

**Test Report for the  
Testing of a  
Rio Pro 360  
to the FCC Rules  
For  
Magicard Ltd**

Test Report number 12814TR1

Project number C3939



Author: .....  
M Render BSc, PhD, MIET  
Senior Engineer



Checked: .....  
C Greenfield BEng (Hons), Laboratory Business Manager



Approved: .....  
Dr. D. Bozec, BSc(Hons), PhD, MBA, CEng, MIET  
Laboratories Director

| Issue | Description |  |        |  |     | Issue by | Date                       |
|-------|-------------|--|--------|--|-----|----------|----------------------------|
| 2     | Copy 1      |  | Copy 2 |  | PDF | MR       | 12 <sup>th</sup> June 2018 |

This report shall not be reproduced, except in full without the prior written approval of Eurofins York Ltd.  
The results contained in this report are only applicable to the apparatus tested.



1574



A BEIS designated Notified Body No 2636



Registered Address: Eurofins York  
i54 Business Park, Valiant Way, Wolverhampton, WV9 5GB, UK  
Registered in England and Wales  
Company Reg No. 6048589 | VAT Reg No. 887 1276 83

## CONTENTS

|                                                                                                   |           |
|---------------------------------------------------------------------------------------------------|-----------|
| <b>Test Report Change History .....</b>                                                           | <b>4</b>  |
| <b>Section 1      Test Location .....</b>                                                         | <b>5</b>  |
| 1.1    UKAS Accreditation.....                                                                    | 5         |
| <b>Section 2      Customer Information .....</b>                                                  | <b>6</b>  |
| <b>Section 3      Equipment Details.....</b>                                                      | <b>7</b>  |
| 3.1    Equipment Under Test (EUT).....                                                            | 7         |
| 3.2    EUT Photos .....                                                                           | 8         |
| 3.3    Configuration of EUT .....                                                                 | 9         |
| 3.4    EUT Monitoring/Auxiliary Equipment .....                                                   | 9         |
| <b>Section 4      Test Summary .....</b>                                                          | <b>10</b> |
| 4.1    Knowledge Database References.....                                                         | 11        |
| 4.1.1    Conducted Emissions .....                                                                | 11        |
| 4.1.2    Radiated Emissions (9kHz to 30MHz) .....                                                 | 11        |
| 4.1.3    Radiated Emissions (30MHz to 1000MHz) .....                                              | 11        |
| 4.2    Compliance Statement.....                                                                  | 11        |
| <b>Section 5      Conducted Emission Results .....</b>                                            | <b>12</b> |
| 5.1    Test Specification .....                                                                   | 12        |
| 5.2    Power Line Emission Limits .....                                                           | 12        |
| 5.3    Receiver Settings .....                                                                    | 12        |
| 5.4    Procedure and Test Software Version .....                                                  | 12        |
| 5.4.1    Date of Test.....                                                                        | 12        |
| 5.4.2    Test Area.....                                                                           | 12        |
| 5.4.3    Test Setup .....                                                                         | 13        |
| 5.4.4    Plots .....                                                                              | 14        |
| 5.4.5    Correction factors .....                                                                 | 18        |
| 5.4.6    Sample Data.....                                                                         | 18        |
| <b>Section 6      Radiated Emission Results .....</b>                                             | <b>19</b> |
| 6.1    Test Specification .....                                                                   | 19        |
| 6.2    Procedure and Test Software Version .....                                                  | 19        |
| 6.3    Magnetic Field Radiated Emissions (9kHz to 30MHz) .....                                    | 20        |
| 6.3.1    Limits .....                                                                             | 20        |
| 6.3.2    Receiver Settings .....                                                                  | 20        |
| 6.3.3    Emissions measurements .....                                                             | 21        |
| 6.3.4    Date of Test.....                                                                        | 21        |
| 6.3.5    Test Area.....                                                                           | 21        |
| 6.3.6    SAC Test Setup .....                                                                     | 21        |
| 6.3.7    Magnetic field emissions,13.110MHz to 14.010MHz .....                                    | 22        |
| 6.3.8    Magnetic field emissions,9kHz to 30MHz and outside the band 13.110MHz to 14.010MHz ..... | 25        |
| 6.3.9    Sample Data.....                                                                         | 27        |
| 6.4    Radiated Emissions (30MHz to 1GHz) .....                                                   | 28        |
| 6.4.1    Limits at 3m .....                                                                       | 28        |
| 6.4.2    Receiver Settings .....                                                                  | 28        |
| 6.4.3    Emissions measurements .....                                                             | 28        |
| 6.4.4    Date of Test.....                                                                        | 28        |
| 6.4.5    Test Area.....                                                                           | 28        |
| 6.4.6    Test Setup .....                                                                         | 29        |
| 6.4.7    Electric field emissions, 30MHz to 1GHz .....                                            | 30        |
| 6.4.8    Quasi Peak correction factors .....                                                      | 31        |
| 6.4.9    Sample Data.....                                                                         | 31        |
| <b>Section 7      Frequency Stability .....</b>                                                   | <b>32</b> |
| 7.1.1    Date of Test .....                                                                       | 32        |
| 7.1.2    Test Area.....                                                                           | 32        |

|                                             |                                                             |           |
|---------------------------------------------|-------------------------------------------------------------|-----------|
| 7.1.3                                       | Procedure.....                                              | 32        |
| 7.1.4                                       | Test Results - Frequency stability and supply voltage:..... | 33        |
| 7.1.5                                       | Test Results - Frequency stability and temperature .....    | 34        |
| <b>Section 8</b>                            | <b>20dB bandwidth .....</b>                                 | <b>35</b> |
| 8.1.1                                       | Date of Test.....                                           | 35        |
| 8.1.2                                       | Test Area.....                                              | 35        |
| 8.1.3                                       | Procedure.....                                              | 35        |
| 8.1.4                                       | Test Results .....                                          | 35        |
| <b>Section 9</b>                            | <b>Authorised Band Edge Measurements .....</b>              | <b>37</b> |
| 9.1.1                                       | Date of Test.....                                           | 37        |
| 9.1.2                                       | Test Area.....                                              | 37        |
| 9.1.3                                       | Test Setup .....                                            | 37        |
| 9.1.4                                       | Requirement 47CFR15. ....                                   | 37        |
| 9.1.5                                       | Procedure.....                                              | 37        |
| 9.1.6                                       | Results .....                                               | 38        |
| <b>Appendix A Test Equipment List .....</b> | <b>39</b>                                                   |           |

## Test Report Change History

| Issue | Date                       | Modification Details                                                                                                                                                                                                                |
|-------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | 18 <sup>th</sup> May 2018  | Original issue of test report                                                                                                                                                                                                       |
| 2     | 12 <sup>th</sup> June 2018 | Replaced 20dB bandwidth and band edge measurements following comments from the TCB (Sections 8 and 9). Added statement regarding correlation of chamber (Laboratory 1) measurements and a site with no ground plane (Section 6.3.5) |
| 3     |                            |                                                                                                                                                                                                                                     |
| 4     |                            |                                                                                                                                                                                                                                     |
| 5     |                            |                                                                                                                                                                                                                                     |
| 6     |                            |                                                                                                                                                                                                                                     |
| 7     |                            |                                                                                                                                                                                                                                     |
| 8     |                            |                                                                                                                                                                                                                                     |
| 9     |                            |                                                                                                                                                                                                                                     |
| 10    |                            |                                                                                                                                                                                                                                     |

## Section 1 Test Location

All testing was performed at;

|                           |                                                                 |
|---------------------------|-----------------------------------------------------------------|
| <b>Eurofins York Ltd</b>  | Unit 5                                                          |
|                           | Speedwell Road                                                  |
|                           | Castleford                                                      |
|                           | WF10 5PY                                                        |
|                           |                                                                 |
| <b>Tel:</b>               | 01977 731173                                                    |
| <b>Tests performed by</b> | Mark Render, Senior Engineer                                    |
| <b>Website</b>            | <a href="http://www.yorkemc.co.uk">http://www.yorkemc.co.uk</a> |
| <b>UKAS Testing No.</b>   | 1574                                                            |

### 1.1 UKAS Accreditation

Tests marked "Not UKAS Accredited" in this report are not included in the UKAS Accreditation Schedule for our laboratory.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

Eurofins York latest accreditation schedule can be found at:

[http://www.ukas.org/testing/lab\\_detail.asp?lab\\_id=989&location\\_id=&vMenuOption=3](http://www.ukas.org/testing/lab_detail.asp?lab_id=989&location_id=&vMenuOption=3)

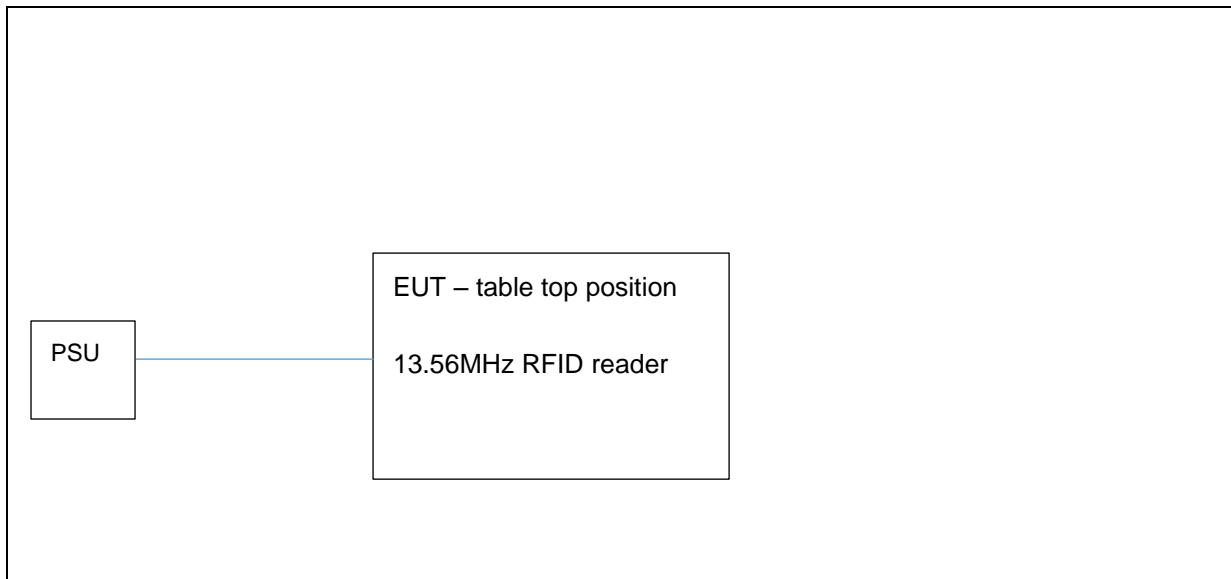
Eurofins York Castleford Laboratory (formerly York EMC Services), is an Accredited facility recognised by the Federal Communications Commission (FCC) for certification testing. The appropriate FCC Designation Number is number is UK0022, dated 5th September 2017.

