

TEST REPORT

Applicant: Shenzhen Xinguodu Technology Co.,Ltd.

Address: 17B JinSong Mansion, Terra Industrial & Trade Park

Chegongmiao, Futian District, Shenzhen, Guangdong, China.

Product Name: POS terminal

FCC ID: XDQN6PRO-01

47 CFR Part 15, Subpart E(15.407)

Standard(s): ANSI C63.10-2020

KDB 789033 D02 General U-NII Test Procedures New Rules

v02r01

Report Number: 2502S55753E-RF-00D

Report Date: 2025/5/21

The above device has been tested and found compliant with the requirement of the relative standards by Bay Area Compliance Laboratories Corp. (Dongguan).

Reviewed By: Pedro Yun

Keoho Ywn

o Yun Approved By: Gavin Xu

Ganin Xn

Title: Project Engineer Title: RF Supervisor

Bay Area Compliance Laboratories Corp. (Dongguan)

No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China

Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: The information marked ▲ is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report cannot be reproduced except in full, without prior written approval of the Company. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report may contain data that are not covered by the accreditation scope and shall be marked with ★.This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government. Each test item follows the test standard(s) without deviation.

CONTENTS

DOCUMENT REVISION HISTORY	4
1. GENERAL INFORMATION	5
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	5
1.2 Accessory Information	5
1.3 Antenna Information Detail▲	6
1.4 EQUIPMENT MODIFICATIONS	6
2. SUMMARY OF TEST RESULTS	7
3. DESCRIPTION OF TEST CONFIGURATION	8
3.1 OPERATION FREQUENCY DETAIL	8
3.2 EUT OPERATION CONDITION	
3.3 SUPPORT EQUIPMENT LIST AND DETAILS	10
3.4 SUPPORT CABLE LIST AND DETAILS	10
3.5 BLOCK DIAGRAM OF TEST SETUP	11
3.6 TEST FACILITY	13
3.7 MEASUREMENT UNCERTAINTY	13
4. REQUIREMENTS AND TEST PROCEDURES	14
4.1 AC LINE CONDUCTED EMISSIONS	14
4.1.1 Applicable Standard	14
4.1.2 EUT Setup	
4.1.3 EMI Test Receiver Setup	
4.1.5 Corrected Amplitude & Margin Calculation	
4.1.6 Test Result	16
4.2 RADIATION SPURIOUS EMISSIONS	17
4.2.1 Applicable Standard	
4.2.2 EUT Setup	
4.2.3 EMI Test Receiver & Spectrum Analyzer Setup	
4.2.5 Corrected Result & Margin Calculation	
4.2.6 Test Result.	
4.3 EMISSION BANDWIDTH	22
4.3.1 Applicable Standard	
4.3.2 EUT Setup	
4.3.3 Test Procedure	
4.3.4 Test Result	
4.4 MAXIMUM CONDUCTED OUTPUT POWER	
4.4.1 Applicable Standard	
4.4.2 EUT Setup	
4.4.4 Test Result.	
4.5 MAXIMUM POWER SPECTRAL DENSITY	
4.5.1 Applicable Standard	25

4.5.2 EUT Setup	25
4.5.3 Test Procedure	26
4.5.4 Test Result.	
4.6 DUTY CYCLE	27
4.6.1 EUT Setup	27
4.6.2 Test Procedure	
4.6.3 Judgment	
4.7 ANTENNA REQUIREMENT	28
4.7.1 Applicable Standard	28
4.7.2 Judgment	
5. TEST DATA AND RESULTS	29
5.1 AC LINE CONDUCTED EMISSIONS	29
5.2 RADIATION SPURIOUS EMISSIONS	32
5.3 EMISSION BANDWIDTH	93
5.4 99% OCCUPIED BANDWIDTH	103
5.5 MAXIMUM CONDUCTED OUTPUT POWER	113
5.6 POWER SPECTRAL DENSITY	116
5.7 DUTY CYCLE	126
EXHIBIT A - EUT PHOTOGRAPHS	128
EXHIBIT B - TEST SETUP PHOTOGRAPHS	
EAHIDH D-HEST SETUL THUTUGNALHS	

Revision Number	Number Report Number Description of Revision		Date of Revision	
1.0	2502S55753E-RF-00D	Original Report	2025/5/21	

Report No.: 2502S55753E-RF-00D

Report Template Version: FCC-WiFi5-Client-V2.0 Page 4 of 129

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

EUT Name:	POS terminal
EUT Model:	N6 Pro
Operation Frequency:	Band1: 5180-5240 MHz(802.11a/n ht20/ac vht20) 5190-5230 MHz(802.11n ht40/ac vht40) 5210 MHz(802.11ac vht80) Band2: 5260-5320 MHz (802.11a/n ht20/ac vht20) 5270-5310 MHz(802.11n ht40/ac vht40) 5290 MHz(802.11ac vht80) Band3: 5500-5720 MHz (802.11a/n ht20/ac vht20) 5510-5710 MHz(802.11n ht40/vht40) 5530-5690MHz(802.11n ht40/vht40) 5530-5690MHz(802.11ac vht80) Band4: 5745-5825 MHz (802.11a/n ht20/ac vht20) 5755-5795 MHz(802.11n ht40/ac vht40) 5775 MHz(802.11ac vht80)
Maximum Average Conducted Output Power:	14.52dBm in 5150-5250 MHz Band 14.59dBm in 5250-5350 MHz Band 14.72dBm in 5470-5725 MHz Band 14.37dBm in 5725-5850 MHz Band
Modulation Type:	802.11a/n/ac: OFDM-BPSK, QPSK, 16QAM, 64QAM,256QAM
Rated Input Voltage:	3.85Vdc from battery or 5Vdc from adapter
Serial Number:	For AC Line Conducted Emissions Test: 31ZT-9(Configuration 1#) For Radiated Spurious Emission Below 1G Test: 31ZT-35(Configuration 4#) For Radiated Spurious Emission Above 1G Test: 31ZT-9(Configuration 1#) For RF Conducted Test: 31ZT-1
EUT Received Date:	2025/4/27
EUT Received Status:	Good

1.2 Accessory Information

Accessory Description	Manufacturer	Model	Parameters	
Adapter	SHENZHEN RUIJING INDUSTRIAL CO LTD	STC-A520A-Z	Input: 100-240Vac 50/60Hz 400mA Output: 5.0Vdc 2000mA	
Adapter	Jiangxi Jian Aohai Technology Co.,Ltd	A319-050200U-US2	Input: 100-240Vac 50/60Hz 0.3A Output: 5.0Vdc 2000mA	

Report Template Version: FCC-WiFi5-Client-V2.0

Optional Material:

Material Description	Manufacturer	Parameter
Rear Camera	unknown	2MP,5MP
Front Camera	unknown	2MP, 16MP
Pro scanner	unknown	/
Memory	unknown	2GB+32GB, 4GB+32GB,3GB+32GB
SIM	unknown	Single SIM, Dual SIM
Charging Contact	unknown	/
Audio jack	unknown	/
ESIM	unknown	/
Vibration Motor	unknown	/
Back Contact	unknown	/
Battery	Hunan Gaoyuan Battery Co.,Ltd	GX16
Screen 1	Techshine Electronics Co.,Ltd	/
Screen 2	Shen Zhen Great Prospect Optoelectronics Co,.Ltd.	/

EUT Information:

The following Configuration were select to test:

Items	Configuration 1#	Configuration 2#	Configuration 3#	Configuration 4#
Rear Camera	2MP	5MP	×	×
Front Camera	2MP	2MP	16MP	×
Pro scanner	×	×	×	√
Memory	Memory 2GB+32GB		4GB+32GB	3GB+32GB
SIM/ESIM	Dual SIM	Single SIM+ESIM	Dual SIM	Dual SIM
Charging Contact	√	√	\checkmark	√
Audio jack	×	√	×	×
Vibration Motor	×	√	×	√
Back Contact	×	×	\checkmark	×
Battery	√	√	×	√
Screen	Screen 1	Screen 1	Screen 2	Screen 2

1.3 Antenna Information Detail A

Antenna Type	input impedance (Ohm)	- Fredhency Kange				
		5.15~5.85GHz	2.44dBi			
LDS	50	5.25~5.35 GHz	2.59dBi			
		5.47~5.725 GHz	2.91dBi			
		5.725~5.85 GHz	2.45dBi			
The design of compliance with \$15.203.						

The design of compliance with §15.203:

Unit uses a permanently attached antenna.

Unit uses a unique coupling to the intentional radiator.

Unit was professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

1.4 Equipment Modifications

No modifications are made to the EUT during all test items.

Standard(s) Section	Test Items	Result
§15.207(a)	AC line conducted emissions	Compliant
FCC§15.205& §15.209 &§15.407(b)	Radiated Spurious Emissions	Compliant
FCC§15.407(a) (e)	Emission Bandwidth	Compliant
FCC§15.407(a)	Maximum Conducted Output Power	Compliant
FCC§15.407 (a)	Power Spectral Density	Compliant
§15.203	Antenna Requirement	Compliant

Note 1: For AC line conducted emissions, the maximum output power channel was tested.

Note 2: For Radiated Spurious Emissions 9kHz~1GHz and 18~40GHz, the maximum output power channel was tested.

Note 3: Per 15B report, for AC Line Conducted Emissions test with Adapter 2# and Radiated Spurious Emission Below 1 GHz test with Adapter 1# was worst, so only performed it.

Note 4: Per 15B report, for AC Line Conducted Emissions test with Configuration 1# and Radiated spurious emission below 1G test with Configuration 4# was worst, so only performed it.

Report Template Version: FCC-WiFi5-Client-V2.0

3. DESCRIPTION OF TEST CONFIGURATION

3.1 Operation Frequency Detail

For 802.11a/n ht20/ac vht20:

5150-5250MHz Band 5250-5350 MHz Band		MHz Band	5470-5725 MHz Band		5725-5850MHz Band		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	52	5260	100	5500	149	5745
40	5200	56	5280	104	5520	153	5765
44	5220	60	5300	108	5540	157	5785
48	5240	64	5320	112	5560	161	5805
/	/	/	/	116	5580	165	5825
/	/	/	/	120	5600	/	/
/	/	/	/	124	5620	/	/
/	/	/	/	128	5640	/	/
/	/	/	/	132	5660	/	/
/	/	/	/	136	5680	/	/
/	/	/	/	140	5700	/	/
/	/	/	/	144*	5720	/	/

For 802.11n ht40/ac vht40:

5150-52	5150-5250MHz		5250-5350 MHz		Hz 5470-5725 MHz		850MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
38	5190	54	5270	102	5510	151	5755
46	5230	62	5310	110	5550	159	5795
/	/	/	/	118	5590	/	/
/	/	/	/	126	5630	/	/
/	/	/	/	134	5670	/	/
/	/	/	/	142*	5710	/	/

For 802.11ac vht80:

5150-5250MHz		5250-5350 MHz		5470-5725 MHz		5725-58	850MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
42	5210	58	5290	106	5530	155	5775
/	/	/	/	122	5610	/	/
/	/	/	/	138*	5690	/	/

Note

Report Template Version: FCC-WiFi5-Client-V2.0

^{*:}Additional channels cross the band 5470-5725MHz and 5725-5850 MHz, Conducted output power/ Power Spectral Density/bandwidth test with the additional channel to compliance with stricter limit of the two bands (5470-5725MHz more stricter).

