

41039 Boyce Road
Fremont, CA. 94538
510-578-3500 Phone

EMC Test Report-EAR Controlled Data

Application for FCC Grant of Equipment Authorization Canada Certification

Innovation, Science and Economic Development Canada RSS-Gen Issue 5 / RSS-247 Issue 3 FCC Part 15 Subpart C

Model: ICON Remote Control

IC CERTIFICATION #: 8392A-RCICON
FCC ID: XFJRCICON

APPLICANT: XP Metal Detectors
8 rue du développement ZI de VIC
31320 Castanet-Tolosan, France

TEST SITE(S): Element Materials Technology Fremont
AKA: NTS Labs, LLC
41039 Boyce Road
Fremont, CA. 94538-2435

IC SITE REGISTRATION #: 2845B-5 & 2845B-7

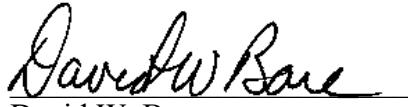
PROJECT NUMBER: PR185733

REPORT DATE: January 20, 2025

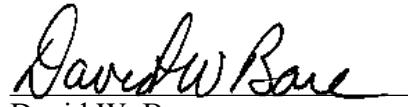
RE-ISSUED DATE: June 4, 2025

FINAL TEST DATES: October 23, November 4, 5 and December 13,
2024 and January 7, 2025

TOTAL NUMBER OF PAGES: 54



This report and the information contained herein represent the results of testing of only those articles / products identified in this document and selected by the client. The tests were performed to specifications and/or procedures selected by the client. Element Materials Technology Fremont (herein after referred to as "Element"), and also known as NTS Labs, LLC makes no representations expressed or implied that such testing fully demonstrates efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by Element of the equipment tested, nor does it present any statement whatsoever as to its merchantability or fitness of the test article or similar products, for a particular purpose. This report shall not be reproduced except in full without written approval from Element.


EAR-Controlled Data These items are controlled by the U.S. Government and authorized for export only to the country of ultimate destination for use by the ultimate consignee or end-user(s) herein identified. They may not be resold, transferred, or otherwise disposed of, to any other country or to any person other than the authorized ultimate consignee or end-user(s), either in their original form or after being incorporated into other items, without first obtaining approval from the U.S. government or as otherwise authorized by U.S. law and regulations.

VALIDATING SIGNATORIES

PROGRAM MGR

David W. Bare
Chief Engineer

TECHNICAL REVIEWER:

David W. Bare
Chief Engineer

FINAL REPORT PREPARER:

David Guidotti
Senior Technical Writer

QUALITY ASSURANCE DELEGATE

Gary Izard
Senior Technical Writer

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	January 20, 2025	First release	
1	May 16, 2025	Updated ANSI C63.10 reference, added sample serial number used for CE and RE<1GHz	dwb
2	June 4, 2025	Added serial number of 1 to one of the samples. Changed power setting unit from dB to dBm	dwb

TABLE OF CONTENTS

COVER PAGE	1
VALIDATING SIGNATORIES	2
REVISION HISTORY	3
TABLE OF CONTENTS	4
SCOPE	5
OBJECTIVE	6
STATEMENT OF COMPLIANCE	7
DEVIATIONS FROM THE STANDARDS	7
TEST RESULTS SUMMARY	8
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHZ)	8
MEASUREMENT UNCERTAINTIES.....	9
EQUIPMENT UNDER TEST (EUT) DETAILS	10
GENERAL.....	10
ANTENNA SYSTEM	10
ENCLOSURE	10
OTHER EUT INFORMATION.....	10
MODIFICATIONS.....	10
SUPPORT EQUIPMENT	11
EUT INTERFACE PORTS	11
EUT OPERATION	11
TEST SITE	12
GENERAL INFORMATION	12
CONDUCTED EMISSIONS CONSIDERATIONS.....	12
RADIATED EMISSIONS CONSIDERATIONS.....	12
MEASUREMENT INSTRUMENTATION	13
RECEIVER SYSTEM	13
INSTRUMENT CONTROL COMPUTER	13
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	13
FILTERS/ATTENUATORS.....	14
ANTENNAS	14
ANTENNA MAST AND EQUIPMENT TURNTABLE	14
INSTRUMENT CALIBRATION	14
TEST PROCEDURES	15
EUT AND CABLE PLACEMENT	15
CONDUCTED EMISSIONS	15
RADIATED EMISSIONS	15
CONDUCTED EMISSIONS FROM ANTENNA PORT.....	19
BANDWIDTH MEASUREMENTS	19
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	20
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; RSS GEN	20
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS.....	20
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS.....	21
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	21
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	22
SAMPLE CALCULATIONS - RADIATED EMISSIONS	22
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	23
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	24
APPENDIX B TEST DATA	26
END OF REPORT	54

SCOPE

An electromagnetic emissions test has been performed on the XP Metal Detectors model ICON Remote Control, pursuant to the following rules:

RSS-GEN Issue 6 "General Requirements for Compliance of Radio Apparatus"

RSS 247 Issue 3 "Digital Transmission Systems (DTSS), Frequency Hopping Systems (FHSS) and Licence-Exempt Local Area Network (LE-LAN) Devices"

FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Element Materials Technology Fremont test procedures:

ANSI C63.10-2013

FCC DTS Measurement Guidance KDB558074 D01

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

Element Materials Technology Fremont is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of XP Metal Detectors model ICON Remote Control complied with the requirements of the following regulations:

RSS-GEN Issue 6 “General Requirements for Compliance of Radio Apparatus”
RSS 247 Issue 3 “Digital Transmission Systems (DTSS), Frequency Hopping Systems (FHSS) and Licence-Exempt Local Area Network (LE-LAN) Devices”
RSS-210 Issue 11 “Licence-Exempt Radio Apparatus: Category I Equipment”
FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of XP Metal Detectors model ICON Remote Control and therefore apply only to the tested sample(s). The sample(s) were selected and prepared by Huong Monnier of XP Metal Detectors.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 247 5.2	Digital Modulation	Systems uses GFSK modulation	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 247 5.2 (1)	6dB Bandwidth	510 kHz	>500kHz	Complies
15.247 (b) (3)	RSS 247 5.4 (4)	Output Power (multipoint systems)	-0.5 dBm (0.0009 Watts) EIRP = 0.0009 W ^{Note 1}	1Watt, EIRP limited to 4 Watts.	Complies
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	Total power is less than PSD limit	8dBm/3kHz	Complies
15.247(d)	RSS 247 5.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	< -20dBc	< -20dBc	Complies
15.247(d) / 15.209	RSS 247 5.5	Radiated Spurious Emissions 30MHz – 25 GHz	50.3 dB μ V/m @ 4952.0 MHz (-3.7 dB)	Refer to the limits section (p20) for restricted bands, all others < -20dBc	Complies

Note 1 EIRP calculated using antenna gains of 0.2 dBi for the highest EIRP system.
 Note 2 Pass/Fail criteria defined by standards listed above.

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Integral antenna	Unique or integral antenna required	Complies
15.407(b) (9)	RSS-Gen Table 4	AC Conducted Emissions	23.2 dB μ V @ 28.960 MHz(-26.8 dB)	Refer to page 20	Complies
15.247 (i) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in separate exhibit, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSS-Gen 6.8	User Manual	Integral antenna	Statement for products with detachable antenna	N/A
-	RSS-Gen 8.4	User Manual		Statement for all products	Complies
-	RSP-100 RSS-Gen 6.7	Occupied Bandwidth	561 kHz	Information only	N/A

Note 3 Pass/Fail criteria defined by standards listed above.

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	\pm 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	\pm 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	\pm 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	\pm 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	\pm 2.5 dB
Radiated emission (field strength)	dB μ V/m	25 to 1000 MHz	\pm 3.6 dB
Conducted Emissions (AC Power)		1000 to 40000 MHz	\pm 6.0 dB
Conducted Emissions (AC Power)	dB μ V	0.15 to 30 MHz	\pm 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS**GENERAL**

The XP Metal Detectors model ICON Remote Control is a wireless remote control that is designed to be used with metal detector. Since the EUT could be placed in any position during operation, the EUT was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 3.7 VDC supplied by an internal rechargeable battery.

The samples were received on October 18, 2024 and tested on October 23, November 4, 5 and December 13, 2024 and January 7, 2025. The following samples of the EUT were used for testing:

Company	Model	Description	Serial Number	FCC ID
XPLOREER	ICON	Remote control for metal detector	CE0005	XFJRCICON
XPLOREER	ICON	Remote control for metal detector	CE0011	XFJRCICON
XPLOREER	ICON	Remote control for metal detector	1	XFJRCICON
XPLOREER	ICON	Remote control for metal detector	CE001C	XFJRCICON

ANTENNA SYSTEM

The antenna is an integral trace for the 2.4 GHz ISM band radio.

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 9.5 cm wide by 2.0 cm deep by 7.5 cm high.

OTHER EUT INFORMATION

The EUT 2.4GHz ISM radio can operate between 2404 and 2476MHz with a 2MHz channel separation.

MODIFICATIONS

The following modifications were made to the EUT during the time the product was at Element Materials Technology Fremont:

Mod. #	Test	Date	Modification
1	RE	11/4/2024	New sample provided by customer

SUPPORT EQUIPMENT

The following equipment was used as support equipment only for conducted emissions testing:

Company	Model	Description	Serial Number	FCC ID
Shenzhen Tongxingrui Technology	U001-1	AC Adapter	None	-

No remote support equipment was used during testing.

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected To	Description	Cable(s)	
			Shielded or Unshielded	Length(m)
Charge	AC Adapter	Multiwire	Shielded	0.7

EUT OPERATION

During emissions testing the EUT was programmed to transmit continuously with modulation on a selected channel at maximum power.

TEST SITE**GENERAL INFORMATION**

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 6.2 of RSS-GEN, NTS has been recognized as an accredited test laboratory by the Commission and Innovation, Science and Economic Development Canada. A description of the facilities employed for testing is maintained by NTS.

Site	Company / Registration Numbers FCC	Canada	Location
Chamber 5	US1031	2845B (Wireless Test Lab #US0027)	41039 Boyce Road Fremont, CA 94538-2435

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Results from testing performed in this chamber have been correlated with results from an open area test site. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.10. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4.

MEASUREMENT INSTRUMENTATION**RECEIVER SYSTEM**

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

Software is used to view and convert receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers. The software used for radiated and conducted emissions measurements is NTS EMI Test Software (rev 2.10)

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.10 specifies that the test height above ground for table mounted devices shall be 80 centimeters for testing below 1 GHz and 1.5m for testing above 1 GHz. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor as specified in ANSI C63.4. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.10, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