**Section 2 Customer Information**

|                                                          |                                                          |
|----------------------------------------------------------|----------------------------------------------------------|
| <b>Company name</b>                                      | Magicard Ltd                                             |
| <b>Address</b>                                           | Hampshire Road                                           |
|                                                          | Weymouth                                                 |
|                                                          | Dorset                                                   |
|                                                          | DT4 9XD                                                  |
|                                                          |                                                          |
| <b>Tel:</b>                                              | +44 (0) 1305 470 000                                     |
| <b>Contact</b>                                           | Tim Last                                                 |
| <b>Email</b>                                             | <a href="mailto:info@magicard.com">info@magicard.com</a> |
| <b>Customer Representative(s) present during testing</b> | Tim Last                                                 |

## Section 3 Equipment Details

### 3.1 Equipment Under Test (EUT)


|                         |                                                 |  |  |  |  |
|-------------------------|-------------------------------------------------|--|--|--|--|
| <b>Date received:</b>   | 19 <sup>th</sup> April 2018                     |  |  |  |  |
| <b>EUT name:</b>        | Rio Pro 360                                     |  |  |  |  |
| <b>Type/Part no:</b>    | 3652-3001                                       |  |  |  |  |
| <b>Serial no/s:</b>     | SAMPLE_A                                        |  |  |  |  |
| <b>EUT description:</b> | The Rio Pro 360 is an ID and smart card printer |  |  |  |  |

|                                                   |                                                                 |   |    |            |                      |
|---------------------------------------------------|-----------------------------------------------------------------|---|----|------------|----------------------|
| <b>No of units tested:</b>                        | One                                                             |   |    |            |                      |
| <b>EUT power:</b>                                 | 120                                                             | V | 60 | Hz         | Single phase         |
| <b>Highest internal frequency:</b>                | 40MHz                                                           |   |    |            |                      |
| <b>Cables:</b>                                    | Cable 1 3 m Unscreened USB to mains adapter                     |   |    |            |                      |
| <b>Size of EUT (m)</b>                            | L: 60cm                                                         | 3 | m  | Unscreened | USB to mains adapter |
| <b>Tested as</b>                                  | Table top                                                       |   |    |            |                      |
| <b>Mode/s of operation</b>                        | Transmitting modulated 13.56MHz near field communication signal |   |    |            |                      |
| <b>Hardware Version</b>                           | Issue 1                                                         |   |    |            |                      |
| <b>Software Version</b>                           | 4.17                                                            |   |    |            |                      |
| <b>Client modification statement:</b>             | Not applicable                                                  |   |    |            |                      |
| <b>Modifications incorporated during testing:</b> | No modifications were applied to the EUT                        |   |    |            |                      |

### **3.2 EUT Photos**

Photographs are not included in this test report and are supplied separately.

### 3.3 Configuration of EUT



**Figure 1: Diagram of EUT.**

**The apparatus contains the radio modules listed in table above in Section 3.1.**

### 3.4 EUT Monitoring/Auxiliary Equipment

None.

## Section 4 Test Summary

The tests were performed in accordance with Eurofins York Quotation QuC3936.

| Test Standard                            | Relevant Section                                                                                              | Class/limit                           | Test Order |      |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------|------------|------|
| CFR 47 Part 15C<br>&<br>ANSI C63.10-2013 | Section 15.225(a)<br>Field strength within the band<br>13.553MHz-13.567MHz                                    | As specified in<br>Section 15.225(a)  | 1          | Pass |
|                                          | Section 15.225(a)<br>Field strength within the<br>bands 13.410MHz-<br>13.552MHz and 13.567MHz<br>to 13.710MHz | As specified in<br>Section 15.225(b)  | 2          | Pass |
|                                          | 15.225(b)<br>Field strength within the<br>bands 13.110MHz-<br>13.410MHz and 13.710MHz<br>to 14.010MHz         | As specified in<br>Section 15.225(c)  | 3          | Pass |
|                                          | Section 15.225(d)<br>Field Strength outside the<br>band 13.110MHz-14.010MHz                                   | As specified in<br>Section 15.209     | 4          | Pass |
|                                          | Section 15.225(e)<br>Frequency tolerance of the<br>carrier signal                                             | As specified in<br>Section 15.225(e)  | 5          | Pass |
|                                          | Section 15.31(e)<br>Field strength variation with<br>operating voltage                                        | As specified in<br>Section 15.31(e)   | 7          | Pass |
|                                          | 15.215 (c)<br>20dB bandwidth                                                                                  | As specified in<br>Section 15.215 (c) | 8          | Pass |
|                                          | Section 15.207<br>Mains conducted emissions                                                                   | As specified in<br>Section 15.207(a)  | 6          | Pass |
|                                          | Authorised band edge<br>measurements                                                                          | As specified in<br>Section 15.205     | 9          | Pass |

Note 1 : All testing was carried out at a test distance of 3m and the limits adjusted accordingly.

#### 4.1 Knowledge Database References

The following KDBs were referenced during the testing of the Rio Pro 360.

The latest knowledge database references are available via the FCC KDB website at:

<https://apps.fcc.gov/kdb>

##### 4.1.1 Conducted Emissions

| Publication Number | Keyword                                                                                                 | Publication Date |
|--------------------|---------------------------------------------------------------------------------------------------------|------------------|
| 174176             | Section 15.107, 15.207, 18.307, C63.4, C63.10, Suitable Dummy Load, AC Power Line Conducted Measurement | 03/06/2015       |

##### 4.1.2 Radiated Emissions (9kHz to 30MHz)

| Publication Number | Keyword                                                                  | Publication Date |
|--------------------|--------------------------------------------------------------------------|------------------|
| 937606             | Test Site Requirements for Part 15 and 18 Devices Operating Below 30 MHz | 10/10/2014       |
| 460108             | Radiated emission measurements below 30 MHz                              | 06/15/2015       |
| 414788             | Test sites for radiated emission measurements                            | 04/18/2017       |

##### 4.1.3 Radiated Emissions (30MHz to 1000MHz)

|        |                                                                            |            |
|--------|----------------------------------------------------------------------------|------------|
| 913591 | Measurement of radiated emissions at the band-edge for a Part 15 RF Device | 04/05/2017 |
|--------|----------------------------------------------------------------------------|------------|

#### 4.2 Compliance Statement

The Rio Pro 360, as tested, was shown to meet requirements of the tests listed in Section 4 of this report.

## Section 5 Conducted Emission Results

### 5.1 Test Specification

|                         |                                                                                                                                                                                                                                               |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Standard                | ANSI C63-10:2013                                                                                                                                                                                                                              |
| Measurement Uncertainty | The reported uncertainty of measurement $y \pm U$ , where expended uncertainty $U$ is based on a standard uncertainty multiplied by a coverage factor of $k=2$ , providing a level of confidence of approximately 95 % is $\pm 3.31\text{dB}$ |

### 5.2 Power Line Emission Limits

| Frequency<br>(MHz) | Class A<br>(dB $\mu$ V) |         | Class B<br>(dB $\mu$ V) |          |
|--------------------|-------------------------|---------|-------------------------|----------|
|                    | Quasi Peak              | Average | Quasi Peak              | Average  |
| 0.15 – 0.5         | 79.0                    | 66.0    | 66 – 56*                | 56 – 46* |
| 0.5 – 5.0          | 73.0                    | 60.0    | 56.0                    | 46.0     |
| 5.0 - 30           | 73.0                    | 60.0    | 60.0                    | 50.0     |

Note: \* The limit decreases linearly with the logarithm of the frequency in the range

### 5.3 Receiver Settings

| Receiver Parameters  | Setting                |
|----------------------|------------------------|
| Detector Function    | Quasi Peak and Average |
| Start Frequency      | 150kHz                 |
| Stop Frequency       | 30MHz                  |
| Resolution Bandwidth | 10kHz                  |
| Video Bandwidth      | Auto                   |

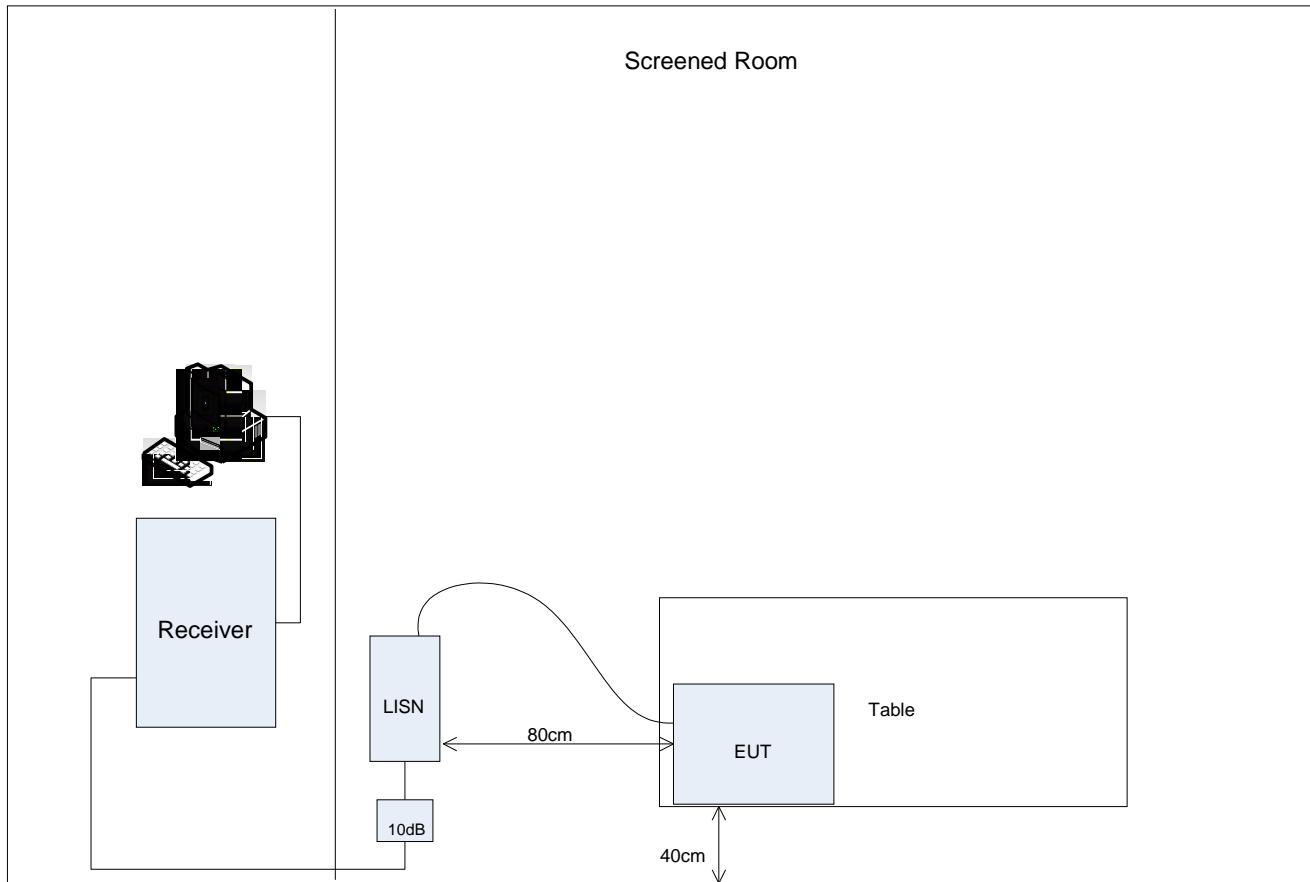
### 5.4 Procedure and Test Software Version

|                              |                             |
|------------------------------|-----------------------------|
| Eurofins York test procedure | CEP19 Issue 2               |
| Test software                | RadiMation Version 2016.1.6 |

#### 5.4.1 Date of Test

19<sup>th</sup> April 2018

#### 5.4.2 Test Area


LAB 2

### 5.4.3 Test Setup

This test was applied to the EUT's Live and Neutral lines. The EUT was configured in the screened room on an 80cm high table and was positioned 40cm from the room wall.

A calibrated mains extension lead was used to ensure a known impedance was presented to the EUT

The EUT was then powered from the mains supply via a Line Impedance Stabilisation Network (LISN).