3.2 EUT Operation Condition

The system was configured for testing in Engineering Mode, which was provided by the manufacturer. The EUT configuration is below:

The EUT configuration i	s below:			
EUT Ex	ercise Software:	Engineer mode		
The software was provided nanufacturer Δ :	by manufacturer.	The maximum power v	vas configured as belov	w, that was provided by the
5150-5250 MHz Band:				
Test Modes	Test Channels	Test Frequency (MHz)	Data rate	Power Level Setting
	Lowest	5180	6Mbps	18.5
802.11a	Middle	5200	6Mbps	18.5
	Highest	5240	6Mbps	18.5
	Lowest	5180	MCS0	18
802.11n ht20	Middle	5200	MCS0	18
	Highest	5240	MCS0	18
002 11 1.40	Lowest	5190	MCS0	16
802.11n ht40	Highest	5230	MCS0	16
802.11ac vht80	Middle	5210	MCS0	16
250-5350 MHz Band:		,		
Test Modes	Test Channels	Test Frequency (MHz)	Data rate	Power Level Setting
	Lowest	5260	6Mbps	18.5
802.11a	Middle	5280	6Mbps	18.5
	Highest	5320	6Mbps	18.5
	Lowest	5260	MCS0	18
802.11n ht20	Middle	5280	MCS0	18
	Highest	5320	MCS0	18
002.11. 1.40	Lowest	5270	MCS0	16
802.11n ht40	Highest	5310	MCS0	16
802.11ac vht80	Middle	5290	MCS0	16
470-5725 MHz Band:		,		
Test Modes	Test Channels	Test Frequency (MHz)	Data rate	Power Level Setting
	Lowest	5500	6Mbps	18.5
902 112	Middle	5580	6Mbps	18.5
802.11a	Highest	5700	6Mbps	18.5
	Ccross	5720	6Mbps	18.5
	Lowest	5500	MCS0	18
002 11 120	Middle	5580	MCS0	18
802.11n ht20	Highest	5700	MCS0	18
	Ccross	5720	MCS0	18
	Lowest	5510	MCS0	16
000 11m k440	Highest	5550	MCS0	16
802.11n ht40	Lowest	5670	MCS0	16
	Ccross	5710	MCS0	16
	Lowest	5530	MCS0	16
802.11ac vht80	Middle	5610	MCS0	16

5690

MCS0

Highest

16

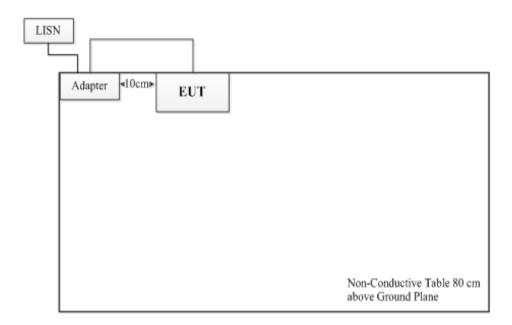
725-5850 MHz Band:						
Test Modes	Test Channels	Test Frequency (MHz)	Data rate	Power Level Setting		
	Lowest	5745	6Mbps	18.5		
802.11a	Middle	5785	6Mbps	18.5		
	Highest	5825	6Mbps	18.5		
	Lowest	5745	MCS0	18		
802.11n ht20	Middle	5785	MCS0	18		
	Highest	5825	MCS0	18		
802.11n ht40	Lowest	5755	MCS0	16		
802.11N NI40	Highest	5795	MCS0	16		
802.11ac vht80	Middle	5775	MCS0	16		

Note

3.3 Support Equipment List and Details

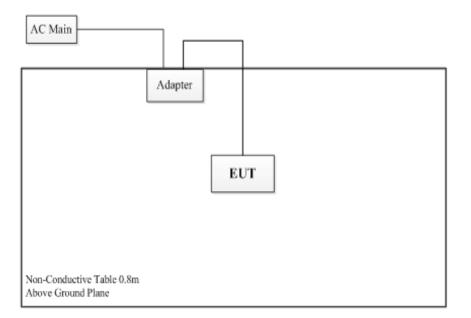
Manufacturer	Description	Model	Serial Number
/	/	/	/

3.4 Support Cable List and Details

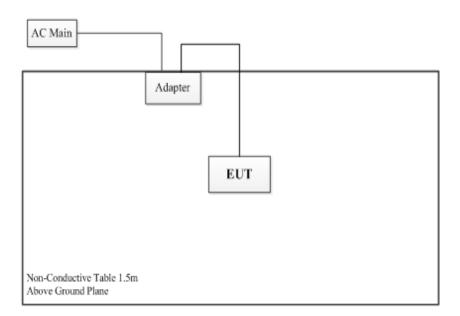

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
USB Cable	no	no	1.5	Adapter	EUT

^{1.}The system support 802.11a/n ht20/n ht40/ac vht20/vht40/vht80, the vht20/vht40 were reduced since the identical parameters with 802.11n ht20 and ht40.

^{2.} The above are the worst-case data rates, which are determined for each mode based upon investigations by measuring the average power and PSD across all data rates, bandwidths, and modulations.


3.5 Block Diagram of Test Setup

AC line conducted emissions:



Spurious Emissions:

Below 1GHz:

Above 1GHz:

3.6 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 829273, the FCC Designation No.: CN5044.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0022.

3.7 Measurement Uncertainty

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.61dB
Power Spectral Density, conducted	±0.61 dB
	9kHz~30MHz: 3.3dB, 30MHz~200MHz: 4.55 dB, 200MHz~1GHz: 5.92
Unwanted Emissions, radiated	dB, 1GHz~6GHz: 4.98 dB, 6GHz~18GHz: 5.89 dB,
	18GHz~26.5GHz:5.47 dB, 26.5GHz~40GHz:5.63 dB
Unwanted Emissions, conducted	±2.47 dB
Temperature	±1°C
Humidity	±5%
DC and low frequency voltages	±0.4%
Duty Cycle	1%
AC Power Lines Conducted Emission	3.11 dB (150 kHz to 30 MHz)

Report Template Version: FCC-WiFi5-Client-V2.0

4. REQUIREMENTS AND TEST PROCEDURES

4.1 AC Line Conducted Emissions

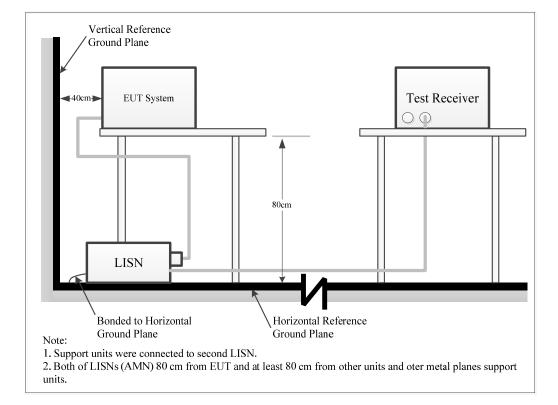
4.1.1 Applicable Standard

FCC§15.207(a).

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a $50 \,\mu\text{H}/50$ ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Report No.: 2502S55753E-RF-00D

Page 14 of 129


	Conducted limit (dBµV)	
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*}Decreases with the logarithm of the frequency.

- (b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:
- (1) For carrier current system containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.
- (2) For all other carrier current systems: $1000 \,\mu\text{V}$ within the frequency band 535-1705 kHz, as measured using a 50 $\mu\text{H}/50$ ohms LISN.
- (3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits in §15.205, §15.209, §15.221, §15.223, or §15.227, as appropriate.
- (c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

Report Template Version: FCC-WiFi5-Client-V2.0

4.1.2 EUT Setup

The setup of EUT is according with per ANSI C63.10-2020 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter or EUT was connected to the main LISN with a 120 V/60 Hz AC power source.

4.1.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

4.1.4 Test Procedure

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase ("hot") line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit from among all the measurements identifying the frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the current-carrying conductors, or the six highest emissions may be reported over all the current-carrying conductors.

4.1.5 Corrected Amplitude & Margin Calculation

The basic equation is as follows:

Result = Reading + Factor

Factor = attenuation caused by cable loss + voltage division factor of AMN

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit - Result

4.1.6 Test Result

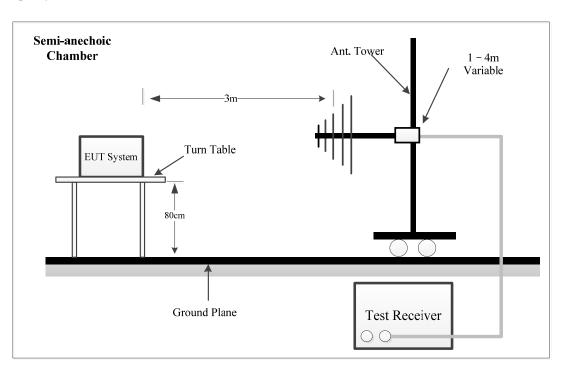
Please refer to section 5.1.

4.2 Radiation Spurious Emissions

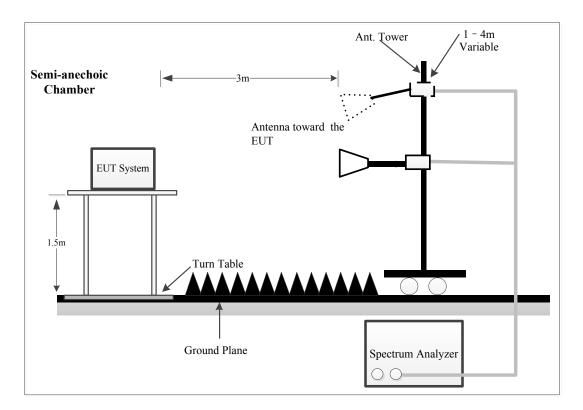
4.2.1 Applicable Standard

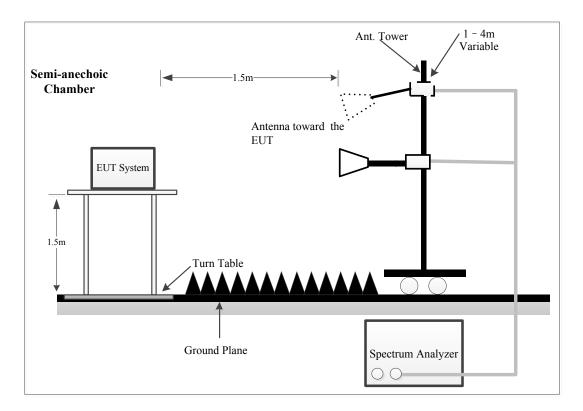
FCC §15.407 (b);

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:


- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of _27 dBm/MHz.
- (4) For transmitters operating solely in the 5.725-5.850 GHz band:
- (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in § 15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in § 15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.
- (8) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (9) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in § 15.207.
- (10) The provisions of § 15.205 apply to intentional radiators operating under this section.
- (11) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.
- (c) The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signalling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization a description of how this requirement is met.

