

June 25, 2009

**TAI CHANG PLASTIC ELECTRONIC CO., LTD.
South Zone B3-1 to 3/F Neichonggong Ind. Zone Boro
ShanTou, GuangDong, China**

Dear Kelvin Ou:

Enclosed you will find your file copy of a Part 15 Certification (FCC ID: XFP920-1R49M).

For your reference, TCB review normally takes 1 week. Approval will then be granted when no query is sorted.

Please contact me if you have any questions regarding the enclosed material.

Sincerely,

A handwritten signature in black ink, appearing to read "Shawn Xing".

Shawn Xing
Assistant Manager

Enclosure

TAI CHANG PLASTIC ELECTRONIC CO., LTD.

Application For Certification (FCC ID: XFP920-1R49M)

Superregenerative Receiver

Sample Description: Transferring Radio Control Car
Model: 0920-1

Billy Li

SZ09050340-2

Billy Li

June 25, 2009

- The test results reported in this test report shall refer only to the sample actually tested and shall not refer or be deemed to refer to bulk from which such a sample may be said to have been obtained.
- This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results referenced from this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.
- For Terms And Conditions of the services, it can be provided upon request.
- The evaluation data of the report will be kept for 3 years from the date of issuance.

TRF no.: FCC 15C_RX-Sra
FCC ID: XFP920-1R49M

Intertek Testing Services Shenzhen Ltd. Kejiyuan Branch
6F, D Block, Huahan Building, Langshan Road, Nanshan District, Shenzhen, P. R. China
Tel: (86 755) 8601 6288 Fax: (86 755) 8601 6751 Website: www.china.intertek-etslsemko.com

INTERTEK TESTING SERVICES

LIST OF EXHIBITS

INTRODUCTION

<i>EXHIBIT 1:</i>	General Description
<i>EXHIBIT 2:</i>	System Test Configuration
<i>EXHIBIT 3:</i>	Emission Results
<i>EXHIBIT 4:</i>	Equipment Photographs
<i>EXHIBIT 5:</i>	Product Labelling
<i>EXHIBIT 6:</i>	Technical Specifications
<i>EXHIBIT 7:</i>	Instruction Manual
<i>EXHIBIT 8:</i>	Miscellaneous Information
<i>EXHIBIT 9:</i>	Test Equipment List

INTERTEK TESTING SERVICES

MEASUREMENT/TECHNICAL REPORT

**TAI CHANG PLASTIC ELECTRONIC CO., LTD. - MODEL: 0920-1
FCC ID: XFP920-1R49M**

This report concerns (check one:) Original Grant Class II Change

Equipment Type: Superregenerative Receiver

Deferred grant requested per 47 CFR 0.457(d)(1)(ii)? Yes No

If yes, defer until: _____
date

Company Name agrees to notify the Commission by: _____
date

of the intended date of announcement of the product so that the grant can be issued on that date.

Transition Rules Request per 15.37? Yes No

If no, assumed Part 15, Subpart B for unintentional radiator - the new 47 CFR [10-1-08 Edition] provision.

Report prepared by:

Shawn Xing
Intertek Testing Services Shenzhen Ltd.
Kejiyuan Branch
6/F, Block D, HuaHan Building, Longshan
Road, Nanshan District, Shenzhen, China.
Phone: (86 755) 86016288
Fax: (86 755) 86016751

INTERTEK TESTING SERVICES

Table of Contents

1.0	<u>General Description</u>	2
1.1	Product Description	2
1.2	Related Submittal(s) Grants	2
1.3	Test Methodology	3
1.4	Test Facility	3
2.0	<u>System Test Configuration</u>	5
2.1	Justification	5
2.2	EUT Exercising Software	5
2.3	Special Accessories	5
2.4	Equipment Modification	6
2.5	Measurement Uncertainty	6
2.6	Support Equipment List and Description	6
3.0	<u>Emission Results</u>	8
3.1	Field Strength Calculation	9
3.2	Radiated Emission Configuration Photograph	10
3.3	Radiated Emission Data	11
4.0	<u>Equipment Photographs</u>	14
5.0	<u>Product Labelling</u>	16
6.0	<u>Technical Specifications</u>	18
7.0	<u>Instruction Manual</u>	20
8.0	<u>Miscellaneous Information</u>	22
8.1	Stabilization Waveform	23
8.2	Emissions Test Procedures	24
9.0	<u>Test Equipment List</u>	27

INTERTEK TESTING SERVICES

List of attached file

Exhibit type	File Description	filename
Test Report	Test Report	report.pdf
Operation Description	Technical Description	descri.pdf
Test Setup Photo	Radiated Emission	radiated photos.pdf
External Photo	External Photo	external photos.pdf
Internal Photo	Internal Photo	internal photos.pdf
Block Diagram	Block Diagram	block.pdf
Schematics	Circuit Diagram	circuit.pdf
ID Label/Location	Label Artwork and Location	label.pdf
User Manual	User Manual	manual.pdf
Test Report	Stabilization Waveform	superreg.pdf
Cover Letter	Letter of Agency	agency.pdf
Equipment List	Test Equipment List	equipment list.pdf

INTERTEK TESTING SERVICES

EXHIBIT 1

GENERAL DESCRIPTION

INTERTEK TESTING SERVICES

1.0 General Description

1.1 Product Description

The equipment under test (EUT) is a receiver for a RC car operating at 49.860MHz. The EUT is power by a 3 AA batteries. The EUT have a power switch, after switched the EUT ON, it can be controlled to run forward, backward, turn left and right directions by the transmitter.