**Figure 2: Test setup for Conducted Emissions on the AC power port**

The screened room provides an environment that ensures valid, repeatable measurement results that meet the requirements of Clause 5.2 of ANSI C63.4-2014.

## 5.4.4 Plots

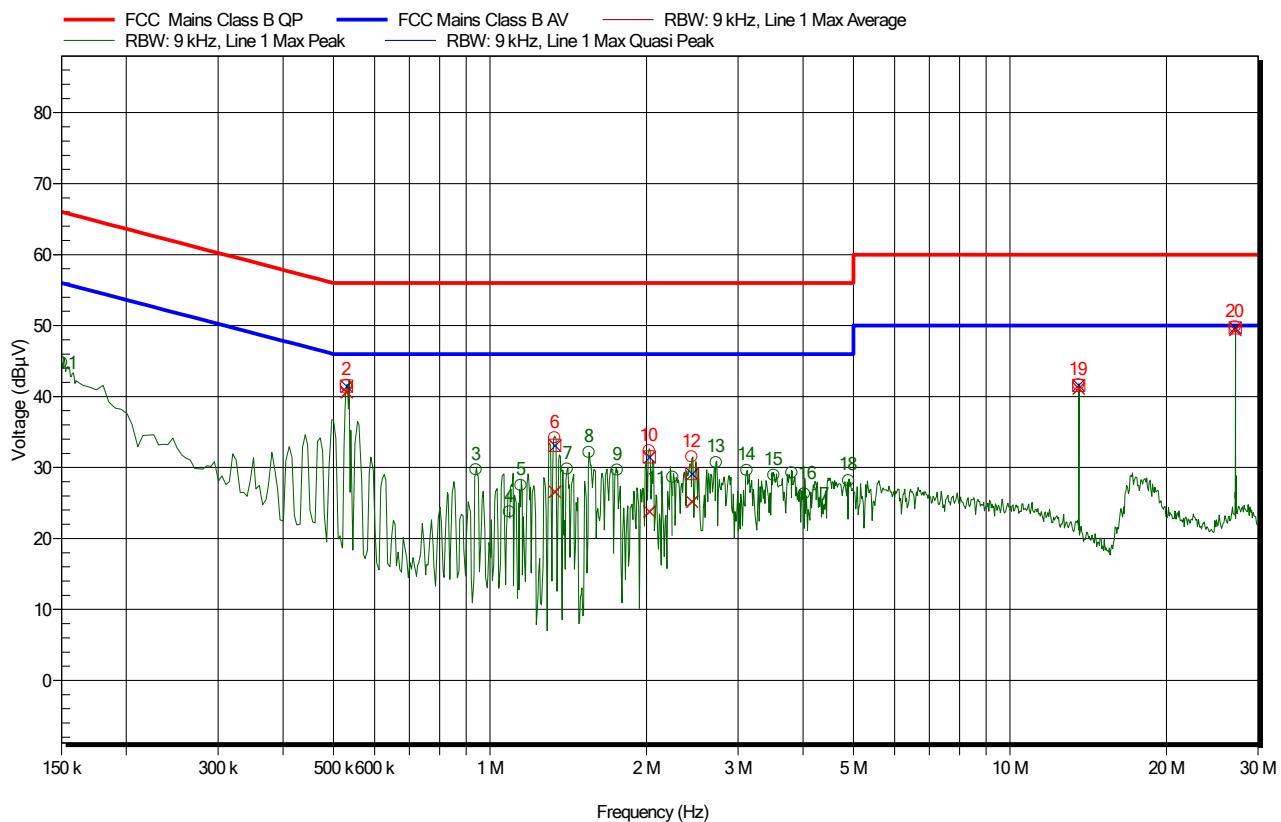



Figure 3: Conducted Emissions Plot - Input Power 120V 60Hz Live

| Frequency<br>MHz | Average<br>dB $\mu$ V | Average Limit<br>dB $\mu$ V | Average<br>Difference<br>dB | Average<br>Correction<br>dB | Average Status |
|------------------|-----------------------|-----------------------------|-----------------------------|-----------------------------|----------------|
| 0.529            | 40.6                  | 46                          | -5.36                       | 10.1                        | Pass           |
| 1.332            | 26.6                  | 46                          | -19.39                      | 10                          | Pass           |
| 2.024            | 23.8                  | 46                          | -22.16                      | 10.1                        | Pass           |
| 2.444            | 25.2                  | 46                          | -20.76                      | 10.1                        | Pass           |
| 13.56            | 41.1                  | 50                          | -8.86                       | 11                          | Pass           |
| 27.119           | 49.4                  | 50                          | -0.64                       | 11.6                        | Pass           |

Table 1: Live Conducted Emissions Peaks – Average detector

| Frequency | Quasi-Peak | Quasi-Peak Limit | Quasi-Peak Difference | Quasi-Peak Correction | Quasi-Peak Status |
|-----------|------------|------------------|-----------------------|-----------------------|-------------------|
| MHz       | dB $\mu$ V | dB $\mu$ V       | dB                    | dB                    | dB $\mu$ V        |
| 0.529     | 41.5       | 56               | -14.54                | 10.1                  | Pass              |
| 1.332     | 33.1       | 56               | -22.89                | 10                    | Pass              |
| 2.024     | 31.5       | 56               | -24.52                | 10.1                  | Pass              |
| 2.444     | 29.2       | 56               | -26.84                | 10.1                  | Pass              |
| 13.56     | 41.6       | 60               | -18.42                | 11                    | Pass              |
| 27.119    | 49.7       | 60               | -10.31                | 11.6                  | Pass              |

Table 2: Live Conducted Emissions Peaks – Quasi Peak detector

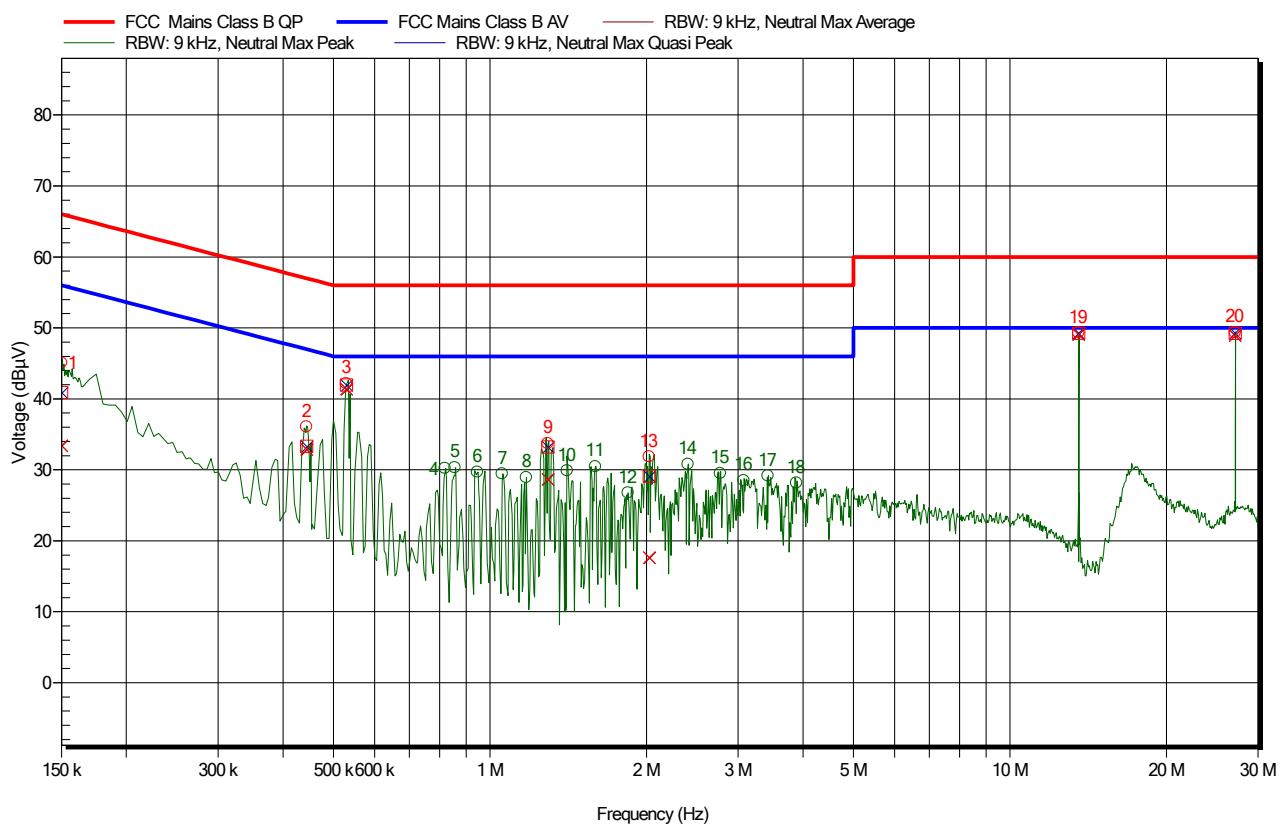



Figure 4: Conducted Emissions Plot - Input Power 120V 60Hz Neutral

| Frequency<br>MHz | Average<br>dB $\mu$ V | Average Limit<br>dB $\mu$ V | Average<br>Difference<br>dB | Average<br>Correction<br>dB | Average Status |
|------------------|-----------------------|-----------------------------|-----------------------------|-----------------------------|----------------|
| 0.150            | 33.4                  | 56                          | -22.58                      | 10                          | Pass           |
| 0.444            | 32.9                  | 47                          | -14.07                      | 10.1                        | Pass           |
| 0.529            | 41.4                  | 46                          | -4.64                       | 10.1                        | Pass           |
| 1.293            | 28.7                  | 46                          | -17.33                      | 10                          | Pass           |
| 2.026            | 17.6                  | 46                          | -28.36                      | 10.1                        | Pass           |
| 13.56            | 49                    | 50                          | -0.95                       | 11                          | Pass           |
| 27.119           | 48.9                  | 50                          | -1.12                       | 11.6                        | Pass           |

Table 3: Neutral Conducted Emissions Peaks, Average Detector

| Frequency | Quasi-Peak | Quasi-Peak Limit | Quasi-Peak Difference | Quasi-Peak Correction | Quasi-Peak Status |
|-----------|------------|------------------|-----------------------|-----------------------|-------------------|
| MHz       | dB $\mu$ V | dB $\mu$ V       | dB                    | dB                    | dB $\mu$ V        |
| 0.150     | 40.9       | 66               | -25.11                | 10                    | Pass              |
| 0.444     | 33.3       | 57               | -23.66                | 10.1                  | Pass              |
| 0.5295    | 41.9       | 56               | -14.05                | 10.1                  | Pass              |
| 1.293     | 33.2       | 56               | -22.76                | 10                    | Pass              |
| 2.026     | 29.1       | 56               | -26.9                 | 10.1                  | Pass              |
| 13.56     | 49.2       | 60               | -10.78                | 11                    | Pass              |
| 27.119    | 49.2       | 60               | -10.78                | 11.6                  | Pass              |

**Table 4: Neutral Conducted Emissions Peaks, Quasi Peak Detector**

**5.4.5 Correction factors**

The quasi-peak correction and average correction are shown in the above table. This correction figure consists of LISN Insertion loss (IL), Cable loss (CL) and Transient Limiter Loss (TL).