Report Template Version: FCC-WiFi5-Client-V2.0


4.2.2 EUT Setup 9kHz~30MHz:


30MHz~1GHz:

1-26.5GHz:

26.5-40GHz:

The radiated emission tests were performed in the semi-anechoic chamber, using the setup accordance with the ANSI C63.10-2020. The specification used was FCC 15.209, FCC 15.407 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

For 9kHz-30MHz test, the lowest height of the magnetic antenna shall be 1 m above the ground and three antenna orientations (parallel, perpendicular, and ground-parallel) shall be measured.

4.2.3 EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 9 kHz to 40 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

9kHz-1000MHz:

Frequency Range	Measurement	RBW	Video B/W	IF B/W	Detector
9 kHz – 150 kHz	QP/AV	300Hz	1 kHz	200 Hz	QP/AV
150 kHz – 30 MHz	QP/AV	10 kHz	30 kHz	9 kHz	QP/AV
30MHz – 1000 MHz	PK	100 kHz	300 kHz	/	PK
30MHZ - 1000 MHZ	QP	/	/	120kHz	QP

1GHz-40GHz:

Pre-scan:

Frequency Range	Measurement	RBW	Video B/W	Detector
Above 1 GHz	Peak	1MHz	3 MHz	PK
Above I Gnz	AV	1MHz	5kHz	PK

Final measurement for emission identified during the pre-scan:

Frequency Range	Measurement	RBW	Video B/W	Detector
Above 1 GHz	Peak	1MHz	3 MHz	PK
Above I GHz	AV	1MHz	≥1/T	PK

Note: T is minimum transmission duration

4.2.4 Test Procedure

Data was recorded in Quasi-peak detection mode for frequency range of 9 kHz -1 GHz, except 9-90 kHz, 110-490 kHz, employing an average detector, peak and Average detection modes for frequencies above 1 GHz.

If the maximized peak measured value is under the QP/Average limit by more than 6dB, then it is unnecessary to perform an QP/Average measurement.

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01, emission shall be computed as: $E[dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters.

For Radiated 26.5-40GHz test, which was performed at 1.5 m distance, according to C63.10, the test result shall be extrapolated to the specified distance using an extrapolation Factor of 20dB/decade from 3m to 1.5m Distance extrapolation Factor =20 log (specific distance [3m]/test distance [1.5m]) dB= 6.0 dB

4.2.5 Corrected Result & Margin Calculation

 $E_{Log} = 20 \times log_{10}(E_{Linear})$

 $E_{\textit{Linear}}$ is the field strength of the emission, in $\mu V/m$ $E_{\textit{Log}}$ is the field strength of the emission, in $dB\mu V/m$

For 9kHz-30MHz test, test distance is 3m, extrapolation limit shall be calculated using Equation:

 $E_{limit\text{-measure}} = E_{limit\text{-Standard}} + 40 \times log_{10} (d_{standard}/d_{measure})$

The basic equation except 26.5-40GHz test is as follows:

Factor = Antenna Factor + Cable Loss- Amplifier Gain

For Radiated 26.5-40GHz test:

Factor = Antenna Factor + Cable Loss- Distance extrapolation Factor

Result = Reading + Factor

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit - Result

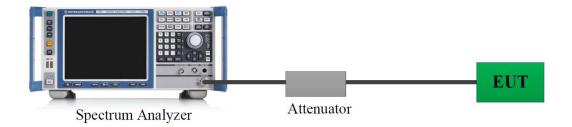
4.2.6 Test Result

Please refer to section 5.2.

Report Template Version: FCC-WiFi5-Client-V2.0

4.3 Emission Bandwidth

4.3.1 Applicable Standard


FCC §15.407 (a),(h)

(h)(2) Radar Detection Function of Dynamic Frequency Selection (DFS). U-NII devices operating with any part of its 26 dB emission bandwidth in the 5.25-5.35 GHz and 5.47-5.725 GHz bands shall employ a DFS radar detection mechanism to detect the presence of radar systems and to avoid co-channel operation with radar systems.

FCC §15.407 (e)

Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

4.3.2 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The insert loss of this RF cable/attenuator was offset into the setting of test equipment.

4.3.3 Test Procedure

26dB Emission Bandwidth:

According to ANSI C63.10-2020 Section 12.5.2

- a) Set RBW = shall be in the range of 1% to 5% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = peak.
- d) Trace mode = \max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is in the range of 1% to 5%.

6 dB emission bandwidth:

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3 RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum

level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described in this section. For devices that use channel aggregation refer to III.A and III.C for determining emission bandwidth.

99% Occupied Bandwidth:

According to ANSI C63.10-2020 Section 12.5.3&6.9.3

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.6.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

4.3.4 Test Result

Please refer to section 5.3 and section 5.4.

Report Template Version: FCC-WiFi5-Client-V2.0

4.4 Maximum Conducted Output Power

4.4.1 Applicable Standard

FCC §15.407(a) (1)(iv)

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC §15.407(a) (2)

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC §15.407(a) (3)(i)

For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

4.4.2 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The insert loss of this RF cable/attenuator was offset into the setting of test equipment.

4.4.3 Test Procedure

According to ANSI C63.10-2020 Section 12.4.3.2

Method PM-G is measurement using a gated RF average power meter.

Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Because the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

4.4.4 Test Result

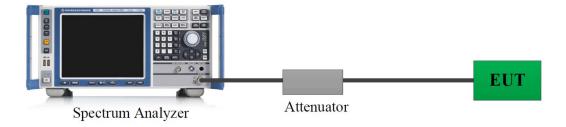
Please refer to section 5.5.

4.5 Maximum Power Spectral Density

4.5.1 Applicable Standard

FCC §15.407(a) (1)(iv)

For client devices in the 5.15 – 5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


FCC §15.407(a) (2)

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC §15.407(a) (3)(i)

For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

4.5.2 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The insert loss of this RF cable/attenuator was offset into the setting of test equipment.

4.5.3 Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01

Duty cycle ≥98%

KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Method SA-1 should be applied.

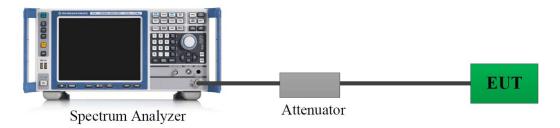
Report No.: 2502S55753E-RF-00D

Duty cycle <98%, duty cycle variations are less than $\pm 2\%$

KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Method SA-2 should be applied.

Duty cycle <98%, duty cycle variations exceed $\pm 2\%$

KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Method SA-3 should be applied.


4.5.4 Test Result

Please refer to section 5.6.

Report Template Version: FCC-WiFi5-Client-V2.0 Page 26 of 129

4.6 Duty Cycle

4.6.1 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The insert loss of this RF cable/attenuator was offset into the setting of test equipment.

4.6.2 Test Procedure

According to ANSI C63.10-2020 Section 12.2

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

- 1) Set the center frequency of the instrument to the center frequency of the transmission.
- 2) Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value.
- 3) Set $VBW \ge RBW$. Set detector = peak or average.
- 4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if $T \le 16.7 \,\mu s$.)

4.6.3 Judgment

Report Only. Please refer to section 5.7.

4.7 Antenna Requirement

4.7.1 Applicable Standard

FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Report No.: 2502S55753E-RF-00D

4.7.2 Judgment

Compliant. Please refer to the Antenna Information detail in Section 1.3.

Report Template Version: FCC-WiFi5-Client-V2.0 Page 28 of 129

5. TEST DATA AND RESULTS

5.1 AC Line Conducted Emissions

Serial Number:	31ZT-9	Test Date:	2025/5/10
Test Site:	CE	Test Mode:	Transmitting
Tester:	Yukin Qiu	Test Result:	Pass

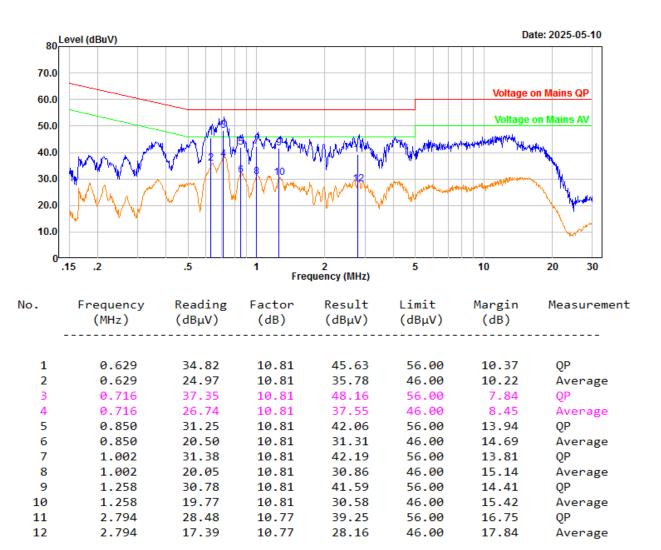
Environmental Conditions:

Temperature: 26.4	Relative Humidity: 57	ATM Pressure: 101
(°C) 26.4	(%)	(kPa)

Test Equipment List and Details:

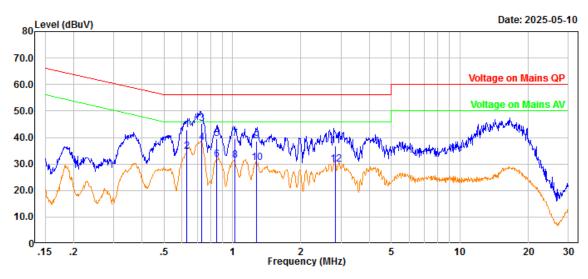
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	LISN	ENV216	101614	2024/9/5	2025/9/4
Unknown	Coaxial Cable	RG 142	C-0200-05	2025/5/6	2026/5/5
R&S	EMI Test Receiver	ESCI	101121	2024/9/5	2025/9/4
Audix	Test Software	E3	191218 V9	N/A	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).


Test Data:

Note: 802.11a 5500MHz was tested.