For electronic filing, the brief circuit description is saved with filename: descri.pdf.

1.2 Related Submittal(s) Grants

This is a single application for certification of a receiver. The transmitter for this receiver is authorized by Certification procedure with FCC ID: XFP920-1T49M.

INTERTEK TESTING SERVICES

1.3 Test Methodology

Radiated emission measurements were performed according to the procedures in ANSI C63.4 (2003). All radiated measurements were performed in a Semi-anechoic Chamber. Preliminary scans were performed in the Semi-anechoic Chamber only to determine worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the **“Justification Section”** of this Application.

1.4 Test Facility

The Semi-anechoic Chamber facility used to collect the radiated data is **Intertek Testing Services Shenzhen Ltd. Kejiyuan Branch** and located at 6F, D Block, Huahan Building, Langshan Road, Nanshan District, Shenzhen, P. R. China. This test facility and site measurement data have been fully placed on file with the FCC.

INTERTEK TESTING SERVICES

EXHIBIT 2

SYSTEM TEST CONFIGURATION

INTERTEK TESTING SERVICES

2.0 **System Test Configuration**

2.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.4 (2003).

The device was powered from 3 new AA batteries.

For maximizing emissions, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. The step by step procedure for maximizing emissions led to the data reported in Exhibit 3.0.

The unit was operated standalone and placed in the center of the turntable.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was mounted to a cardboard box, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

2.2 EUT Exercising Software

There was no special software to exercise the device. Once the unit is powered up, it received continuously.

2.3 Special Accessories

There are no special accessories necessary for compliance of this product.

INTERTEK TESTING SERVICES

2.4 Equipment Modification

Any modifications installed previous to testing by TAI CHANG PLASTIC ELECTRONIC CO., LTD. will be incorporated in each production model sold/leased in the United States.

No modifications were installed by Intertek Testing Services.

2.5 Measurement Uncertainty

When determining of the test conclusion, the Measurement Uncertainty of test has been considered.

2.6 Support Equipment List and Description

This product was tested in standalone configuration.

All the items listed under section 2.0 of this report are

Confirmed by:

*Shawn Xing
Assistant Manager
Intertek Testing Services Shenzhen Ltd.
Kejiyuan Branch
Agent for TAI CHANG PLASTIC ELECTRONIC CO., LTD.*

Signature

June 25, 2009

Date

INTERTEK TESTING SERVICES

EXHIBIT 3

EMISSION RESULTS

INTERTEK TESTING SERVICES

3.0 Emission Results

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

INTERTEK TESTING SERVICES

3.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

where FS = Field Strength in dB μ V/m
RA = Receiver Amplitude (including preamplifier) in dB μ V
CF = Cable Attenuation Factor in dB
AF = Antenna Factor in dB
AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows:

$$FS = RR + LF$$

where FS = Field Strength in dB μ V/m
RR = RA - AG in dB μ V
LF = CF + AF in dB

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB are added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

$$RA = 52.0 \text{ dB}\mu\text{V}/\text{m}$$

$$AF = 7.4 \text{ dB}$$

$$RR = 23.0 \text{ dB}\mu\text{V}$$

$$CF = 1.6 \text{ dB}$$

$$LF = 9.0 \text{ dB}$$

$$AG = 29.0 \text{ dB}$$

$$FS = RR + LF$$

$$FS = 23 + 9 = 32 \text{ dB}\mu\text{V}/\text{m}$$

$$\text{Level in } \mu\text{V}/\text{m} = \text{Common Antilogarithm } [(32 \text{ dB}\mu\text{V}/\text{m})/20] = 39.8 \mu\text{V}/\text{m}$$

INTERTEK TESTING SERVICES

3.2 Radiated Emission Configuration Photograph

**Worst Case Radiated Emission
at
50.425 MHz**

For electronic filing, the worst case radiated emission configuration photographs are saved with filename: radiated photos.doc.

INTERTEK TESTING SERVICES

3.3 Radiated Emission Data

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Judgement: Passed by 12.5 dB

TEST PERSONNEL:

Signature

Billy Li, Compliance Engineer

Typed/Printed Name

June 25, 2009

Date

INTERTEK TESTING SERVICES

Applicant: TAI CHANG PLASTIC ELECTRONIC CO., LTD.