The Actual Signal Level (ASL) is calculated as follows:

$$\text{ASL (dB}\mu\text{V)} = \text{Indicated Signal Level (dB}\mu\text{V)} + \text{IL (dB)} + \text{CL (dB)} + \text{TL (dB)}$$

**5.4.6 Sample Data**

The Live conductor linear average level at 27.119MHz MHz

$$\text{ASL (dB}\mu\text{V)} = 37.8\text{dB}\mu\text{V} + 0.96(\text{dB}) + 0.3(\text{dB}) + 10.34(\text{dB}) = 49.4(\text{dB}\mu\text{V})$$

## Section 6 Radiated Emission Results

### 6.1 Test Specification

|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FCC Rule                | 47CFR 15.225 Operation in the band 13.110-14.010MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test Standard           | ANSI C63.10:2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Measurement Uncertainty | <p>The reported uncertainty of measurement <math>y \pm U</math>, where expended uncertainty <math>U</math> is based on a standard uncertainty multiplied by a coverage factor of <math>k=2</math>, providing a level of confidence of approximately 95% is</p> <p>+/- 4.27dB for the frequency range from 9kHz to 30MHz</p> <p>+/- 5.81dB for the frequency range 30MHz to 1GHz</p> <p>+/- 4.64dB for the frequency range from 1GHz to 6GHz</p> <p>+/- 4.96dB for the frequency range from 6GHz to 18GHz</p> <p>+/- 4.77dB for the frequency range from 18GHz to 40GHz</p> |

### 6.2 Procedure and Test Software Version

|                                              |                                                                                            |
|----------------------------------------------|--------------------------------------------------------------------------------------------|
| Eurofins York Test procedure (9kHz to 30MHz) | CEP22 Issue 2                                                                              |
| Eurofins York test procedure (30MHz to 1GHz) | CEP23b Issue 2                                                                             |
| Eurofins York test procedure (1GHz to 40GHz) | CEP64b Issue 2                                                                             |
| Test software                                | <p>RadiMation Version 2016.2.8</p> <p>Keysight Connection Expert software</p> <p>Excel</p> |

### 6.3 Magnetic Field Radiated Emissions (9kHz to 30MHz)

#### 6.3.1 Limits

| Frequency          | Limits (dB $\mu$ V/m) |
|--------------------|-----------------------|
| 9kHz to 490kHz     | 2400/F(kHz) at 300m   |
| 490kHz to 1.705MHz | 24000/F(kHz) at 30m   |
| 1,705MHz to 30MHz  | 30 at 30m             |

Note 1: FCC 47 CFR Part 15 Section 15.209 has different test limits from 300m to 30m depending upon the measurement frequency range. The measured was adjusted for a measurement distance of 3m.

Distance Correction Factor =  $40\log(\text{test distance} / \text{specific distance})$ .

#### 6.3.2 Receiver Settings

| Receiver Parameters  | Setting |
|----------------------|---------|
| Detector Function    | Peak    |
| Start Frequency      | 9kHz    |
| Stop Frequency       | 150Hz   |
| Resolution Bandwidth | 200Hz   |
| Video Bandwidth      | Auto    |

| Receiver Parameters  | Setting |
|----------------------|---------|
| Detector Function    | Peak    |
| Start Frequency      | 150kHz  |
| Stop Frequency       | 30MHz   |
| Resolution Bandwidth | 10kHz   |
| Video Bandwidth      | Auto    |

### 6.3.3 Emissions measurements

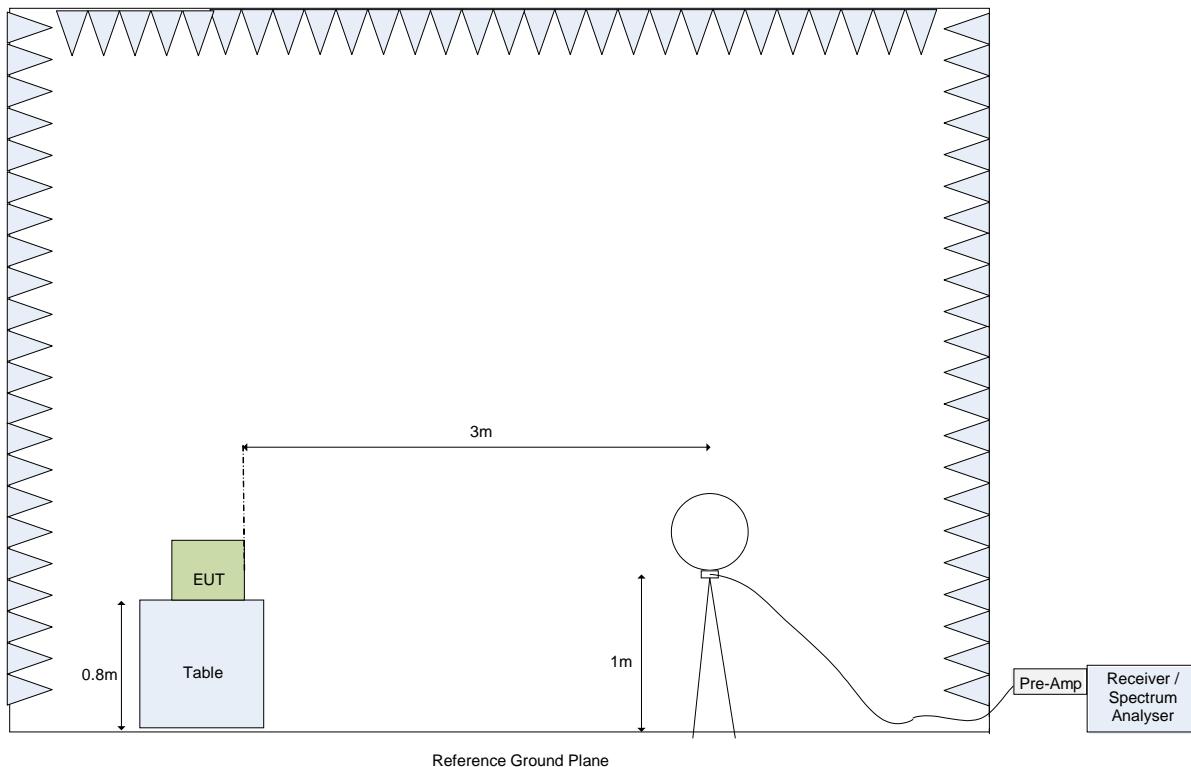
#### 6.3.4 Date of Test

19<sup>th</sup> April 2018

#### 6.3.5 Test Area

Laboratory 1 semi-anechoic chamber

The 3m semi-anechoic chamber has been calibrated against open area test site (OATS) data as per KDB414788 D01. This data is available on request from Eurofins York.


#### 6.3.6 SAC Test Setup

The EUT was configured in the SAC on an 80cm high table.

The measurement was then performed with an antenna to EUT separation distance of 3m within the semi-anechoic chamber based upon the highest emissions results recorded on the outside test site.

The centre of the loop antenna was 1m above the ground and results were obtained with it parallel to the EUT and then perpendicular to the EUT.

The results are maximised in orientation 0-360 degrees.



**Figure 5: Test Setup for H-Field Measurements from 9kHz to 30MHz**

Note 1 : With the EUT de-energized the ambient radio noise and signals met the 6dB peak detection requirement of ANSI C63.4-2014 Clause 5.1.3.

Note 2 : There were no significant environmental temperature changes during the test duration and hence it was not considered necessary to consider any variation in cable loss.

### 6.3.7 Magnetic field emissions, 13.110MHz to 14.010MHz

The field strength is split into sub-bands as defined below in Section 47CFR 15.225:

- a) Section 15.225(a) Field strength within the band 13.553MHz-13.567MHz

Limit:  $15848\mu\text{V}/\text{m}$  at 30m =  $84\text{dB}\mu\text{V}/\text{m}$  at 30m

- b) Section 15.225(b) Field strength within the bands 13.410MHz-13.552MHz and 13.567MHz to 13.710MHz

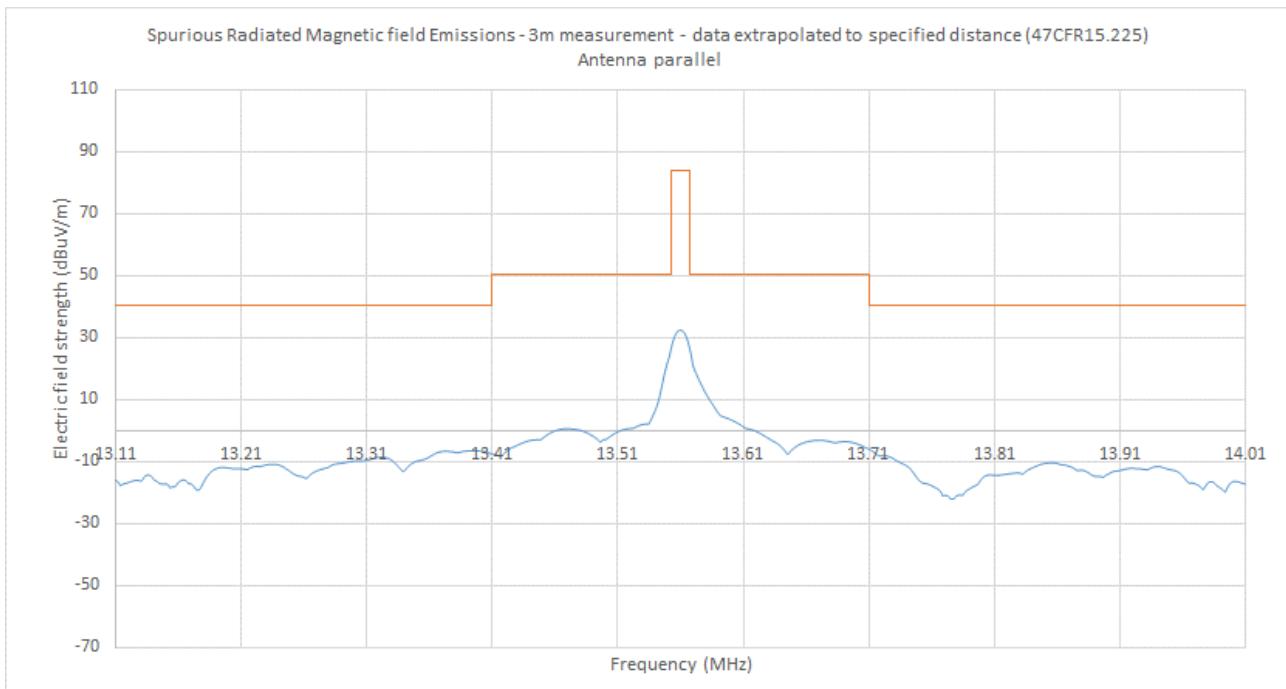
Limit:  $3348\mu\text{V}/\text{m}$  at 30m =  $50.5\text{dB}\mu\text{V}/\text{m}$  at 3m

- c) Section 15.225(c) Field strength within the bands 13.110MHz-13.410MHz and 13.710MHz to 14.010MHz

