission	2.8 dB (150 kHz to 30 MHz)

2. SUMMARY OF TEST RESULTS

Standard(s) Section	Test Items	Result
FCC § 15.315, § 15.207	Conducted Emission	Compliant
FCC § 15.209	Radiated Spurious Emissions	Compliant
FCC § 15.323 (a)	Emission Bandwidth	Compliant
FCC § 15.319 (c)	Peak Transmit Power	Compliant
FCC § 15.319 (d)	Power Spectral Density	Compliant
FCC § 15.323 (d)	Emission Inside and Outside the sub-band	Compliant
FCC § 15.323 (f)	Frequency Stability	Compliant
FCC § 15.323 (c)(e) & § 15.319 (f)	Specific Requirements for UPSCS	Compliant
FCC § 15.317, § 15.203	Antenna Requirement	Compliant
FCC § 15.319 (i) & 1.1307	RF Exposure Evaluation	Compliant

3. REQUIREMENTS AND TEST PROCEDURES


3.1 Conducted Emissions

3.1.1 Applicable Standard

FCC§15.315

An unlicensed PCS device that is designed to be connected to the public utility (AC) power line must meet the limits specified in §15.207.

3.1.2 EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC 15.315, FCC 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter or EUT was connected to the main LISN with a 120 V/60 Hz AC power source.

3.1.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

3.1.4 Test Procedure

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase (“hot”) line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit from among all the measurements identifying the frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the current-carrying conductors, or the six highest emissions may be reported over all the current-carrying conductors.

3.1.5 Corrected Amplitude & Margin Calculation

The basic equation is as follows:

Result = Reading + Factor

Factor = attenuation caused by cable loss + voltage division factor of AMN

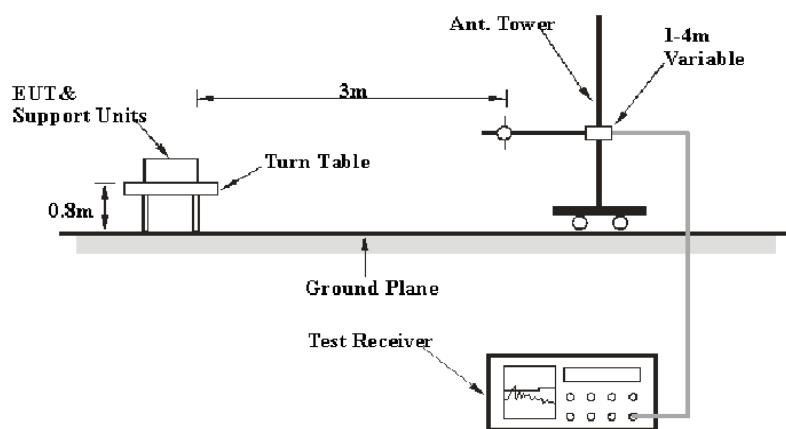
The “Margin” column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

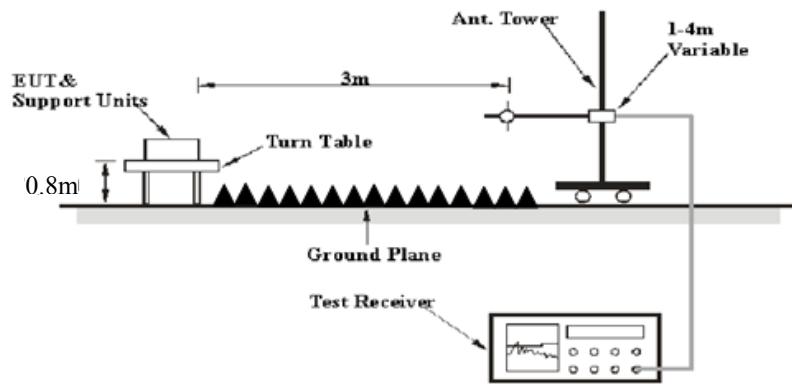
Margin = Limit – Result

3.2 Radiated Spurious Emissions

3.2.1 Applicable Standard

FCC §15.209


(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:


Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009–0.490	2400/F(kHz)	300
0.490–1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100 **	3
88–216	150 **	3
216–960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 MHz, 76–88 MHz, 174–216 MHz or 470–806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

3.2.2 EUT Setup

30MHz~1GHz:

Above 1GHz:

The radiated emissions were performed in the 3 meters distance, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

3.2.3 EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 20 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	/	QP
	/	/	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	/	PK
	1MHz	10 Hz	/	AV

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

3.2.4 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

All emissions under the average limit and under the noise floor have not recorded in the report.

3.2.5 Corrected Amplitude & Margin Calculation

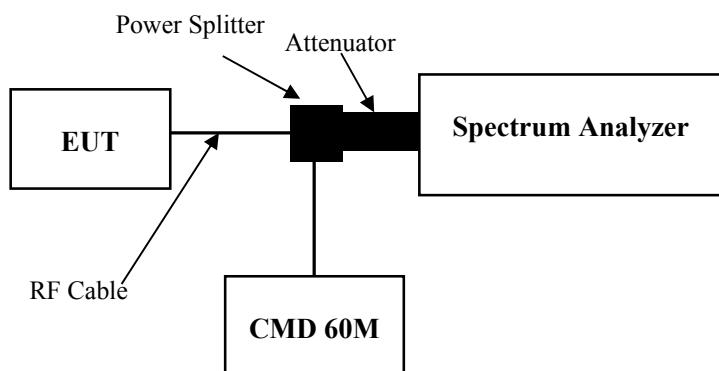
The basic equation is as follows:

Result = Reading + Factor

Factor = Antenna Factor + Cable Loss- Amplifier Gain

The “**Margin**” column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit – Result


3.3 Emission Bandwidth:

3.2.1 Applicable Standard

FCC §15.323 (a)

Operation shall be contained within the 1920–1930 MHz band. The emission bandwidth shall be less than 2.5 MHz and greater than 50 kHz.

3.3.2 EUT Setup

3.3.3 Test Procedure

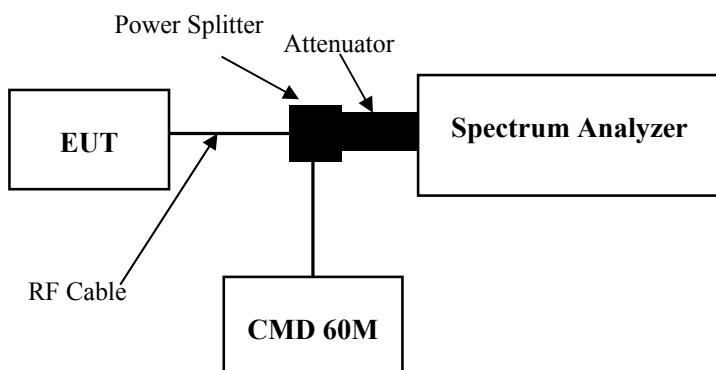
According to ANSI C63.17-2013 Section 6.1.3

Table 3—Spectrum analyzer settings for measurement of emissions bandwidth *B*

RBW	Approximately 1% of the emission bandwidth (a rough estimate may be obtained from peak power level measurement, or use manufacturer's declared value)
Video bandwidth	$\geq 3 \times$ the RBW
Center frequency	Nominal center frequency of channel
Span	$\geq 2 \times$ the expected emission bandwidth
Sweep time	Coupled to frequency span and RBW
Amplitude scale	Log
Detection	Peak detection with maximum hold enabled

Record the maximum level of the modulated carrier. Find the two furthest frequencies above and below the frequency of the maximum level of the modulated carrier where the signal level is 26 dB below the peak level of the carrier. The difference in frequency between these two frequencies is the emission bandwidth.

If after measuring the emission bandwidth, it is found that the RBW used was not approximately 1% of the emission bandwidth, then adjust the RBW and repeat the procedure until the correct RBW is used. If the spectrum analyzer has fixed values of RBW, the one that is the nearest to 1% of the emission bandwidth is acceptable, provided it is no less than 0.5% of the emission bandwidth and no greater than 2% of the emission bandwidth.


3.4 Peak Transmit Power:

3.4.1 Applicable Standard

FCC §15.319 (c)

Peak transmit power shall not exceed 100 microwatts multiplied by the square root of the emission bandwidth in hertz. Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

3.4.2 EUT Setup

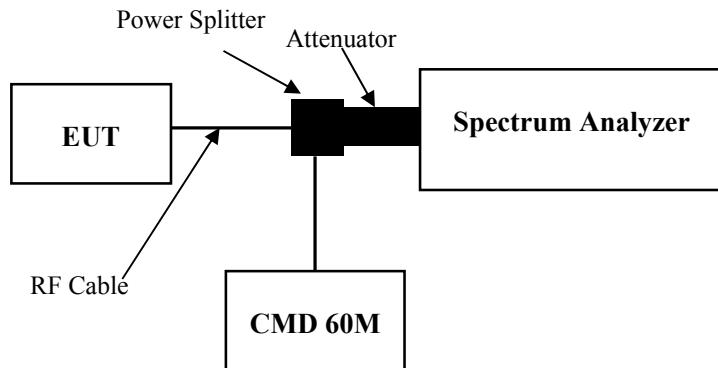
3.4.3 Test Procedure

According to ANSI C63.17-2013 Section 6.1.2

The resolution bandwidth (RBW) setting for this test must be adjusted by repeating this test and using increasing values of the RBW until there are negligible changes (within ± 0.5 dB) in the measured values of the maximum power.

Table 2—Spectrum analyzer settings for determining the peak power

RBW	\geq Emission bandwidth
Video bandwidth	\geq RBW
Span	Zero
Center frequency	Nominal center frequency of transmit carrier
Amplitude scale	Log (linear may be used if analyzer has sufficient linear dynamic range and accuracy)
Detection	Peak detection
Trigger	Video
Sweep rate	Sufficiently rapid to permit the transmit pulse to be resolved accurately


3.5 Power Spectral Density:

3.5.1 Applicable Standard

FCC §15.319 (d)

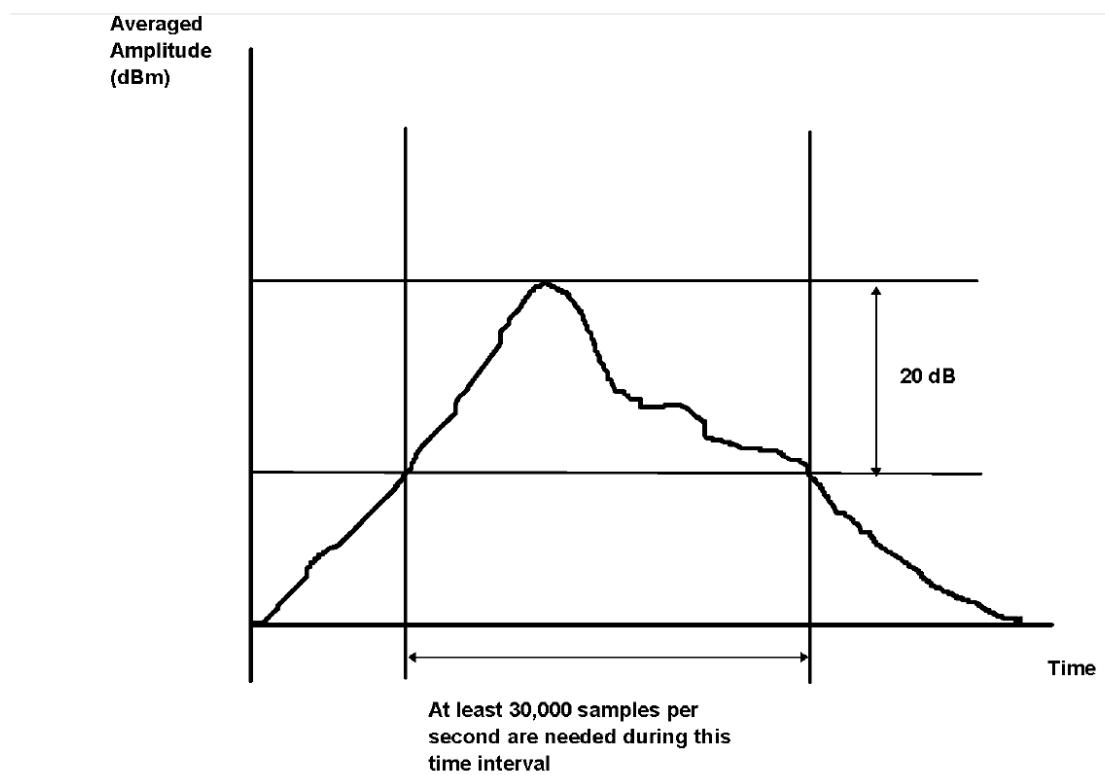
Power spectral density shall not exceed 3 milliwatts in any 3 kHz bandwidth as measured with a spectrum analyzer having a resolution bandwidth of 3 kHz.

3.5.2 EUT Setup

3.5.3 Test Procedure

According to ANSI C63.17-2013 Section 6.1.5

The EUT transmit data sequence and mode of operation shall be representative of that encountered in normal operation, so that transient effects associated with transmission bursts or data content are captured by the PSD measurement.


Table 4—Spectrum analyzer settings for finding of the maximum of PSD_{EUT}

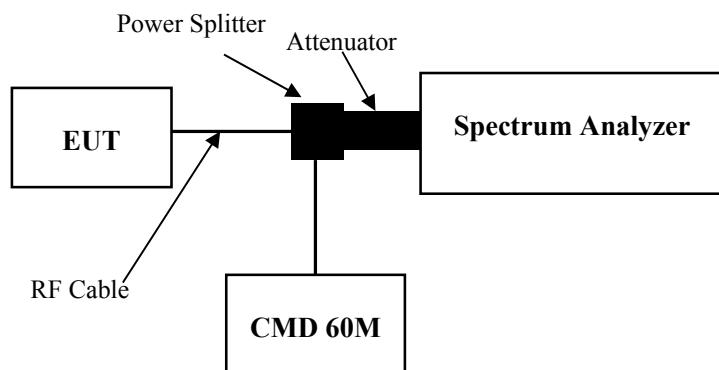
RBW	3 kHz
Video bandwidth	$\geq 3 \times RBW$
Span	Zero span at frequency with the maximum level (frequency determined in 6.1.3 if the same type of signal (continuous versus burst) was used in 6.1.3)
Center frequency	Spectral peak as determined in 6.1.3
Sweep time	For burst signals, sufficient to include essentially all of the maximum length burst at the output of a 3 kHz filter (e.g., maximum input burst duration plus 600 μ s). For continuous signals, 20 ms.
Amplitude scale	Log power
Detection	Sample detection and averaged for a minimum of 100 sweeps
Trigger	External or internal

For burst-type signals, arrange to measure the wideband burst duration of each burst analyzed and compute the mean duration.

Determine the level that is 20 dB below the first peak. Record the power-averaged waveform between the 20 dB threshold levels around the first peak with at least 30 000 samples per second as shown in Figure 4. Multiple wideband bursts may produce the waveform between -20 dB peaks; these must be included in the determination of the average burst length. If there is no level that is 20 dB below the peak, then analyze the complete sweep and include all of the wideband waveform that occurs during the sweep time in the computation of average burst length.

Sum the values of the sample points (in linear units of power) and divide by the sample frequency to obtain the total pulse energy in the 3 kHz bandwidth, then divide by the average duration of the wideband input pulse to obtain the average pulse power.

Figure 4—Computed average transient method: Sampling of the averaged power waveform measured with 3 kHz RBW


3.6 Emission Inside and Outside the Sub-band:

3.6.1 Applicable Standard

FCC §15.323 (d)

Emissions outside the band shall be attenuated below a reference power of 112 milliwatts as follows: 30 dB between the band and 1.25 MHz above or below the band; 50 dB between 1.25 and 2.5 MHz above or below the band; and 60 dB at 2.5 MHz or greater above or below the band. Emissions inside the band must comply with the following emission mask: In the bands between 1B and 2B measured from the center of the emission bandwidth the total power emitted by the device shall be at least 30 dB below the transmit power permitted for that device; in the bands between 2B and 3B measured from the center of the emission bandwidth the total power emitted by an intentional radiator shall be at least 50 dB below the transmit power permitted for that radiator; in the bands between 3B and the band edge the total power emitted by an intentional radiator in the measurement bandwidth shall be at least 60 dB below the transmit power permitted for that radiator. B" is defined as the emission bandwidth of the device in hertz. Compliance with the emission limits is based on the use of measurement instrumentation employing peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

3.6.2 EUT Setup

3.6.3 Test Procedure

According to ANSI C63.17-2013 Section 6.1.6

In-band emission:

In the region between 1B and 2B from the center of the RF carrier, the measured emission level (measured with 1% of emission bandwidth) shall not exceed 30 dB below the permitted peak power for the EUT.