Report Template Version: FCC-WiFi5-Client-V2.0


Project No.: 2502S55753E-RF
Port: Line
Test Mode: Transmitting
Note: IF B/W 9KHz PK/AV

Serial No.: 31ZT-9 Tester: Yukin Qiu

Project No.: 2502S55753E-RF
Port: neutral
Test Mode: Transmitting
Note: IF B/W 9KHz PK/AV

Serial No.: 31ZT-9 Tester: Yukin Qiu

No.	Frequency (MHz)	Reading (dBµV)	Factor (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)	Measurement
1	0.630	32.03	10.71	42.74	56.00	13.26	QP
2	0.630	24.15	10.71	34.86	46.00	11.14	Average
3	0.733	34.42	10.72	45.14	56.00	10.86	QP
4	0.733	27.29	10.72	38.01	46.00	7.99	Average
5	0.852	28.83	10.76	39.59	56.00	16.41	QP
6	0.852	20.80	10.76	31.56	46.00	14.44	Average
7	1.023	28.63	10.81	39.44	56.00	16.56	QP
8	1.023	20.67	10.81	31.48	46.00	14.52	Average
9	1.280	27.68	10.84	38.52	56.00	17.48	QP
10	1.280	19.55	10.84	30.39	46.00	15.61	Average
11	2.829	26.04	10.87	36.91	56.00	19.09	QP
12	2.829	18.92	10.87	29.79	46.00	16.21	Average

5.2 Radiation Spurious Emissions

1) 9kHz-1GHz

Serial Number:	31ZT-35	Test Date:	2025/5/9
Test Site:	Chamber A	Test Mode:	Transmitting
Tester:	Jayce Wang	Test Result:	Pass

Environmental Cond	itions:		
Temperature: $(^{\circ}\mathbb{C})$ 26.5	Relative Humidity: (%) 5	ATM Pressure: (kPa)	100.8

Test Equipment List and Details:

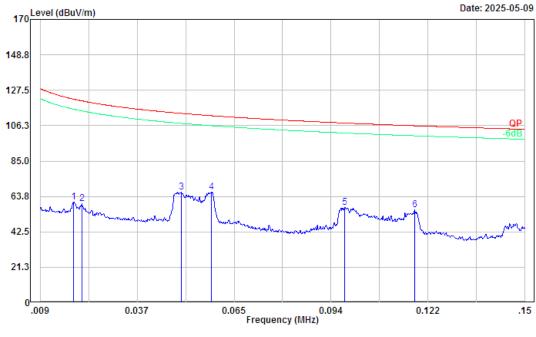
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
EMCO	Passive Loop Antenna	6512	9706-1206	2023/10/25	2026/10/24
Sunol Sciences	Hybrid Antenna	JB3	A060611-2	2024/4/16	2027/4/15
Narda	Coaxial Attenuator	757C-6dB	34010	2024/4/16	2027/4/15
Unknown	Coaxial Cable	C-NJNJ-50	C-0075-01	2024/7/1	2025/6/30
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-01	2024/7/1	2025/6/30
Unknown	Coaxial Cable	C-NJNJ-50	C-1400-01	2024/7/1	2025/6/30
Sonoma	Amplifier	310N	372193	2024/8/16	2025/8/15
R&S	EMI Test Receiver	ESR3	102453	2024/8/26	2025/8/25
Audix	Test Software	E3	191218 V9	N/A	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

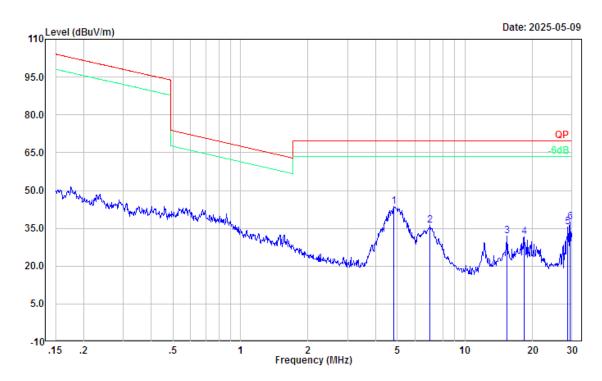
Please refer to the below table and plots.

After pre-scan in the X, Y and Z axes of orientation, the worst case is refer to table and plots.

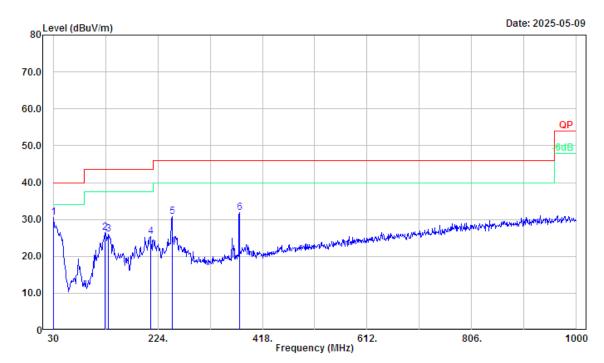

Note: 802.11a 5500MHz was tested.

Report Template Version: FCC-WiFi5-Client-V2.0

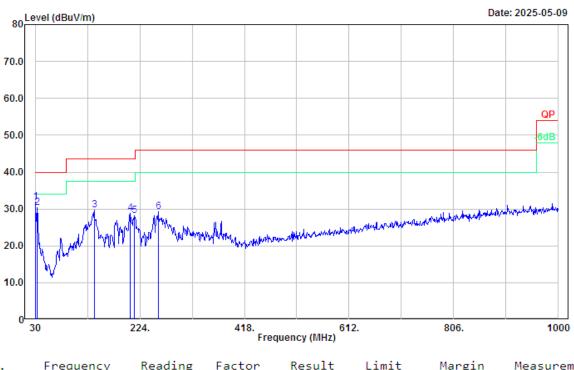
9kHz~30MHz


Three antenna orientations (parallel, perpendicular, and ground-parallel) was measured, the worst orientations was below:

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Measurement
1	0.019	11.22	49.32	60.54	122.15	61.61	Peak
2	0.021	10.48	48.75	59.23	121.11	61.88	Peak
3	0.050	22.77	43.43	66.20	113.62	47.42	Peak
4	0.059	24.26	42.01	66.27	112.22	45.95	Peak
5	0.098	21.69	35.39	57.08	107.82	50.74	Peak
6	0.118	21.66	33.99	55.65	106.18	50.53	Peak


Project No.: 2502S55753E-RF Serial No.: 31ZT-35
Polarization: Parallel Tester: Jayce Wang
Test Mode: Transmitting
Note: RBW:10kHz,VBW:30kHz

No.	Frequency (MHz)	Reading (dBµV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Measurement
1	4.822	37.70	5.93	43.63	69.54	25.91	Peak
2	6.988	31.27	5.03	36.30	69.54	33.24	Peak
3	15.388	28.23	3.65	31.88	69.54	37.66	Peak
4	18.328	27.83	3.66	31.49	69.54	38.05	Peak
5	28.755	32.18	3.47	35.65	69.54	33.89	Peak
6	29.371	34.18	3.39	37.57	69.54	31.97	Peak


30MHz-1GHz

Project No.: 2502S55753E-RF
Polarization: Horizontal
Test Mode: Transmitting
Note: RBW:100kHz,VBW:300kHz Serial No.: 31ZT-35 Tester: Jayce Wang

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Measurement
1	30.00	34.26	-3.71	30.55	40.00	9.45	Peak
2	126.03	36.37	-10.00	26.37	43.50	17.13	Peak
3	132.82	36.12	-10.19	25.93	43.50	17.57	Peak
4	210.42	36.49	-11.05	25.44	43.50	18.06	Peak
5	250.19	42.00	-11.27	30.73	46.00	15.27	Peak
6	375 32	39 18	-7 36	31 82	46 99	14 18	Peak

Project No.: 2502S55753E-RF
Polarization: Vertical
Test Mode: Transmitting
Note: RBW:100kHz,VBW:300kHz Serial No.: 31ZT-35 Tester: Jayce Wang

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Measurement
1	30.00	35.60	-3.71	31.89	40.00	8.11	Peak
2	33.88	36.69	-6.34	30.35	40.00	9.65	Peak
3	139.61	40.29	-10.69	29.60	43.50	13.90	Peak
4	205.57	40.01	-11.11	28.90	43.50	14.60	Peak
5	213.33	39.29	-11.01	28.28	43.50	15.22	Peak
6	257.95	40.04	-10.84	29.20	46.00	16.80	Peak

2) 1-40GHz:

Serial Number:	31ZT-9	Test Date:	2025/5/13~2025/5/14
Test Site:	Chamber B	Test Mode:	Transmitting
Tester:	Alan Xie,Ted Wang,Leo Xiao	Test Result:	Pass

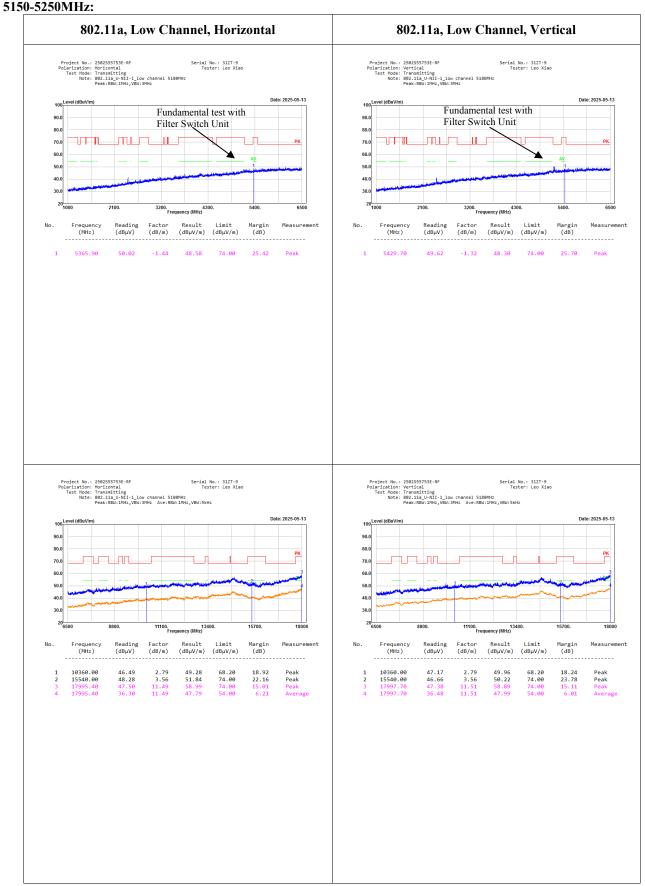
Environmental Conditions:								
Temperature: (°C)	23.7~24.2	Relative Humidity: (%)	36~42	ATM Pressure: (kPa)	101.2			

Test Equipment List and Details:

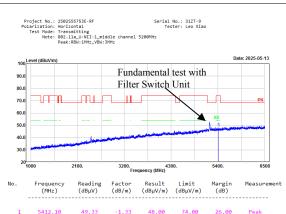
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
ETS-Lindgren	Horn Antenna	3115	000 527 35	2023/9/7	2026/9/6
Ducommun Technologies	Horn Antenna	ARH-4223-02	1007726-02 1304	2023/2/22	2026/2/21
Ducommun Technologies	Horn Antenna	ARH-2823-02	1007726-01 1302	2023/2/22	2026/2/21
Xinhang Macrowave	Coaxial Cable	XH750A-N/J- SMA/J-10M	20231117004 #0001	2024/11/17	2025/11/16
Xinhang Macrowave	Coaxial Cable	XH360A-2.92/J- 2.92/J-6M-A	20231208001 #0001	2024/12/9	2025/12/8
AH	Preamplifier	PAM-0118P	469	2025/4/11	2026/4/10
AH	Preamplifier	PAM-1840VH	191	2024/9/5	2025/9/4
R&S	Spectrum Analyzer	FSV40	101944	2024/9/6	2025/9/5
Audix	Test Software	E3	191218 V9	N/A	N/A
Decentest	Multiplex Switch Test Control Set & Filter Switch Unit	DT7220SCU & DT7220FCU	DC79902 & DC79905	2024/8/27	2025/8/26

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

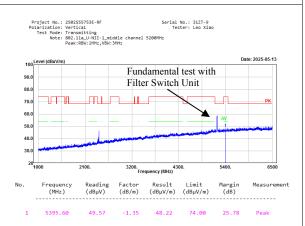
Test Data:

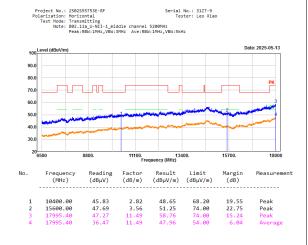

Please refer to the below table and plots.