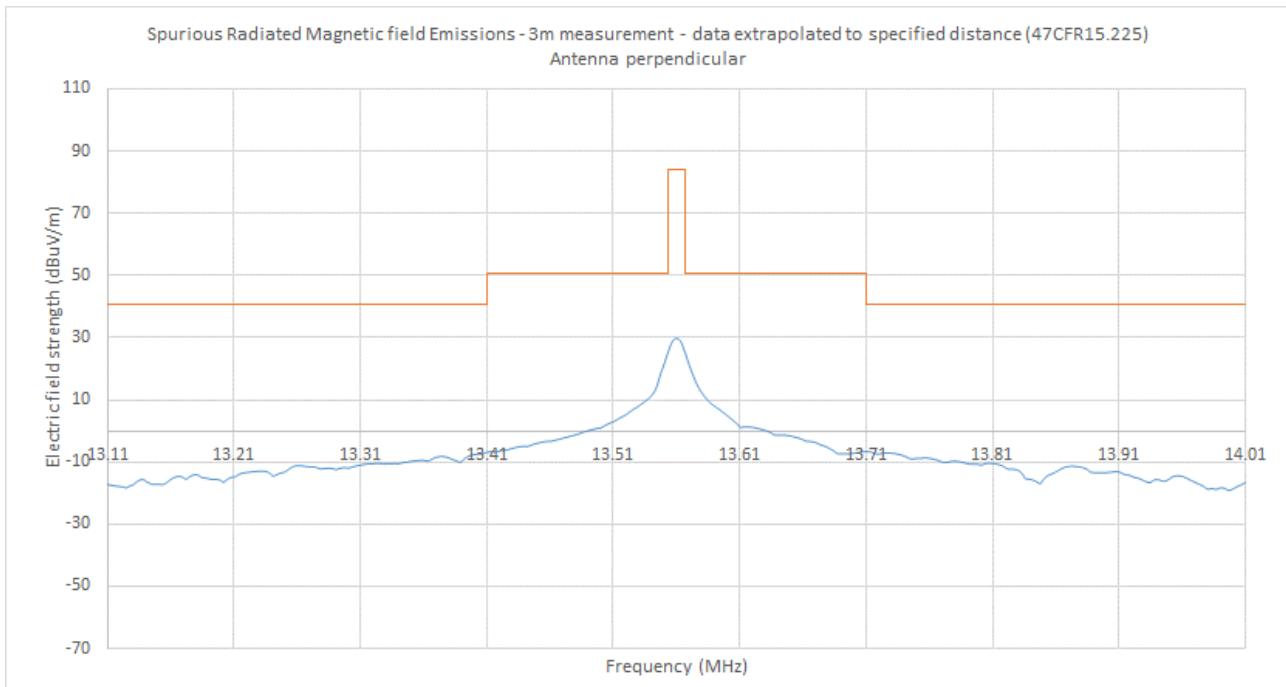
Limit:  $106\mu\text{V}/\text{m}$  at 30m =  $40.5\text{dB}\mu\text{V}/\text{m}$  at 3m

The results of peak detector max-hold emission measurements are presented below. The measurements were taken using an SAC as initial measurements.

Measurements were performed at a 3m measurement distance.


The detector used was a peak detector.

For measurements in the band 0.009MHz to 0.490MHz the specified measurement distance is 300m. The distance correction will be:


$$\text{Correction} = 40 * \log (3/300) = -80\text{dB}$$

For measurements in the band 0.490MHz to 30MHz the specified measurement distance is 30m. The distance correction will be:

$$\text{Correction} = 40 * \log (3/30) = -40\text{dB}$$



**Figure 6: Magnetic field emissions Plot, 13.110MHz to 14.010MHz, Parallel**



**Figure 7: Magnetic field emissions Plot, 13.110MHz to 14.010MHz, Perpendicular**

| Freq (MHz) | Rx (dB $\mu$ V) | Distance correction factor (40dB/decade) | Preamp gain (dB) | Antenna factor dB/m | Result at 30m (dB $\mu$ V/m) | Limit At 30m (dB $\mu$ V/m) | Margin (dB) | Result      |
|------------|-----------------|------------------------------------------|------------------|---------------------|------------------------------|-----------------------------|-------------|-------------|
| 13.110     | 19.6            | -40                                      | -29.6            | 34.1                | -15.9                        | 40.5                        | -56.4       | Below limit |
| 13.410     | 28.1            | -40                                      | -29.6            | 34.1                | -7.4                         | 40.5                        | -47.9       | Below limit |
| 13.553     | 62.8            | -40                                      | -29.6            | 34.1                | 27.3                         | 50.5                        | -23.2       | Below limit |
| 13.560     | 68.1            | -40                                      | -29.6            | 34.1                | 32.6                         | 84                          | -51.4       | Below limit |
| 13.567     | 62.2            | -40                                      | -29.6            | 34.1                | 26.7                         | 50.5                        | -23.8       | Below limit |
| 13.710     | 29.7            | -40                                      | -29.6            | 34.1                | -5.8                         | 40.5                        | -46.3       | Below limit |
| 14.010     | 18.5            | -40                                      | -29.6            | 34.1                | -17.0                        | 40.5                        | -57.5       | Below limit |

Table 5: Receiving antenna at 1m measurement height – Parallel orientation

| Freq (MHz) | Rx (dB $\mu$ V) | Distance correction factor (40dB/decade) | Preamp gain (dB) | Antenna factor dB/m | Result at 30m (dB $\mu$ V/m) | Limit At 30m (dB $\mu$ V/m) | Margin (dB) | Result      |
|------------|-----------------|------------------------------------------|------------------|---------------------|------------------------------|-----------------------------|-------------|-------------|
| 13.56      | 65.8            | -40                                      | -29.6            | 34.1                | 30.3                         | 84                          | -53.7       | Below limit |
| 13.41      | 28.9            | -40                                      | -29.6            | 34.1                | -6.6                         | 40.5                        | -47.1       | Below limit |
| 13.553     | 60.5            | -40                                      | -29.6            | 34.1                | 25                           | 50.5                        | -25.5       | Below limit |
| 13.567     | 60              | -40                                      | -29.6            | 34.1                | 24.5                         | 50.5                        | -26.0       | Below limit |
| 13.71      | 29              | -40                                      | -29.6            | 34.1                | -6.5                         | 40.5                        | -47.0       | Below limit |
| 13.11      | 18.5            | -40                                      | -29.6            | 34.1                | -17                          | 40.5                        | -57.5       | Below limit |
| 14.01      | 19.2            | -40                                      | -29.6            | 34.1                | -16.3                        | 40.5                        | -56.8       | Below limit |

Table 6: Receiving antenna at 1m measurement height – Perpendicular orientation

Rx = Test peak detector receiver reading (voltage dB $\mu$ V) before the addition of antenna factor.

Result at 3m = Field strength (dB $\mu$ V/m) at a measurement distance of 3m, calculated as follows:

Field strength (dB $\mu$ V/m) = Rx (dBmV) + Antenna factor (dB/m)

**No radiated spurious emissions were detected from the product other than the carrier (13.56MHz). The above representative noise floor emissions were taken.**

### 6.3.8 Magnetic field emissions, 9kHz to 30MHz and outside the band 13.110MHz to 14.010MHz

The results of peak detector max-hold emission measurements are presented below. The measurements were taken using an SAC as initial measurements.