Date of Test: June 25, 2009

Model: 0920-1

Test Mode: Receive

Table 1

FCC Class B Radiated Emissions

Polarization	Frequency (MHz)	Reading (dB μ V)	Pre-Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dB μ V/m)	Limit at 3m (dB μ V/m)	Margin (dB)
V	49.575	35.7	20.0	9.1	24.8	40.0	-15.2
V	50.145	37.7	20.0	9.1	26.8	40.0	-13.2
V	50.425	38.3	20.0	9.2	27.5	40.0	-12.5
V	50.710	37.8	20.0	9.3	27.1	40.0	-12.9
V	50.790	37.5	20.0	9.2	26.7	40.0	-13.3
V	50.995	36.4	20.0	8.7	25.1	40.0	-14.9
V	53.150	35.5	20.0	10.2	25.7	40.0	-14.3

NOTES: 1. Peak Detector Data unless otherwise stated.

2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative sign in the column shows value below limit.

Test Engineer: Billy Li

TRF no.: FCC 15C_RX-SRa

FCC ID: XFP920-1R49M

INTERTEK TESTING SERVICES

EXHIBIT 4

EQUIPMENT PHOTOGRAPHS

INTERTEK TESTING SERVICES

4.0 Equipment Photographs

For electronic filing, the photographs are saved with filename: external photos.doc and internal photos.doc.

INTERTEK TESTING SERVICES

EXHIBIT 5

PRODUCT LABELLING

INTERTEK TESTING SERVICES

5.0 Product Labelling

For electronics filing, the FCC ID label artwork and the label location are saved with filename: label.pdf.

INTERTEK TESTING SERVICES

EXHIBIT 6

TECHNICAL SPECIFICATIONS

INTERTEK TESTING SERVICES

6.0 Technical Specifications

For electronic filing, the block diagram and schematic of the tested EUT are saved with filename: block.pdf and circuit.pdf respectively.

INTERTEK TESTING SERVICES

EXHIBIT 7

INSTRUCTION MANUAL

INTERTEK TESTING SERVICES

7.0 Instruction Manual

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

This manual will be provided to the end-user with each unit sold/leased in the United States.

INTERTEK TESTING SERVICES

EXHIBIT 8

MISCELLANEOUS INFORMATION

INTERTEK TESTING SERVICES

8.0 Miscellaneous Information

This miscellaneous information includes details of the stabilizing process (including a plot of the stabilized waveform) and the test procedure.

INTERTEK TESTING SERVICES

8.1 Stabilization Waveform

Previous to the testing, the superregenerative receiver was stabilized as outlined in the test procedure. For the electronic filing, the plot saved with filename: superreg.pdf shows the fundamental emission when a signal generator was used to stabilize the receiver. Please note that the antenna was placed as close as possible to the EUT for clear demonstration of the waveform and that accurate readings are not possible from this plot.

INTERTEK TESTING SERVICES

8.2 Emissions Test Procedures

The following is a description of the test procedure used by Intertek Testing Services Shenzhen Ltd. Kejiyuan Branch in the measurements of superregenerative receivers operating under the Part 15, Subpart B rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.4 - 2003. Superregenerative receivers are stabilized prior to measurement by generating a signal well above the receiver threshold whose frequency is tuned until the emissions stabilize into a line spectrum. The signal is usually generated as CW with a R&S SML03 signal generator and a short whip antenna and is at a level of several hundred to several thousand mV/m. Plots of the stabilized signal will be shown. If a modulated signal is used, it will be noted.

The equipment under test (EUT) is placed on a wooden turntable which is four feet in diameter and approximately one meter in height above the groundplane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The EUT is adjusted through all three orthogonal axis to obtain maximum emission levels. The antenna height and polarization are also varied during the testing to search for maximum signal levels. The height of the antenna is varied from one to four meters.

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings.

The frequency range scanned is from 30MHz to 1000MHz. For line conducted emissions, the range scanned is 150 kHz to 30 MHz.

INTERTEK TESTING SERVICES

8.2 Emissions Test Procedures (cont'd)

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

Conducted measurements were made as described in ANSI C63.4 - 2003.

The IF bandwidth used for measurement of radiated signal strength was 100 kHz or greater when frequency is below 1000 MHz. Above 1000 MHz, a resolution bandwidth of 1 MHz is used.

Measurements are normally conducted at a measurement distance of three meters. All measurements are extrapolated to three meters using inverse scaling, unless otherwise reported. Measurements taken at a closer distance are so marked.

INTERTEK TESTING SERVICES

EXHIBIT 9

TEST EQUIPMENT LIST

INTERTEK TESTING SERVICES

9.0 Test Equipment List

For electronic filing, the test equipment list of the tested EUT is saved with filename: equipment list.pdf.