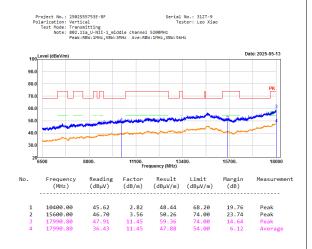
After pre-scan in the X, Y and Z axes of orientation, the worst case is refer to table and plots.


Report Template Version: FCC-WiFi5-Client-V2.0

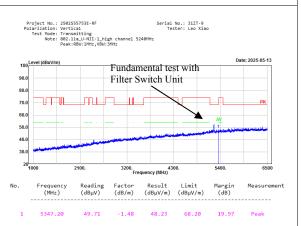
Report No.: 2502S55753E-RF-00D

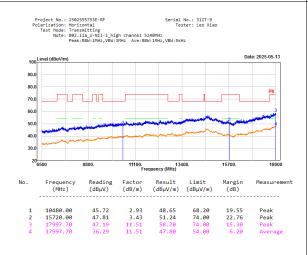

1-18GHz:

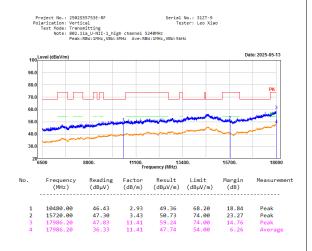



802.11a, Middle Channel, Horizontal

802.11a, Middle Channel, Vertical

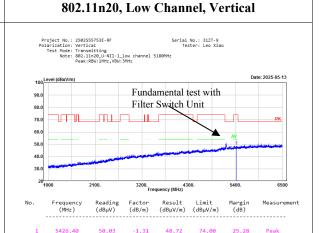


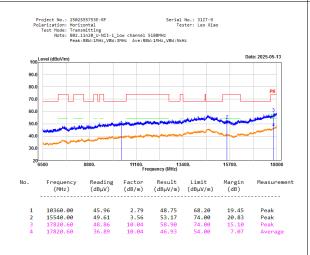

Project No.: 250255753E-RF Serial No.: 312T-9 Polarization: Norizontal Tester: Leo Xiao Tes

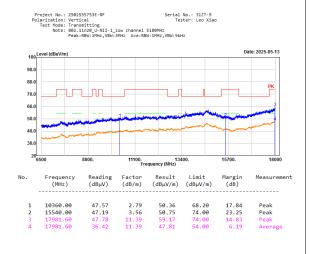

48.33

5392.30

802.11a, High Channel, Vertical

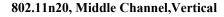


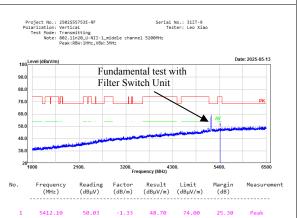


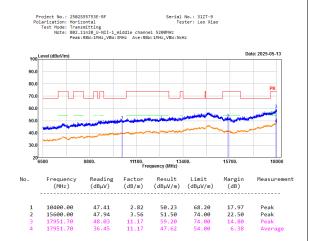

Reveal (### Re

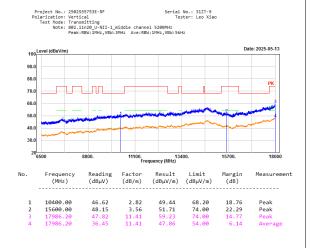
48.59

5378.00

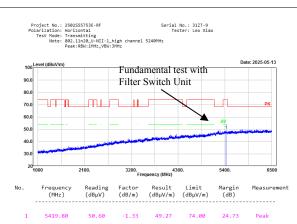

Project No.: 3992557538-0F Serial No.: 3127-0 Tester: Leo Xiao Test Mode: Transmitting Note: 802.11n2.0-U-NII-1_siddle channel 52809Hz Peak: RBN: 17Mz, VBN: 3Mrz Date: 2025-05-13 Fundamental test with Filter Switch Unit

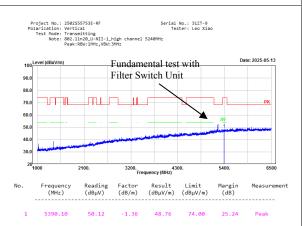

3200. 4300 Frequency (MHz)