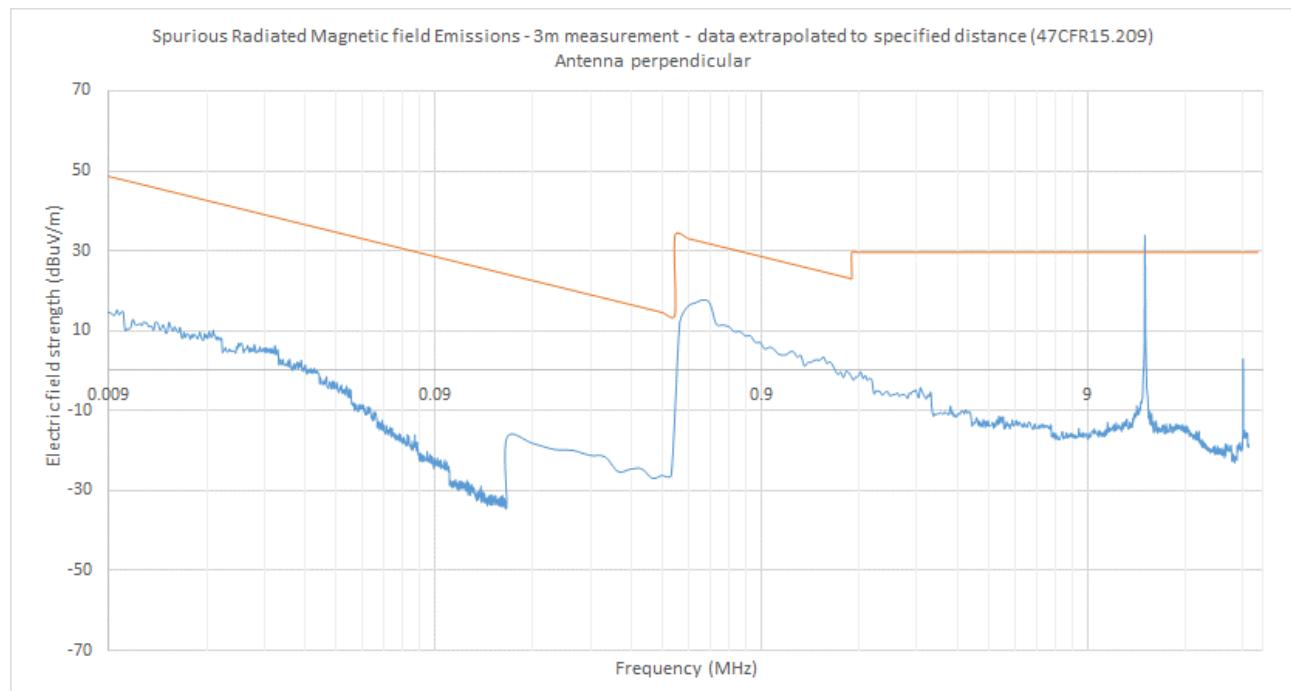



Figure 8: Magnetic field emissions Plot, 9kHz to 30MHz, antenna perpendicular

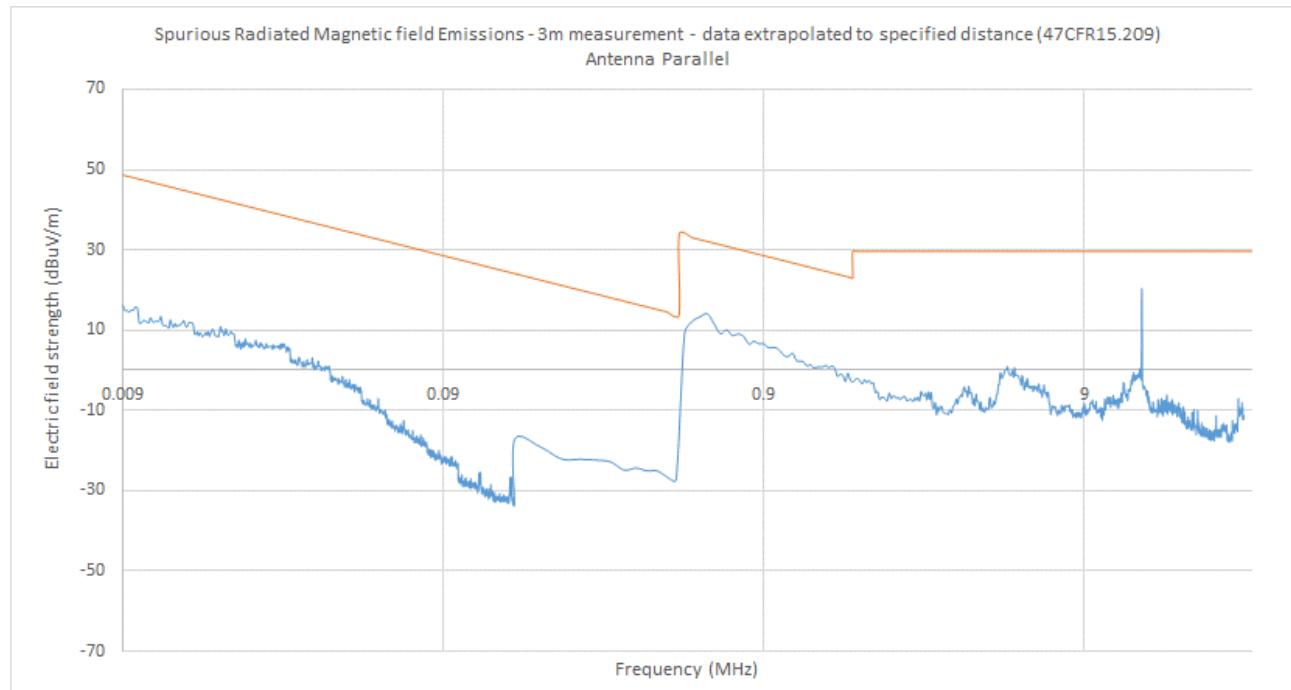



Figure 9: Magnetic field emissions Plot, 9kHz to 30MHz, antenna parallel

| Freq (MHz) | Rx (dB $\mu$ V) | Distance correction factor (40dB/decade) | Preamp gain (dB) | Antenna factor dB/m | Result at 30m (dB $\mu$ V/m) | Limit At 30m (dB $\mu$ V/m) | Margin (dB) | Result      |
|------------|-----------------|------------------------------------------|------------------|---------------------|------------------------------|-----------------------------|-------------|-------------|
| 0.02       | 28.1            | -80                                      | 29.7             | 87.5                | 5.9                          | 41.6                        | -35.7       | Below limit |
| 0.15       | 22              | -80                                      | 29.7             | 70.5                | -17.2                        | 44.1                        | -61.3       | Below limit |
| 0.497      | 19.9            | -80                                      | 29.7             | 62.6                | -27.2                        | 33.7                        | -60.9       | Below limit |
| 0.5977     | 24.2            | -40                                      | 29.7             | 59.6                | 14.1                         | 32.1                        | -18         | Below limit |
| 0.9261     | 19.6            | -40                                      | 29.7             | 55.8                | 5.7                          | 28.3                        | -22.6       | Below limit |
| 27.1344    | 25.2            | -40                                      | 29.7             | 37.1                | -7.4                         | 29.5                        | -36.9       | Below limit |

**Table 7: Receiving antenna at 1m measurement height. Antenna parallel**

| Freq (MHz) | Rx (dB $\mu$ V) | Distance correction factor (40dB/decade) | Preamp gain (dB) | Antenna factor dB/m | Result at 30m (dB $\mu$ V/m) | Limit At 30m (dB $\mu$ V/m) | Margin (dB) | Result      |
|------------|-----------------|------------------------------------------|------------------|---------------------|------------------------------|-----------------------------|-------------|-------------|
| 0.020      | 27.1            | -80                                      | 29.7             | 87.5                | 4.9                          | 41.6                        | -36.7       | Below limit |
| 0.150      | 22.4            | -80                                      | 29.7             | 70.5                | -16.8                        | 44.1                        | -60.9       | Below limit |
| 0.497      | 20.8            | -80                                      | 29.7             | 62.6                | -26.3                        | 33.7                        | -60.0       | Below limit |
| 0.5977     | 27.8            | -40                                      | 29.7             | 59.6                | 17.7                         | 32.1                        | -14.4       | Below limit |
| 0.9261     | 19.32           | -40                                      | 29.7             | 55.8                | 5.42                         | 28.3                        | -22.88      | Below limit |
| 27.1344    | 35.4            | -40                                      | 29.7             | 37.1                | 2.8                          | 29.5                        | -26.7       | Below limit |

**Table 8: Receiving antenna at 1m measurement height. Antenna perpendicular**

**No radiated spurious emissions were detected from the product other than the carrier (13.56MHz). The above representative noise floor emissions were taken.**

Rx = Test receiver reading (voltage dB $\mu$ V) before the addition of cable loss and antenna factor.

Result at 30m is calculated form a field strength (dB $\mu$ V/m) at a measurement distance of 3m, as follows:

Field strength (dB $\mu$ V/m) = Rx (dB $\mu$ V) – pre amplifier gain (dB) + Extrapolation (dB) + Antenna factor (dB/m)

### 6.3.9 Sample Data

#### Example:

At 27.1344MHz, antenna parallel,

At 3m field strength = receiver reading 35.4dBuV

-pre amplifier gain (29.7)

+ Antenna factor (37.1dB/m)+ extrapolation (-40dB)

**= 2.8dBuV/m**

The limit was calculated according to 47CFR15.209 table:

Between 0.009MHz and 0.490MHz

Limit (dBuV/m) at 300m =  $20\log_{10}(2400/F)$

Between 0.490MHz and 30MHz

Limit (dBuV/m) at 300m =  $20\log_{10}(24000/F)$

Where F is frequency in kHz.

## 6.4 Radiated Emissions (30MHz to 1GHz)

### 6.4.1 Limits at 3m

| Frequency<br>(MHz)      | Class B<br>(dB $\mu$ V/m) |
|-------------------------|---------------------------|
| Quasi Peak, Limit at 3m |                           |
| 30 - 88                 | 40.0                      |
| 88 -216                 | 43.5                      |
| 216 - 960               | 46.0                      |
| 960- 1000               | 54.0                      |

Note: FCC 47 CFR Part 15 Section 15.209 specifies test limits at 3m.

### 6.4.2 Receiver Settings

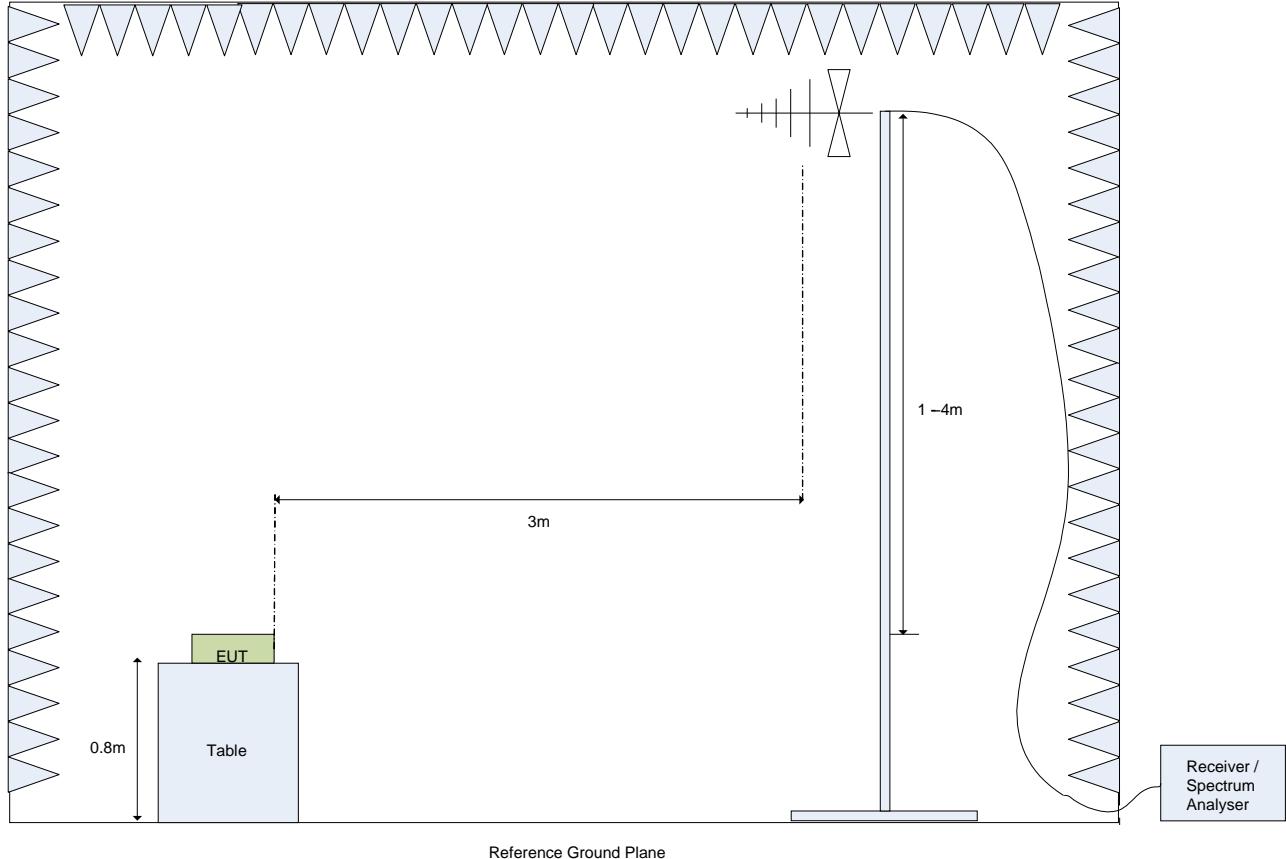
| Receiver Parameters  | Setting    |
|----------------------|------------|
| Detector Function    | Quasi Peak |
| Start Frequency      | 30MHz      |
| Stop Frequency       | 1000MHz    |
| Resolution Bandwidth | 120kHz     |
| Video Bandwidth      | Auto       |

### 6.4.3 Emissions measurements

#### 6.4.4 Date of Test

23<sup>rd</sup> April 2018

#### 6.4.5 Test Area

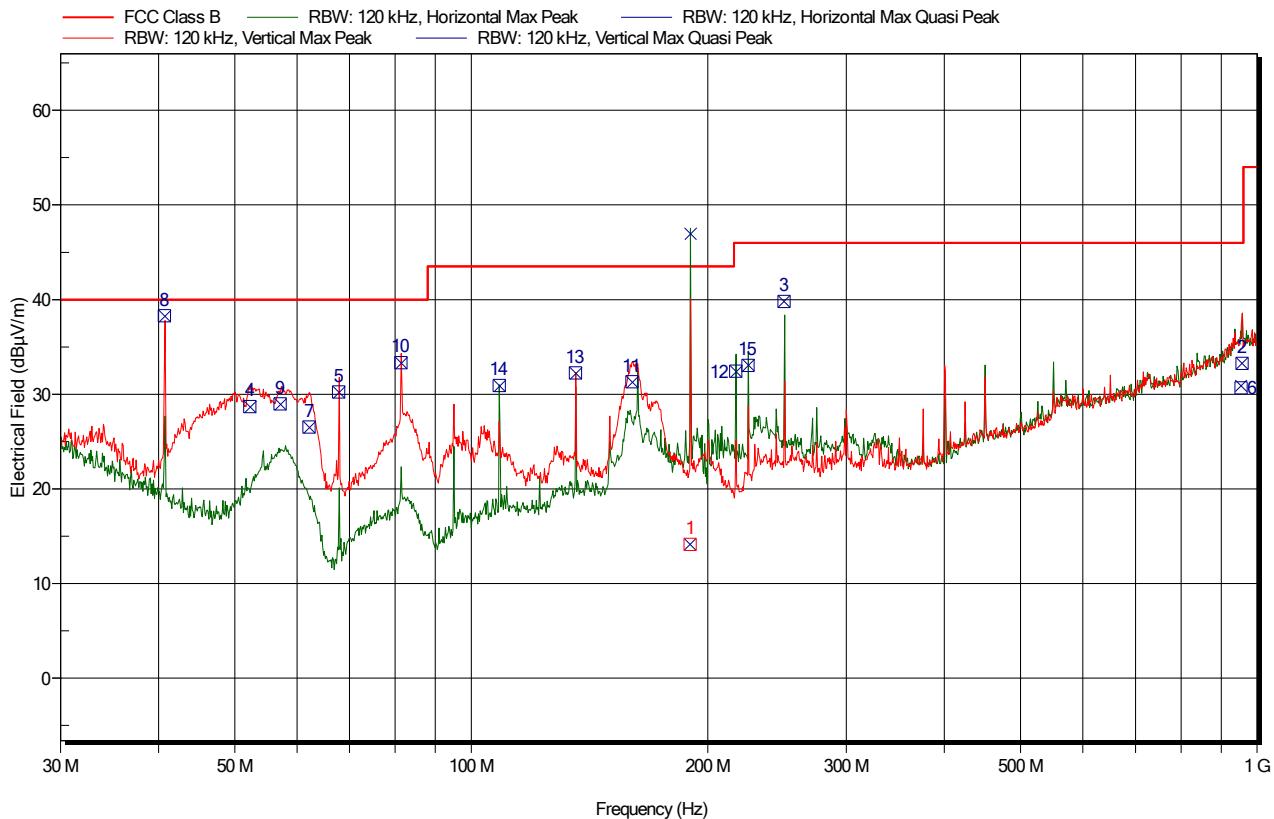

LAB 1 Semi Anechoic Chamber

#### 6.4.6 Test Setup

The EUT was configured in the SAC on an 80cm high table.