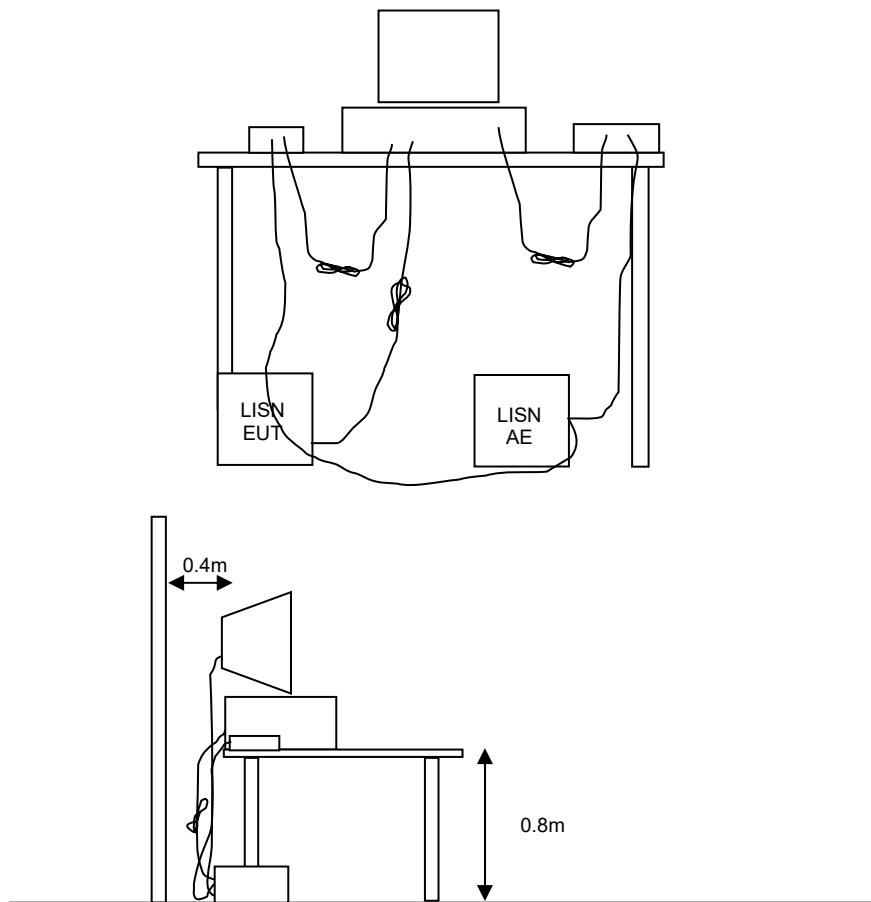
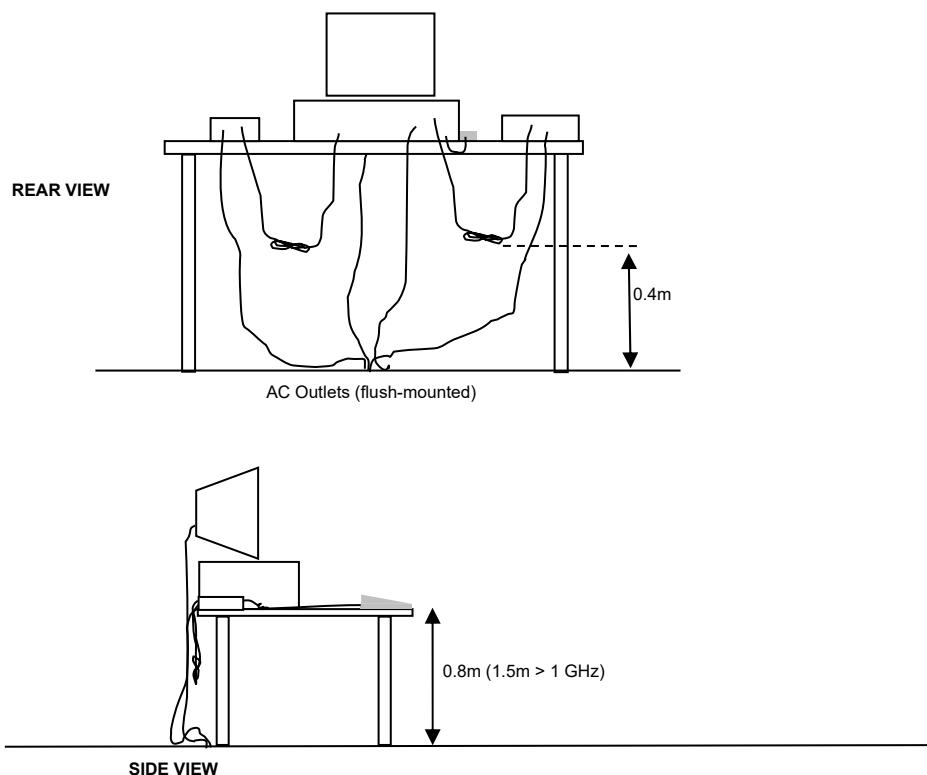
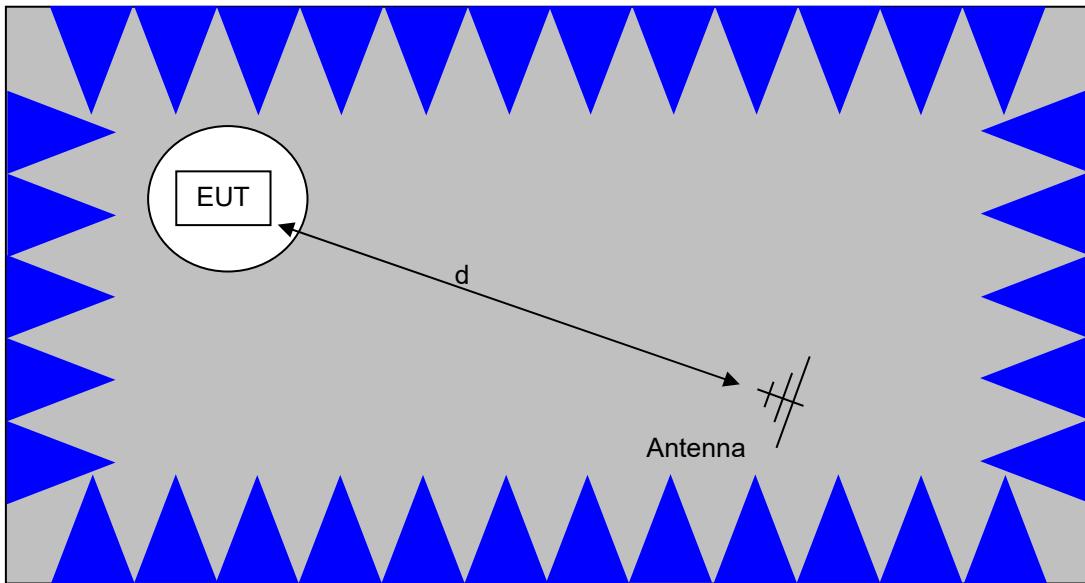


Figure 1 Typical Conducted Emissions Test Configuration

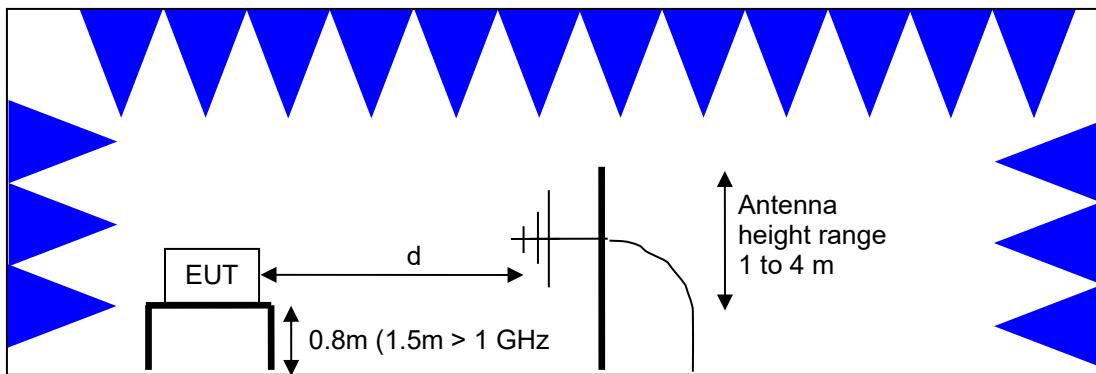

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

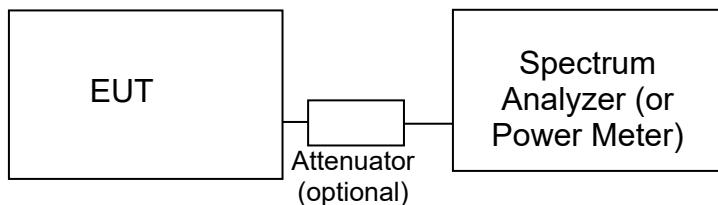
Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

Test Configuration for Radiated Field Strength Measurements
Semi-Anechoic Chamber, Plan and Side Views

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and NTS Silicon Valley's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB, 26dB and/or 99% signal bandwidth are measured using the bandwidths recommended by ANSI C63.10 and RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

Below 30 MHz, the RSS-Gen general field strength limits are expressed in terms of magnetic field in uA/m equivalent to the electric field limits in the table assuming free space conditions.

¹ The restricted bands are detailed in FCC §15.205 and RSS-Gen Table 7

OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 – 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 – 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 – 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. For FCC, fixed point to point applications using the 2400-2483.5 MHz band may use antennas with more than 6 dBi gain but output power is reduced by 1 dB for every 3dB that the antenna gain exceeds 6 dBi. For Canada, fixed point-to-point applications using the 2400-2483.5 MHz band are not subject to this restriction. Fixed point-to-point applications using the 5725 – 5850 MHz band are also not subject to this restriction. Certification of DTS systems operating in the 5725-5850 MHz band is no longer allowed under FCC Rules per §15.37(h).

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS GEN. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20 * \text{LOG10} (D_m/D_s)$$

where:

F_d = Distance Factor in dB

D_m = Measurement Distance in meters

D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40 * \text{LOG10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

R_r = Receiver Reading in dBuV/m

F_d = Distance Factor in dB

R_c = Corrected Reading in dBuV/m

L_s = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

$$E = \frac{1000000 \sqrt{30} P}{d} \text{ microvolts per meter}$$

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	<u>Asset #</u>	<u>Calibrated</u>	<u>Cal Due</u>
Radiated Emissions, 1 - 18 GHz, 23-Oct-24					
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	WC022452	N/A	
ETS-Lindgren	EMC Chamber #5, Inner Dimensions (LxWxH): 24' x 38' x 20'	CH 5 (FACT-5)	WC055567	5/24/2024	5/24/2027
Hewlett Packard	Spectrum Analyzer (Purple)	8564E	WC055660	6/7/2024	6/30/2025
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	WC064416	10/7/2024	10/7/2025
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blue)	3115	WC064442	11/18/2022	11/18/2024
Hewlett Packard	High Pass filter, 3.5 GHz	84300-80038	WC064495	9/6/2024	9/6/2025
Semflex Microwave Solutions	RF Coaxial Cable, 1 m blue	N1S3HPT19039 .4 (HPT 190)	WC064542	4/12/2024	4/12/2025
Semflex Microwave Solutions	RF Coaxial Cable, 3.5m blue	N1N1HPT30138 (HPT 305)	WC064587	3/11/2024	3/11/2025
Conducted Emissions - AC Power Ports, 23-Oct-24					
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	WC022452	N/A	
ETS-Lindgren	EMC Chamber #5, Inner Dimensions (LxWxH): 24' x 38' x 20'	CH 5 (FACT-5)	WC055567	5/24/2024	5/24/2027
EMCO	LISN, 10 kHz-100 MHz	3825/2	WC064399	1/25/2024	1/25/2025
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	WC064445	6/21/2024	6/21/2025
Andrew	LDF4-50A, Heliax 17m	Cable Assembly	WC064471	2/8/2024	2/8/2025
Coleman Company	RG223, Coax, 4.0m	Cable Assembly	WC064824	3/11/2024	3/11/2025
Belden	RG214, coaxial cable, 4.0 m	Cable Assembly	WC064843	4/12/2024	4/12/2025
Rhode & Schwarz	EMI Test Receiver, 20Hz-26.5GHz	ESI	WC071498	7/17/2024	7/17/2025
Radiated Emissions, 1 - 18 GHz, 04-Nov-24					
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	WC022452	N/A	
Hewlett Packard	Spectrum Analyzer (Purple)	8564E	WC055660	6/7/2024	6/30/2025
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	WC064416	10/7/2024	10/7/2025
EMCO	Antenna, Horn, 1-18 GHz	3115	WC064417	9/10/2024	9/10/2026
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	WC064593	12/22/2023	12/22/2024
Radiated Emissions, 1 - 25 GHz, 05-Nov-24					
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	<u>Asset #</u>	<u>Calibrated</u>	<u>Cal Due</u>
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	WC022452	N/A	
Hewlett Packard	Microwave Preamplifier Head, 18-40 GHz (Purple)	84125C Head	WC055610	6/12/2024	6/12/2025
Hewlett Packard	Spectrum Analyzer (Purple)	8564E	WC055660	6/7/2024	6/30/2025

<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	<u>Asset #</u>	<u>Calibrated</u>	<u>Cal Due</u>
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	WC064416	10/7/2024	10/7/2025
EMCO	Antenna, Horn, 1-18 GHz	3115	WC064417	9/10/2024	9/10/2026
A. H. Systems	Antenna, Horn, 18-40GHz	SAS-574	WC064555	8/28/2023	8/28/2025
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	WC064593	12/22/2023	12/22/2024

Radio Antenna Port (Power and Spurious Emissions), 05-Nov-24

National Technical Systems	NTS EMI Software (rev 2.10)	N/A	WC022452	N/A
National Technical Systems	NTS Capture Analyzer Software (rev 4.0)	N/A	WC022706	N/A
National Technical Systems	EMC Lab #4A	None	WC055574	N/A
Agilent Technologies	PSA Spectrum Analyzer	E4446A	WC055650	11/10/2023
Fairview Microwave	Attenuator 6dB 5Watt	SA18N5W-06	WC078729	N/A

Radiated Emissions, 30 - 1,000 MHz, 07-Nov-24

National Technical Systems	NTS EMI Software (rev 2.10)	N/A	WC022452	N/A
ETS-Lindgren	EMC Chamber #7, Inner Dimensions (LxWxH): 24' x 38' x 20'	CH 7 (FACT-5)	WC055569	2/2/2023
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	WC064478	1/18/2024
Rohde & Schwarz	EMI Test Receiver, 20Hz-7GHz	ESIB 7	WC064989	12/28/2023
Com-Power	Preamplifier, 1-1000MHz	PAM-103	WC080961	4/18/2024

Radio Antenna Port (Power and Spurious Emissions), 19-Nov-24

National Technical Systems	NTS EMI Software (rev 2.10)	N/A	WC022452	N/A
National Technical Systems	NTS Capture Analyzer Software (rev 4.0)	N/A	WC022706	N/A
Agilent Technologies	PSA Spectrum Analyzer	E4446A	WC055670	10/14/2024

Radio Antenna Port (Bandwidth), 12-Dec-24

Rohde & Schwarz	Signal Analyzer OTA	FSV13	WC064873	10/10/2024	10/31/2025
-----------------	---------------------	-------	----------	------------	------------

Radiated Emissions, 30 - 1,000 MHz, 13-Dec-24

National Technical Systems	NTS EMI Software (rev 2.10)	N/A	WC022452	N/A
ETS-Lindgren	EMC Chamber #5, Inner Dimensions (LxWxH): 24' x 38' x 20'	CH 5 (FACT-5)	WC055567	5/24/2024
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	WC064582	8/18/2022
Rohde & Schwarz	EMI Test Receiver, 9kHz-7GHz	ESR 7	WC078725	4/15/2024
Com-Power	Preamplifier, 1-1000MHz	PAM-103	WC080961	4/18/2024

OTA, 07-Jan-25

Rohde & Schwarz	Signal Analyzer OTA	FSV13	WC064873	10/10/2024	10/31/2025
-----------------	---------------------	-------	----------	------------	------------

Appendix B Test Data

PR185733-RA-RC Pages 27 – 53

EMC Test Data

Client:	XPLORER	PR Number:	PR185733
Product	ICON Remote Control	T-Log Number:	PR185733-RA-RC
System Configuration:	-	Project Manager:	Christine Krebill
Contact:	Huong Monnier	Project Engineer:	David Bare
Emissions Standard(s):	FCC Part 15, RSS-247	Class:	-
Immunity Standard(s):	-	Environment:	Any

"EAR-Controlled Data"

These items are controlled by the U.S. Government and authorized for export only to the country of ultimate destination for use by the ultimate consignee or end-user(s) herein identified. They may not be resold, transferred, or otherwise disposed of, to any other country or to any person other than the authorized ultimate consignee or end-user(s), either in their original form or after being incorporated into other items, without first obtaining approval from the U.S. government or as otherwise authorized by U.S. law and regulations.