In the region between 2B and 3B from the center of the RF carrier, the measured emission level shall not exceed 50 dB below the permitted peak power for the EUT.

Table 5—Spectrum analyzer settings for measuring in-band emissions

RBW	Approximately 1% of the emission bandwidth (B)
Video bandwidth	$3 \times$ RBW
Sweep time	The sweep time shall be sufficiently slow that the swept frequency rate shall not exceed one RBW per three transmit bursts.
Number of sweeps	Sufficient to stabilize the trace
Amplitude scale	Log
Detection	Peak detection and max hold enabled
Span	Approximately equal to $3.5 B$

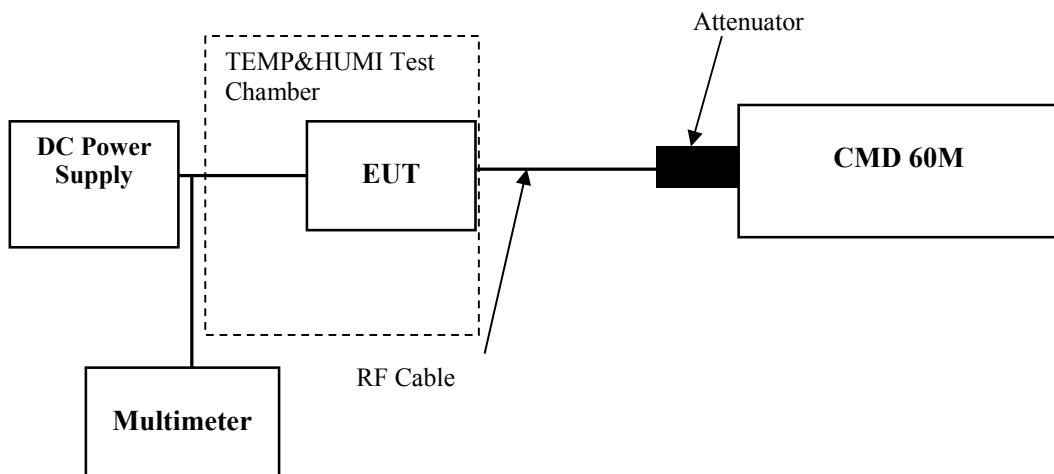
In the region between $3B$ and the UPCS band edge, as measured from the center of the RF carrier, the measured emission level shall not exceed 60 dB below the permitted peak power for the EUT.

Out-band emission:

Out-of-band tests shall be performed with the RF carrier set to the lowest and highest carriers defined by the EUT. The spectrum analyzer settings for in-band unwanted emissions in 6.1.6.1 also apply to out-of-band emissions. The EUT shall pass the tests of item a), item b), and either item c) or item d), as follows:

- a) In the region between the band edges and 1.25 MHz below and above the lower and the upper band edges, respectively, the measured emission level shall not exceed -9.5 dBm.
- b) In the region between 1.25 and 2.5 MHz below and above the lower and the upper band edges, respectively, the measured emission level shall not exceed -29.5 dBm.
- c) In the region at 2.5 MHz or greater below and above the lower and upper band edges, respectively, the measured emission level shall not exceed -39.5 dBm.
- d) In the region at 2.5 MHz or greater below and above the lower and upper band edges, respectively, the measured emission level shall not exceed the limits of 47CFR15.209. Measurement shall be made as a radiated test.

UPCS devices, in general, include digital circuitry not directly associated with the radio transmitter and are subject to the requirements for unintentional radiators as described in 47CFR15.109, for both in-band and out-of-band emissions. These emissions shall be measured with the EUT operating in receive and transmit modes. For the transmit mode, do not measure within 3.75 MHz or $3B$, whichever is the largest, of the edges of the band. Emissions that are directly caused by digital circuits in the transmit path do not have to meet 47CFR15.109 limits, but shall meet those limits as mentioned in the preceding list.


3.7 Frequency Stability:

3.7.1 Applicable Standard

FCC §15.323(f)

The frequency stability of the carrier frequency of the intentional radiator shall be maintained within ± 10 ppm over 1 hour or the interval between channel access monitoring, whichever is shorter. The frequency stability shall be maintained over a temperature variation of -20° to $+50^{\circ}$ C at normal supply voltage, and over a variation in the primary supply voltage of 85 percent to 115 percent of the rated supply voltage at a temperature of 20° C. For equipment that is capable only of operating from a battery, the frequency stability tests shall be performed using a new battery without any further requirement to vary supply voltage.

3.7.2 EUT Setup

3.7.3 Test Procedure

According to ANSI C63.17-2013 Section 6.2.1.2

This test does not apply to an EUT that is capable only of operating from a battery. For a mains-powered EUT, the mean value of the carrier frequency shall be measured at the power supply voltage extremes of row 1 of Table 7.

Table 7—Test parameters for carrier-frequency stability testing

Temperature	Supply voltage
$20^{\circ}\text{C} \pm 2^{\circ}\text{C}$	85% to 115% of declared nominal voltage
$-20^{\circ}\text{C} \pm 2^{\circ}\text{C}$	All declared nominal(s)
$+50^{\circ}\text{C} \pm 2^{\circ}\text{C}$	All declared nominal(s)

During test, the equipment shall be placed in the boxes and set the temperature to the specified requirement until the thermal balance has been reached.

3.8 Specific Requirements For UPCS Device:

3.8.1 Applicable Standard

FCC §15.319(f)

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. The provisions in this section are not intended to preclude transmission of control and signaling information or use of repetitive codes used by certain digital technologies to complete frame or burst intervals.

FCC §15.323(c)

Devices must incorporate a mechanism for monitoring the time and spectrum windows that its transmission is intended to occupy. The following criteria must be met:

- (1) Immediately prior to initiating transmission, devices must monitor the combined time and spectrum windows in which they intend to transmit for a period of at least 10 milliseconds for systems designed to use a 10 milliseconds or shorter frame period or at least 20 milliseconds for systems designed to use a 20 milliseconds frame period.
- (2) The monitoring threshold must not be more than 30 dB above the thermal noise power for a bandwidth equivalent to the emission bandwidth used by the device.
- (3) If no signal above the threshold level is detected, transmission may commence and continue with the same emission bandwidth in the monitored time and spectrum windows without further monitoring. However, occupation of the same combined time and spectrum windows by a device or group of cooperating devices continuously over a period of time longer than 8 hours is not permitted without repeating the access criteria.
- (4) Once access to specific combined time and spectrum windows is obtained an acknowledgment from a system participant must be received by the initiating transmitter within one second or transmission must cease. Periodic acknowledgments must be received at least every 30 seconds or transmission must cease. Channels used exclusively for control and signaling information may transmit continuously for 30 seconds without receiving an acknowledgment, at which time the access criteria must be repeated.
- (5) If access to spectrum is not available as determined by the above, and a minimum of 20 duplex system access channels are defined for the system, the time and spectrum windows with the lowest power level may be accessed. A device utilizing the provisions of this paragraph must have monitored all access channels defined for its system within the last 10 seconds and must verify, within the 20 milliseconds (40 milliseconds for devices designed to use a 20 milliseconds frame period) immediately preceding actual channel access that the detected power of the selected time and spectrum windows is no higher than the previously detected value. The power measurement resolution for this comparison must be accurate to within 6 dB. No device or group of co-operating devices located within 1 meter of each other shall during any frame period occupy more than 6 MHz of aggregate bandwidth, or alternatively, more than one third of the time and spectrum windows defined by the system.
- (6) If the selected combined time and spectrum windows are unavailable, the device may either monitor and select different windows or seek to use the same windows after waiting an amount of time, randomly chosen from a uniform random distribution between 10 and 150 milliseconds, commencing when the channel becomes available.
- (7) The monitoring system bandwidth must be equal to or greater than the emission bandwidth of the intended transmission and have a maximum reaction time less than $50 \times \text{SQRT}(1.25/\text{emission bandwidth in MHz})$ microseconds for signals at the applicable threshold level but shall not be required to be less than 50 microseconds. If a signal is detected that is 6 dB or more above the applicable threshold level, the maximum reaction time shall be $35 \times \text{SQRT}(1.25/\text{emission bandwidth in MHz})$ microseconds but shall not be required to be less than 35 microseconds.

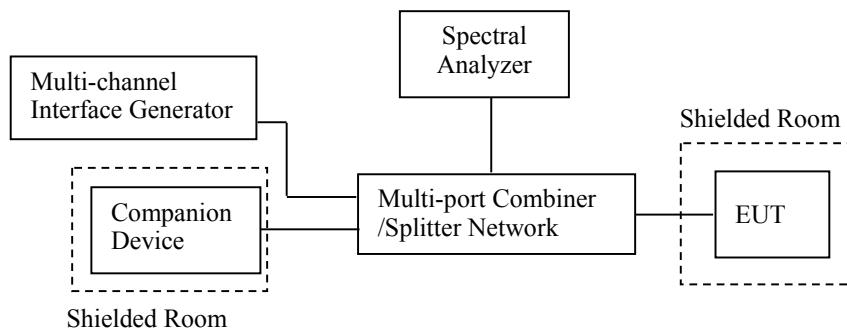
(8) The monitoring system shall use the same antenna used for transmission, or an antenna that yields equivalent reception at that location.

(9) Devices that have a power output lower than the maximum permitted under this subpart may increase their monitoring detection threshold by one decibel for each one decibel that the transmitter power is below the maximum permitted.

(10) An initiating device may attempt to establish a duplex connection by monitoring both its intended transmit and receive time and spectrum windows. If both the intended transmit and receive time and spectrum windows meet the access criteria, then the initiating device can initiate a transmission in the intended transmit time and spectrum window. If the power detected by the responding device can be decoded as a duplex connection signal from the initiating device, then the responding device may immediately begin transmitting on the receive time and spectrum window monitored by the initiating device.

(11) An initiating device that is prevented from monitoring during its intended transmit window due to monitoring system blocking from the transmissions of a co-located (within one meter) transmitter of the same system, may monitor the portions of the time and spectrum windows in which they intend to receive over a period of at least 10 milliseconds. The monitored time and spectrum window must total at least 50 percent of the 10 millisecond frame interval and the monitored spectrum must be within 1.25 MHz of the center frequency of channel(s) already occupied by that device or co-located co-operating devices. If the access criteria is met for the intended receive time and spectrum window under the above conditions, then transmission in the intended transmit window by the initiating device may commence.

(12) The provisions of (c)(10) or (c)(11) of this section shall not be used to extend the range of spectrum occupied over space or time for the purpose of denying fair access to spectrum to other devices.


ANSI C63.17 2013 §6.2 Frequency and time stability and §7.Monitoring tests and §8.Time and spectrum window access procedure.

FCC §15.323(e)

The frame period (a set of consecutive time slots in which the position of each time slot can be identified by reference to a synchronizing source) of an intentional radiator operating in this band shall be 20 milliseconds or 10 milliseconds/X where X is a positive whole number. Each device that implements time division for the purposes of maintaining a duplex connection on a given frequency carrier shall maintain a frame repetition rate with a frequency stability of at least 50 parts per million (ppm). Each device which further divides access in time in order to support multiple communication links on a given frequency carrier shall maintain a frame repetition rate with a frequency stability of at least 10 ppm. The jitter (time-related, abrupt, spurious variations in the duration of the frame interval) introduced at the two ends of such a communication link shall not exceed 25 microseconds for any two consecutive transmissions.

Transmissions shall be continuous in every time and spectrum window during the frame period defined for the device.

3.8.2 EUT Setup

3.8.3 Test Procedure

1) Monitoring Time

According to ANSI C63.17- 2013 Section 7.3.3

2) Lower Monitoring Threshold

According to ANSI C63.17- 2013 Section 7.3.1

3) Maximum Transmit Period

According to ANSI C63.17- 2013 Section 8.2.2

4) System Acknowledgement

According to ANSI C63.17- 2013 Section 8.1, 8.2

5) Least Interfered Channel (LIC)

According to ANSI C63.17- 2013 Section 7.3.2, 7.3.3

6) Random waiting

According to ANSI C63.17- 2013 Section 8.1.2 or 8.1.3

7) Monitoring Bandwidth and Reaction Time

According to ANSI C63.17- 2013 Section 7.4, 7.5

8) Monitoring Antenna

According to ANSI C63.17- 2013 Section 4

9) Monitoring threshold relaxation

According to ANSI C63.17- 2013 Section 4

10) Duplex Connections

According to ANSI C63.17- 2013 Section 8.3

11) Alternative monitoring interval

According to ANSI C63.17- 2013 Section 8.4

12) Frame Repetition Stability Frame Period and Jitter

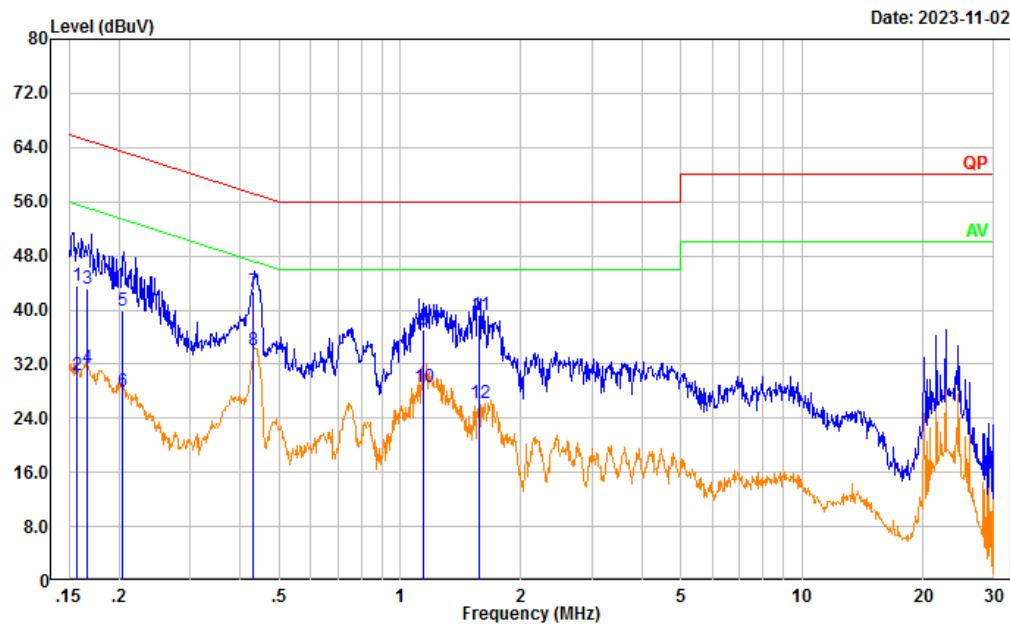
According to ANSI C63.17- 2013 Section 6.2.2, 6.2.3

4. Test DATA AND RESULTS

4.1 Conducted Emissions

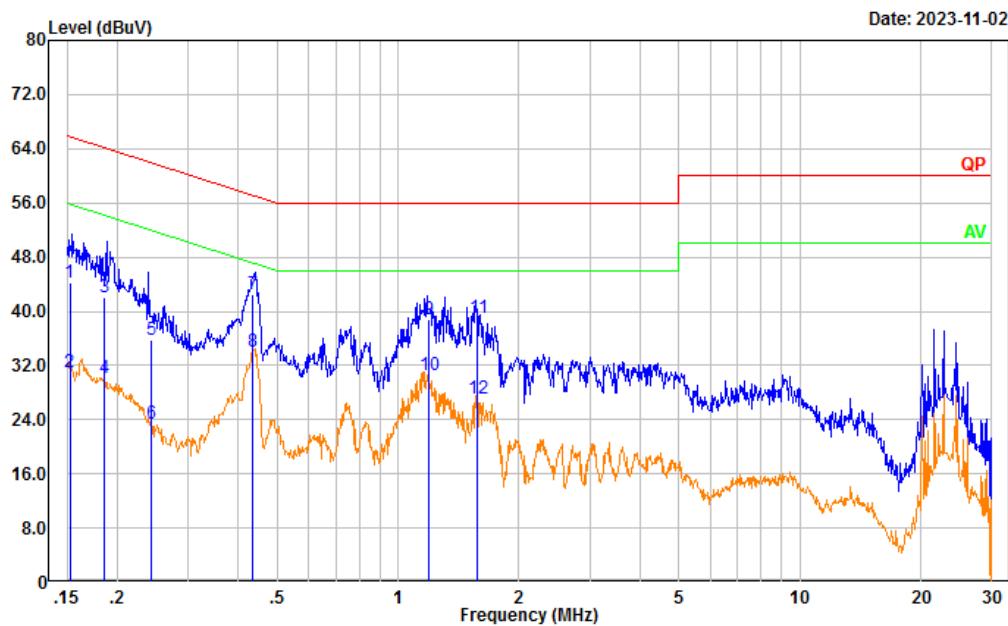
Serial Number:	2CSP-3	Test Date:	2023/11/2
Test Site:	CE	Test Mode:	Transmitting (tested at maximum output power mode ANT0 high channel)
Tester:	David Huang	Test Result:	Pass