The measurement was performed with an antenna to EUT separation distance of 3m. The Quasi peak limits are therefore increased by 10dB (from the 10m values), to allow for the reduction in the measurement distance.

The results were maximised in orientation 0-360 degrees and height 1-4m.




**Figure 10: Test Setup for E-Field Measurements from 30MHz to 1GHz**

Note 1 : With the EUT de-energized the ambient radio noise and signals met the 6dB peak detection requirement of ANSI C63.4-2014 Clause 5.1.3.

Note 2 : There were no significant environmental temperature changes during the test duration and hence it was not considered necessary to consider any variation in cable loss.

## 6.4.7 Electric field emissions, 30MHz to 1GHz



**Figure 11: Electric field emissions Plot, 30MHz to 1GHz. Combined horizontal (green) and vertical (red) antenna polarisations**

| Frequency<br>MHz | Quasi-<br>Peak<br>dB $\mu$ V/m | Quasi<br>Peak<br>Limit<br>dB $\mu$ V/m | Quasi-<br>Peak<br>Difference<br>dB | Quasi-Peak<br>Correction<br>dB | Quasi-<br>Peak<br>Status | Angle<br>degrees | Height<br>m | Polarization |
|------------------|--------------------------------|----------------------------------------|------------------------------------|--------------------------------|--------------------------|------------------|-------------|--------------|
| 40.680           | 38.3                           | 40                                     | -1.7                               | 20.9                           | Pass                     | 5                | 1           | Vertical     |
| 62.160           | 26.5                           | 40                                     | -13.5                              | 12.6                           | Pass                     | 90               | 1           | Vertical     |
| 67.800           | 30.2                           | 40                                     | -9.8                               | 13.2                           | Pass                     | 165              | 1.2         | Vertical     |
| 81.360           | 33.3                           | 40                                     | -6.7                               | 14.5                           | Pass                     | 360              | 1.1         | Vertical     |
| 108.480          | 30.9                           | 43.5                                   | -12.6                              | 17.7                           | Pass                     | 50               | 2.9         | Horizontal   |
| 135.600          | 32.3                           | 43.5                                   | -11.2                              | 19.1                           | Pass                     | 115              | 1           | Vertical     |
| 160.140          | 31.3                           | 43.5                                   | -12.2                              | 17.6                           | Pass                     | 220              | 1           | Vertical     |
| 216.960          | 32.4                           | 46                                     | -13.6                              | 17.2                           | Pass                     | 75               | 1.4         | Horizontal   |
| 225.000          | 33.1                           | 46                                     | -12.9                              | 17.7                           | Pass                     | 105              | 1.4         | Horizontal   |
| 250.020          | 39.8                           | 46                                     | -6.2                               | 20.5                           | Pass                     | 250              | 1           | Horizontal   |
| 956.460          | 33.2                           | 46                                     | -12.8                              | 34.9                           | Pass                     | 200              | 1           | Horizontal   |

**Table 9: Electric Field Emissions Peaks, 30MHz to 1GHz**

#### 6.4.8 Quasi Peak correction factors

The quasi peak correction is shown in the above table. This correction figure consists of), Antenna factor (AF); Attenuator loss (AL) and Cable loss (CL).

Field strength (FS) is calculated as follows:

$$FS \text{ (dB}\mu\text{V/m)} = \text{Indicated Signal Level (dB}\mu\text{V)} + AF \text{ (dB)} + CL \text{ (dB)}$$

#### 6.4.9 Sample Data

The Quasi-Peak level at 40.680MHz

$$FS \text{ (dB}\mu\text{V/m)} = 17.6(\text{dB}\mu\text{V}) + 20.3 \text{ (dB/m)} + 0.4 \text{ (dB)} = 38.3 \text{ (dB}\mu\text{V/m)}$$

## Section 7 Frequency Stability

|                         |                                                                                                                                                                                                                                                 |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FCC Rule                | 47CFR 15.225 (e) – Frequency tolerance with temperature variation and supply voltage                                                                                                                                                            |
| Standard                | ANSI C63.10:2013                                                                                                                                                                                                                                |
| Measurement Uncertainty | The reported uncertainty of measurement $y \pm U$ , where expended uncertainty $U$ is based on a standard uncertainty multiplied by a coverage factor of $k=2$ , providing a level of confidence of approximately 95% is $\pm 1 \times 10^{-8}$ |

### 7.1.1 Date of Test

24<sup>th</sup> April 2018

### 7.1.2 Test Area

Environmental chamber Asset number: C0412.

### 7.1.3 Procedure

For frequency stability with respect to supply voltage the procedures of ANSI C63.10 Section 6.8.2 were followed. The measurements were performed at ambient room temperature.

For frequency stability with respect to ambient temperature the procedure of ANSI C63.10 Section 6.8.1 was followed.

**7.1.4 Test Results - Frequency stability and supply voltage:**

Nominal voltage: 120V, 60Hz

85% of supply voltage: 102V

115% of supply voltage: 138V

| Supply voltage<br>(V ac) | Frequency<br>(MHz) | Nominal | Deviation   | Limit | Result       |
|--------------------------|--------------------|---------|-------------|-------|--------------|
| 102                      | 13.55982432        | 13.56   | 0.001295575 | 0.01  | Within limit |
| 138                      | 13.55982452        | 13.56   | 0.0012941   | 0.01  | Within limit |

**Table 10 Frequency stability with supply voltage**

## 7.1.5 Test Results - Frequency stability and temperature

| Temperature C | Time     | Frequency (MH) | Nominal | Deviation % | Limit 47CFR15.225 % | Result       |
|---------------|----------|----------------|---------|-------------|---------------------|--------------|
| 50            | Start up | 13.559809      | 13.56   | 0.001408555 | 0.01                | Within Limit |
|               | 2min     | 13.559808      | 13.56   | 0.001415929 | 0.01                | Within Limit |
|               | 5min     | 13.559826      | 13.56   | 0.001283186 | 0.01                | Within Limit |
|               | 10min    | 13.559805      | 13.56   | 0.001438053 | 0.01                | Within Limit |
| 40            | Start up | 13.559804      | 13.56   | 0.001445428 | 0.01                | Within Limit |
|               | 2min     | 13.559804      | 13.56   | 0.001445428 | 0.01                | Within Limit |
|               | 5min     | 13.559814      | 13.56   | 0.001371681 | 0.01                | Within Limit |
|               | 10min    | 13.559804      | 13.56   | 0.001445428 | 0.01                | Within Limit |
| 30            | Start up | 13.559814      | 13.56   | 0.001371681 | 0.01                | Within Limit |
|               | 2min     | 13.559805      | 13.56   | 0.001438053 | 0.01                | Within Limit |
|               | 5min     | 13.559806      | 13.56   | 0.001430678 | 0.01                | Within Limit |
|               | 10min    | 13.559808      | 13.56   | 0.001415929 | 0.01                | Within Limit |
| 20            | Start up | 13.559817      | 13.56   | 0.001349558 | 0.01                | Within Limit |
|               | 2min     | 13.559817      | 13.56   | 0.001349558 | 0.01                | Within Limit |
|               | 5min     | 13.559822      | 13.56   | 0.001312684 | 0.01                | Within Limit |
|               | 10min    | 13.559816      | 13.56   | 0.001356932 | 0.01                | Within Limit |
| 10            | Start up | 13.55983       | 13.56   | 0.001253687 | 0.01                | Within Limit |
|               | 2min     | 13.559841      | 13.56   | 0.001172566 | 0.01                | Within Limit |
|               | 5min     | 13.559838      | 13.56   | 0.00119469  | 0.01                | Within Limit |
|               | 10min    | 13.55985       | 13.56   | 0.001106195 | 0.01                | Within Limit |
| 0             | Start up | 13.559846      | 13.56   | 0.001135693 | 0.01                | Within Limit |
|               | 2min     | 13.559846      | 13.56   | 0.001135693 | 0.01                | Within Limit |
|               | 5min     | 13.559853      | 13.56   | 0.001084071 | 0.01                | Within Limit |
|               | 10min    | 13.559863      | 13.56   | 0.001010324 | 0.01                | Within Limit |
| -10           | Start up | 13.559873      | 13.56   | 0.000936578 | 0.01                | Within Limit |
|               | 2min     | 13.559873      | 13.56   | 0.000936578 | 0.01                | Within Limit |
|               | 5min     | 13.559895      | 13.56   | 0.000774336 | 0.01                | Within Limit |
|               | 10min    | 13.559875      | 13.56   | 0.000921829 | 0.01                | Within Limit |
| -20           | Start up | 13.559873      | 13.56   | 0.000936578 | 0.01                | Within Limit |
|               | 2min     | 13.559873      | 13.56   | 0.000936578 | 0.01                | Within Limit |
|               | 5min     | 13.559888      | 13.56   | 0.000825959 | 0.01                | Within Limit |
|               | 10min    | 13.559867      | 13.56   | 0.000980826 | 0.01                | Within Limit |

Table 11: Frequency stability with temperature

## Section 8 20dB bandwidth

|                         |                                                                                                                                                                                                                                                 |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FCC Rule                | 47CFR 15.215 (c) – 20dB Bandwidth                                                                                                                                                                                                               |
| Standard                | ANSI C63.10-2013                                                                                                                                                                                                                                |
| Measurement Uncertainty | The reported uncertainty of measurement $y \pm U$ , where expended uncertainty $U$ is based on a standard uncertainty multiplied by a coverage factor of $k=2$ , providing a level of confidence of approximately 95% is $\pm 1 \times 10^{-8}$ |

### 8.1.1 Date of Test

5<sup>th</sup> June 2018

### 8.1.2 Test Area

LAB 1 Semi anechoic Chamber

### 8.1.3 Procedure

For 20dB bandwidth the procedures of ANSIC63.10 Section 6.9.2 were followed.

### 8.1.4 Test Results

The 20dB bandwidth was measured using the bandwidth function of the signal analyser and the procedures of Clause 6.9.2 of ANSI C63.10-2013.

The measured 20dB bandwidth was 1.383kHz which was contained within the operating band 13.110 to 14.01MHz.

Note: The analyser settings were as close as possible to the requirements of ANSI C63.10-2013 Clause 6.9.2.

The radiated measurements in Section 6 show all emissions within the band 13.110MHz to 14.010MHz at least 20dB below the specification limit.