EMC Test Data

For The

XPLORER

Product

ICON Remote Control

Date of Last Test: 1/7/2025

EAR-Controlled Data

Cover

EMC Test Data

Client:	XPLOREER	PR Number:	PR185733
Model:	ICON Remote Control	T-Log Number:	PR185733-RA-RC
Contact:	Huong Monnier	Project Manager:	Christine Krebill
Standard:	FCC Part 15, RSS-247	Project Engineer:	David Bare
		Class:	-

Conducted Emissions

(NTS Silicon Valley, Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 10/23/2024

Config. Used: 1

Test Engineer: M. Birgani

Config Change: None

Test Location: Fremont Chamber #5

EUT Voltage: Refer to individual run

General Test Configuration

The EUT was located on a foam table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN.

Ambient Conditions:

Temperature: 24-25 °C

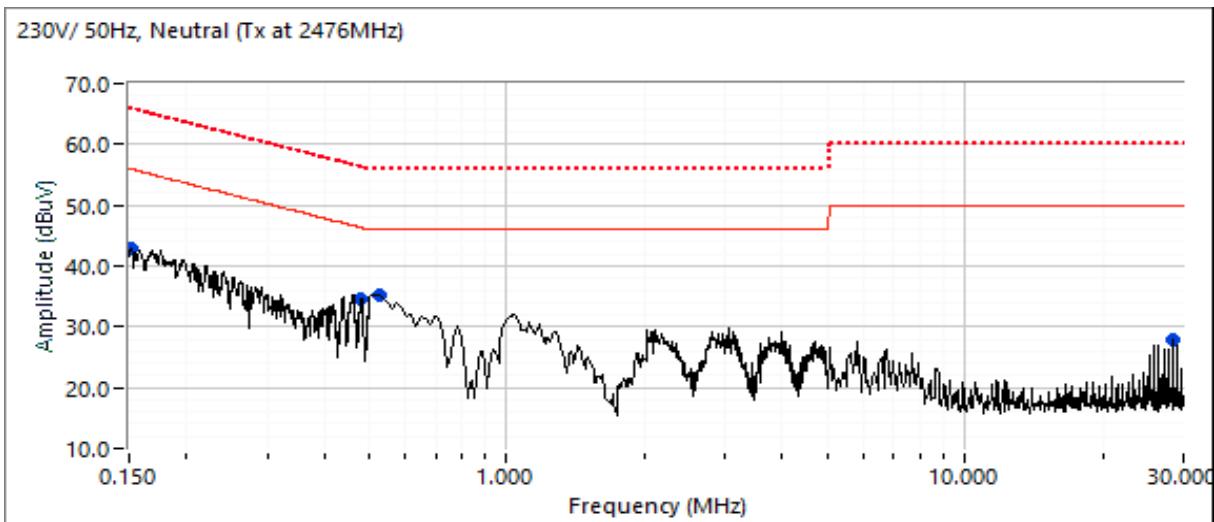
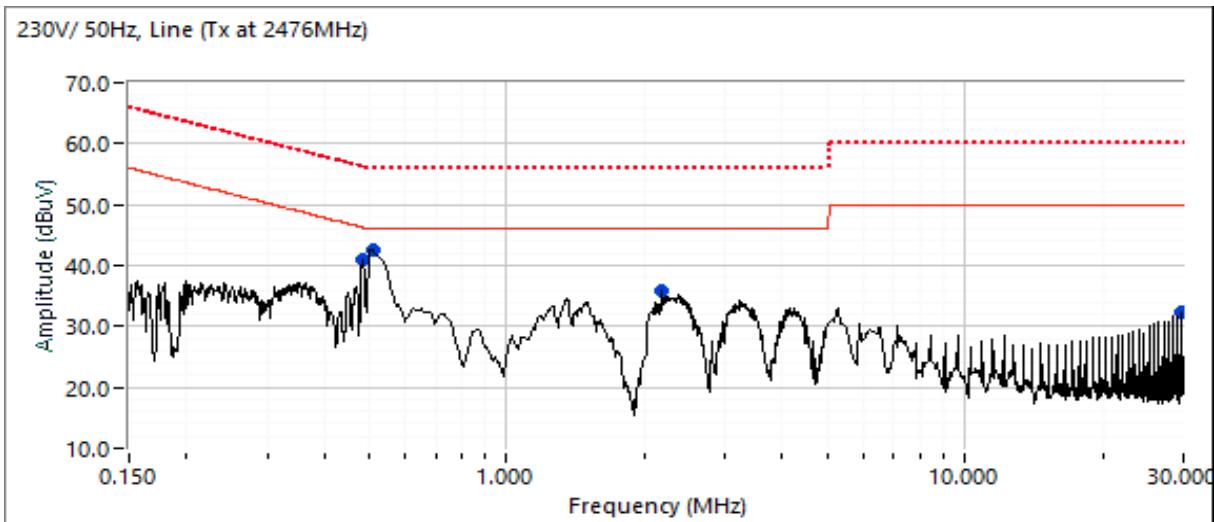
Rel. Humidity: 36-37 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power, 230V/50Hz	§15.207	Pass	33.0 dB μ V @ 0.501 MHz (-13.0 dB)
2	CE, AC Power, 120V/60Hz	§15.207	Pass	23.2 dB μ V @ 28.960 MHz (-26.8 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing



Deviations From The Standard

No deviations were made from the requirements of the standard.

Sample Notes

Sample S/N: CE0005

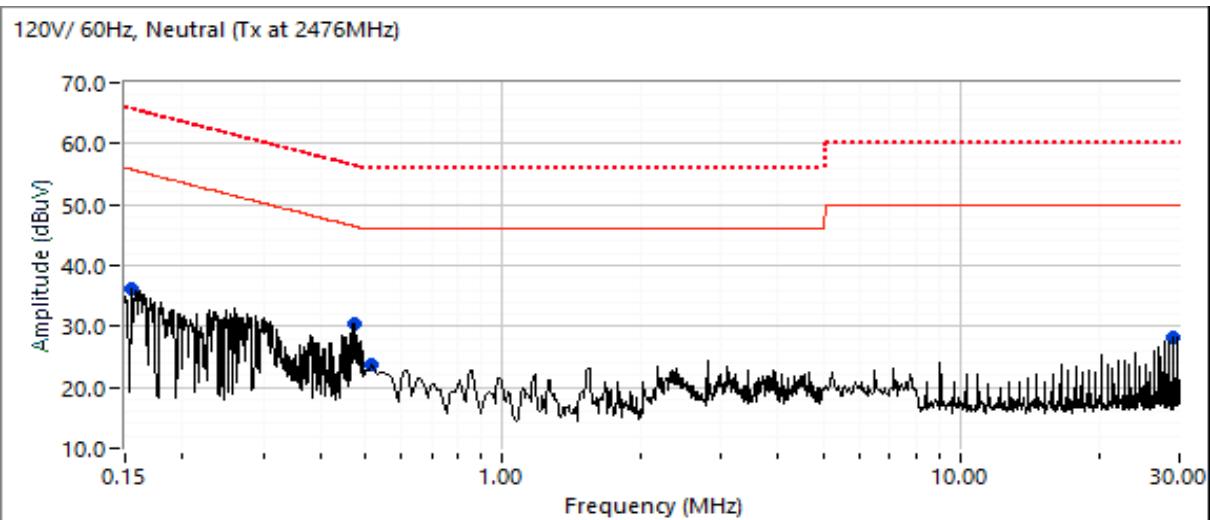
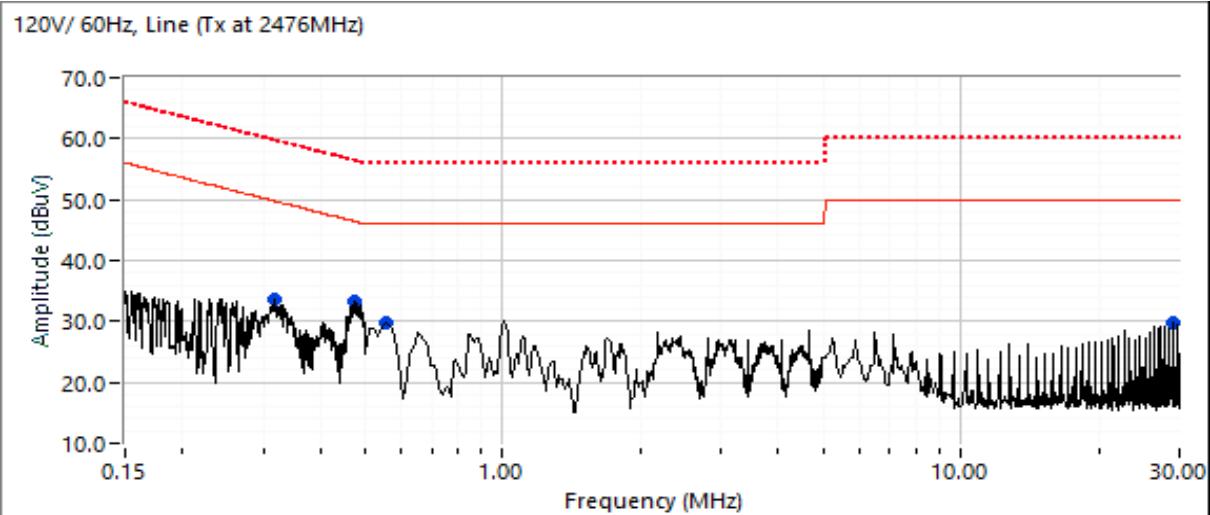
Client: XPLOREER	PR Number: PR185733
Model: ICON Remote Control	T-Log Number: PR185733-RA-RC
Contact: Huong Monnier	Project Manager: Christine Krebill
Standard: FCC Part 15, RSS-247	Project Engineer: David Bare
	Class: -

Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 230V/50Hz

EMC Test Data

Client:	XPLOREER	PR Number:	PR185733
Model:	ICON Remote Control	T-Log Number:	PR185733-RA-RC
Contact:	Huong Monnier	Project Manager:	Christine Krebill
Standard:	FCC Part 15, RSS-247	Project Engineer:	David Bare
		Class:	-

Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 230V/50Hz



Peak readings captured during pre-scan (peak readings vs. average limit)

Frequency MHz	Level dBuV	AC Line	§15.207		Detector QP/AVG	Comments
			Limit	Margin		
0.153	43.0	Neutral	55.9	-12.9	Peak	
0.482	34.5	Neutral	46.3	-11.8	Peak	
0.483	40.8	Line	46.3	-5.5	Peak	
0.501	42.4	Line	46.0	-3.6	Peak	
0.502	35.1	Neutral	46.0	-10.9	Peak	
2.182	35.9	Line	46.0	-10.1	Peak	
28.355	27.8	Neutral	50.0	-22.2	Peak	
29.605	32.2	Line	50.0	-17.8	Peak	

Final quasi-peak and average readings

Frequency MHz	Level dBuV	AC Line	§15.207		Detector QP/AVG	Comments
			Limit	Margin		
0.501	33.0	Line	46.0	-13.0	AVG	AVG (0.10s)
0.483	32.6	Line	46.3	-13.7	AVG	AVG (0.10s)
0.501	40.7	Line	56.0	-15.3	QP	QP (1.00s)
0.483	40.3	Line	56.3	-16.0	QP	QP (1.00s)
0.502	28.8	Neutral	46.0	-17.2	AVG	AVG (0.10s)
0.482	28.9	Neutral	46.3	-17.4	AVG	AVG (0.10s)
0.502	33.8	Neutral	56.0	-22.2	QP	QP (1.00s)
0.482	33.4	Neutral	56.3	-22.9	QP	QP (1.00s)
2.182	21.8	Line	46.0	-24.2	AVG	AVG (0.10s)
2.182	30.8	Line	56.0	-25.2	QP	QP (1.00s)
29.605	24.3	Line	50.0	-25.7	AVG	AVG (0.10s)
29.605	30.2	Line	60.0	-29.8	QP	QP (1.00s)
0.153	35.6	Neutral	65.8	-30.2	QP	QP (1.00s)
28.355	19.2	Neutral	50.0	-30.8	AVG	AVG (0.10s)
28.355	24.9	Neutral	60.0	-35.1	QP	QP (1.00s)
0.153	17.0	Neutral	55.8	-38.8	AVG	AVG (0.10s)

Client: XPLOREER	PR Number: PR185733
Model: ICON Remote Control	T-Log Number: PR185733-RA-RC
Contact: Huong Monnier	Project Manager: Christine Krebill
Standard: FCC Part 15, RSS-247	Project Engineer: David Bare
	Class: -

Run #2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz

EMC Test Data

Client:	XPLOREER	PR Number:	PR185733
Model:	ICON Remote Control	T-Log Number:	PR185733-RA-RC
Contact:	Huong Monnier	Project Manager:	Christine Krebill
Standard:	FCC Part 15, RSS-247	Project Engineer:	David Bare
		Class:	-

Run #2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz

Peak readings captured during pre-scan (peak readings vs. average limit)

Frequency MHz	Level dBuV	AC Line	§15.207		Detector QP/AVG	Comments
			Limit	Margin		
0.155	36.1	Neutral	55.7	-19.6	Peak	
0.316	33.5	Line	49.8	-16.3	Peak	
0.476	33.3	Line	46.4	-13.1	Peak	
0.477	30.5	Neutral	46.4	-15.9	Peak	
0.520	23.7	Neutral	46.0	-22.3	Peak	
0.527	29.8	Line	46.0	-16.2	Peak	
28.959	28.1	Neutral	50.0	-21.9	Peak	
28.960	29.7	Line	50.0	-20.3	Peak	