Environmental Conditions:


Temperature: (°C)	25.9	Relative Humidity: (%)	54	ATM Pressure: (kPa)	100.9
-------------------	------	------------------------	----	---------------------	-------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	LISN	ENV216	101134	2023/03/31	2024/03/30
R&S	EMI Test Receiver	ESR3	102726	2023/03/31	2024/03/30
MICRO-COAX	Coaxial Cable	UTIFLEX	C-0200-01	2023/08/06	2024/08/05
Audix	Test Software	E3	190306 (V9)	N/A	N/A


* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Project No.: CR231062962-RF
Tester: David Huang
Port: Line
Note: Transmitting

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB)	Result (dB μ V)	Limit (dB μ V)	Margin (dB)	Detector
1	0.157	33.99	9.61	43.60	65.63	22.03	QP
2	0.157	20.81	9.61	30.42	55.63	25.21	Average
3	0.167	33.51	9.61	43.12	65.13	22.01	QP
4	0.167	21.88	9.61	31.49	55.13	23.64	Average
5	0.204	30.19	9.61	39.80	63.47	23.67	QP
6	0.204	18.39	9.61	28.00	53.47	25.47	Average
7	0.432	33.07	9.61	42.68	57.20	14.52	QP
8	0.432	24.38	9.61	33.99	47.20	13.21	Average
9	1.146	27.45	9.62	37.07	56.00	18.93	QP
10	1.146	19.10	9.62	28.72	46.00	17.28	Average
11	1.577	29.61	9.63	39.24	56.00	16.76	QP
12	1.577	16.64	9.63	26.27	46.00	19.73	Average

Project No.: CR231062962-RF
Tester: David Huang
Port: neutral
Note: Transmitting

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB)	Result (dB μ V)	Limit (dB μ V)	Margin (dB)	Detector
1	0.152	34.57	9.61	44.18	65.87	21.69	QP
2	0.152	21.47	9.61	31.08	55.87	24.79	Average
3	0.186	32.50	9.61	42.11	64.22	22.11	QP
4	0.186	20.63	9.61	30.24	54.22	23.98	Average
5	0.243	26.20	9.61	35.81	62.00	26.19	QP
6	0.243	13.75	9.61	23.36	52.00	28.64	Average
7	0.435	32.95	9.61	42.56	57.16	14.60	QP
8	0.435	24.50	9.61	34.11	47.16	13.05	Average
9	1.194	29.12	9.62	38.74	56.00	17.26	QP
10	1.194	21.03	9.62	30.65	46.00	15.35	Average
11	1.576	29.32	9.63	38.95	56.00	17.05	QP
12	1.576	17.57	9.63	27.20	46.00	18.80	Average

4.2 Radiated Emissions:

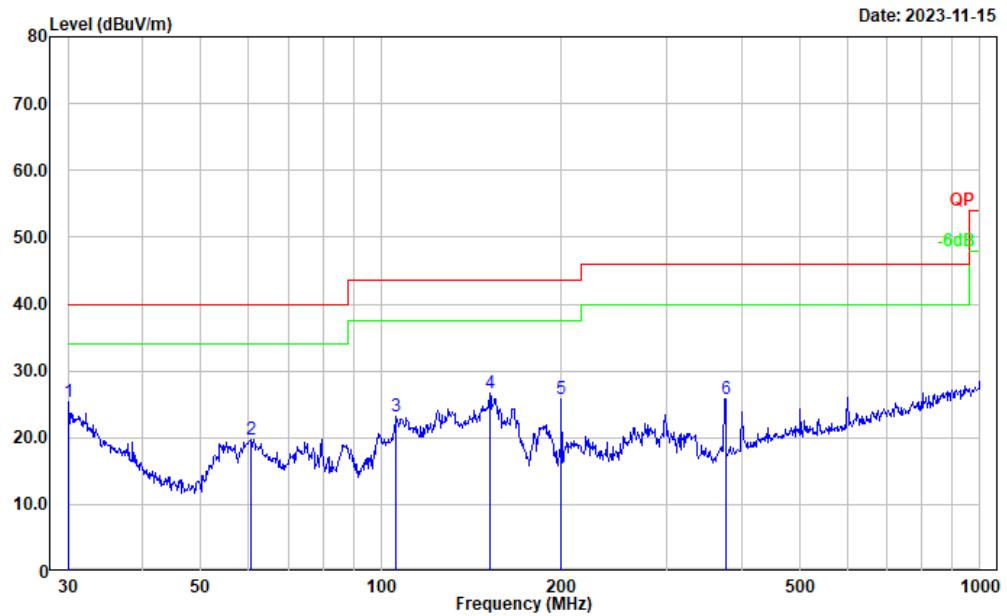
Serial Number:	2CSP-3	Test Date:	2023/11/15~2023/12/22
Test Site:	966-1, 966-2	Test Mode:	Transmitting
Tester:	Jeff Luo ,Mack Huang	Test Result:	Pass

Environmental Conditions:

Temperature: (°C)	25.4~26	Relative Humidity: (%)	53~57	ATM Pressure: (kPa)	100.5~102.6
-------------------	---------	------------------------	-------	---------------------	-------------

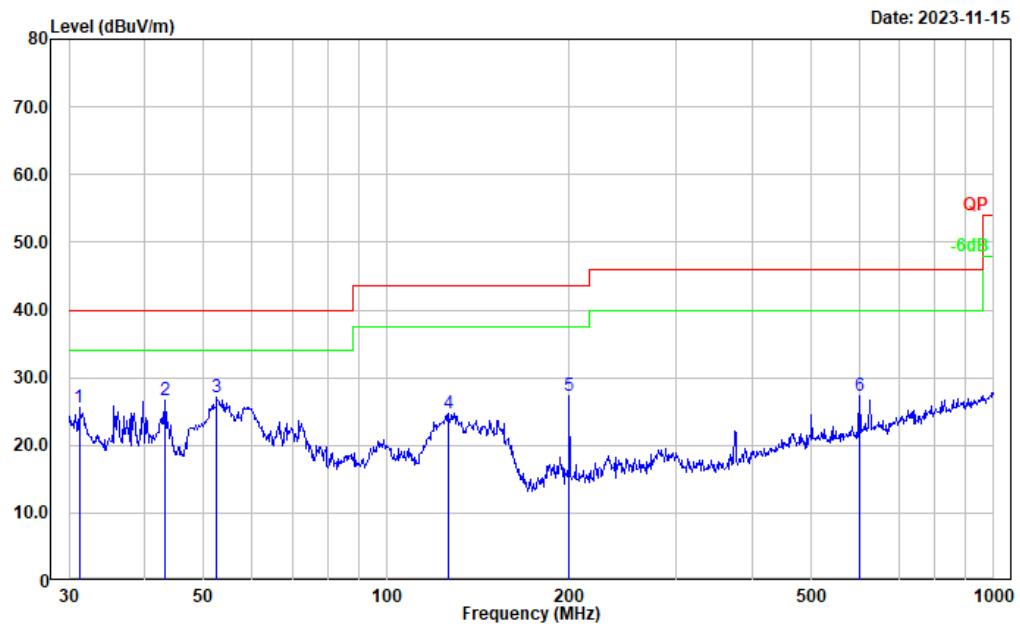
Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Sunol Sciences	Antenna	JB6	A082520-6	2023/9/18	2026/9/17
R&S	EMI Test Receiver	ESR3	102724	2023/3/31	2024/3/30
TIMES MICROWAVE	Coaxial Cable	LMR-600-UltraFlex	C-0470-02	2023/7/16	2024/7/15
TIMES MICROWAVE	Coaxial Cable	LMR-600-UltraFlex	C-0780-01	2023/7/16	2024/7/15
Sonoma	Amplifier	310N	186165	2023/7/16	2024/7/15
Audix	Test Software	E3	201021 (V9)	N/A	N/A
AH	Double Ridge Guide Horn Antenna	SAS-571	1394	2023/2/22	2026/2/21
R&S	Spectrum Analyzer	FSV40	101591	2023/3/31	2024/3/30
MICRO-COAX	Coaxial Cable	UFA210A-1-1200-70U300	217423-008	2023/8/6	2024/8/5
MICRO-COAX	Coaxial Cable	UFA210A-1-2362-300300	235780-001	2023/8/6	2024/8/5
Mini	Pre-amplifier	ZVA-183-S+	5969001149	2023/11/8	2024/11/9
PASTERNACK	Horn Antenna	PE9852/2F-20	112002	2021/2/5	2024/2/4
Quinstar	Preamplifier	QLW-18405536-JO	15964001005	2023/9/15	2024/9/14
MICRO-COAX	Coaxial Cable	UFB142A-1-2362-200200	235772-001	2023/8/6	2024/8/5


* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

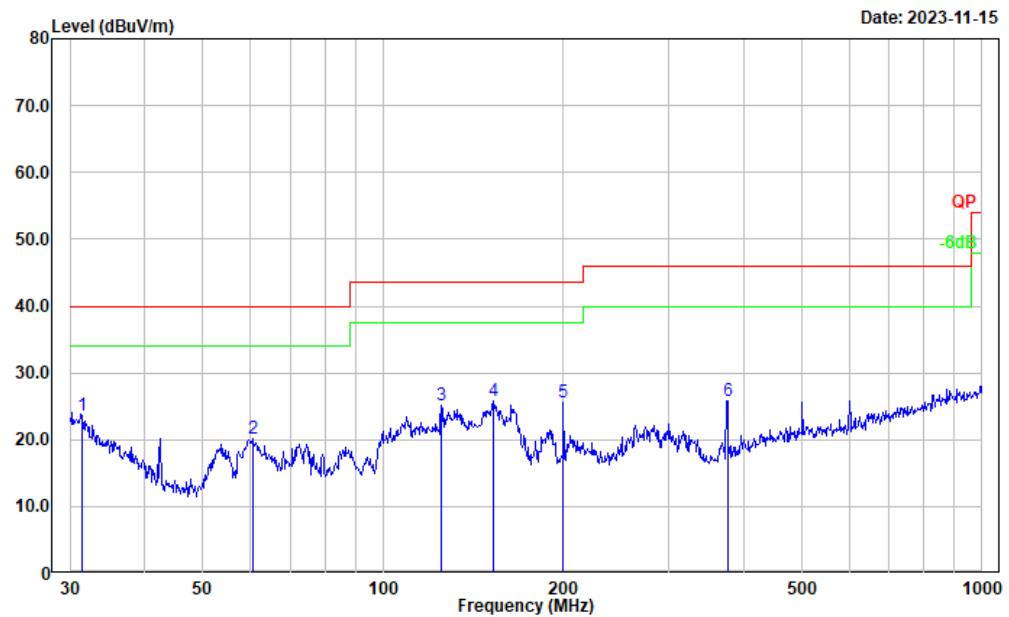
Test Data:

1) 30MHz-1GHz

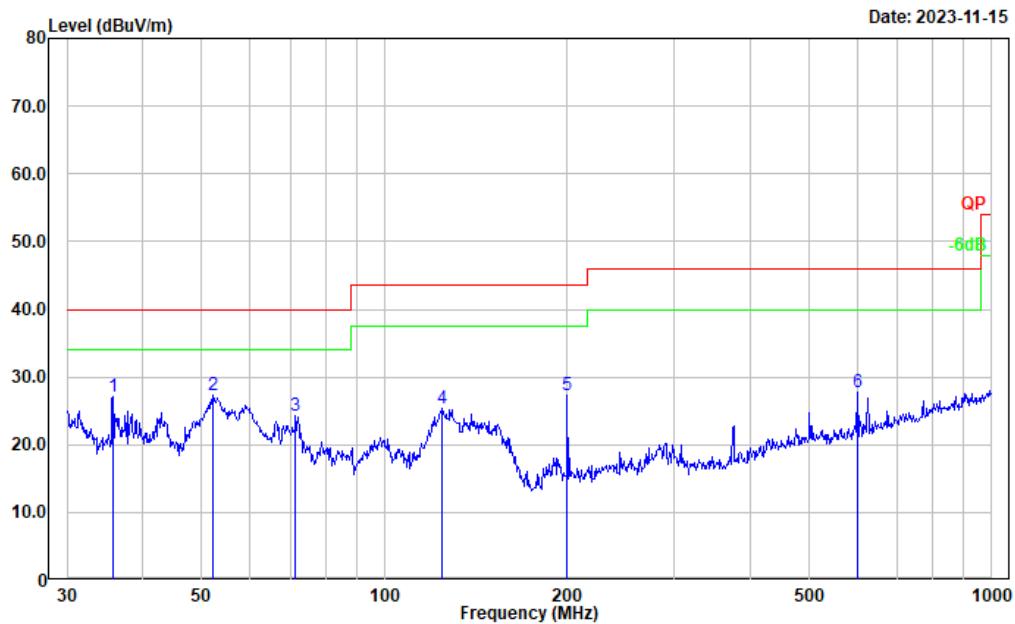

ANT0 Low Channel:

Project No.: CR231062962-RF
Tester: Jeff Luo
Polarization: horizontal
Note:

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	30.000	29.12	-3.80	25.32	40.00	14.68	Peak
2	60.492	37.13	-17.30	19.83	40.00	20.17	Peak
3	105.642	36.42	-13.23	23.19	43.50	20.31	Peak
4	152.130	38.50	-11.92	26.58	43.50	16.92	Peak
5	199.986	38.08	-12.21	25.87	43.50	17.63	Peak
6	375.939	35.17	-9.29	25.88	46.00	20.12	Peak

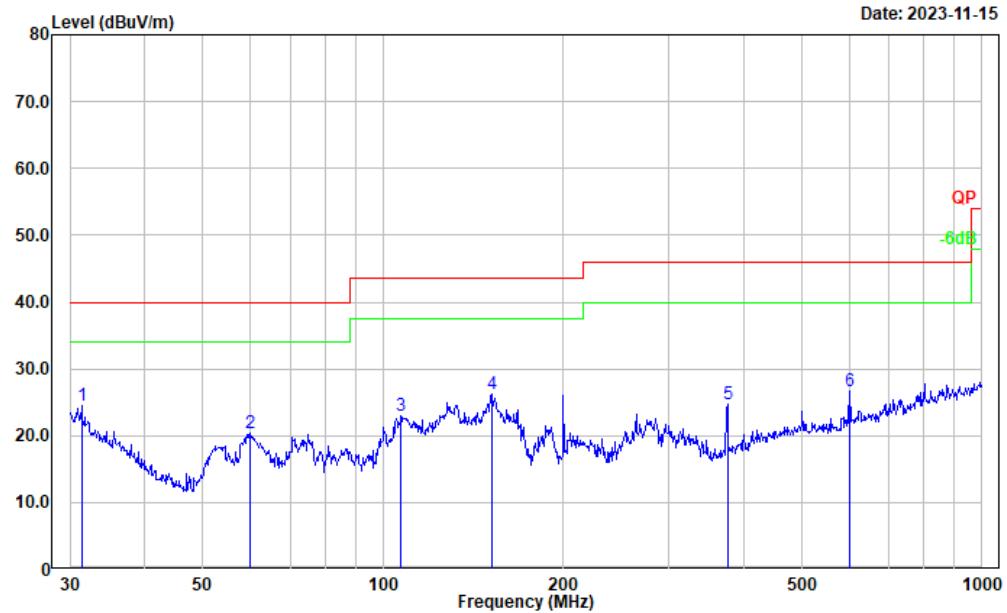

Project No.: CR231062962-RF
Tester: Jeff Luo
Polarization: vertical
Note:

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	31.180	30.35	-4.69	25.66	40.00	14.34	Peak
2	43.202	39.99	-13.22	26.77	40.00	13.23	Peak
3	52.575	44.28	-17.12	27.16	40.00	12.84	Peak
4	126.772	36.06	-11.35	24.71	43.50	18.79	Peak
5	199.986	39.63	-12.21	27.42	43.50	16.08	Peak
6	601.427	32.34	-5.03	27.31	46.00	18.69	Peak

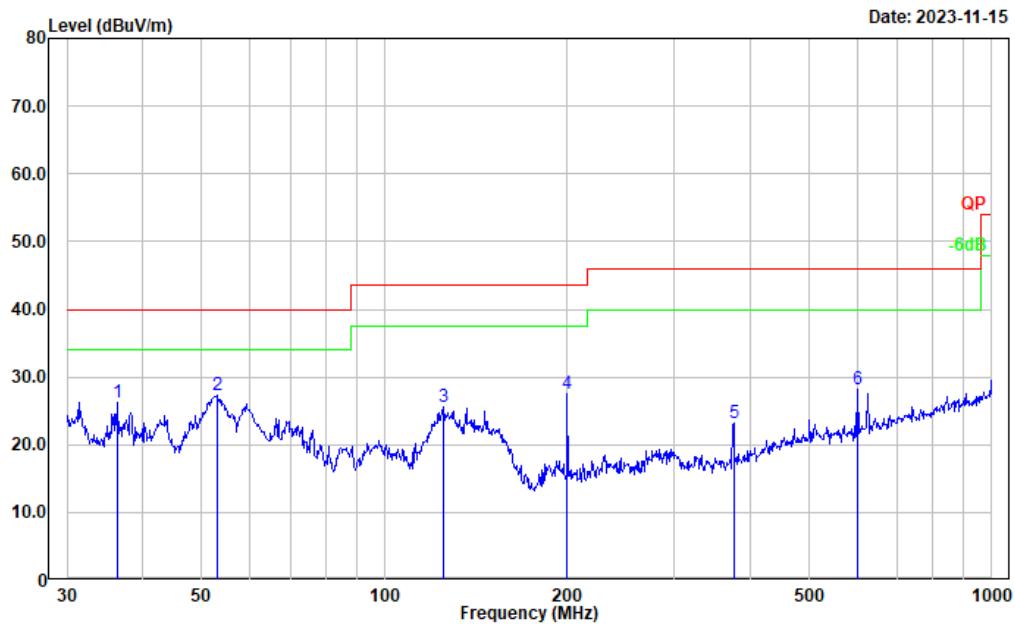

ANT0 Middle Channel:

Project No.: CR231062962-RF
Tester: Jeff Luo
Polarization: horizontal
Note:

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	31.510	28.65	-4.93	23.72	40.00	16.28	Peak
2	60.492	37.56	-17.30	20.26	40.00	19.74	Peak
3	125.007	36.43	-11.31	25.12	43.50	18.38	Peak
4	153.200	37.78	-11.93	25.85	43.50	17.65	Peak
5	199.986	37.82	-12.21	25.61	43.50	17.89	Peak
6	375.939	35.15	-9.29	25.86	46.00	20.14	Peak

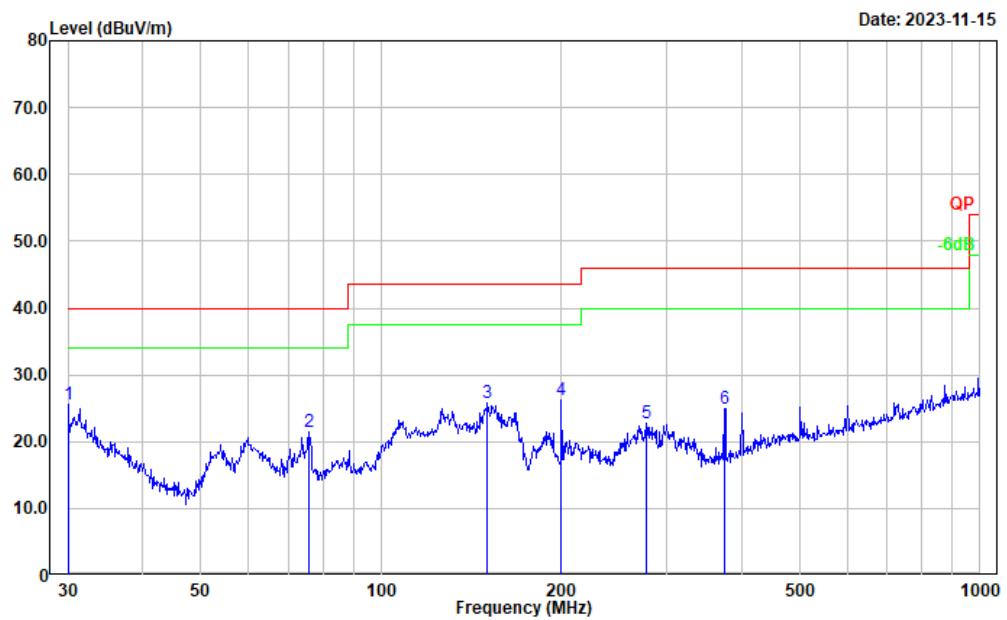

Project No.: CR231062962-RF
Tester: Jeff Luo
Polarization: vertical
Note:

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	35.749	35.21	-8.20	27.01	40.00	12.99	Peak
2	52.208	44.44	-17.11	27.33	40.00	12.67	Peak
3	71.330	41.03	-16.70	24.33	40.00	15.67	Peak
4	124.569	36.62	-11.35	25.27	43.50	18.23	Peak
5	199.986	39.43	-12.21	27.22	43.50	16.28	Peak
6	601.427	32.83	-5.03	27.80	46.00	18.20	Peak


ANT0 High Channel:

Project No.: CR231062962-RF
Tester: Jeff Luo
Polarization: horizontal
Note:

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	31.399	29.40	-4.86	24.54	40.00	15.46	Peak
2	60.069	37.71	-17.31	20.40	40.00	19.60	Peak
3	107.134	35.89	-12.87	23.02	43.50	20.48	Peak
4	152.130	38.21	-11.92	26.29	43.50	17.21	Peak
5	375.939	33.93	-9.29	24.64	46.00	21.36	Peak
6	601.427	31.75	-5.03	26.72	46.00	19.28	Peak

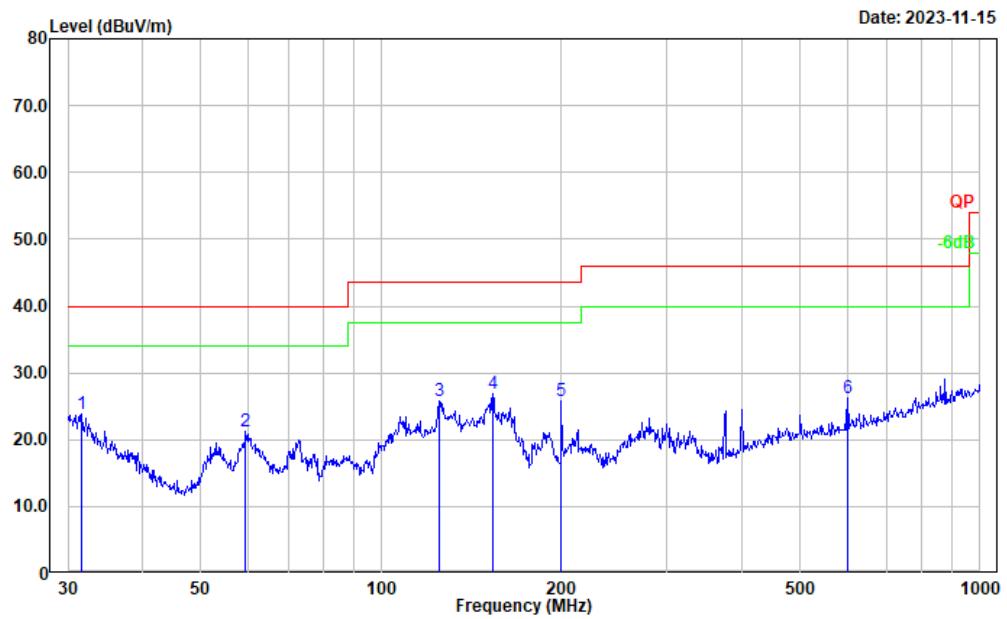

Project No.: CR231062962-RF
Tester: Jeff Luo
Polarization: vertical
Note:

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	36.254	34.91	-8.58	26.33	40.00	13.67	Peak
2	53.131	44.46	-17.13	27.33	40.00	12.67	Peak
3	125.007	36.99	-11.31	25.68	43.50	17.82	Peak
4	199.986	39.74	-12.21	27.53	43.50	15.97	Peak
5	375.939	32.57	-9.29	23.28	46.00	22.72	Peak
6	601.427	33.24	-5.03	28.21	46.00	17.79	Peak

ANT1 Low Channel:

Project No.: CR231062962-RF
Tester: Jeff Luo
Polarization: horizontal
Note:

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
<hr/>							
1	30.000	29.34	-3.80	25.54	40.00	14.46	Peak
2	75.977	38.57	-17.06	21.51	40.00	18.49	Peak
3	150.538	37.79	-11.93	25.86	43.50	17.64	Peak
4	199.986	38.51	-12.21	26.30	43.50	17.20	Peak
5	277.094	34.62	-11.85	22.77	46.00	23.23	Peak
6	374.623	34.24	-9.34	24.90	46.00	21.10	Peak

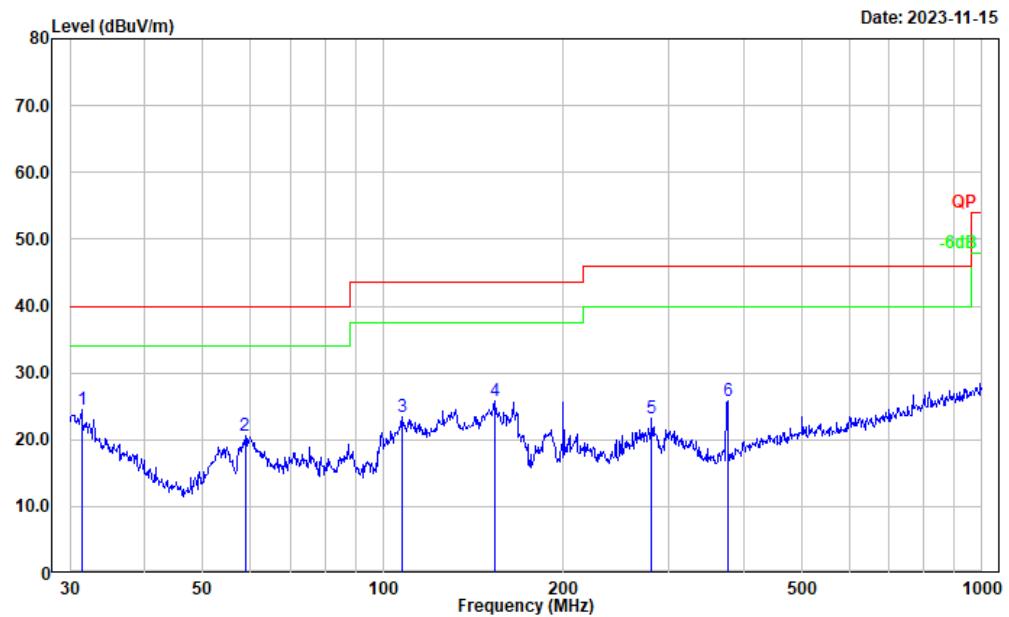

Project No.: CR231062962-RF
Tester: Jeff Luo
Polarization: vertical
Note:

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	35.624	33.68	-8.10	25.58	40.00	14.42	Peak
2	52.945	44.59	-17.13	27.46	40.00	12.54	Peak
3	69.600	40.99	-16.61	24.38	40.00	15.62	Peak
4	125.007	37.70	-11.31	26.39	43.50	17.11	Peak
5	199.986	39.11	-12.21	26.90	43.50	16.60	Peak
6	601.427	32.64	-5.03	27.61	46.00	18.39	Peak

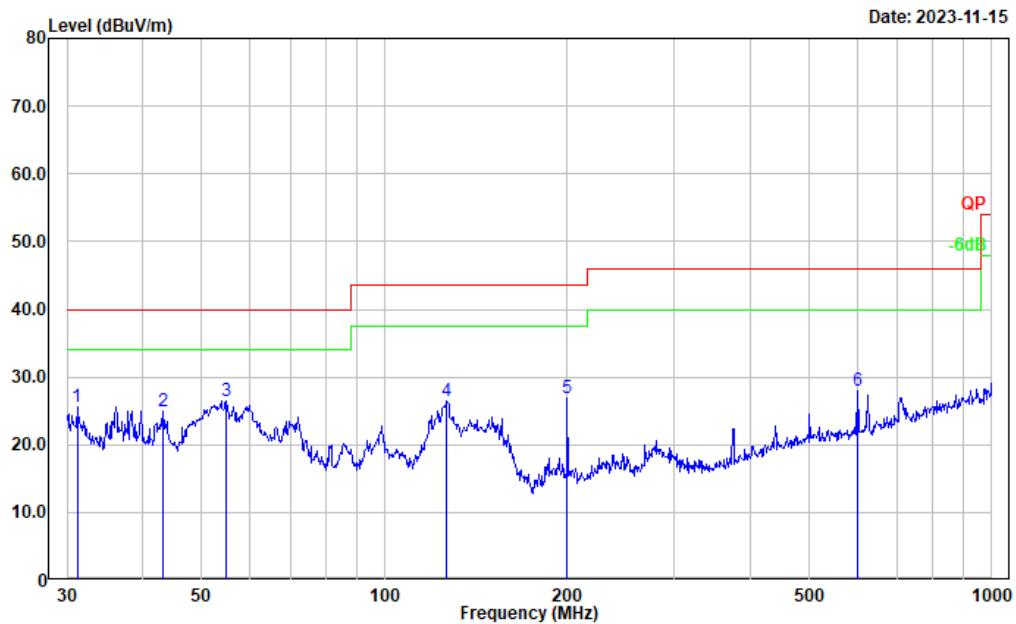
ANT1 Middle Channel:

Project No.: CR231062962-RF
Tester: Jeff Luo
Polarization: horizontal
Note:

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	31.620	28.88	-5.02	23.86	40.00	16.14	Peak
2	59.441	38.45	-17.31	21.14	40.00	18.86	Peak
3	125.007	37.05	-11.31	25.74	43.50	17.76	Peak
4	153.739	38.73	-11.91	26.82	43.50	16.68	Peak
5	199.986	37.97	-12.21	25.76	43.50	17.74	Peak
6	601.427	31.29	-5.03	26.26	46.00	19.74	Peak


Project No.: CR231062962-RF
Tester: Jeff Luo
Polarization: vertical
Note:

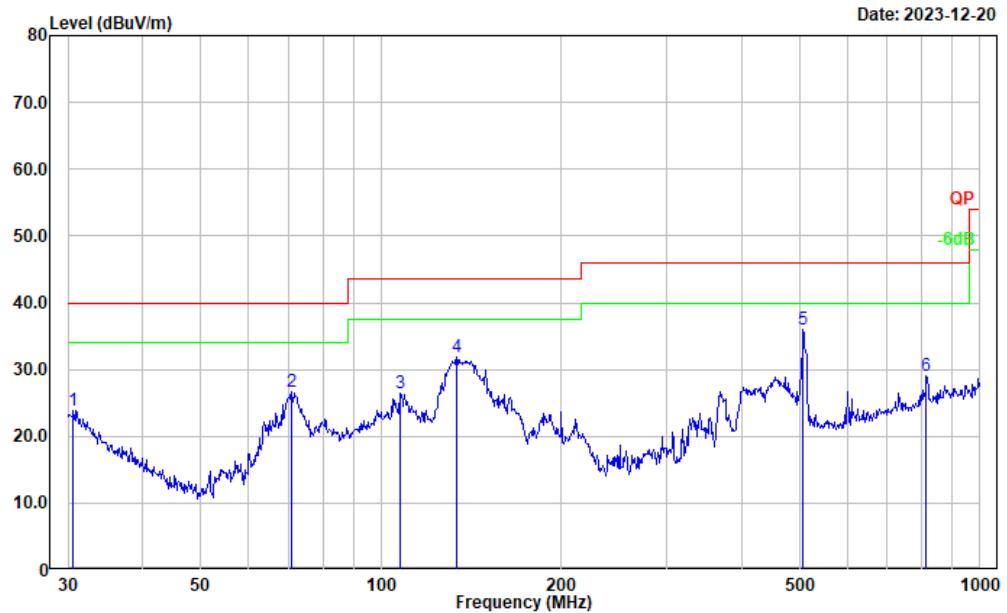
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	30.105	30.26	-3.88	26.38	40.00	13.62	Peak
2	38.212	35.45	-10.02	25.43	40.00	14.57	Peak
3	55.221	44.00	-17.19	26.81	40.00	13.19	Peak
4	129.468	36.94	-11.28	25.66	43.50	17.84	Peak
5	199.986	39.25	-12.21	27.04	43.50	16.46	Peak
6	601.427	33.70	-5.03	28.67	46.00	17.33	Peak