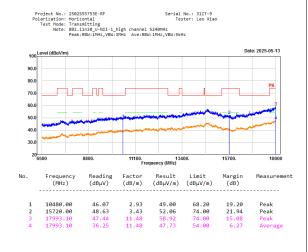

48.76

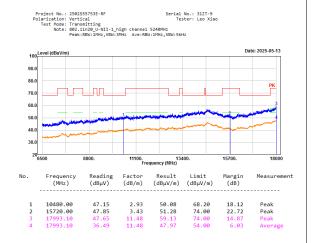

-1.32

5411.00

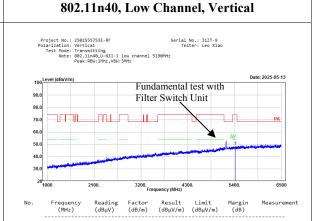







802.11n20, High Channel, Horizontal

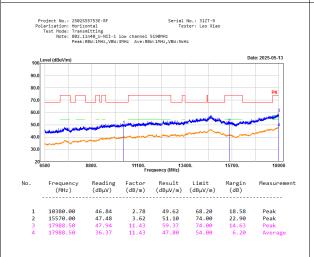
802.11n20, High Channel, Vertical

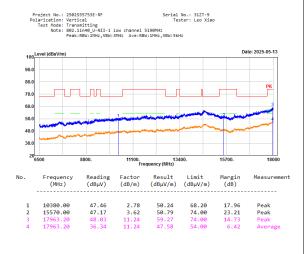

5379.10

50.42

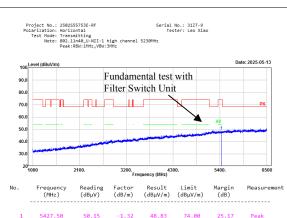
-1.39

49.03

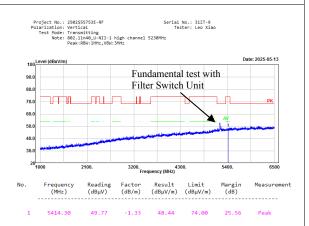


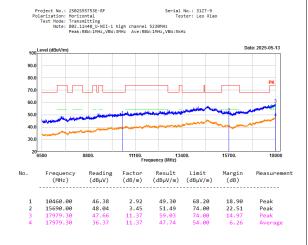


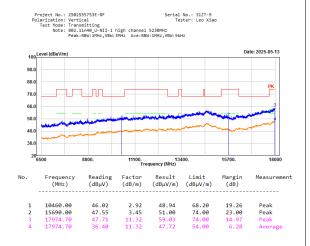
-1.33


48.26

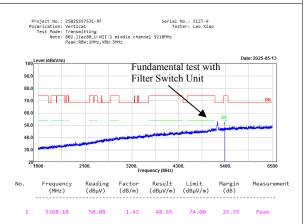
5423.10

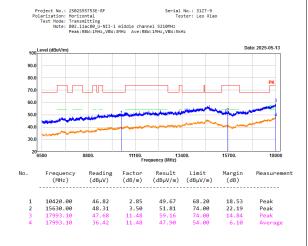