Final quasi-peak and average readings

Frequency MHz	Level dBuV	AC Line	Class A		Detector QP/AVG	Comments
			Limit	Margin		
28.960	23.2	Line	50.0	-26.8	AVG	AVG (0.10s)
0.527	27.7	Line	56.0	-28.3	QP	QP (1.00s)
0.476	27.9	Line	56.4	-28.5	QP	QP (1.00s)
28.959	20.1	Neutral	50.0	-29.9	AVG	AVG (0.10s)
28.960	29.1	Line	60.0	-30.9	QP	QP (1.00s)
0.476	15.2	Line	46.4	-31.2	AVG	AVG (0.10s)
0.527	14.8	Line	46.0	-31.2	AVG	AVG (0.10s)
0.316	27.4	Line	59.8	-32.4	QP	QP (1.00s)
0.316	17.3	Line	49.8	-32.5	AVG	AVG (0.10s)
0.520	22.7	Neutral	56.0	-33.3	QP	QP (1.00s)
0.520	11.5	Neutral	46.0	-34.5	AVG	AVG (0.10s)
0.477	21.9	Neutral	56.4	-34.5	QP	QP (1.00s)
28.959	25.5	Neutral	60.0	-34.5	QP	QP (1.00s)
0.477	10.8	Neutral	46.4	-35.6	AVG	AVG (0.10s)
0.155	28.1	Neutral	65.7	-37.6	QP	QP (1.00s)
0.155	9.8	Neutral	55.7	-45.9	AVG	AVG (0.10s)

EMC Test Data

Client:	XPLOREER	PR Number:	PR185733
Model:	ICON Remote Control	T-Log Number:	PR185733-RA-RC
Contact:	Huong Monnier	Project Manager:	Christine Krebill
Standard:	FCC Part 15, RSS-247	Project Engineer:	David Bare
		Class:	-

Radiated Emissions

(NTS Silicon Valley, Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 12/13/2024

Config. Used: 1

Test Engineer: M. Birgani

Config Change: None

Test Location: Fremont Chamber #5

EUT Voltage: Battery

General Test Configuration

The EUT and any local support equipment were located on the turntable for radiated emissions testing.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions:

Temperature: 24-25 °C

Rel. Humidity: 36-37 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
2	Radiated Emissions 30 - 1000 MHz, Maximized	§15.209	Pass	15.1 dB μ V/m @ 30.86 MHz (-24.9 dB)

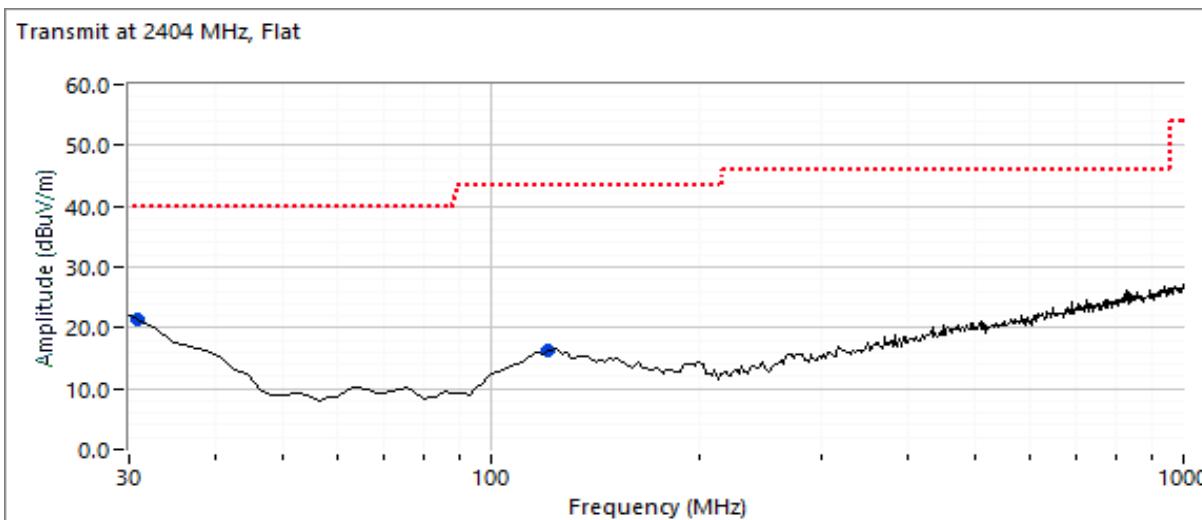
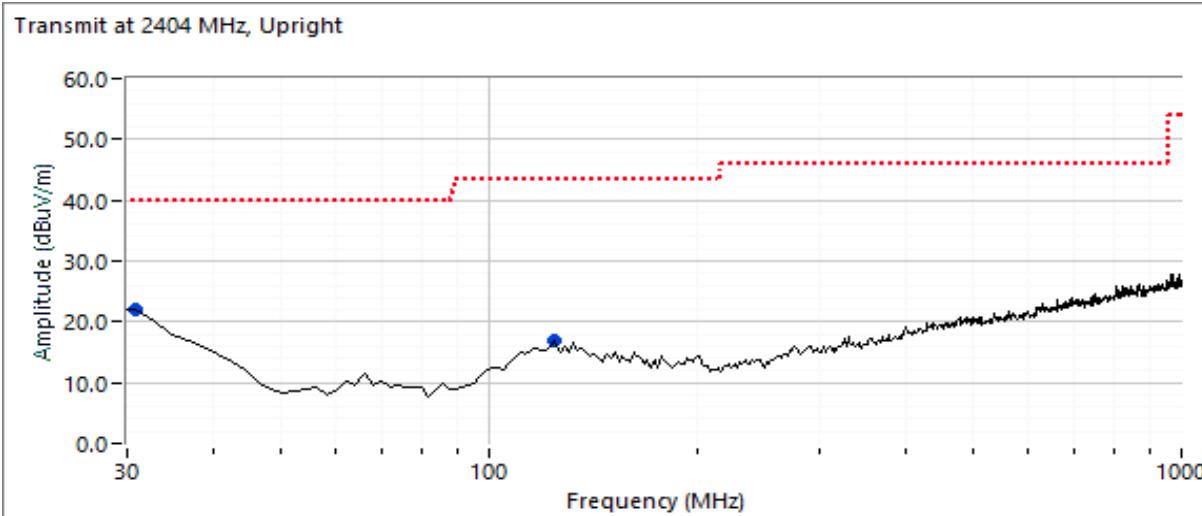
Modifications Made During Testing

No modifications were made to the EUT during testing

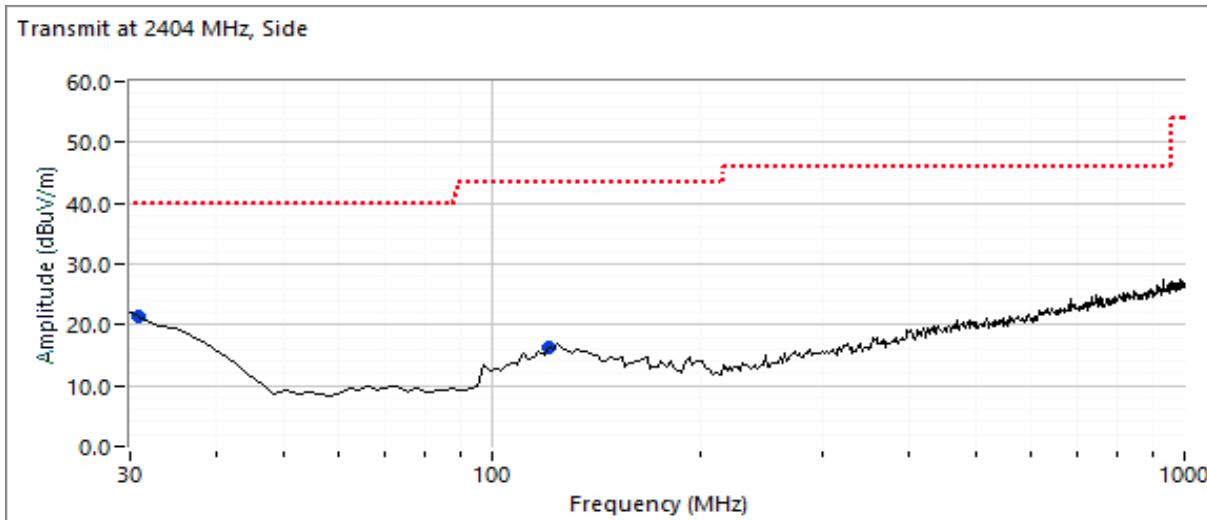
Deviations From The Standard

No deviations were made from the requirements of the standard.

The unit was transmitting at low channel.



Sample Notes

Sample S/N: CE0011


EAR-Controlled Data

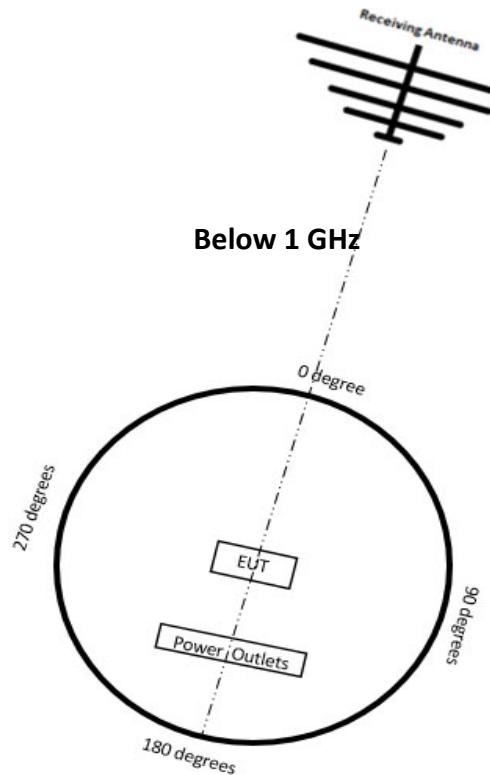
Client: XPLOREER	PR Number: PR185733
Model: ICON Remote Control	T-Log Number: PR185733-RA-RC
Contact: Huong Monnier	Project Manager: Christine Krebill
Standard: FCC Part 15, RSS-247	Project Engineer: David Bare Class: -

Test Parameters for Preliminary Scan(s)			
Frequency Range (MHz)	Prescan Distance (meters)	Limit Distance (meters)	Extrapolation Factor (dB, applied to data)
30 - 1000	3	3	0.0

Run #1: Radiated Emissions, 30 - 1000 MHz

Client: XPLOREER	PR Number: PR185733
Model: ICON Remote Control	T-Log Number: PR185733-RA-RC
Contact: Huong Monnier	Project Manager: Christine Krebill
Standard: FCC Part 15, RSS-247	Project Engineer: David Bare
	Class: -

Preliminary peak readings captured during pre-scan


Frequency	Level	Pol	§15.209		Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	PK/QP/AVG	degrees	meters	
30.862	22.1	H	40.0	-17.9	Peak	0	3.5	Upright Noise Floor
124.649	16.9	H	43.5	-26.6	Peak	227	2.0	Upright Noise Floor
30.862	21.4	V	40.0	-18.6	Peak	125	4.0	Flat Noise Floor
120.741	16.4	H	43.5	-27.1	Peak	13	3.5	Flat Noise Floor
30.862	21.3	V	40.0	-18.7	Peak	126	1.5	Side Noise Floor
120.741	16.4	V	43.5	-27.1	Peak	242	1.5	Side Noise Floor

Note 1: No emissions were observed above the noise floor of the measurement equipment. Scan was performed at all 3 orientation and showed orientation does not make any difference. Other channels are not necessary for demonstrating compliance.

Run #2: Maximized Readings From Run #1
Maximized quasi-peak readings (includes manipulation of EUT interface cables)

Frequency	Level	Pol	§15.209		Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	PK/QP/AVG	degrees	meters	
30.862	15.1	V	40.0	-24.9	QP	127	1.5	QP (1.00s)
120.741	8.8	V	43.5	-34.7	QP	242	1.5	QP (1.00s)

Client:	XPLOREER	PR Number:	PR185733
Model:	ICON Remote Control	T-Log Number:	PR185733-RA-RC
Contact:	Huong Monnier	Project Manager:	Christine Krebill
Standard:	FCC Part 15, RSS-247	Project Engineer:	David Bare
		Class:	-

EMC Test Data

Client:	XPLORE R	PR Number:	PR185733
Model:	ICON Remote Control	T-Log Number:	PR185733-RA-RC
Contact:	Huong Monnier	Project Manager:	Christine Krebill
Standard:	FCC Part 15, RSS-247	Project Engineer:	David Bare
		Class:	N/A

RSS-247 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions: Temperature: 21-23 °C
Rel. Humidity: 40-43 %

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

Run #	Channel	Power Setting	Test Performed	Limit	Result / Margin
1	Low	0 dBm	Radiated Emissions, 1 - 25 GHz	FCC Part 15.209 / 15.247(c)	49.8 dB μ V/m @ 7212.0 MHz (-4.2 dB)
		0 dBm	Restricted Bandedge (2390 MHz)	FCC Part 15.209 / 15.247(c)	52.0 dB μ V/m @ 2386.4 MHz (-22.0 dB)
	Center	0 dBm	Radiated Emissions, 1 - 25 GHz	FCC Part 15.209 / 15.247(c)	48.4 dB μ V/m @ 4880.1 MHz (-5.6 dB)
		0 dBm	Radiated Emissions, 1 - 25 GHz	FCC Part 15.209 / 15.247(c)	50.3 dB μ V/m @ 4952.0 MHz (-3.7 dB)
	High	0 dBm	Restricted Bandedge (2483.5 MHz)	FCC Part 15.209 / 15.247(c)	56.1 dB μ V/m @ 2483.6 MHz (-17.9 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Sample Notes

Sample S/N: CE0011

EAR-Controlled Data

EMC Test Data

Client:	XPLORE R	PR Number:	PR185733
Model:	ICON Remote Control	T-Log Number:	PR185733-RA-RC
Contact:	Huong Monnier	Project Manager:	Christine Krebill
Standard:	FCC Part 15, RSS-247	Project Engineer:	David Bare
		Class:	N/A

Procedure Comments:

Measurements performed in accordance with ANSI C63.10

Measurements performed from 1-4GHz with preamp and no filter

Measurements performed from 4-11 GHz with preamp and 2.4GHz notch filter

Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time

Unless otherwise stated/noted, emission has duty cycle \geq 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear voltage average, auto sweep time, max hold.