ANT1 High Channel:

Project No.: CR231062962-RF
Tester: Jeff Luo
Polarization: horizontal
Note:

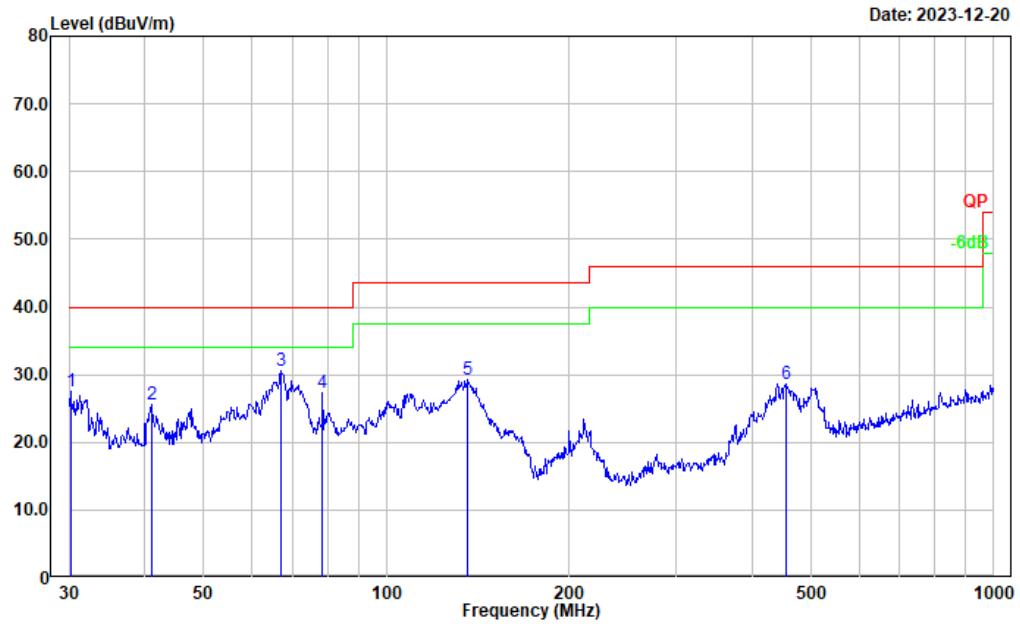
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	31.399	29.40	-4.86	24.54	40.00	15.46	Peak
2	58.819	37.86	-17.29	20.57	40.00	19.43	Peak
3	107.510	36.13	-12.80	23.33	43.50	20.17	Peak
4	153.739	37.78	-11.91	25.87	43.50	17.63	Peak
5	281.008	34.89	-11.64	23.25	46.00	22.75	Peak
6	375.939	35.16	-9.29	25.87	46.00	20.13	Peak

Project No.: CR231062962-RF
Tester: Jeff Luo
Polarization: vertical
Note:



No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	31.180	30.29	-4.69	25.60	40.00	14.40	Peak
2	43.202	38.20	-13.22	24.98	40.00	15.02	Peak
3	54.835	43.62	-17.18	26.44	40.00	13.56	Peak
4	126.772	37.70	-11.35	26.35	43.50	17.15	Peak
5	199.986	39.13	-12.21	26.92	43.50	16.58	Peak
6	601.427	33.05	-5.03	28.02	46.00	17.98	Peak

Transmission simultaneously:


DECT ANT0 High Channel + Wi-Fi 802.11g Low Channel was the worst

Project No.: CR231062962-RF
Tester: Jeff Luo
Polarization: horizontal
Note:

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	30.638	28.23	-4.28	23.95	40.00	16.05	Peak
2	70.832	43.36	-16.64	26.72	40.00	13.28	Peak
3	107.888	39.14	-12.72	26.42	43.50	17.08	Peak
4	133.619	43.34	-11.51	31.83	43.50	11.67	Peak
5	506.479	41.99	-5.91	36.08	46.00	9.92	Peak
6	813.112	30.94	-1.88	29.06	46.00	16.94	Peak

Project No.: CR231062962-RF
Tester: Jeff Luo
Polarization: vertical
Note:

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	30.211	31.48	-3.96	27.52	40.00	12.48	Peak
2	40.988	37.49	-11.98	25.51	40.00	14.49	Peak
3	66.967	47.46	-16.80	30.66	40.00	9.34	Peak
4	78.413	44.65	-17.32	27.33	40.00	12.67	Peak
5	135.982	40.83	-11.59	29.24	43.50	14.26	Peak
6	454.310	35.49	-6.80	28.69	46.00	17.31	Peak

1) 1-20GHz**ANT 0:****Peak Field Strength**

Frequency (MHz)	Receiver		Polar (H/V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
	Reading (dB μ V)	Detector					
Low Channel: 1921.536 MHz							
3843.072	35.14	PK	H	7.77	42.91	74.00	31.09
3843.072	34.88	PK	V	7.77	42.65	74.00	31.35
Middle Channel: 1924.992 MHz							
3849.984	37.78	PK	H	7.77	45.55	74.00	28.45
3849.984	35.11	PK	V	7.77	42.88	74.00	31.12
High Channel: 1928.448 MHz							
3856.896	35.20	PK	H	7.77	42.97	74.00	31.03
3856.896	34.35	PK	V	7.77	42.12	74.00	31.88

Average Field Strength

Frequency (MHz)	Peak (dB μ V/m)	Polar (H/V)	Duty Cycle Factor (dB)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
Low Channel: 1921.536 MHz						
3843.072	42.91	H	-28.52	14.39	54.00	39.61
3843.072	42.65	V	-28.52	14.13	54.00	39.87
Middle Channel: 1924.992 MHz						
3849.984	45.55	H	-28.52	17.03	54.00	36.97
3849.984	42.88	V	-28.52	14.36	54.00	39.64
High Channel: 1928.448 MHz						
3856.896	42.97	H	-28.52	14.45	54.00	39.55
3856.896	42.12	V	-28.52	13.60	54.00	40.40

Note: Average level= Peak level+ Duty Cycle Factor

ANT 1:
Peak Field Strength

Frequency (MHz)	Receiver		Polar (H/V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
	Reading (dB μ V)	Detector					
Low Channel:				1921.536	MHz		
3843.072	35.46	PK	H	7.77	43.23	74.00	30.77
3843.072	35.20	PK	V	7.77	42.97	74.00	31.03
Middle Channel:				1924.992	MHz		
3849.984	36.01	PK	H	7.77	43.78	74.00	30.22
3849.984	35.41	PK	V	7.77	43.18	74.00	30.82
High Channel:				1928.448	MHz		
3856.896	35.11	PK	H	7.77	42.88	74.00	31.12
3856.896	34.69	PK	V	7.77	42.46	74.00	31.54

Average Field Strength

Frequency (MHz)	Peak (dB μ V/m)	Polar (H/V)	Duty Cycle Factor (dB)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
Low Channel:				1921.536	MHz	
3843.072	43.23	H	-28.52	14.71	54.00	39.29
3843.072	42.97	V	-28.52	14.45	54.00	39.55
Middle Channel:				1924.992	MHz	
3849.984	43.78	H	-28.52	15.26	54.00	38.74
3849.984	43.18	V	-28.52	14.66	54.00	39.34
High Channel:				1928.448	MHz	
3856.896	42.88	H	-28.52	14.36	54.00	39.64
3856.896	42.46	V	-28.52	13.94	54.00	40.06

Note: Average level= Peak level+ Duty Cycle Factor

Duty cycle:
Ton1 = 0.375ms
Tp = 10ms

Duty cycle = Ton/Tp = 0.375/10=0.0375
Duty Cycle Corrected Factor = 20lg(Duty cycle) = 20lg0.0375= -28.52

Transmission simultaneously:

ANT0 Middle Channel + Wi-Fi 802.11g Low Channel was the worst:

Frequency (MHz)	Receiver		Polar (H/V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
	Reading (dB μ V)	Detector					
3849.984	36.93	PK	H	7.77	44.70	74.00	29.30
3849.984	35.12	PK	V	7.77	42.89	74.00	31.11
4874.000	33.59	PK	H	11.45	45.04	74.00	28.96
4874.000	20.16	AV	H	11.45	31.61	54.00	22.39
4874.000	40.20	PK	V	11.45	51.65	74.00	22.35
4874.000	27.78	AV	V	11.45	39.23	54.00	14.77

DECT Average Field Strength

Frequency (MHz)	Peak (dB μ V/m)	Polar (H/V)	Duty Cycle Factor (dB)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
3849.984	44.70	H	-28.52	16.18	54.00	37.82
3849.984	42.89	V	-28.52	14.37	54.00	39.63

Note: Average level = Peak level + Duty Cycle Factor

Duty cycle:

Ton1 = 0.375ms

Tp = 10ms

Duty cycle = Ton/Tp = 0.375/10 = 0.0375

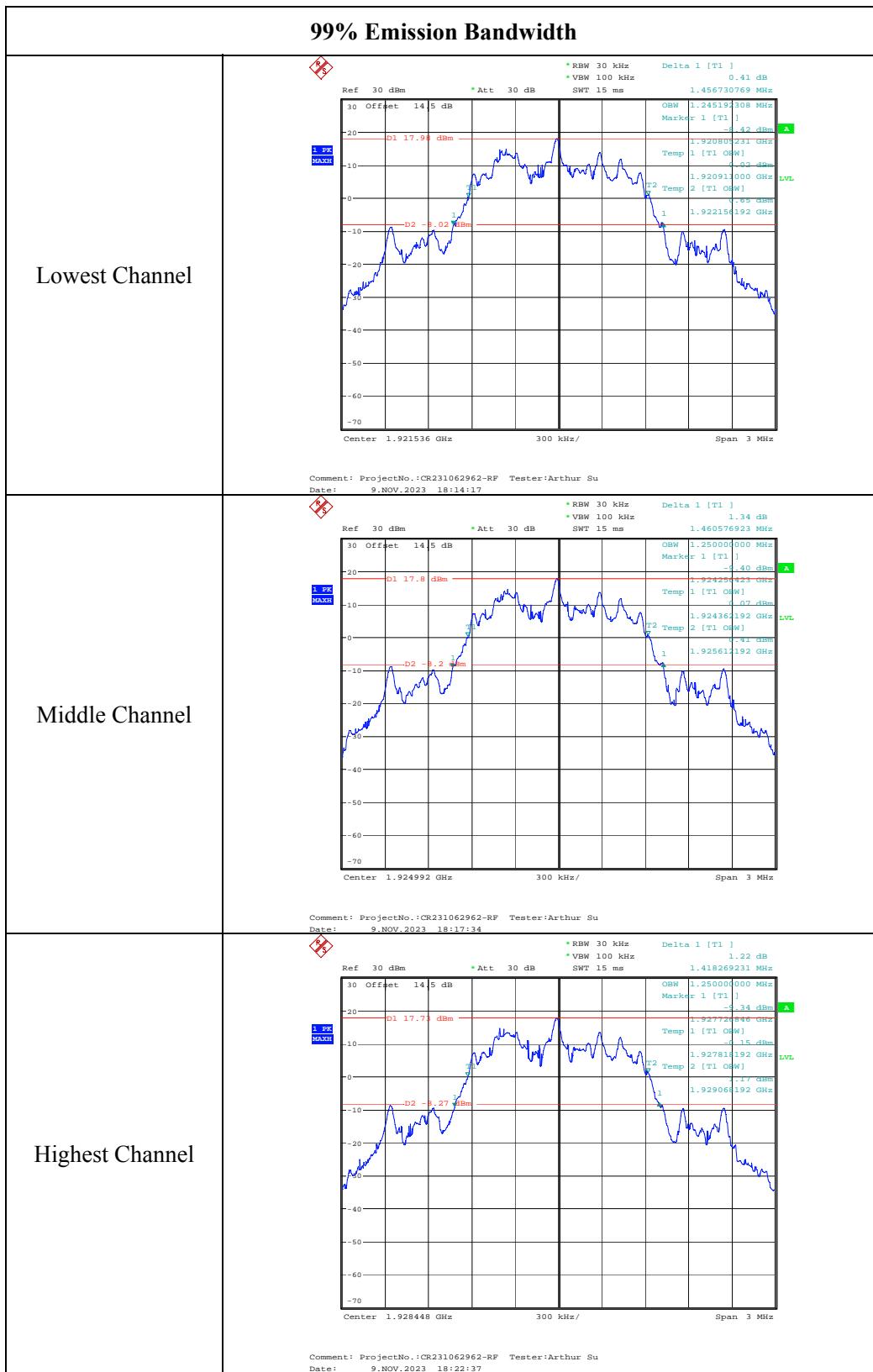
Duty Cycle Corrected Factor = 20lg(Duty cycle) = 20lg0.0375 = -28.52

4.3 Emission Bandwidth:

Serial Number:	2CSP-1	Test Date:	2023/11/9
Test Site:	RF	Test Mode:	Transmitting
Tester:	Arthur Su	Test Result:	Pass

Environmental Conditions:

Temperature: (°C)	25.3	Relative Humidity: (%)	59	ATM Pressure: (kPa)	100.9
-------------------	------	------------------------	----	---------------------	-------


Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSU26	100147	2023/3/31	2024/3/30
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A
YINSAIGE	Coaxial Cable	SS402	SJ0100001	Each time	N/A
eastsheep	Coaxial Attenuator	2W-SMA-JK-18G	21060301	Each time	N/A
Unknown	Coaxial tee connector	Unknown	2204004	Each time	N/A
R&S	Digital Radio communication Tester	CMD 60M	846956/010	2023/3/31	2024/3/30

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Test Channel	Test Frequency (MHz)	99% Emission Bandwidth (MHz)	26 dB Emission Bandwidth (MHz)	Limit (MHz)
Lowest	1921.536	1.245	1.457	50 kHz ~ 2.5 MHz
Middle	1924.992	1.250	1.461	50 kHz ~ 2.5 MHz
Highest	1928.448	1.250	1.418	50 kHz ~ 2.5 MHz

4.4 Peak Transmit Power:

Serial Number:	2CSP-1	Test Date:	2023/11/9
Test Site:	RF	Test Mode:	Transmitting
Tester:	Arthur Su	Test Result:	Pass