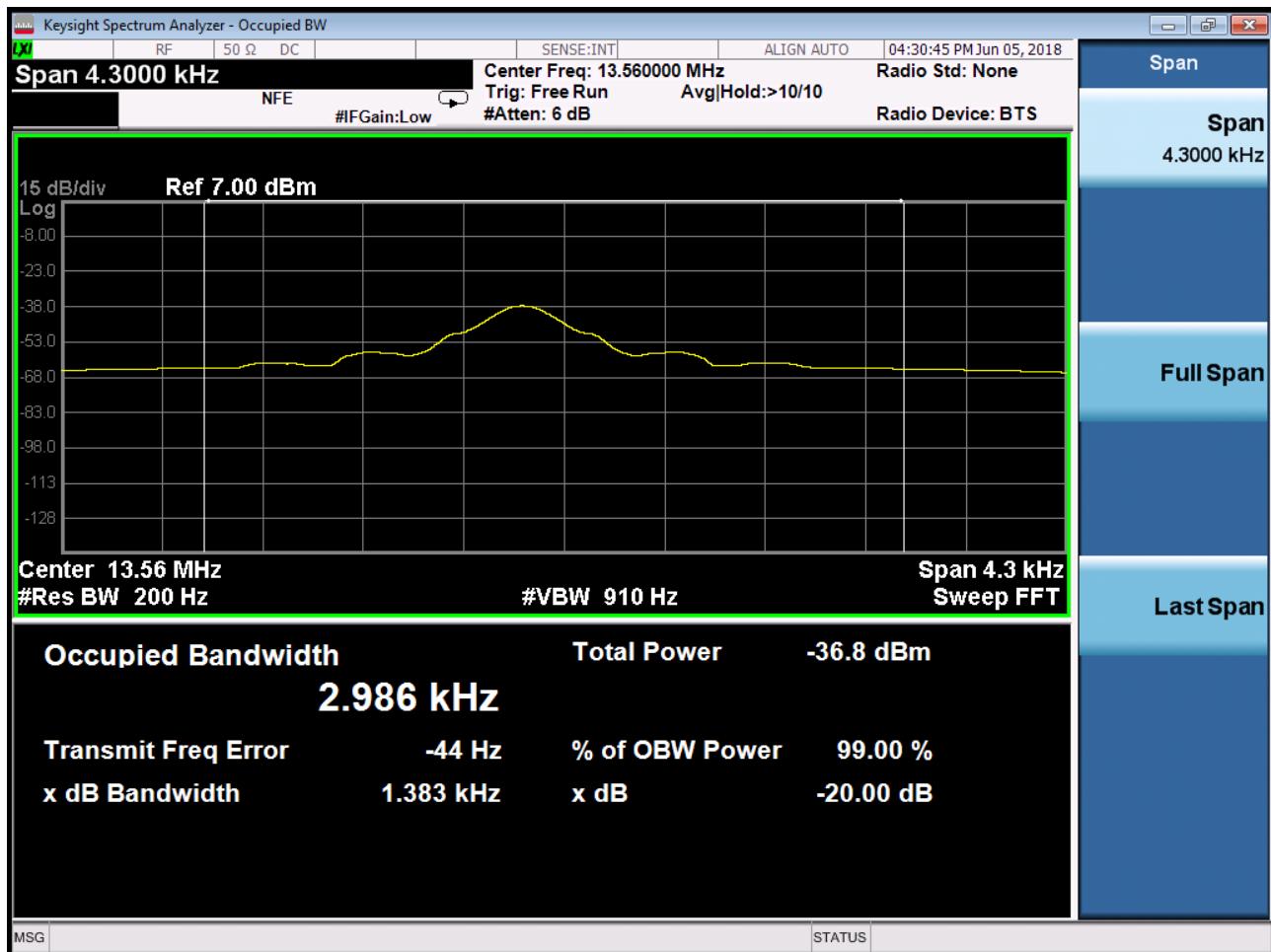



Figure 12: 20dB Bandwidth measurement

## Section 9 Authorised Band Edge Measurements

|                         |                                                                                                                                                                                                                                                      |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FCC Rule Part           | 47CFR15.205                                                                                                                                                                                                                                          |
| Standard                | ANSI C63.10:2013                                                                                                                                                                                                                                     |
| Measurement Uncertainty | The reported uncertainty of measurement $y \pm U$ , where expended uncertainty $U$ is based on a standard uncertainty multiplied by a coverage factor of $k=2$ , providing a level of confidence of approximately 95% is<br>Frequency: $\pm 10^{-8}$ |

### 9.1.1 Date of Test

5<sup>th</sup> June 2018

### 9.1.2 Test Area

Laboratory 5 bench area.

### 9.1.3 Test Setup

This test was performed as a conducted measurement according to the procedures of ANSI C63.10-2013 Clause 6.10.4.

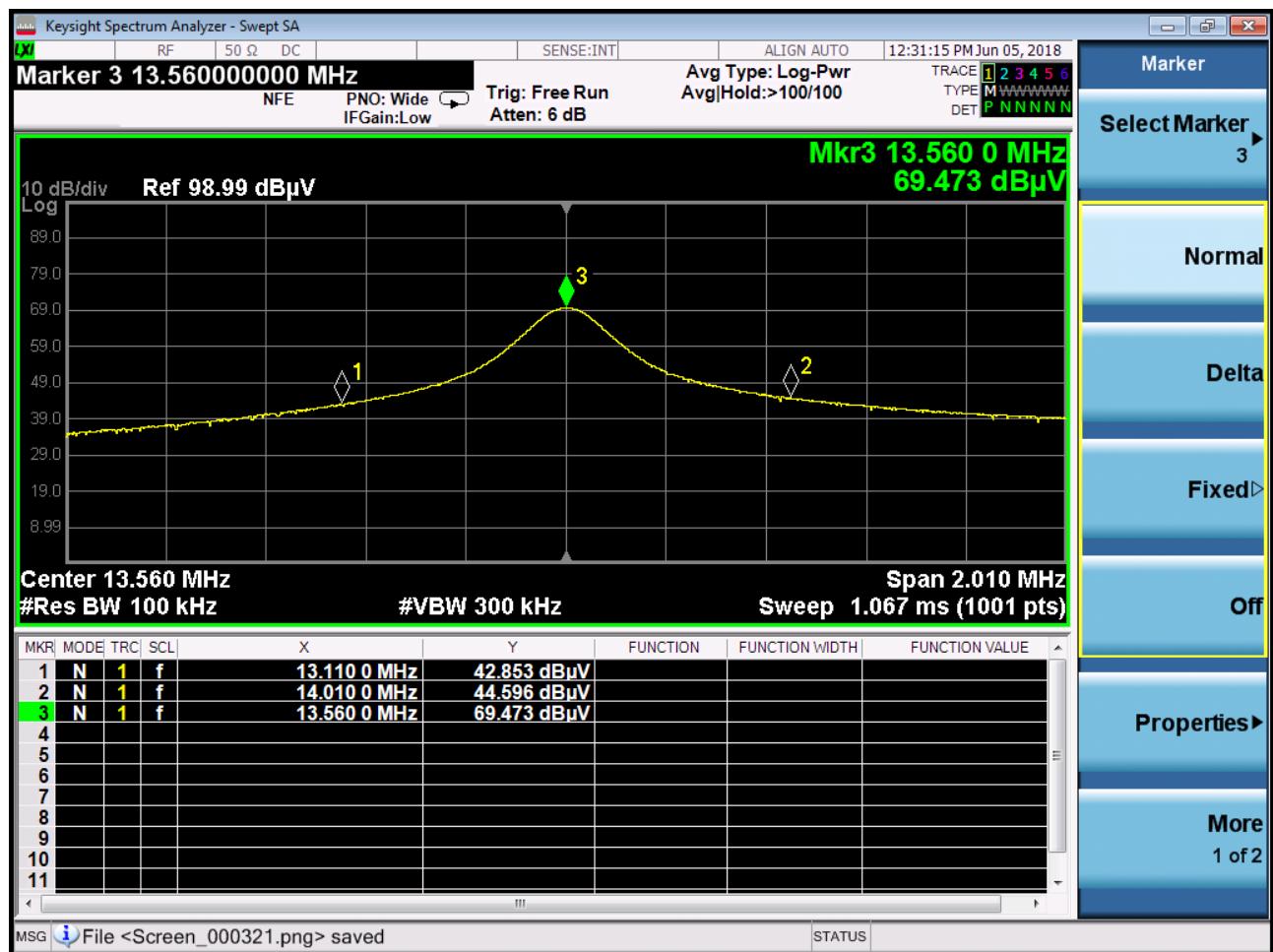
Spectrum analyser settings were according to ANSI C63.4-2013 Clause 6.10.4 e) 1) to 6):

|             |          |
|-------------|----------|
| Attenuation | Auto     |
| RBW         | 100kHz   |
| Detector    | Peak     |
| Sweep time  | Coupled  |
| VBW         | 300kHz   |
| Trace       | Max hold |

### 9.1.4 Requirement 47CFR15.

The authorised band-edge measurements according to the procedures of ANSI C63.10-2013 Clause 6.10.4 were performed.

### 9.1.5 Procedure


The procedure described in ANSI C63.10-2013 Clause 6.10.4

## 9.1.6 Results

| Band edge frequency (MHz) | Figure | dBc band edge value | Summary |
|---------------------------|--------|---------------------|---------|
| 13.110                    | 13     | 26.6                | Pass    |
| 14.010                    | 13     | 24.9                | Pass    |

**Table 12: Band Edge Measurements**

Based on the carrier was measured as >50dB below the specification limit (Tables 5 and 6) and the radiated measurements (Figures 5 and 6) the apparatus meets the band edge requirements.



it

**Figure 13: Band Edge Measurement – conducted test**

## Appendix A Test Equipment List

### Conducted Emissionst

| Item                                                       | Serial No. | Last Calibration Date | Calibration Interval |
|------------------------------------------------------------|------------|-----------------------|----------------------|
| Keysight MXE EMI Receiver                                  | MY51210185 | 15/03/2017            | 15 Months            |
| Rohde & Schwarz ESH3-Z5 plus calibrated mains lead (C0448) | 831767/010 | 26/01/18              | 12 Months            |
| Cable                                                      | LF3        | 15/05/2017            | 12 Months            |
| Cable                                                      | J7         | 15/05/2017            | 12 Months            |
| Cable                                                      | J9         | 15/05/2017            | 12 Months            |
| Teseq 10dB Transient limiter                               | 34718      | 10/05/2017            | 12 Months            |

## Radiated Emissions Equipment

| Item                                    | Serial No. | Last Calibration Date | Calibration Interval |
|-----------------------------------------|------------|-----------------------|----------------------|
| Laboratory 1 Semi-Anechoic Chamber      | Lab 1      | 07/12/2016            | 24 Months            |
| ETS Lindgren 2017B Mast (1 – 4m)        | --         | N/A                   | N/A                  |
| EMCO Loop antenna 6512                  | 00148043   | 20/04/2016            | 24 Months            |
| Chase CPA9231 Pre amplifier             | 1434       | 09/02/2018            | 12 Months            |
| HF18 Cable (For use from 9kHz to 18GHz) | 167004-001 | 15/05/2017            | 12 Months            |
| Keysight MXE EMI Receiver               | MY51210185 | 15/03/2017            | 15 Months            |
| Chase CBL6112B Bilog Antenna 78167      | 1503       | 16/11/2016            | 18 Months            |
| HF14 Cable (For use from 9kHz to 18GHz) | 167003-001 | 15/05/2017            | 12 Months            |
| HF17 Cable (For use from 9kHz to 18GHz) | 167002-001 | 15/05/2017            | 12 Months            |