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
-	1Mbps	99.6%	Yes	33.179	0	0	10

Measurement Specific Notes:

Note 1:	Emission in non-restricted band, but limit of 15.209 used.
Note 2:	Emission in non-restricted band, the limit was set 30dB below the level of the fundamental and measured in 100kHz.
Note 3:	Emission has a duty cycle \geq 98%, average measurement performed: RBW=1MHz, VBW=3MHz, RMS, Power averaging, auto sweep, trace average 100 traces
Note 4:	All three orientations were evaluated at low frequency. Only worse case (Upright) was tested at center and high channel.

Date of Test: 11/4 & 11/5/2024

Test Engineer: David Bare, M. Birgani

Test Location: Fremont Chamber #5

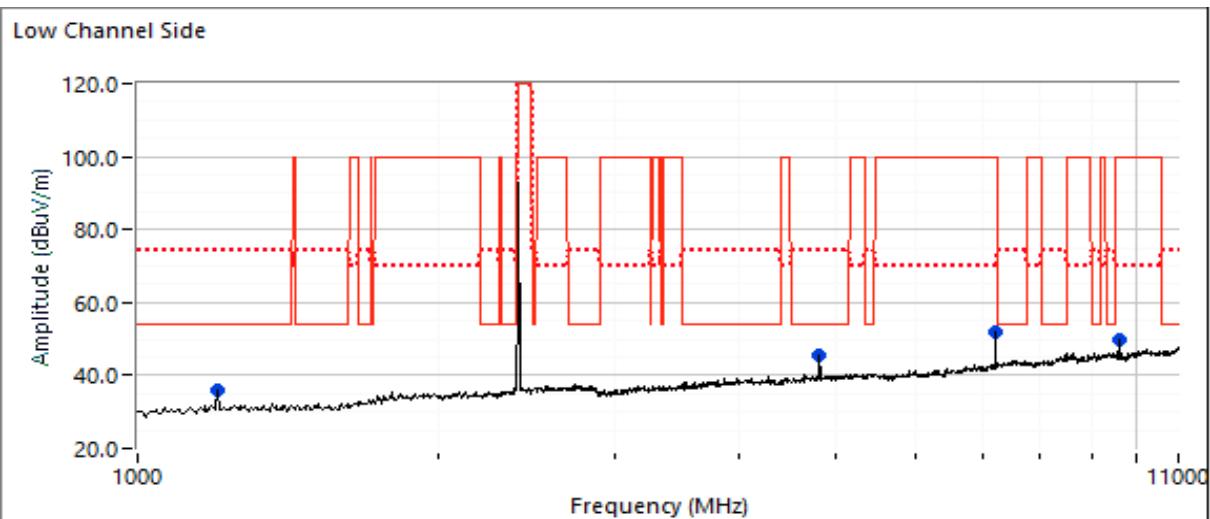
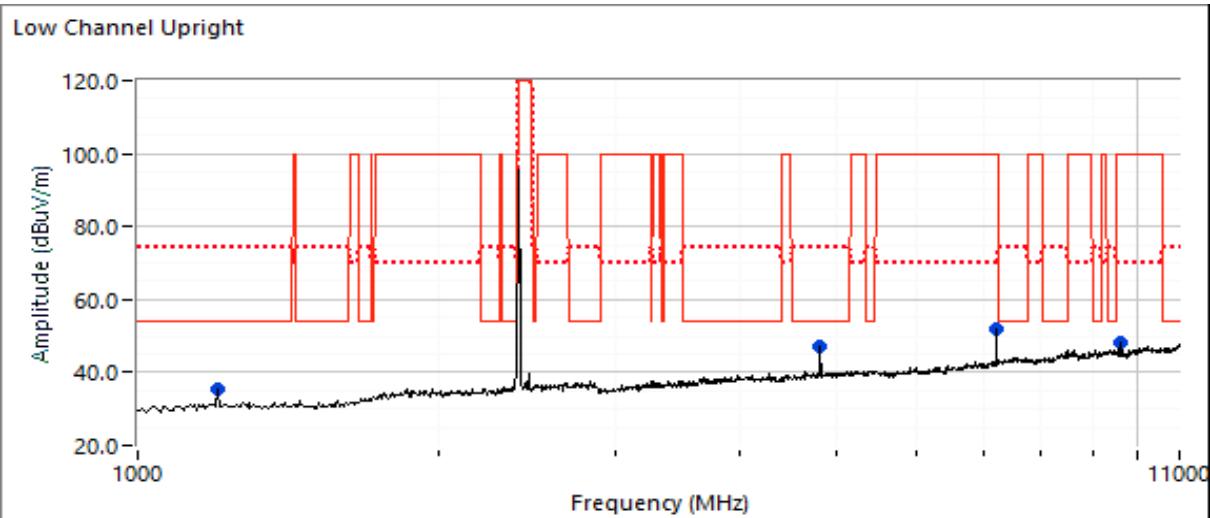
Config. Used: 1

Config Change: None

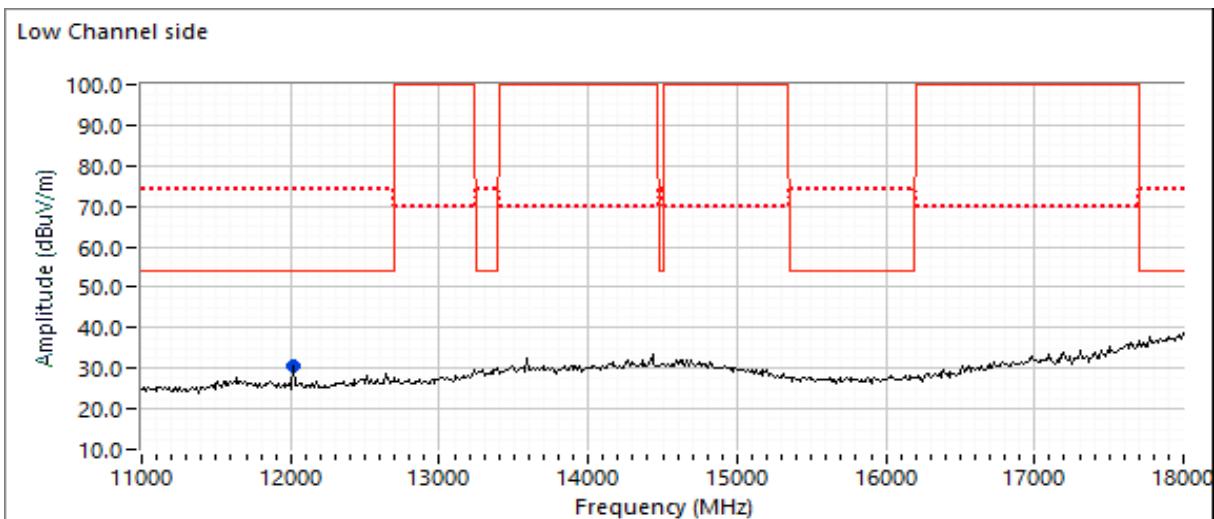
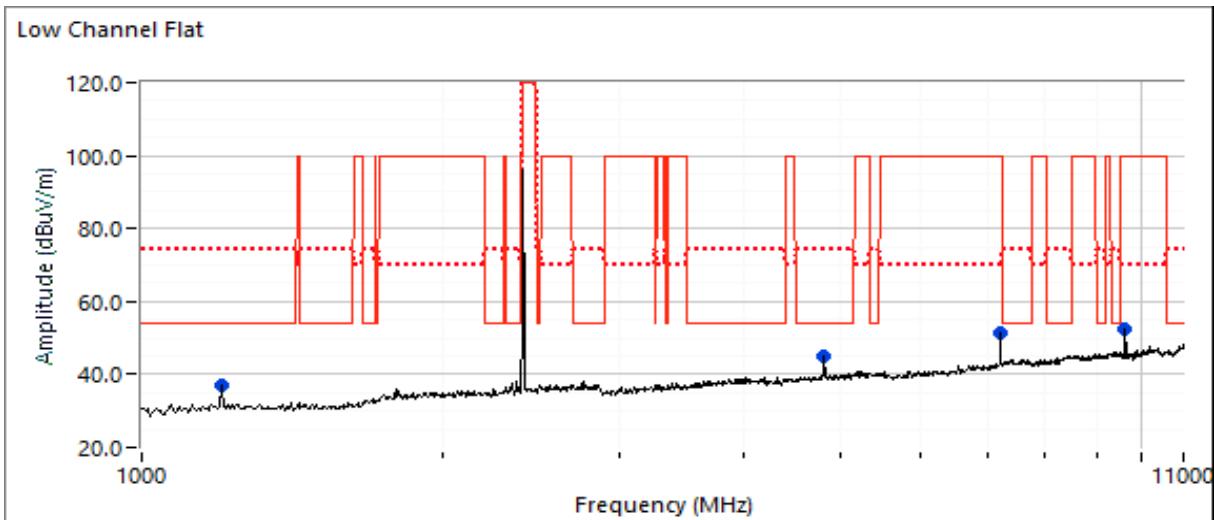
Charger Voltage: 120 V / 60 Hz

EMC Test Data

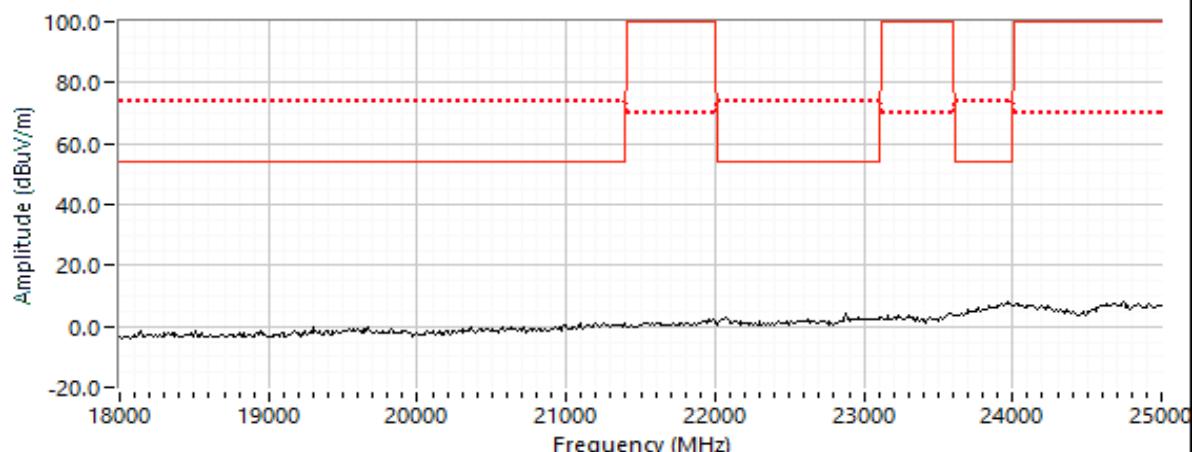
Client:	XPLOREER	PR Number:	PR185733
Model:	ICON Remote Control	T-Log Number:	PR185733-RA-RC
Contact:	Huong Monnier	Project Manager:	Christine Krebill
Standard:	FCC Part 15, RSS-247	Project Engineer:	David Bare
		Class:	N/A