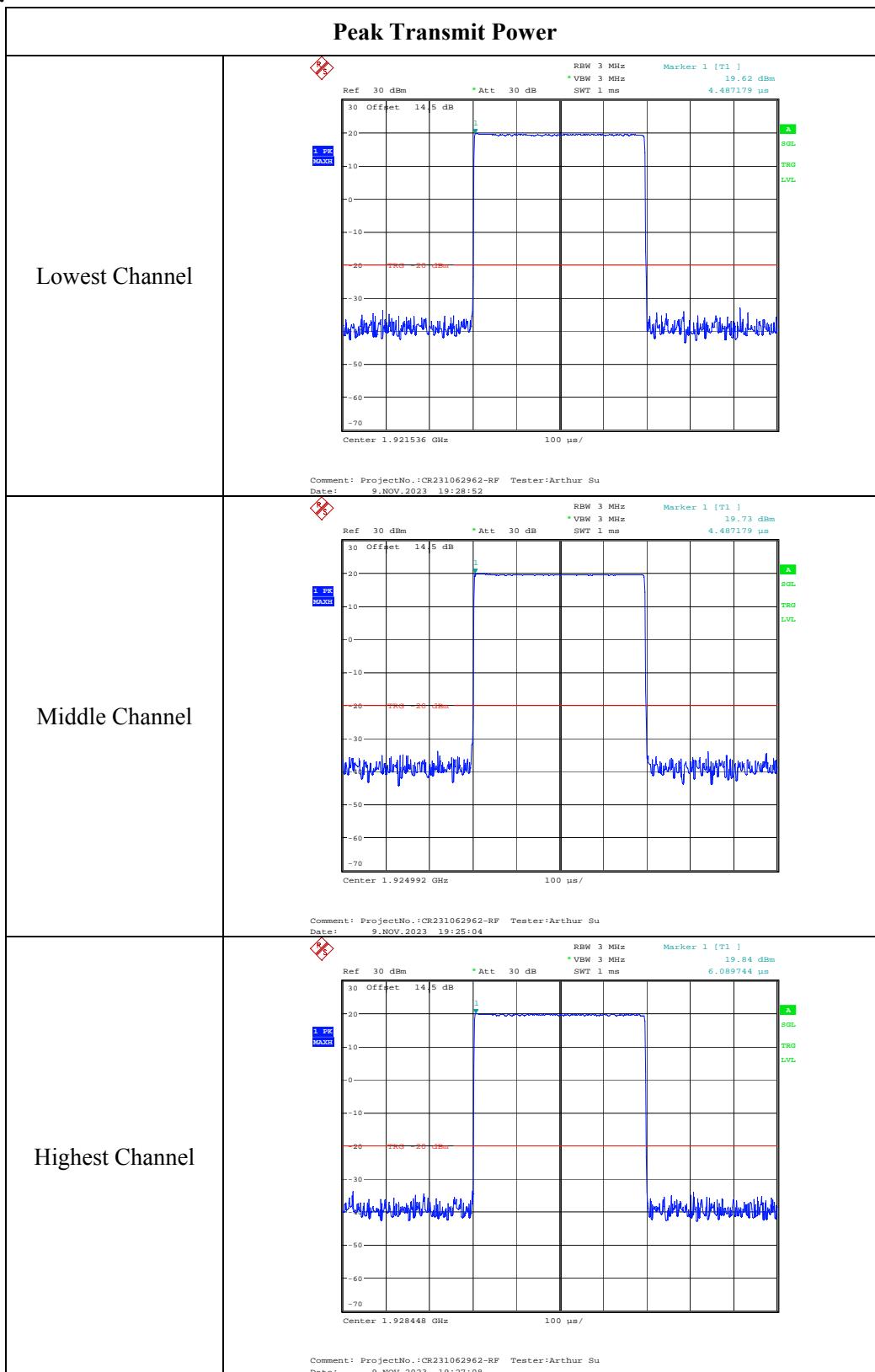
Environmental Conditions:

Temperature: (°C)	25.3	Relative Humidity: (%)	59	ATM Pressure: (kPa)	100.9
-------------------	------	------------------------	----	---------------------	-------

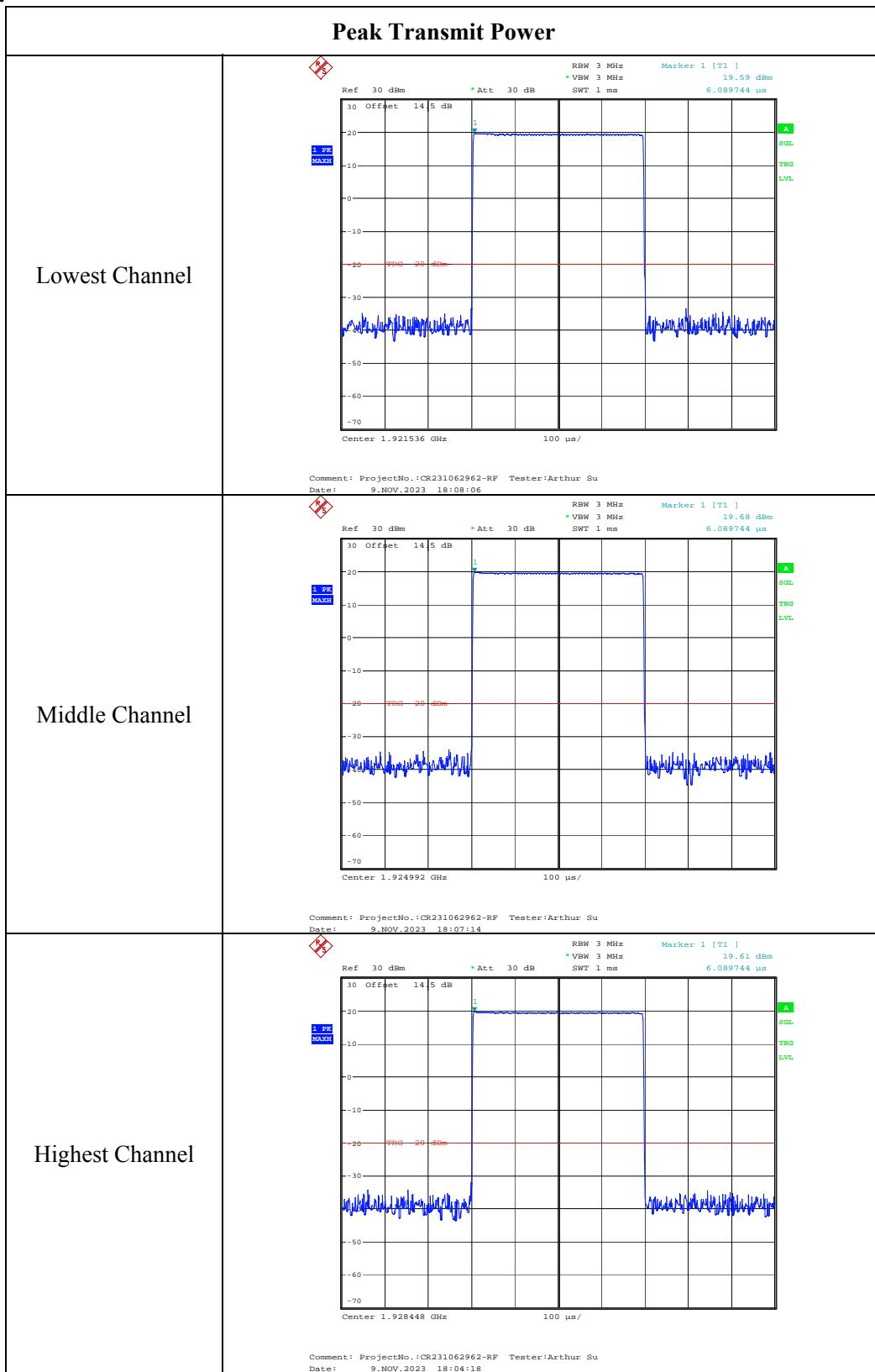
Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSU26	100147	2023/3/31	2024/3/30
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A
YINSAIGE	Coaxial Cable	SS402	SJ0100001	Each time	N/A
eastsheep	Coaxial Attenuator	2W-SMA-JK-18G	21060301	Each time	N/A
Unknown	Coaxial tee connector	Unknown	2204004	Each time	N/A
R&S	Digital Radio communication Tester	CMD 60M	846956/010	2023/3/31	2024/3/30

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).


Test Data:

Test Channel	Frequency (MHz)	Peak Transmit Power (dBm)	FCC Limit (dBm)	IC Limit (dBm)
ANT0				
Lowest	1921.536	19.62	20.82	20.48
Middle	1924.992	19.73	20.82	20.48
Highest	1928.448	19.84	20.76	20.48
ANT1				
Lowest	1921.536	19.59	20.82	20.48
Middle	1924.992	19.68	20.82	20.48
Highest	1928.448	19.61	20.76	20.48


Note:

For FCC: Peak Transmit Power Limit = $100(EBW)^{1/2} \mu W$

ANT 0:

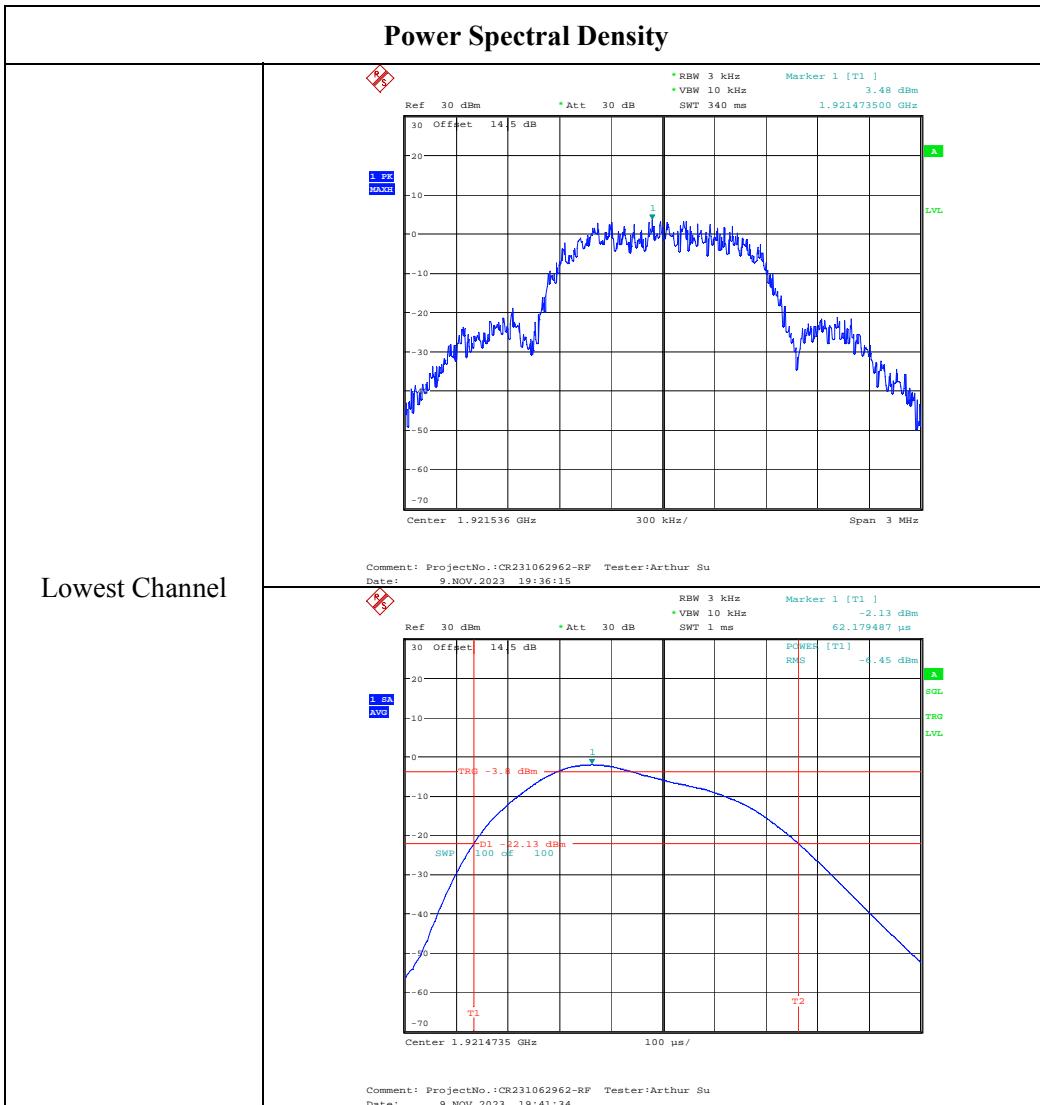
ANT 1:

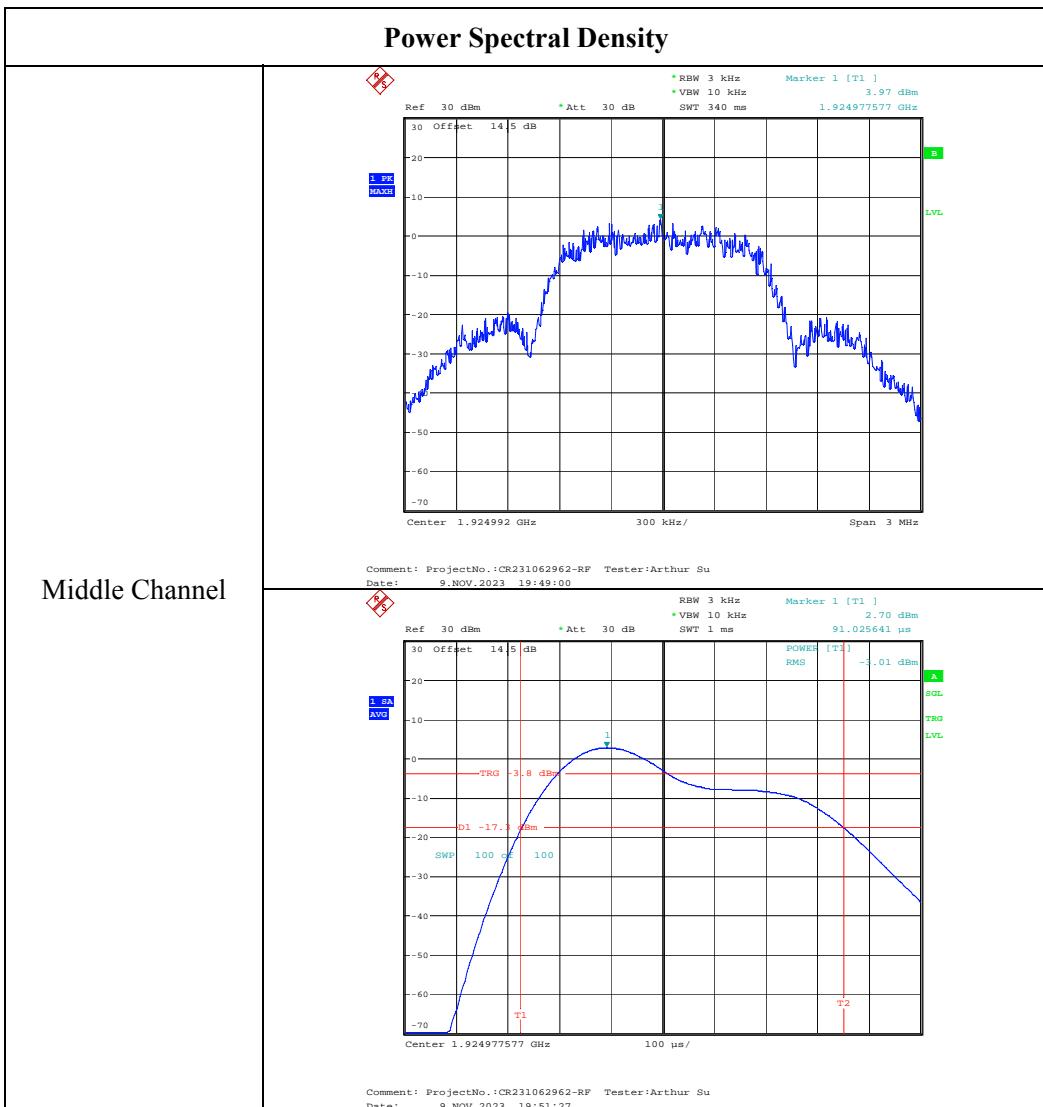
4.5 Power Spectral Density:

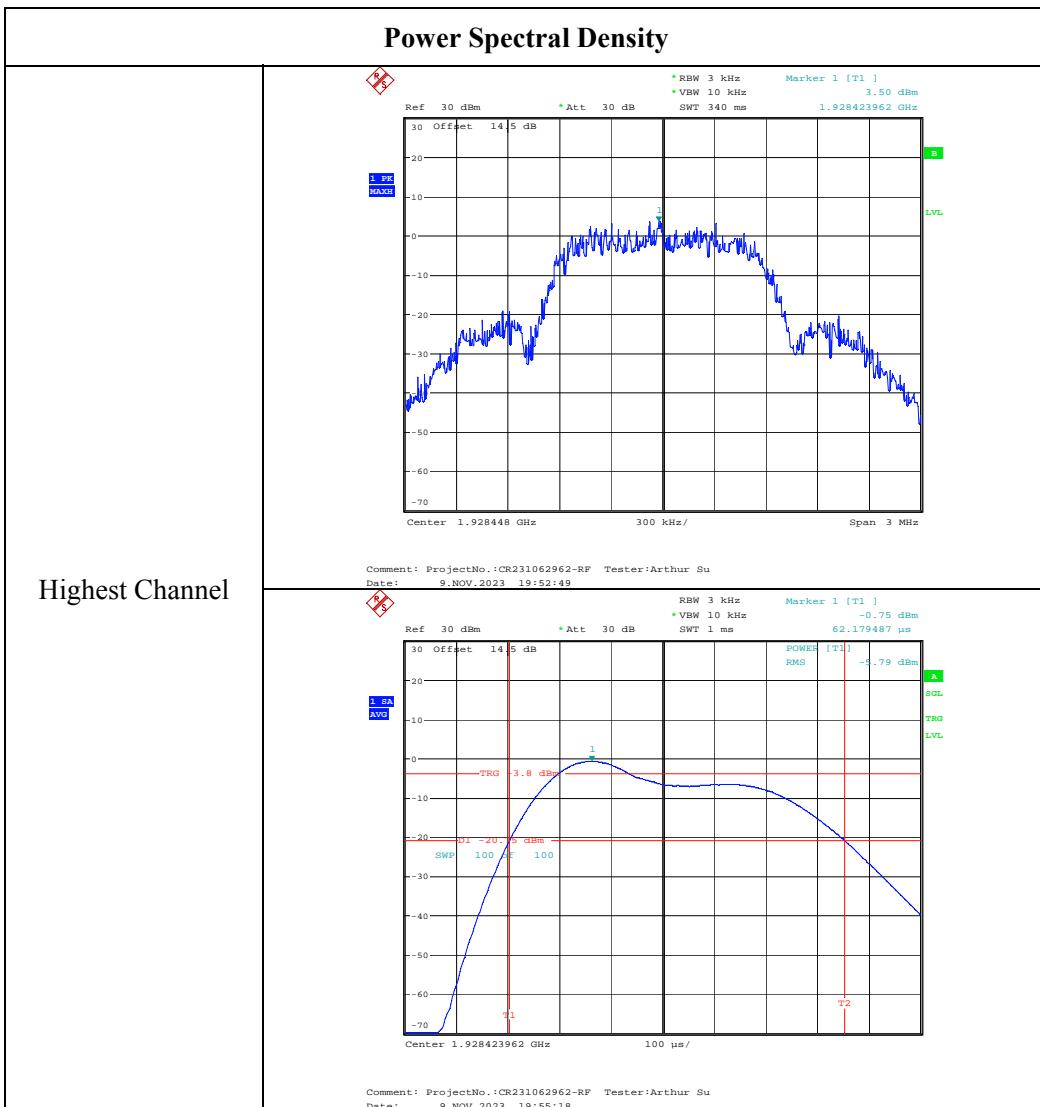
Serial Number:	2CSP-1	Test Date:	2023/11/9
Test Site:	RF	Test Mode:	Transmitting
Tester:	Arthur Su	Test Result:	Pass

Environmental Conditions:

Temperature: (°C)	25.3	Relative Humidity: (%)	59	ATM Pressure: (kPa)	100.9
-------------------	------	------------------------	----	---------------------	-------


Test Equipment List and Details:


Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSU26	100147	2023/3/31	2024/3/30
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A
YINSAIGE	Coaxial Cable	SS402	SJ0100001	Each time	N/A
eastsheep	Coaxial Attenuator	2W-SMA-JK-18G	21060301	Each time	N/A
Unknown	Coaxial tee connector	Unknown	2204004	Each time	N/A
R&S	Digital Radio communication Tester	CMD 60M	846956/010	2023/3/31	2024/3/30

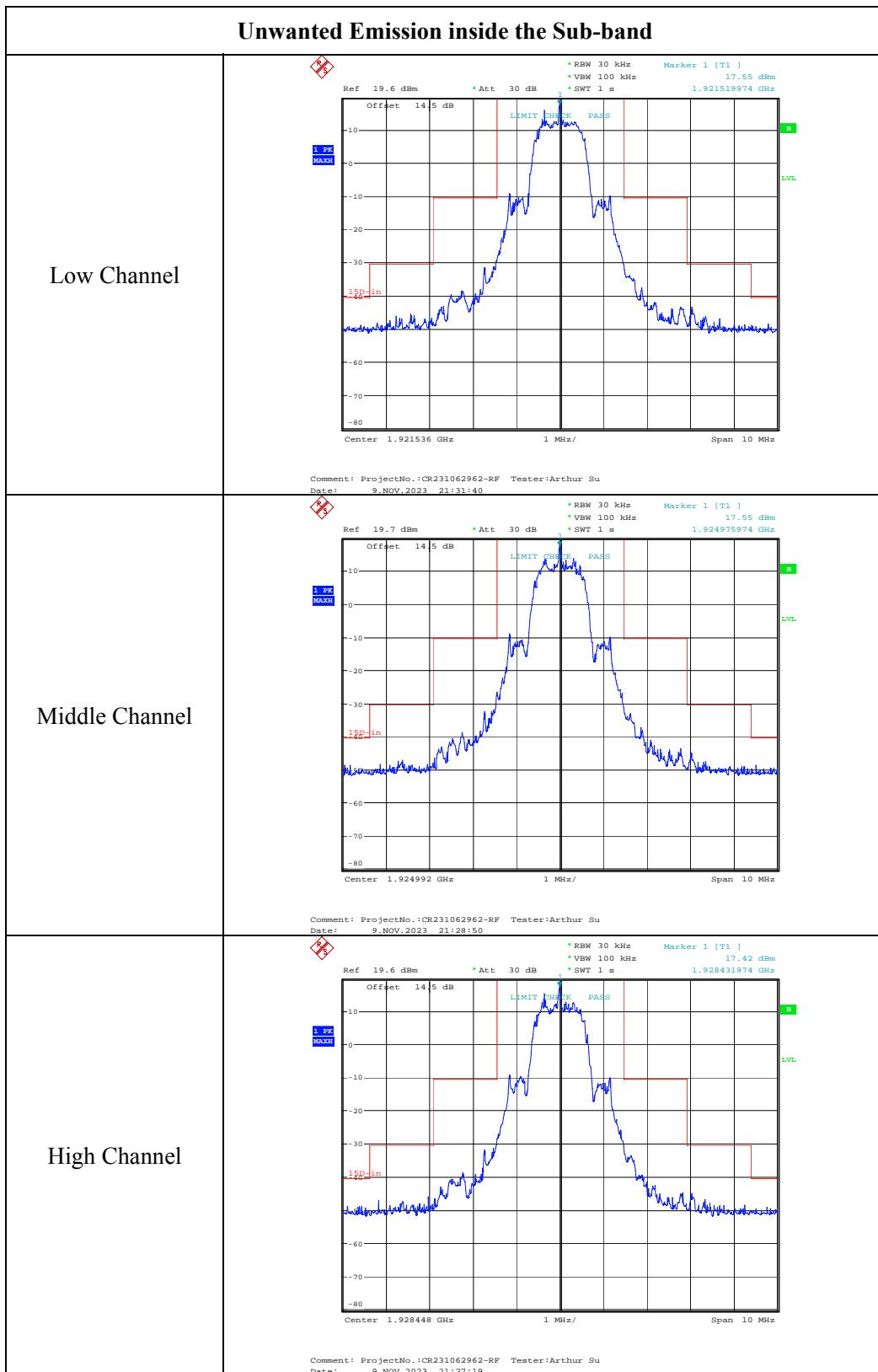

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

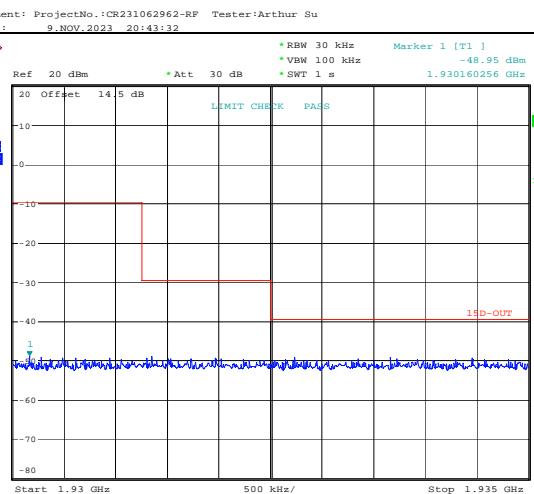
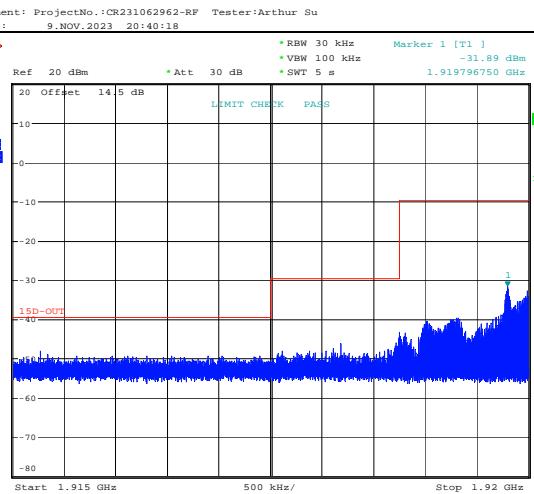
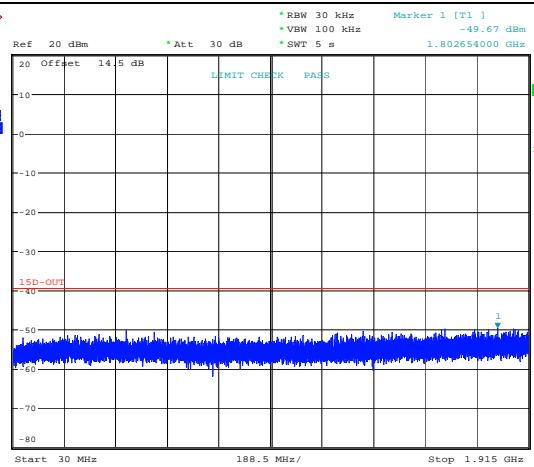
Test Channel	Test Frequency (MHz)	Power Spectral Density		Limit (mW/3kHz)
		dBm/3kHz	mW/3kHz	
Lowest	1921.536	-6.45	0.226	3
Middle	1924.992	-3.01	0.500	3
Highest	1928.448	-5.79	0.264	3

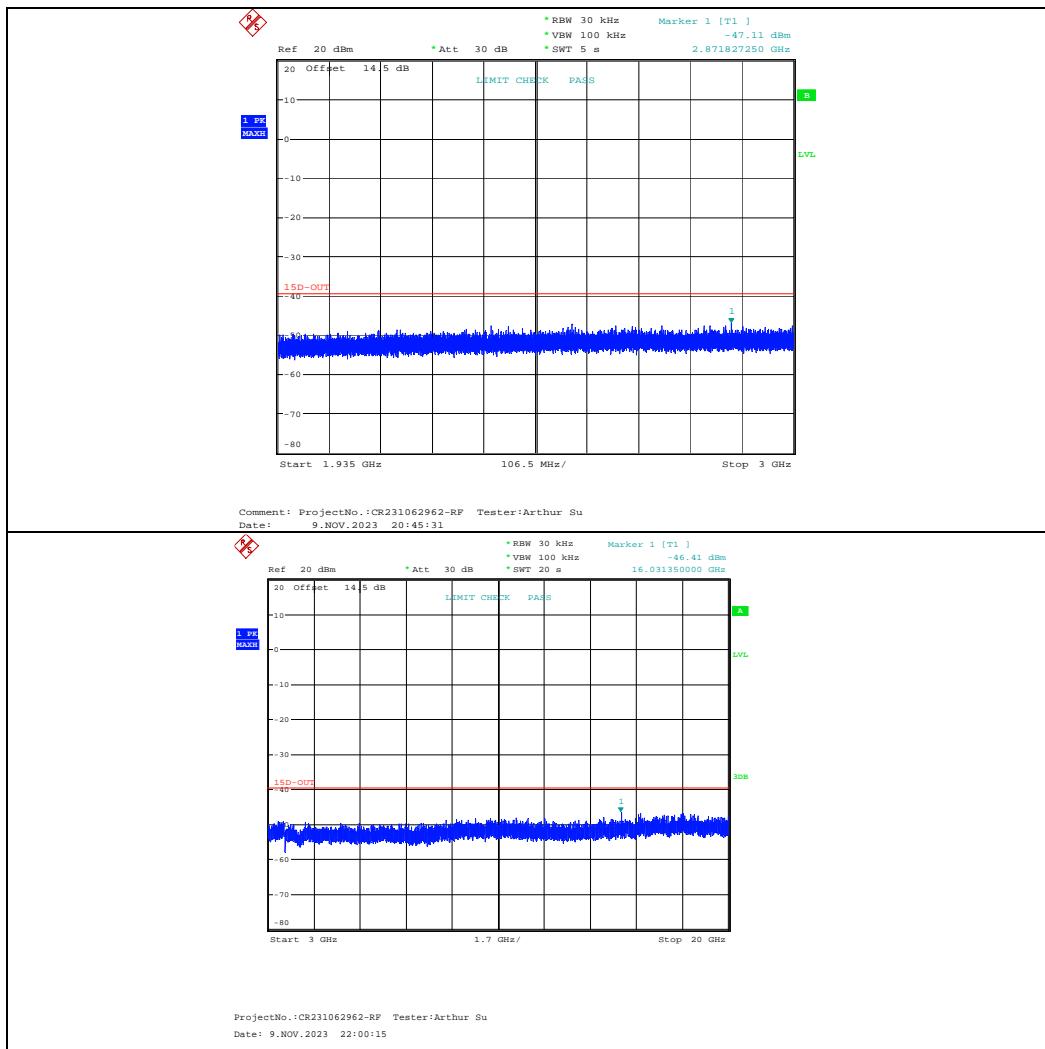
4.6 Emission Inside and Outside the Sub-band:

Serial Number:	2CSP-1	Test Date:	2023/11/9
Test Site:	RF	Test Mode:	Transmitting
Tester:	Arthur Su	Test Result:	Pass

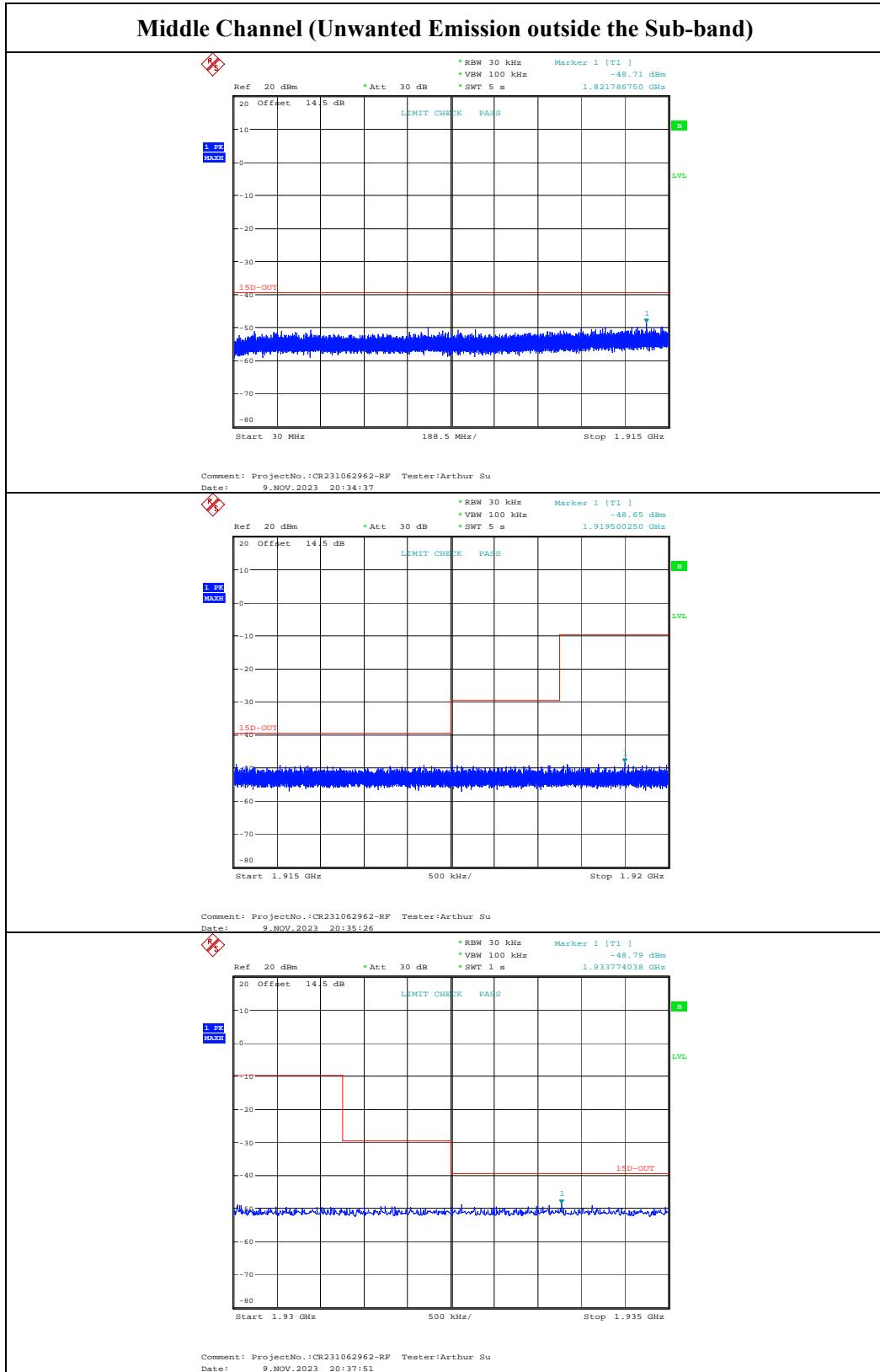

Environmental Conditions:

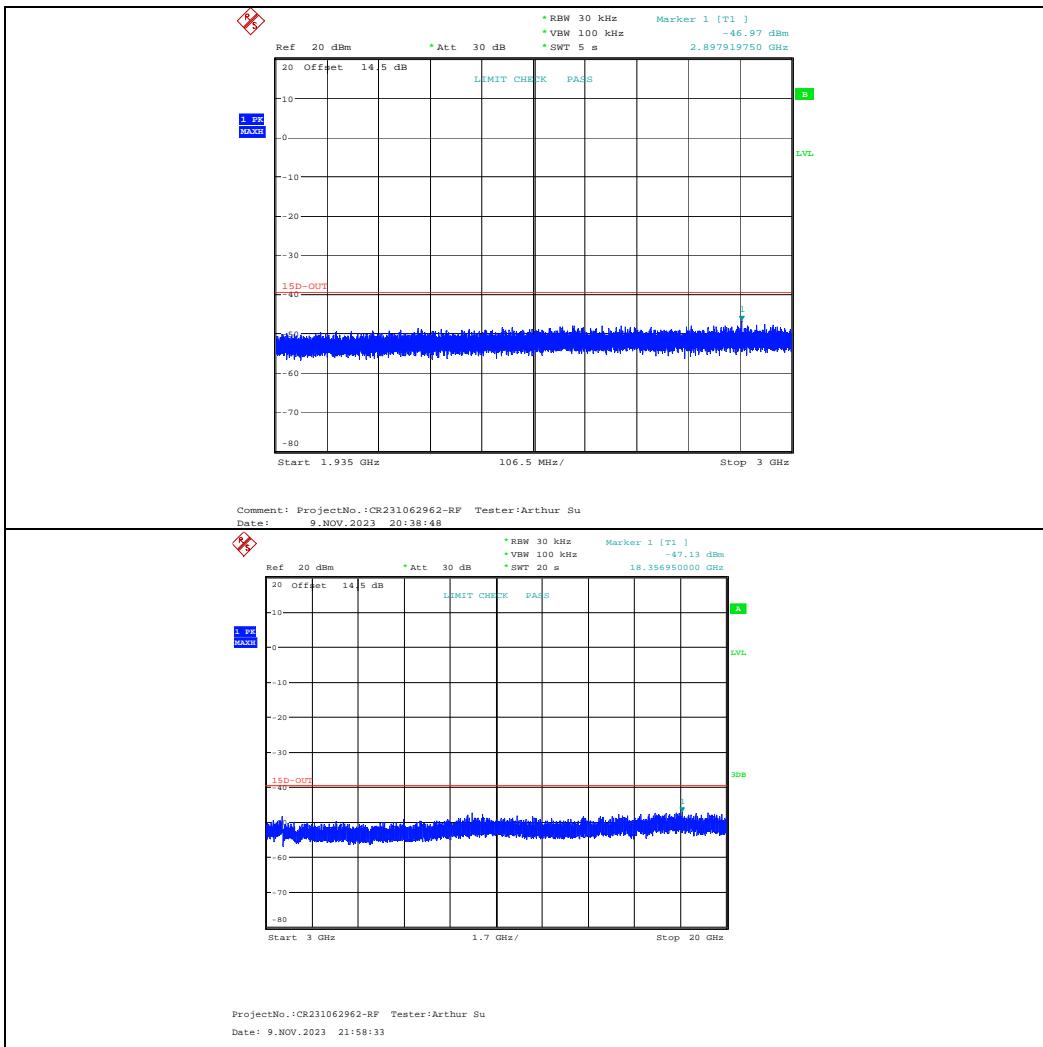
Temperature: (°C)	25.3	Relative Humidity: (%)	59	ATM Pressure: (kPa)	100.9
-------------------	------	------------------------	----	---------------------	-------




Test Equipment List and Details:


Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSU26	100147	2023/3/31	2024/3/30
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A
YINSAIGE	Coaxial Cable	SS402	SJ0100001	Each time	N/A
eastsheep	Coaxial Attenuator	2W-SMA-JK-18G	21060301	Each time	N/A
Unknown	Coaxial tee connector	Unknown	2204004	Each time	N/A
R&S	Digital Radio communication Tester	CMD 60M	846956/010	2023/3/31	2024/3/30
R&S	Spectrum Analyzer	FSU26	200256	2023/3/31	2024/3/30

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).




Low Channel (Unwanted Emission outside the Sub-band)

Middle Channel (Unwanted Emission outside the Sub-band)

High Channel (Unwanted Emission outside the Sub-band)

4.7 Frequency Stability:

Serial Number:	2CSP-1	Test Date:	2023/11/9
Test Site:	RF	Test Mode:	Transmitting
Tester:	Arthur Su	Test Result:	pass

Environmental Conditions:

Temperature: (°C)	25.3	Relative Humidity: (%)	59	ATM Pressure: (kPa)	100.9
-------------------	------	------------------------	----	---------------------	-------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A
YINSAIGE	Coaxial Cable	SS402	SJ0100001	Each time	N/A
eastsheep	Coaxial Attenuator	2W-SMA-JK-18G	21060301	Each time	N/A
R&S	Digital Radio communication Tester	CMD 60M	846956/010	2023/3/31	2024/3/30
BACL	TEMP&HUMI Test Chamber	BTH-150-40	30174	2023/3/31	2024/3/30
UNI-T	Multimeter	UT39A+	C210582554	2023/9/28	2024/9/27
ZHAOXIN	DC Power Supply	RXN-6010D	21R6010D0912386	N/A	N/A

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Temperature (°C)	Voltage (V _{AC})	Test Frequency (MHz)	Measured Frequency Offset (kHz)	Measured Frequency Offset (ppm)	Limit (ppm)
-20	120	1924.992	4	2.08	±10
20	102	1924.992	7	3.64	±10
	138	1924.992	8	4.16	±10
50	120	1924.992	3	1.56	±10

4.8 Specific Requirements for UPCS Device:

Serial Number:	2CSP-1	Test Date:	2023/11/9
Test Site:	RF	Test Mode:	Transmitting
Tester:	Arthur Su	Test Result:	pass

Environmental Conditions:

Temperature: (°C)	25.3	Relative Humidity: (%)	59	ATM Pressure: (kPa)	100.9
-------------------	------	------------------------	----	---------------------	-------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSU26	100147	2023/3/31	2024/3/30
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A
YINSAIGE	Coaxial Cable	SS402	SJ0100001	Each time	N/A
eastsheep	Coaxial Attenuator	2W-SMA-JK-18G	21060301	Each time	N/A
Unknown	Coaxial tee connector	Unknown	2204004	Each time	N/A
R&S	Digital Radio communication Tester	CMD 60M	846956/010	2023/3/31	2024/3/30
Agilent	MXG Vector Signal Generator	N5182B	MY51350144	2023/3/31	2024/3/30

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

1) Automatic Discontinuation of Transmission

Test result:

The following tests were performed after a connection had been established with handset unit.

Test condition	Reaction of EUT	Pass/Fail
Adapter removed from EUT	Connection break down	Pass
Battery remove from Handset	Connection break down	Pass

2) Monitoring Time

Test result:

This requirement is covered by the results of Least Interfered Channel (LIC).

Interference (Refer to ANSI C63.17 clause 7.3.3)	Reaction of EUT	Results
a) Apply the interference on f_1 at level T_L+U_M+20 dB and no interference on f_2 . Initiate transmission and verify the transmission only on f_2 . Then terminate it.	EUT transmits on f_2	Pass
b) Apply the interference on f_2 at level T_L+U_M+20 dB and immediately remove all interference from f_1 . The EUT should immediately attempt transmission on f_1 (but at least 20 ms after the interference on f_2 is applied), verify the transmission only on f_1 .	EUT transmission f_1	Pass

3) Lower Monitoring Threshold

Test result:

Not applicable because the EUT has more 40 defined duplex system access channels and meet the provision of the Least Interfered Channel (LIC).

4) Maximum Transmit Period

Test result:

Repetition of Access Criteria	Measured Maximum Transmission Time (Second)	Limit (Second)	Results
First	18655	28,800	Pass
Second	18655	28,800	Pass

5) System Acknowledgement

Test result:

Test	Time taken (second)	Limit (second)	Result
Initial Connection acknowledgement	0.35	1	Pass
Change of access criteria for control information	N/A	30	N/A
Transmission cease time	4.04	30	Pass

Note: N/A=Not Applicable

6) Least Interfered Channel (LIC)

Calculation of monitoring threshold limits for isochroous devices:

Lower threshold: $T_L = -174 + 10 \log_{10} B + M_L + P_{MAX} - P_{EUT}$ (dBm)

Where: B=Emission bandwidth (Hz)

M_L = dB the threshold may exceed thermal noise (30 for T_L)

$P_{MAX} = 5 \log_{10} B - 10$ (dBm)

P_{EUT} = Transmitted power (dBm)

Calculated thresholds:

Monitor Threshold	B(MHz)	M_L (dB)	P_{MAX} (dBm)	P_{EUT} (dBm)	Threshold (dBm)
Lower threshold	1.461	30	20.82	19.84	-81.37

Note: 1. The upper threshold is applicable as the EUT utilizes more than 20 duplex system channels

Test result:

LIC procedure test:

Interference (Refer to ANSI C63.17 clause 7.3.3)	Reaction of EUT	Results
a) Apply the interference on f_1 at level $T_L + U_M + 7$ dB and the interference on f_2 at level $T_L + U_M$. Initiate transmission and verify the transmission only on f_2 . Repeat 5 times.	EUT transmits on f_2	Pass
b) Apply the interference on f_1 at level $T_L + U_M$ and the interference on f_2 at level $T_L + U_M + 7$ dB. Initiate transmission and verify the transmission only on f_1 . Repeat 5 times.	EUT transmits on f_1	Pass
c) Apply the interference on f_1 at level $T_L + U_M + 1$ dB the interference on f_2 at level $T_L + U_M - 6$ dB. Initiate transmission and verify the transmission only on f_2 . Repeat 5 times.	EUT transmits on f_2	Pass
d) Apply the interference on f_1 at level $T_L + U_M - 6$ dB and the interference on f_2 at level $T_L + U_M + 1$ dB. Initiate transmission and verify the transmission only on f_1 . Repeat 5 times.	EUT transmits on f_1	Pass

Selected channel confirmation:

Interference (Refer to ANSI C63.17 clause 7.3.4)	Reaction of EUT	Results
a) Apply the interference on f_1 at level $T_U + U_M$ and no interference on f_2 . Initiate transmission and verify the transmission only on f_2 . Then terminate it.	EUT transmits on f_2	Pass
b) Apply the interference on f_2 at level $T_L + U_M$ and immediately remove all interference from f_1 . The EUT should immediately attempt transmission on f_1 (but at least 20 ms after the interference on f_2 is applied), verify the transmission only on f_1 .	EUT transmission f_1	Pass

7) Random waiting

Note: This is Not Applicable

8) Monitoring Bandwidth and Reaction Time**Test result:****Monitoring Bandwidth:**

The antenna of the EUT used for monitoring is the same interior antenna that used for transmission, so the monitoring system bandwidth is equal to the emission bandwidth of the intended transmission

Reaction Time Test:

No.	Interference Pulse width (μs)	Reaction of EUT	Observing time (μs)	Result
1	50μs with level T_L+U_M	No transmission	25.33	Pass
2	35μs with level T_L+U_M+6dB	No transmission	21.34	Pass

9) Monitoring Antenna**Test result:**

The antenna of the EUT used for transmission is the same interior antenna that used for monitoring.

10) Monitoring threshold relaxation**Test result:**

This requirement is covered by the results of Least Interfered Channel (LIC).

11) Duplex Connections

Test result:

Interference (Refer to ANSI C63.17 § 8.3& § 8.3.2)	Reaction of EUT	Results
a) Only a single carrier f_1 for EUT TDMA systems and on f_1 and f_2 and corresponding duplex carriers for FDMA systems.	EUT can transmit	Pass
b) All Tx windows with level TL+UM except one & Rx windows with level TL+UM+7dB except one, which are not the duplex mate.	Connected on the target Rx window and its duplex mate.	Pass
c) All Tx windows with level TL+UM+7dB except one & Rx windows with level TL+UM except one, which are not duplex mate.	Connected on the target Tx window and its duplex mate.	Pass
d) All Tx & Rx windows with level TU+UM, except one for Tx window & one for Rx window, which are not duplex mate.	No connection possible	Pass

12) Alternative monitoring interval

Test result:

Interference (Refer to ANSI C63.17 § 8.4)	Reaction of EUT	Results
a) Only a single carrier f_1 for EUT TDMA systems and on f_1 and f_2 and corresponding duplex carriers for FDMA systems.	EUT can transmit	Pass
b) Apply interference with same parameters as EUT transmissions on all Tx windows with level TL+UM on the enabled carrier(s) and no interference on the Rx windows on the enabled carriers.	No connection is established	Pass

13) Fair Access**Test result:**

The manufacturer declares that this device does not use any mechanisms as provided by FCC §15.323(c)(10) or (11) to extend the range of spectrum occupied over space or time for the purpose of denying fair access to spectrum to other device.

14) Frame Repetition Stability Frame Period and Jitter**Test result:**

Frame Period and Jitter:

Max. pos. Jitter (μ s)	Max. neg. Jitter (μ s)	Frame period (ms)	Limit	
			Frame Period (ms)	Jitter (μ s)
0.05	-0.09	11.33	20 or 10/X	25

Note: X is a positive whole number.

5. RF EXPOSURE EVALUATION

5.1 Applicable Standard

According to §1.1307(b)(3)(i)

(C) Or using Table 1 and the minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value prescribed for that frequency. For the exemption in Table 1 to apply, R must be at least $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. If the ERP of a single RF source is not easily obtained, then the available maximum time-averaged power may be used in lieu of ERP if the physical dimensions of the radiating structure(s) do not exceed the electrical length of $\lambda/4$ or if the antenna gain is less than that of a half-wave dipole (1.64 linear value).

Table 1 to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation

RF Source frequency (MHz)	Threshold ERP (watts)
0.3-1.34	$1,920 R^2$.
1.34-30	$3,450 R^2/f^2$.
30-300	$3.83 R^2$.
300-1,500	$0.0128 R^2 f$.
1,500-100,000	$19.2 R^2$.

5.2 Measurement Result

Mode	Frequency (MHz)	$\lambda/2\pi$ (mm)	Distance (mm)	Exemption ERP		Maximum Conducted Power including Tune-up Tolerance (dBm)	Antenna Gain (dBi)	ERP		MPE-Based Exemption
				(mW)	(dBm)			(dBm)	(mW)	
DECT	1920-1930	24.87	200	768	28.85	21.0	0	18.85	76.74	Compliant
BT	2402-2480	19.80	200	768	28.85	6.5	0	4.35	2.72	Compliant

Note:

The Maximum Conducted Power including Tune-up Tolerance was declared by manufacturer.
The DECT and BT can transmit simultaneously.

$$\sum_{i=1}^a \frac{P_i}{P_{\text{th},i}} + \sum_{j=1}^b \frac{ERP_j}{ERP_{\text{th},j}} + \sum_{k=1}^c \frac{\text{Evaluated}_k}{\text{Exposure Limit}_k}$$

=ERP_{DECT} / Limit + ERP_{BT} / Limit

=76.74/768 + 2.72/768

=0.103

< 1.0

Result: The device compliant the MPE-Based Exemption at 20cm distances.

6. EUT PHOTOGRAPHS

Please refer to the attachment CR231062962-EXP EUT EXTERNAL PHOTOGRAPHS and CR231062962-INP EUT INTERNAL PHOTOGRAPHS

7. TEST SETUP PHOTOGRAPHS

Please refer to the attachment CR231062962-00A-TSP TEST SETUP PHOTOGRAPHS.

===== END OF REPORT =====