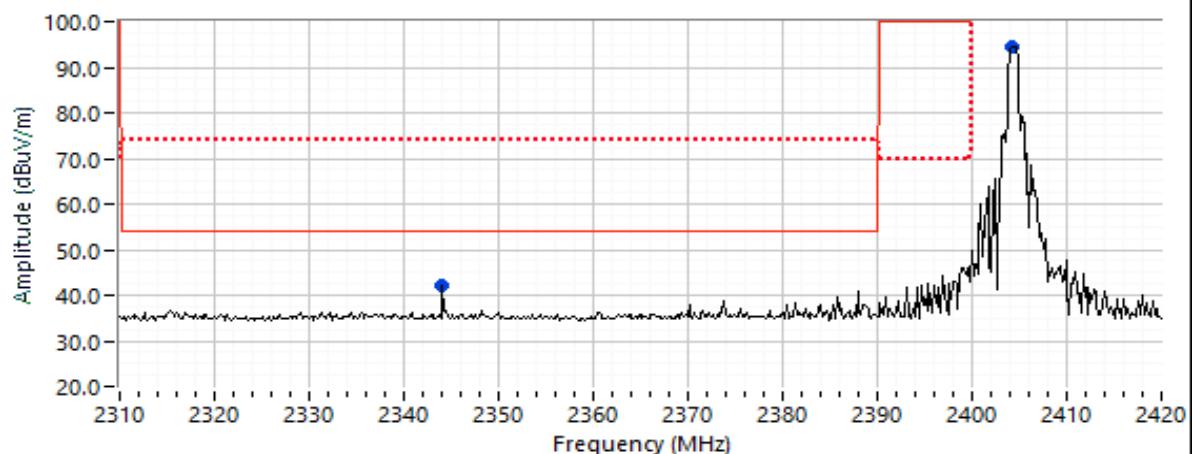


Run #1: Radiated Spurious Emissions, 1,000 - 25000 MHz

Run #1a: Low Channel



Frequency MHz	Level dB μ V/m	Pol V/H	15.209 / 15.247 Limit	Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments
1202.010	34.1	H	54.0	-19.9	AVG	344	2.4	RB 1 MHz;VB 10 Hz;Upright
1202.020	40.0	H	74.0	-34.0	PK	344	2.4	RB 1 MHz;VB 3 MHz;Upright
4808.010	46.2	H	54.0	-7.8	AVG	313	1.6	RB 1 MHz;VB 10 Hz;Upright
4807.570	51.6	H	74.0	-22.4	PK	313	1.6	RB 1 MHz;VB 3 MHz;Upright
7212.000	49.2	H	54.0	-4.8	AVG	199	2.2	RB 1 MHz;VB 10 Hz;Upright;Note 1
7212.460	55.6	H	74.0	-18.4	PK	199	2.2	RB 1 MHz;VB 3 MHz;Upright;Note 1
9616.420	43.8	H	54.0	-10.2	AVG	190	1.4	RB 1 MHz;VB 10 Hz;Upright;Note 1
9616.470	53.9	H	74.0	-20.1	PK	190	1.4	RB 1 MHz;VB 3 MHz;Upright;Note 1
1202.010	34.7	V	54.0	-19.3	AVG	329	1.0	RB 1 MHz;VB 10 Hz;Side
1202.020	41.0	V	74.0	-33.0	PK	329	1.0	RB 1 MHz;VB 3 MHz;Side
4807.970	44.0	H	54.0	-10.0	AVG	109	2.0	RB 1 MHz;VB 10 Hz;Side
4807.600	50.3	H	74.0	-23.7	PK	109	2.0	RB 1 MHz;VB 3 MHz;Side
7212.040	49.8	V	54.0	-4.2	AVG	197	1.5	RB 1 MHz;VB 10 Hz;Side;Note 1
7212.410	55.8	V	74.0	-18.2	PK	197	1.5	RB 1 MHz;VB 3 MHz;Side;Note 1
9615.920	48.2	V	54.0	-5.8	AVG	312	2.2	RB 1 MHz;VB 10 Hz;Side;Note 1
9616.630	56.5	V	74.0	-17.5	PK	312	2.2	RB 1 MHz;VB 3 MHz;Side;Note 1
12011.470	20.6	V	54.0	-33.4	AVG	360	1.3	RB 1 MHz;VB 10 Hz;Side
12010.180	33.4	V	74.0	-40.6	PK	360	1.3	RB 1 MHz;VB 3 MHz;Side
1202.030	34.4	H	54.0	-19.6	AVG	299	1.3	RB 1 MHz;VB 10 Hz;Flat
1201.770	40.3	H	74.0	-33.7	PK	299	1.3	RB 1 MHz;VB 3 MHz;Flat
4808.050	44.0	V	54.0	-10.0	AVG	122	1.1	RB 1 MHz;VB 10 Hz;Flat
4808.370	50.2	V	74.0	-23.8	PK	122	1.1	RB 1 MHz;VB 3 MHz;Flat
7212.070	48.0	H	54.0	-6.0	AVG	276	1.0	RB 1 MHz;VB 10 Hz;Flat;Note 1
7211.520	54.4	H	74.0	-19.6	PK	276	1.0	RB 1 MHz;VB 3 MHz;Flat;Note 1
9616.300	47.2	H	54.0	-6.8	AVG	359	1.1	RB 1 MHz;VB 10 Hz;Flat;Note 1
9616.380	55.5	H	74.0	-18.5	PK	359	1.1	RB 1 MHz;VB 3 MHz;Flat;Note 1

Note: Scans made between 18 - 25 GHz with the measurement antenna moved around the EUT 30cm from the device indicated there were no significant emissions in this frequency range. The emission observed at 12 GHz is below the noise floor at 3m

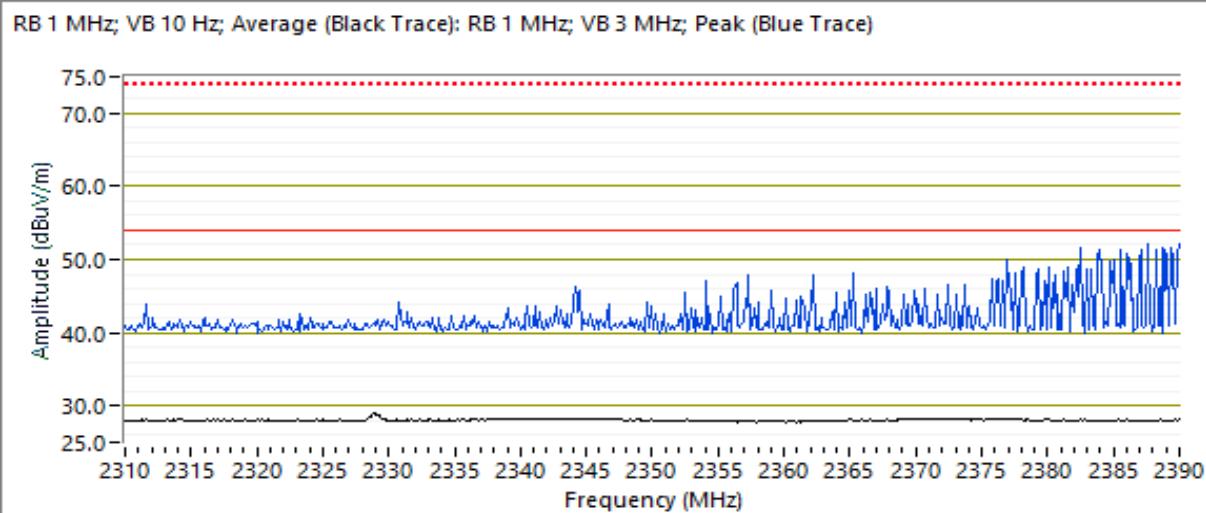

Client:	XPLOREER	PR Number:	PR185733
Model:	ICON Remote Control	T-Log Number:	PR185733-RA-RC
Contact:	Huong Monnier	Project Manager:	Christine Krebill
Standard:	FCC Part 15, RSS-247	Project Engineer:	David Bare
		Class:	N/A


Client:	XPLORE R	PR Number:	PR185733
Model:	ICON Remote Control	T-Log Number:	PR185733-RA-RC
Contact:	Huong Monnier	Project Manager:	Christine Krebill
Standard:	FCC Part 15, RSS-247	Project Engineer:	David Bare
		Class:	N/A

Client:	XPLORE R	PR Number:	PR185733
Model:	ICON Remote Control	T-Log Number:	PR185733-RA-RC
Contact:	Huong Monnier	Project Manager:	Christine Krebill
Standard:	FCC Part 15, RSS-247	Project Engineer:	David Bare
		Class:	N/A

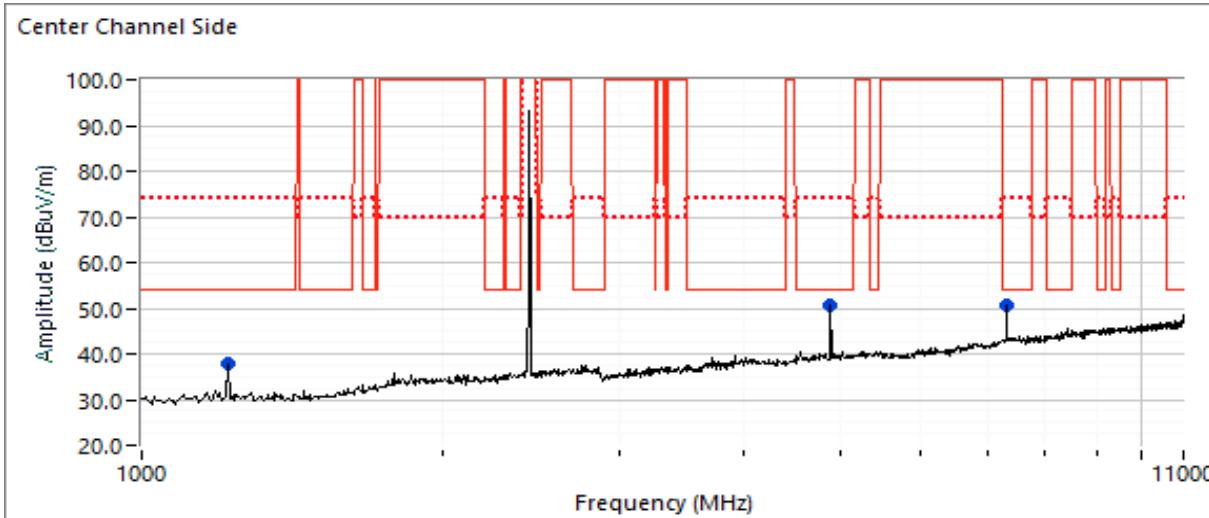
Low Channel side

Band Edge Signal Field Strength - Direct measurement of field strength


Frequency	Level	Pol	15.209 / 15.247	Detector	Azimuth	Height	Comments
MHz	dB μ V/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters
2386.350	52.0	H	74.0	-22.0	PK	286	2.2
2343.790	30.0	H	54.0	-24.0	AVG	286	2.3
2389.500	29.7	H	54.0	-24.3	AVG	286	2.2
2342.830	45.1	H	74.0	-28.9	PK	286	2.3

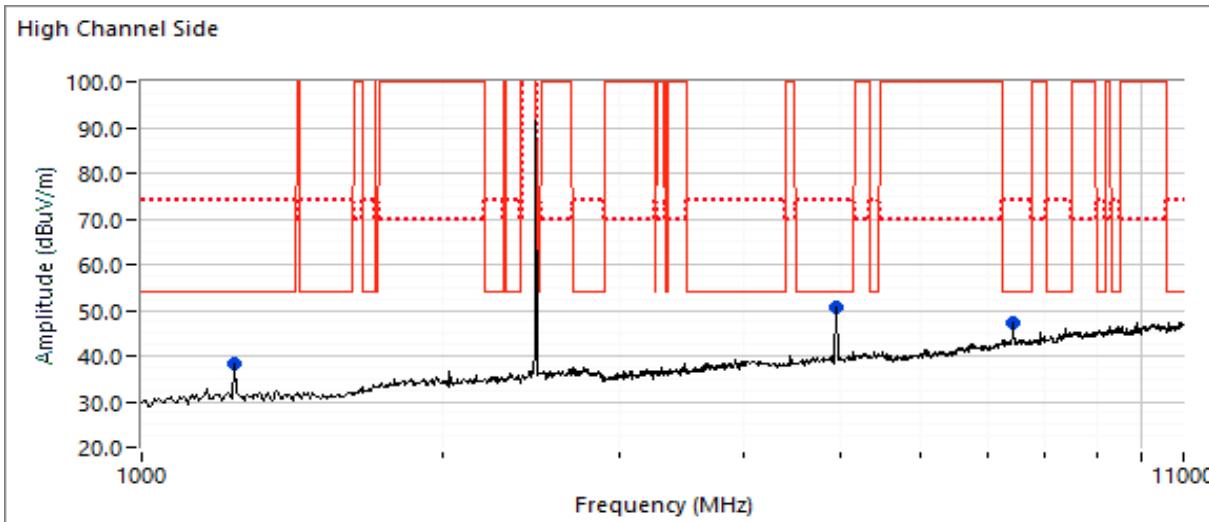
Low Channel Flat

EMC Test Data

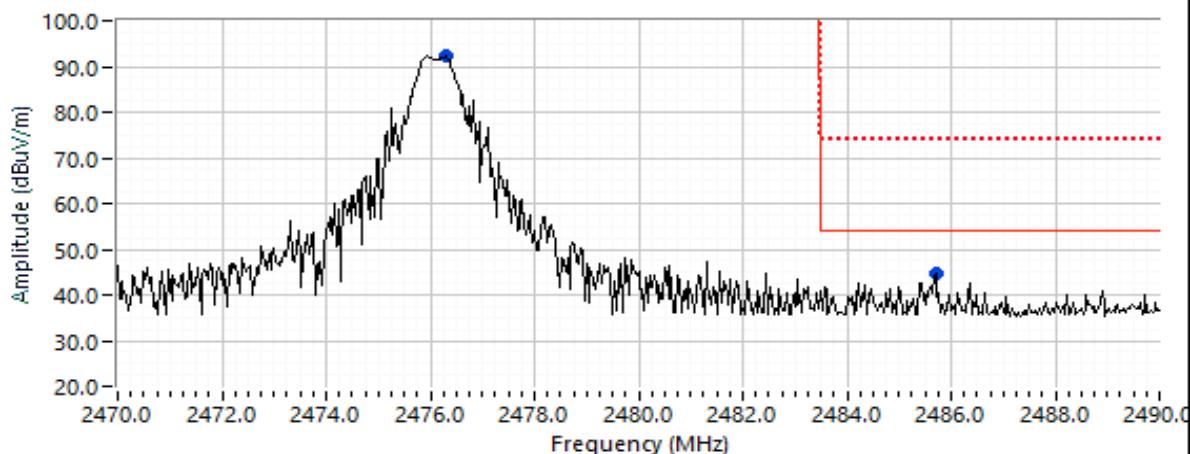

Client:	XPLOREER	PR Number:	PR185733
Model:	ICON Remote Control	T-Log Number:	PR185733-RA-RC
Contact:	Huong Monnier	Project Manager:	Christine Krebill
Standard:	FCC Part 15, RSS-247	Project Engineer:	David Bare
		Class:	N/A

Client:	XPLORE R	PR Number:	PR185733
Model:	ICON Remote Control	T-Log Number:	PR185733-RA-RC
Contact:	Huong Monnier	Project Manager:	Christine Krebill
Standard:	FCC Part 15, RSS-247	Project Engineer:	David Bare
		Class:	N/A

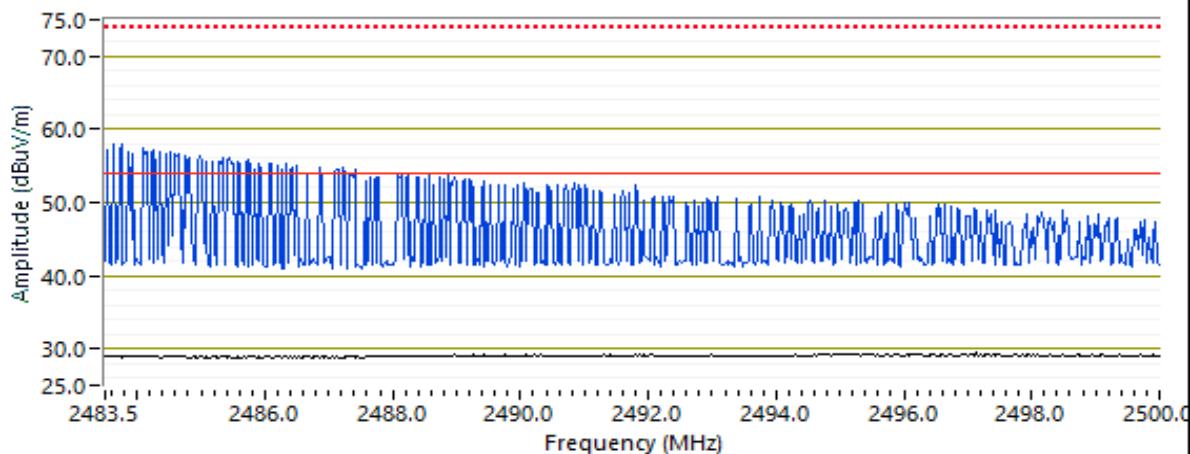
Run #1b: Center Channel


Frequency	Level	Pol	15.209 / 15.247		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
1220.050	36.4	V	54.0	-17.6	AVG	343	1.0	RB 1 MHz;VB 10 Hz;Side
1219.970	41.6	V	74.0	-32.4	PK	343	1.0	RB 1 MHz;VB 3 MHz;Side
4880.080	48.4	H	54.0	-5.6	AVG	134	1.2	RB 1 MHz;VB 10 Hz;Side
4880.210	52.8	H	74.0	-21.2	PK	134	1.2	RB 1 MHz;VB 3 MHz;Side
7320.170	46.8	V	54.0	-7.2	AVG	183	2.0	RB 1 MHz;VB 10 Hz;Side
7320.250	54.5	V	74.0	-19.5	PK	183	2.0	RB 1 MHz;VB 3 MHz;Side

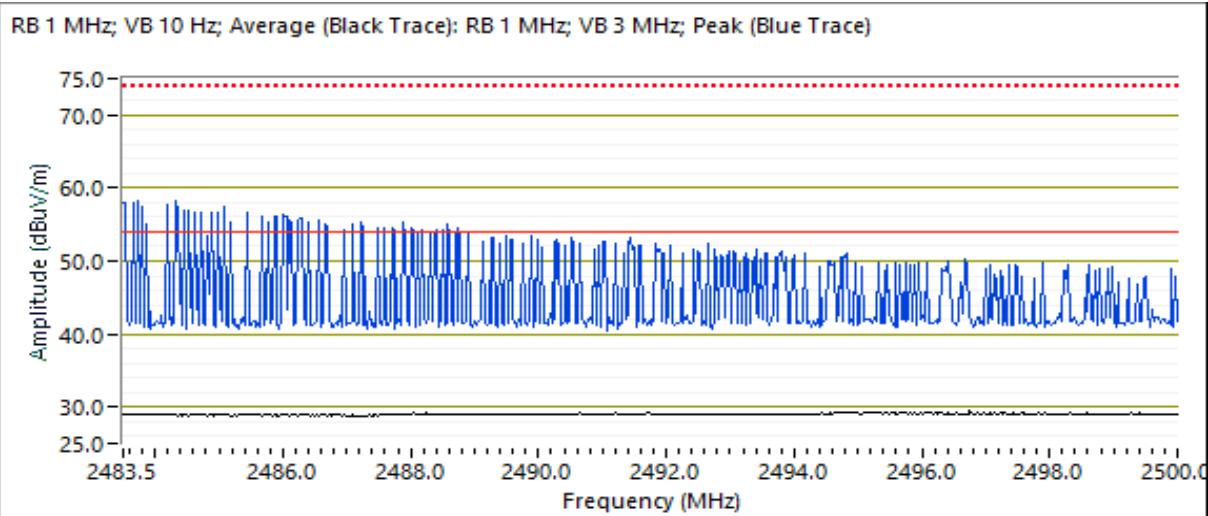
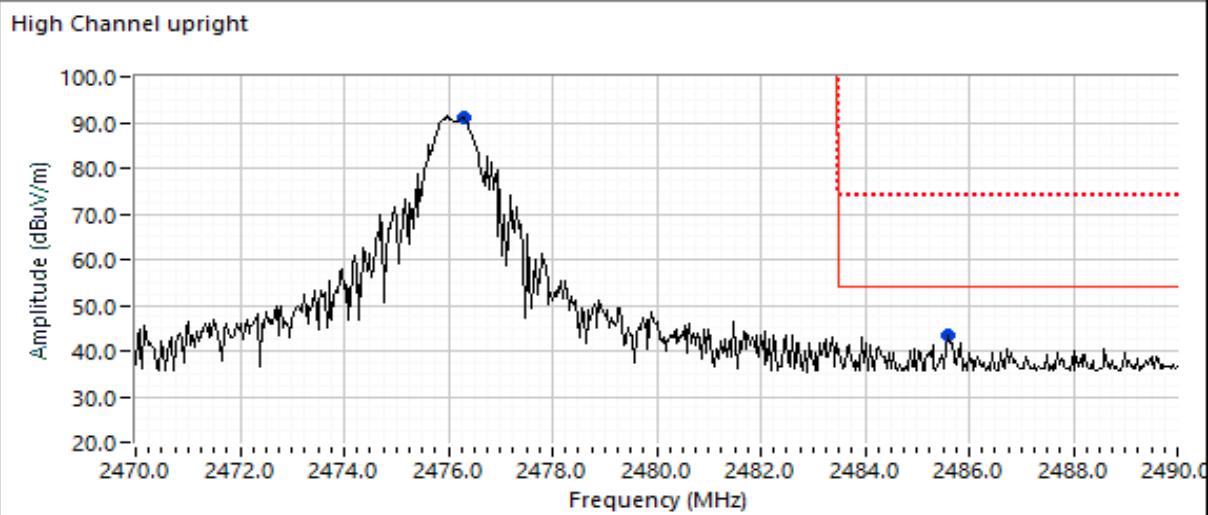
Client:	XPLORE R	PR Number:	PR185733
Model:	ICON Remote Control	T-Log Number:	PR185733-RA-RC
Contact:	Huong Monnier	Project Manager:	Christine Krebill
Standard:	FCC Part 15, RSS-247	Project Engineer:	David Bare
		Class:	N/A


Run #1c: High Channel

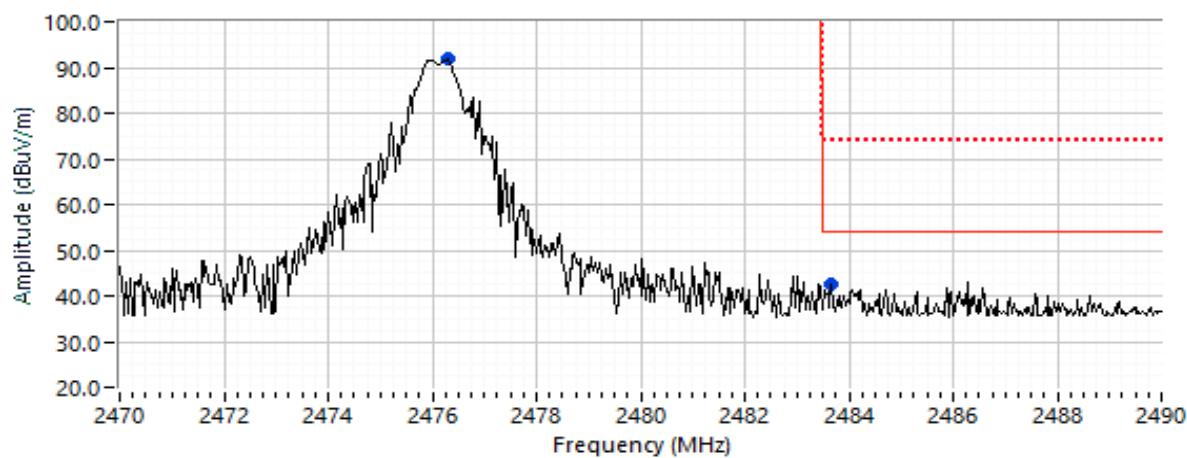
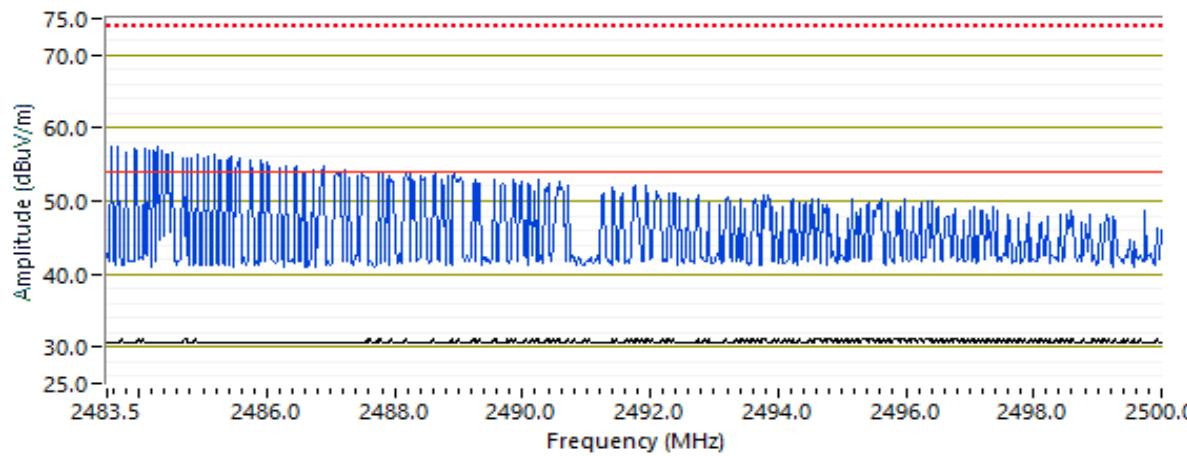
Frequency	Level	Pol	15.209 / 15.247		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
1238.020	36.4	V	54.0	-17.6	AVG	147	1.0	RB 1 MHz;VB 10 Hz;Side
1238.060	41.5	V	74.0	-32.5	PK	147	1.0	RB 1 MHz;VB 3 MHz;Side
4952.020	50.3	V	54.0	-3.7	AVG	23	2.3	RB 1 MHz;VB 10 Hz;Side
4952.370	53.8	V	74.0	-20.2	PK	23	2.3	RB 1 MHz;VB 3 MHz;Side
7427.970	44.4	V	54.0	-9.6	AVG	134	2.3	RB 1 MHz;VB 10 Hz;Side
7428.230	52.3	V	74.0	-21.7	PK	134	2.3	RB 1 MHz;VB 3 MHz;Side



Band Edge Signal Field Strength - Direct measurement of field strength								
Frequency	Level	Pol	15.209 / 15.247		Detector	Azimuth	Height	Comments
MHz	dB μ V/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
2483.610	56.1	H	74.0	-17.9	PK	287	2.2	RB 1 MHz;VB 3 MHz;Flat
2483.870	55.4	H	74.0	-18.6	PK	313	2.5	RB 1 MHz;VB 3 MHz;Side
2490.700	55.4	H	74.0	-18.6	PK	231	1.6	RB 1 MHz;VB 3 MHz;Upright
2484.360	30.8	H	54.0	-23.2	AVG	287	2.2	RB 1 MHz;VB 10 Hz;Flat
2494.720	30.7	H	54.0	-23.3	AVG	231	1.6	RB 1 MHz;VB 10 Hz;Upright
2488.370	30.5	H	54.0	-23.5	AVG	313	2.5	RB 1 MHz;VB 10 Hz;Side



Client:	XPLORE R	PR Number:	PR185733
Model:	ICON Remote Control	T-Log Number:	PR185733-RA-RC
Contact:	Huong Monnier	Project Manager:	Christine Krebill
Standard:	FCC Part 15, RSS-247	Project Engineer:	David Bare
		Class:	N/A

High Channel side



Note: Basd on the preliminary measurements, the maximum amplitude was observed with a horizontally polarized antenna with the EUT on its side and upright.

RB 1 MHz; VB 10 Hz; Average (Black Trace); RB 1 MHz; VB 3 MHz; Peak (Blue Trace)

Client:	XPLORE R	PR Number:	PR185733
Model:	ICON Remote Control	T-Log Number:	PR185733-RA-RC
Contact:	Huong Monnier	Project Manager:	Christine Krebill
Standard:	FCC Part 15, RSS-247	Project Engineer:	David Bare
		Class:	N/A

Client:	XPLORE R	PR Number:	PR185733
Model:	ICON Remote Control	T-Log Number:	PR185733-RA-RC
Contact:	Huong Monnier	Project Manager:	Christine Krebill
Standard:	FCC Part 15, RSS-247	Project Engineer:	David Bare
		Class:	N/A

High Channel Flat

RB 1 MHz; VB 10 Hz; Average (Black Trace); RB 1 MHz; VB 3 MHz; Peak (Blue Trace)

EMC Test Data

Client:	XPLOREER	PR Number:	PR185733
Model:	ICON Remote Control	T-Log Number:	PR185733-RA-RC
Contact:	Huong Monnier	Project Manager:	Christine Krebill
Standard:	FCC Part 15, RSS-247	Project Engineer:	David Bare
		Class:	N/A

RSS-247 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 11/19 & 12/12/2024

Config. Used: 1

Test Engineer: David Bare

Config Change: -

Test Location: Fremont EMC Lab #4

EUT Voltage: Battery

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 20-22 °C
Rel. Humidity: 36-43 %

Summary of Results

Run #	Pwr setting	Test Performed	Limit	Pass / Fail	Result / Margin
1	0	Output Power	15.247(b)	Pass	-0.5 dBm
2	0	Power spectral Density (PSD)	15.247(d)	Pass	Total power less than PSD limit
3	0	Minimum 6dB Bandwidth	15.247(a)	Pass	510 kHz
3	0	99% Bandwidth	RSS GEN	-	561 kHz
4	0	Spurious emissions	15.247(b)	Pass	

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

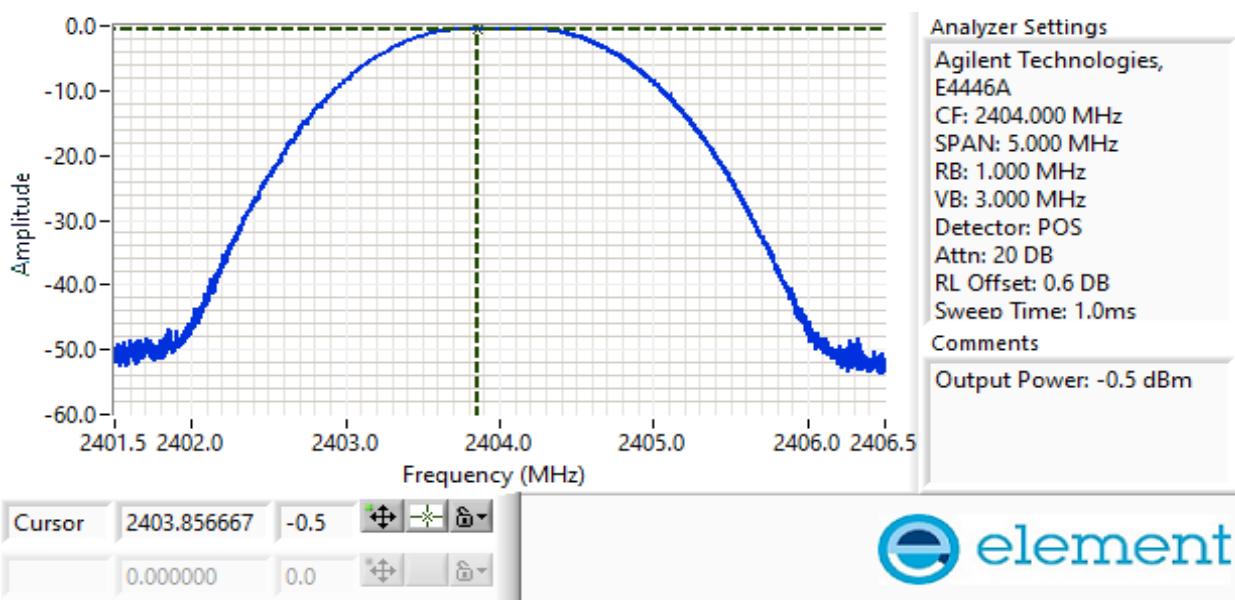
EMC Test Data

Client:	XPLORE	PR Number:	PR185733
Model:	ICON Remote Control	T-Log Number:	PR185733-RA-RC
Contact:	Huong Monnier	Project Manager:	Christine Krebill
Standard:	FCC Part 15, RSS-247	Project Engineer:	David Bare
		Class:	N/A

Procedure Comments:

Measurements performed in accordance with ANSI C63.10

Sample Notes


Sample S/N: 1

Run #1: Output Power

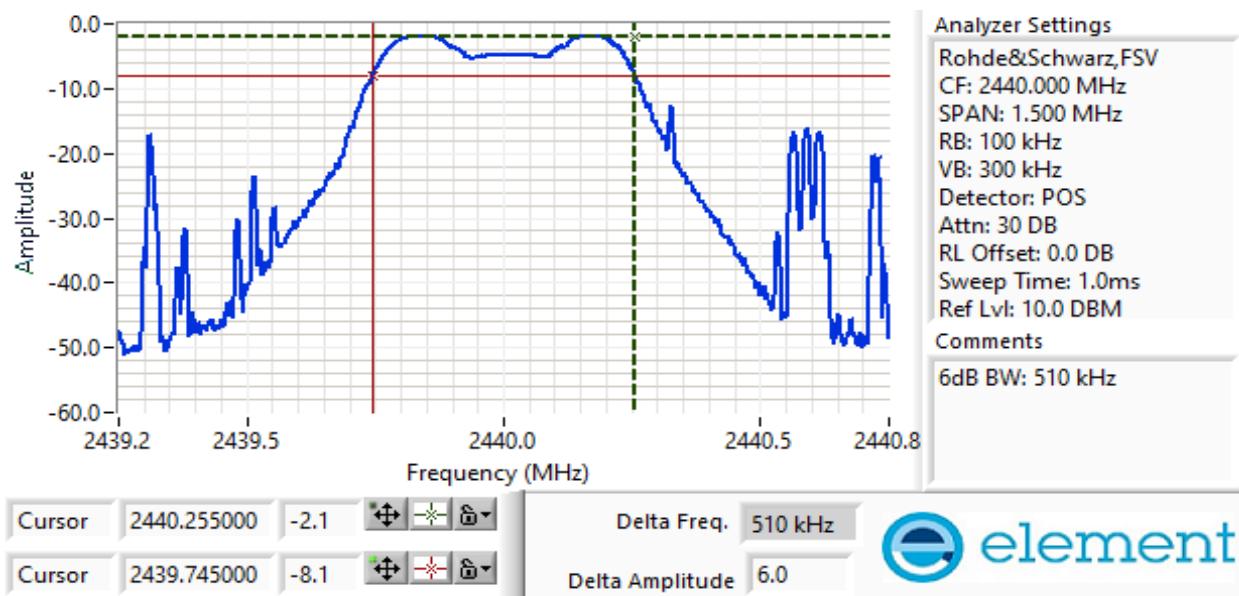
Power Setting ²	Frequency (MHz)	Output Power		Antenna Gain (dBi)	Result	EIRP		Output Power	
		(dBm) ¹	mW			dBm	W	(dBm) ³	mW
0	2404	-0.5	0.9	0.2	Pass	-0.3	0.0009		
0	2440	-1.3	0.7	-0.8	Pass	-2.1	0.0006		
0	2476	-2.3	0.6	-1.7	Pass	-4.0	0.0004		

Note 1: Output power measured using a spectrum analyzer (see plot below) with $RBW \geq OBW$ and $VBW \geq 3 \times RBW$, Span ≥ 2 times OBW, auto sweep time, Peak detector, Max hold, spurious limit is **-20 dBc**.

Note 2: Power setting - the software power setting used during testing, included for reference only.

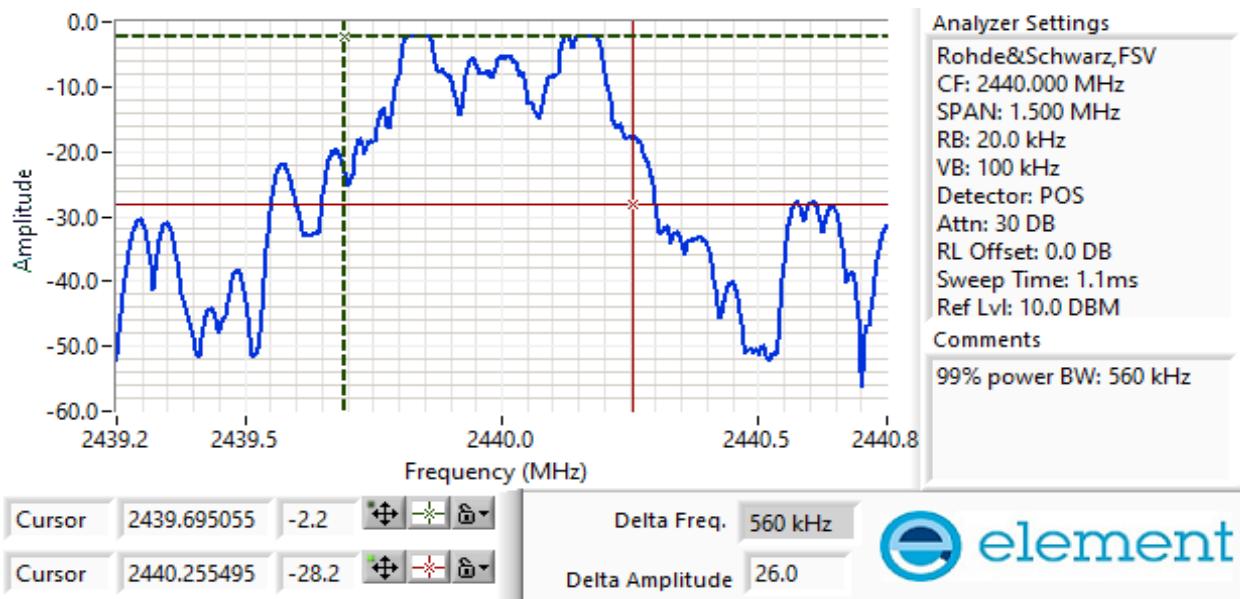
Client:	XPLORE R	PR Number:	PR185733
Model:	ICON Remote Control	T-Log Number:	PR185733-RA-RC
Contact:	Huong Monnier	Project Manager:	Christine Krebill
Standard:	FCC Part 15, RSS-247	Project Engineer:	David Bare
		Class:	N/A

Run #2: Power spectral Density


As the output power was less than the PSD limit, no PSD test is required.

Run #3: Signal Bandwidth

Sample S/N: CE001C


Power Setting	Frequency (MHz)	Bandwidth (kHz)		RBW Setting (kHz)	
		6dB	99%	6dB	99%
0	2404	513	518	100	20
0	2440	510	560	100	20
0	2476	512	498	100	20

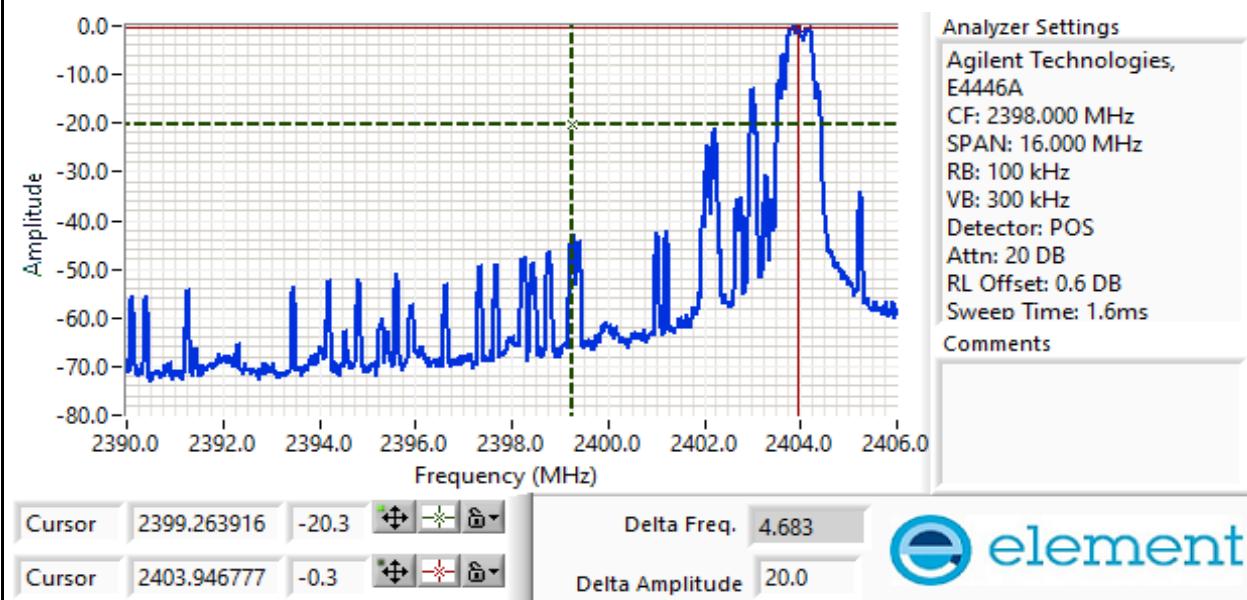
Note 1: DTS BW: RBW=100kHz, VBW \geq 3*RBW, peak detector, max hold, auto sweep time, Span 2-5 times measured BW.
 99% BW: RBW=1-5% of 99%BW, VBW \geq 3*RBW, peak detector, max hold, auto sweep time. Span 1.5-5 times OBW.

Client:	XPLOREER	PR Number:	PR185733
Model:	ICON Remote Control	T-Log Number:	PR185733-RA-RC
Contact:	Huong Monnier	Project Manager:	Christine Krebill
Standard:	FCC Part 15, RSS-247	Project Engineer:	David Bare
		Class:	N/A

EMC Test Data

Client:	XPLORE	PR Number:	PR185733
Model:	ICON Remote Control	T-Log Number:	PR185733-RA-RC
Contact:	Huong Monnier	Project Manager:	Christine Krebill
Standard:	FCC Part 15, RSS-247	Project Engineer:	David Bare
		Class:	N/A

Run #4: Out of Band Spurious Emissions


Sample S/N: 1

Frequency (MHz)	Power Setting		Limit	Result
2404	0		-20dBc	Pass

RBW = 100 kHz and VBW = 300 kHz for all plots.

Plot for low channel

Plot showing compliance with -20dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits for all other emissions..

End of Report

This page is intentionally blank and marks the last page of this test report.