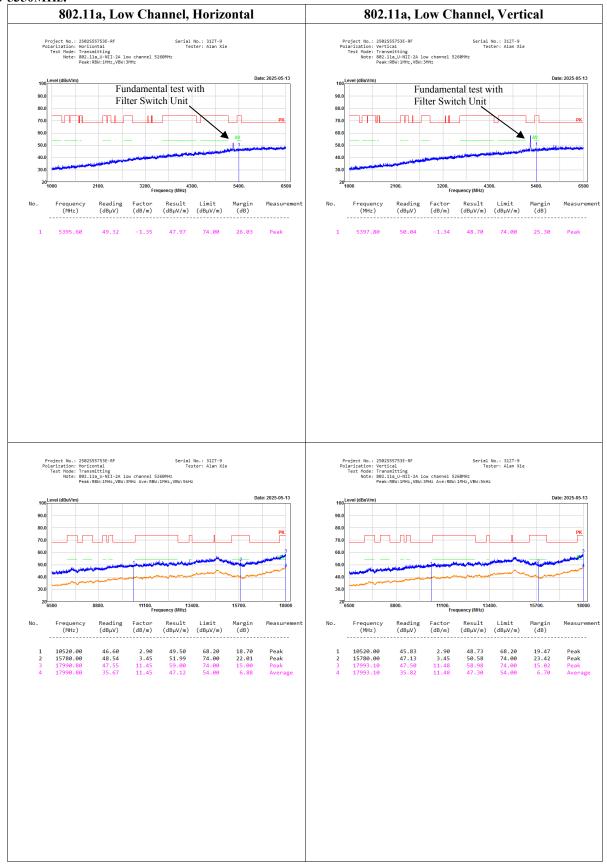

802.11n40, High Channel, Horizontal

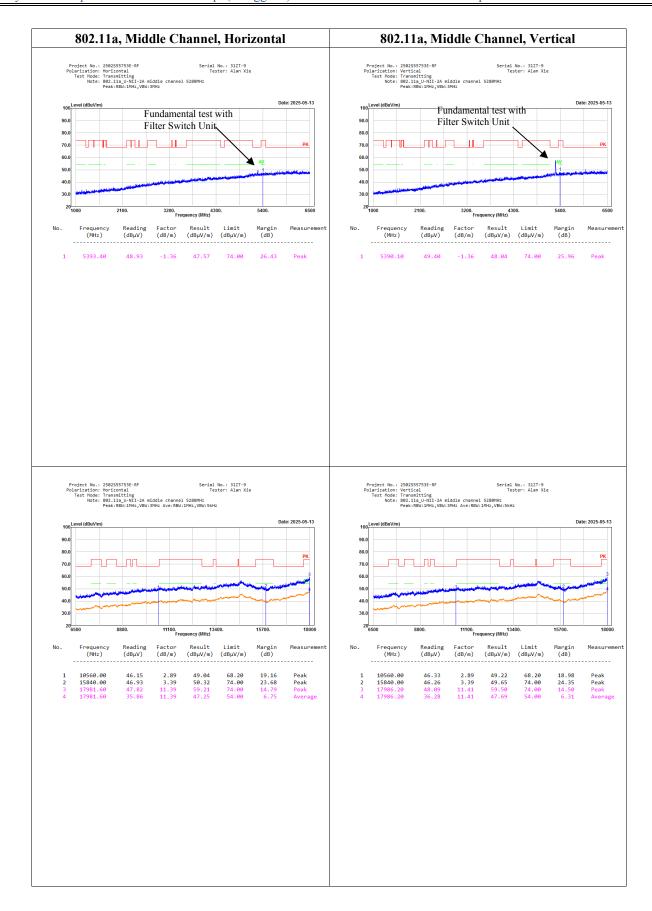
802.11n40, High Channel, Vertical

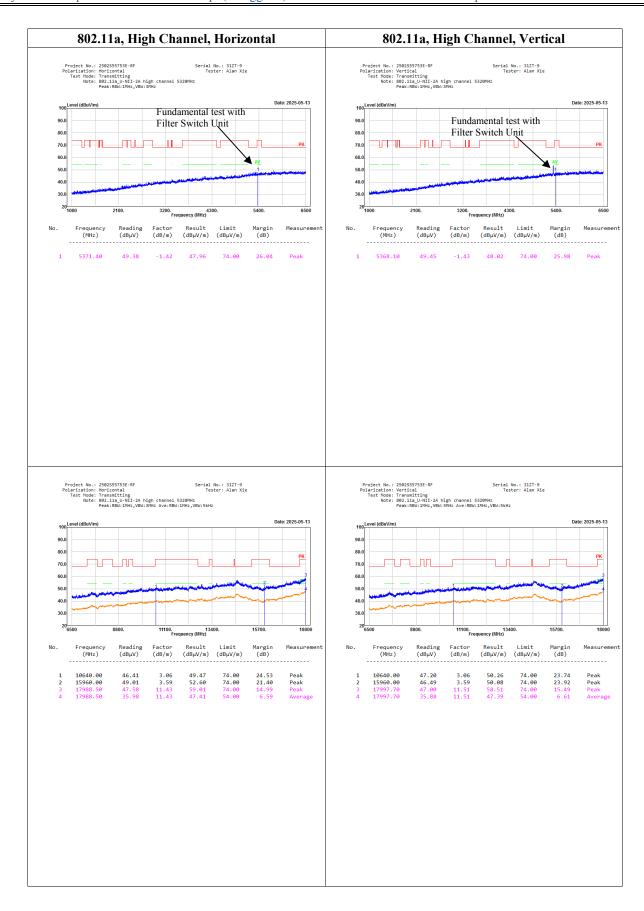


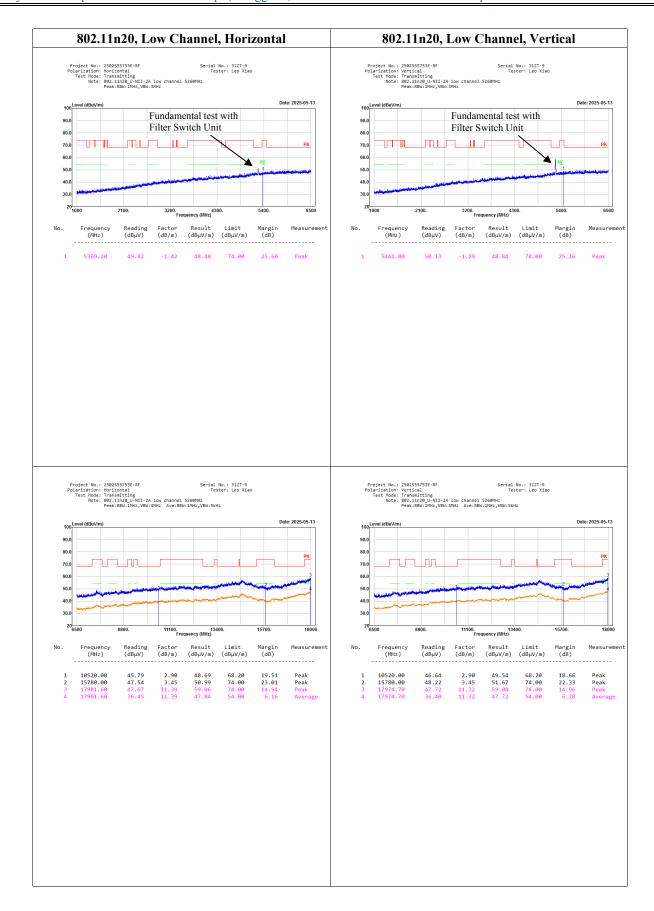


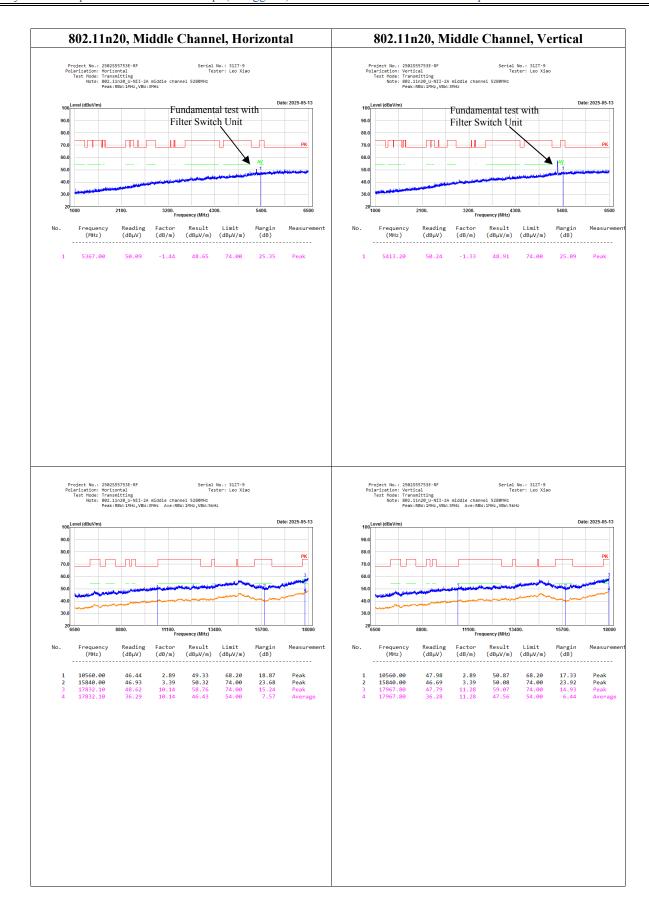

802.11ac80, Middle Channel, Horizontal

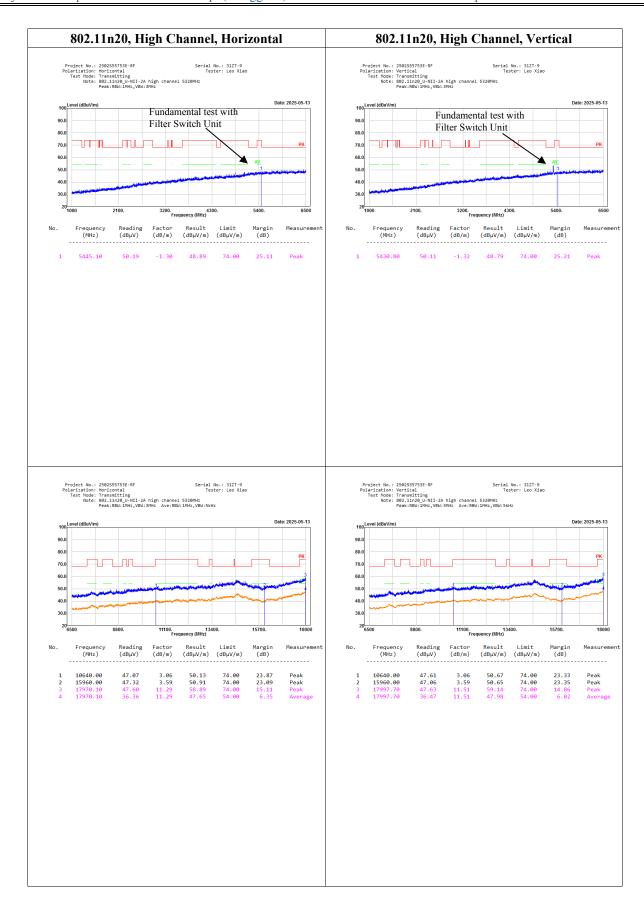

802.11ac80, Middle Channel, Vertical

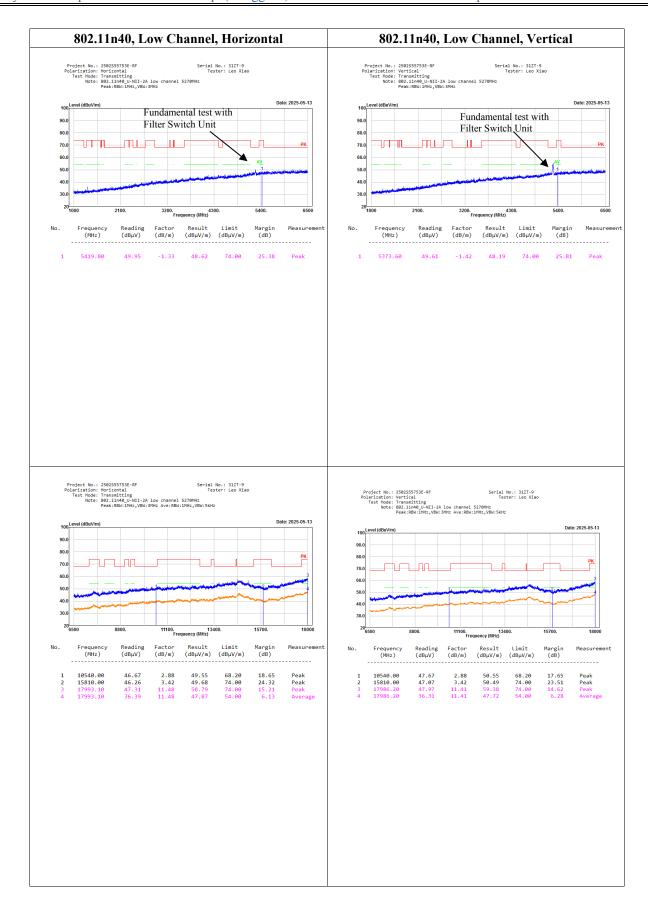


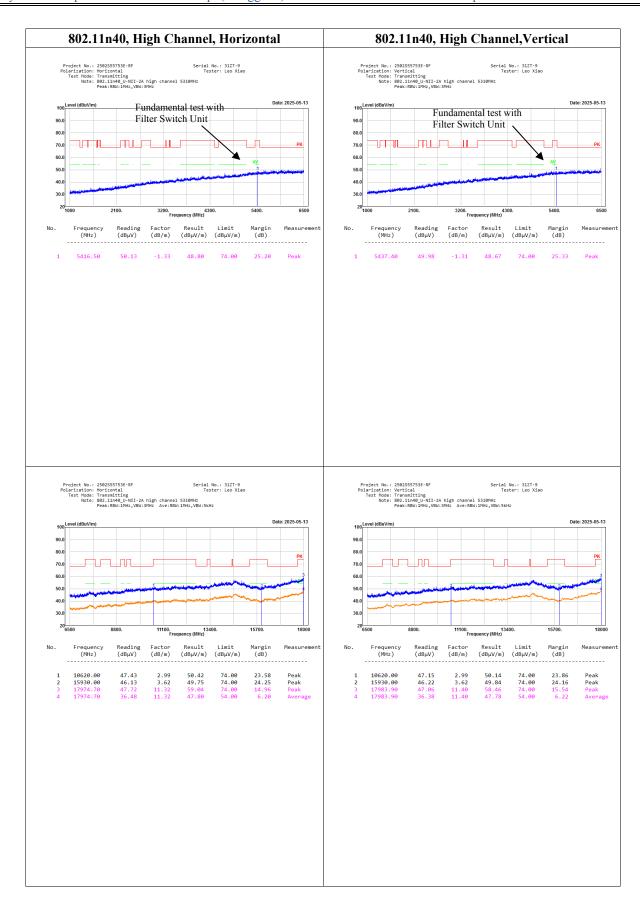


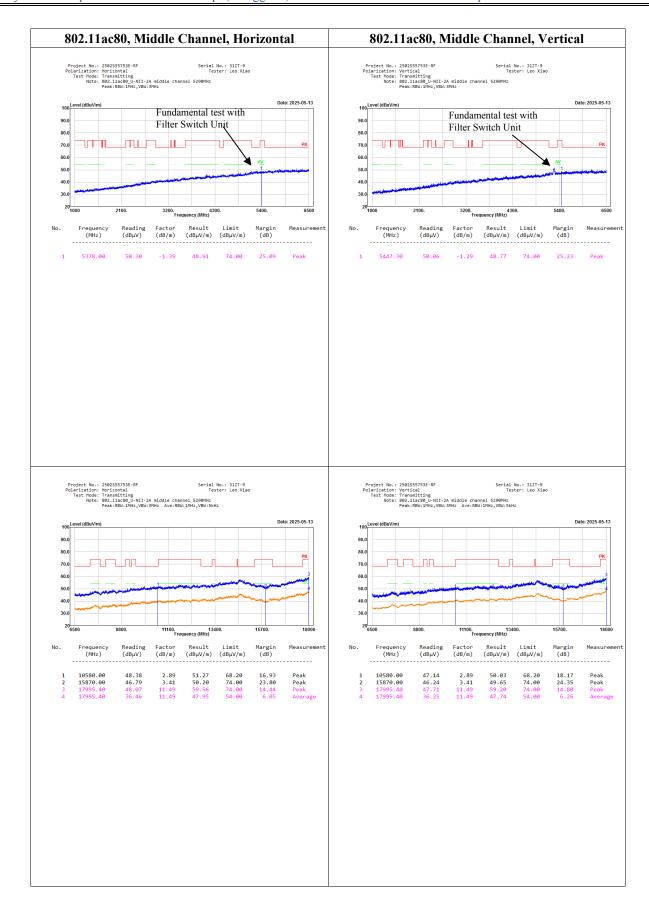


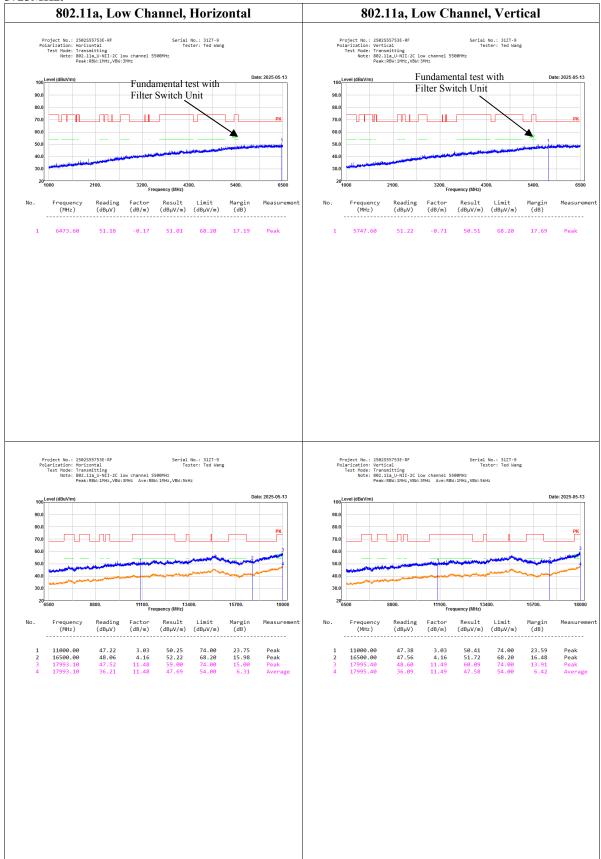

5250-5350MHz:

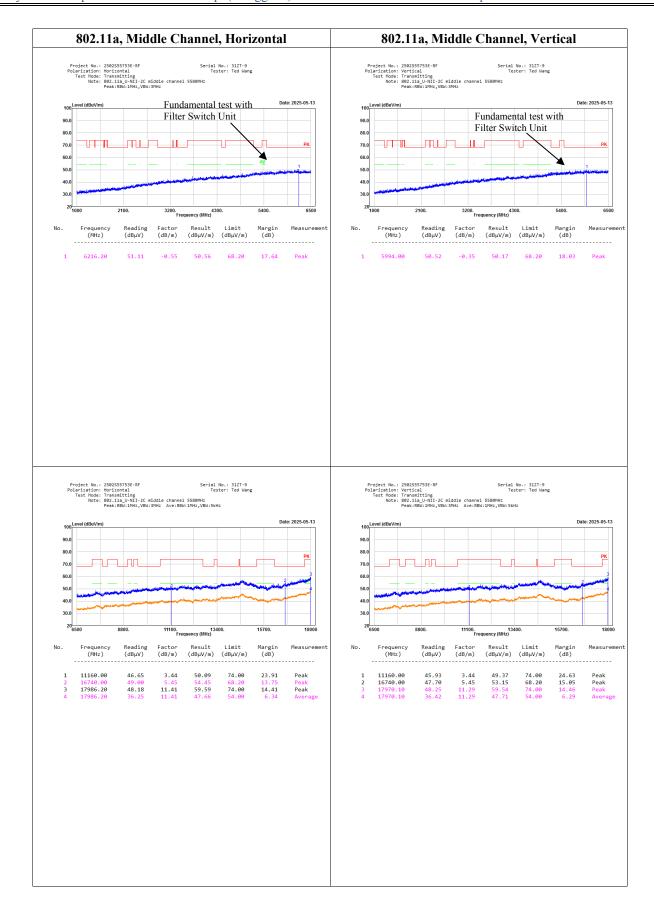


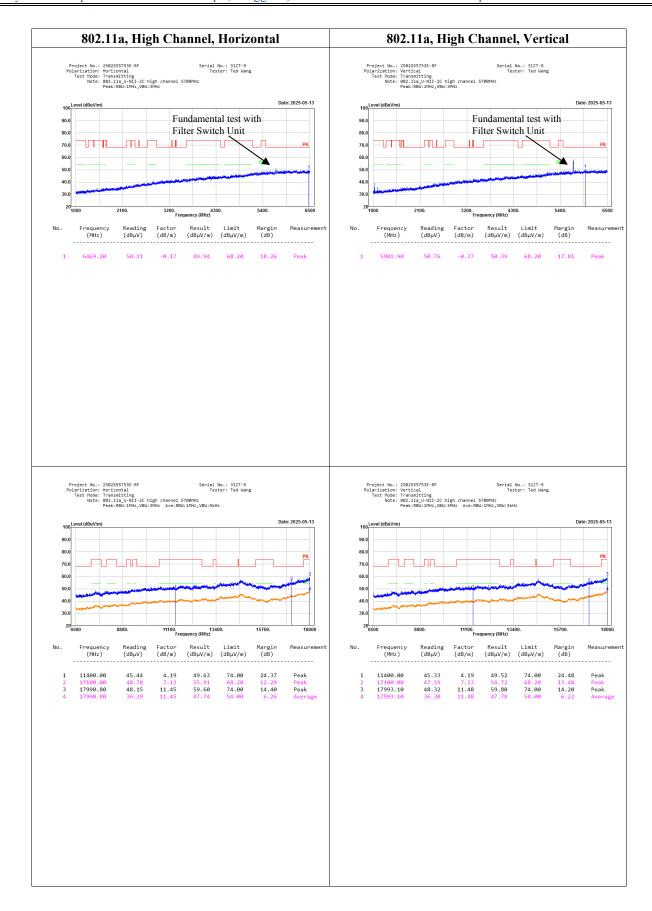


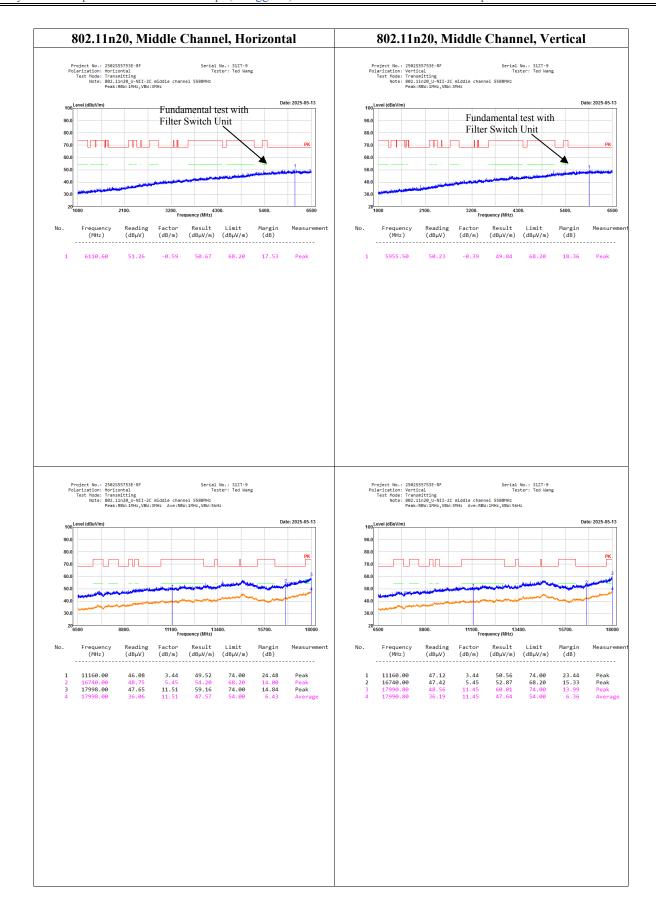


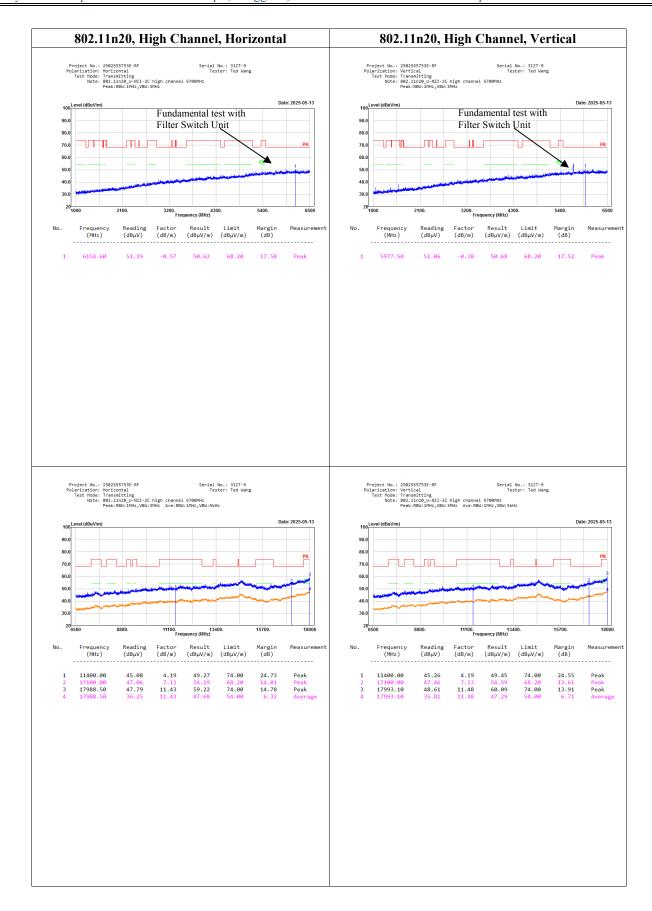


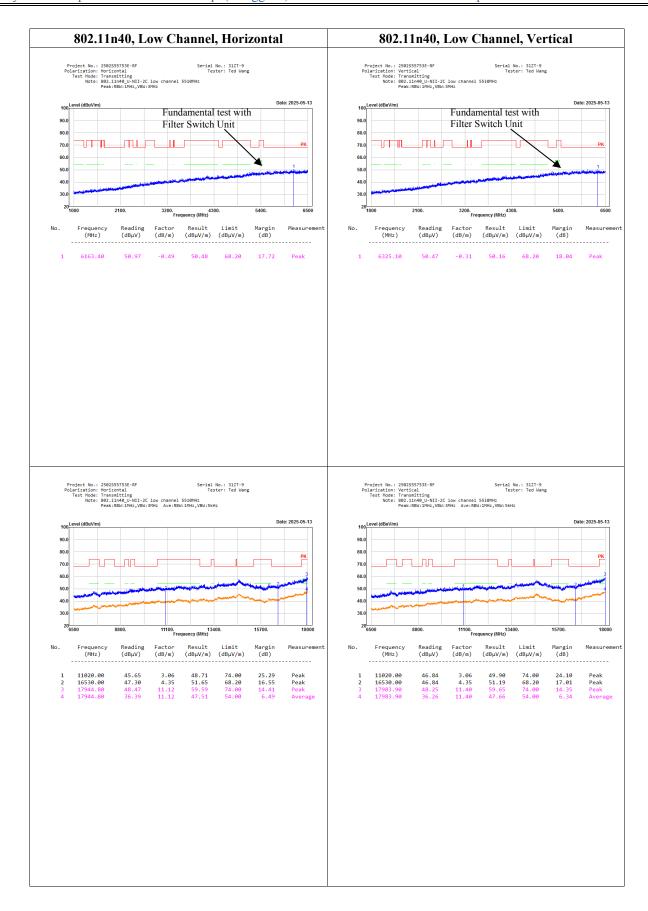


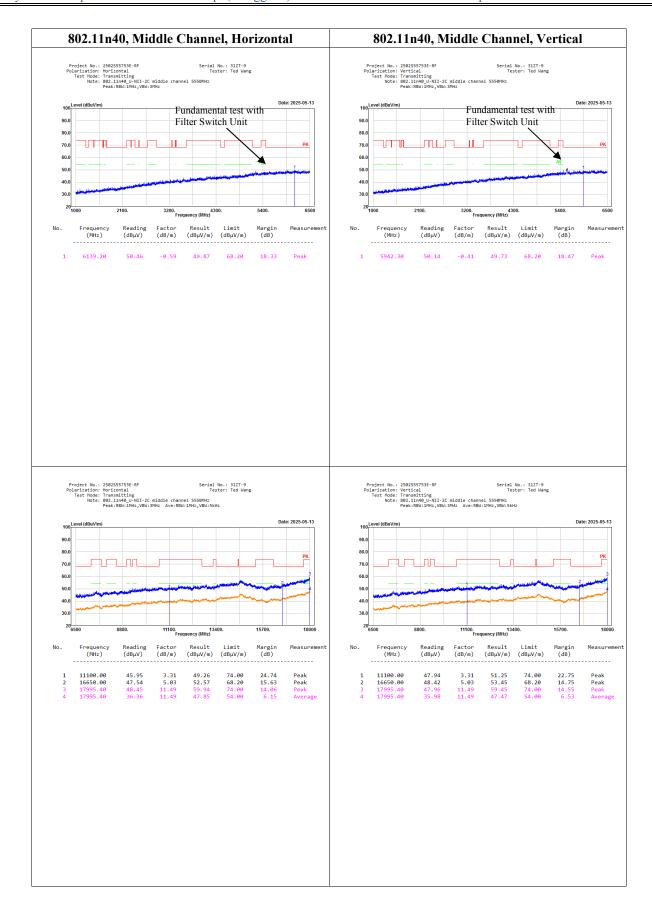


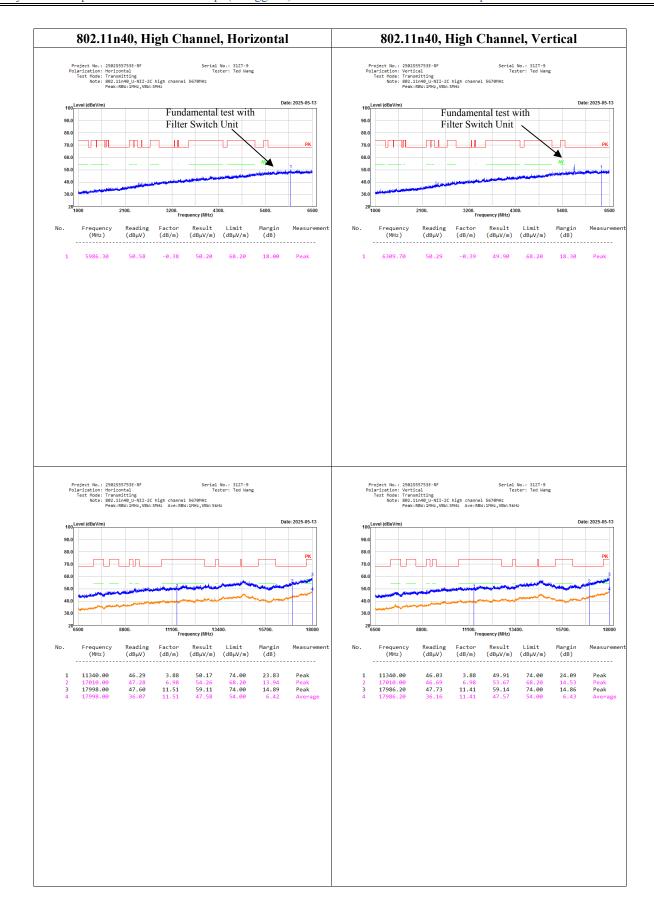


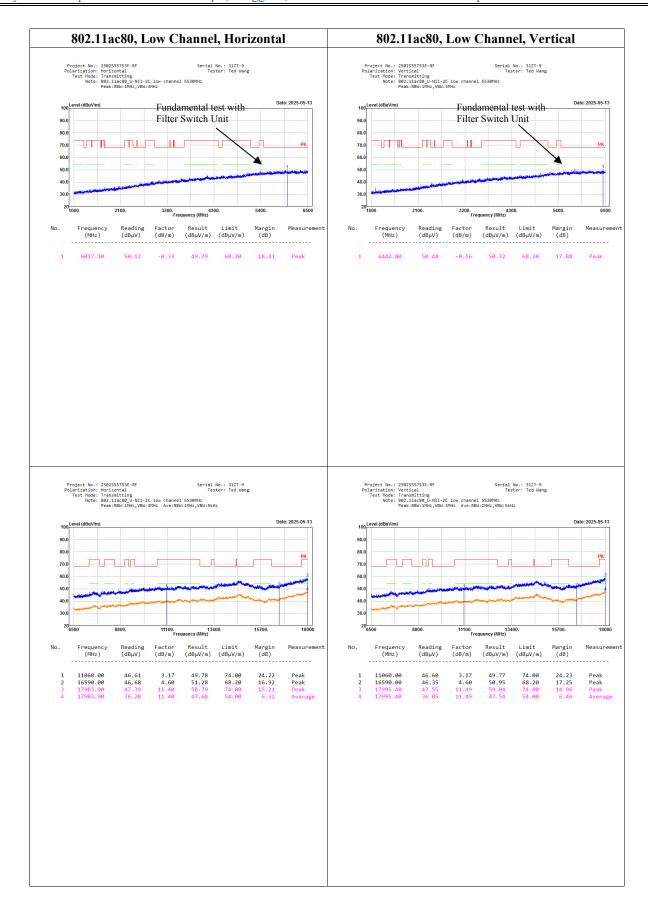

5470-5725MHz:

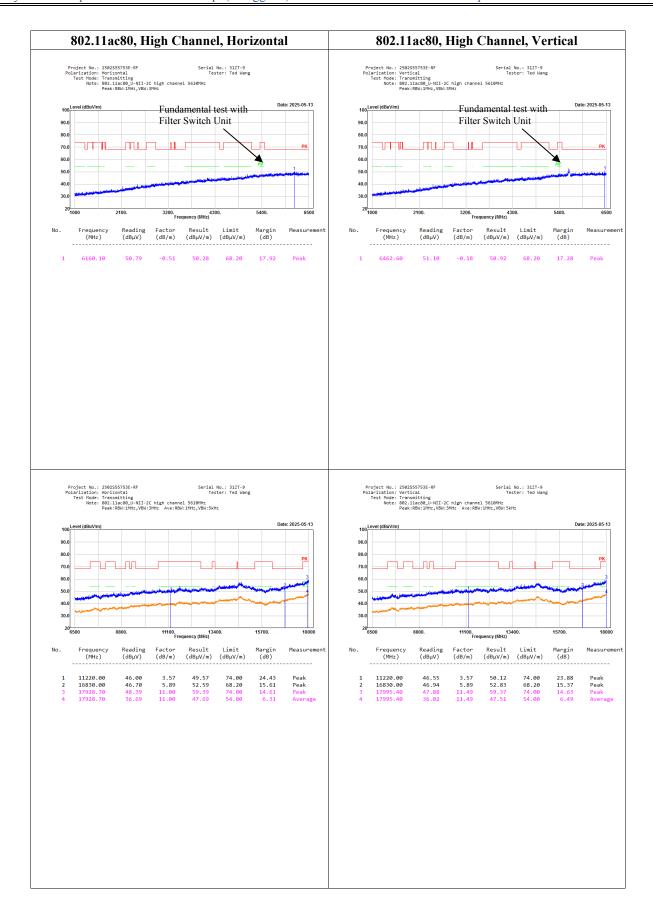


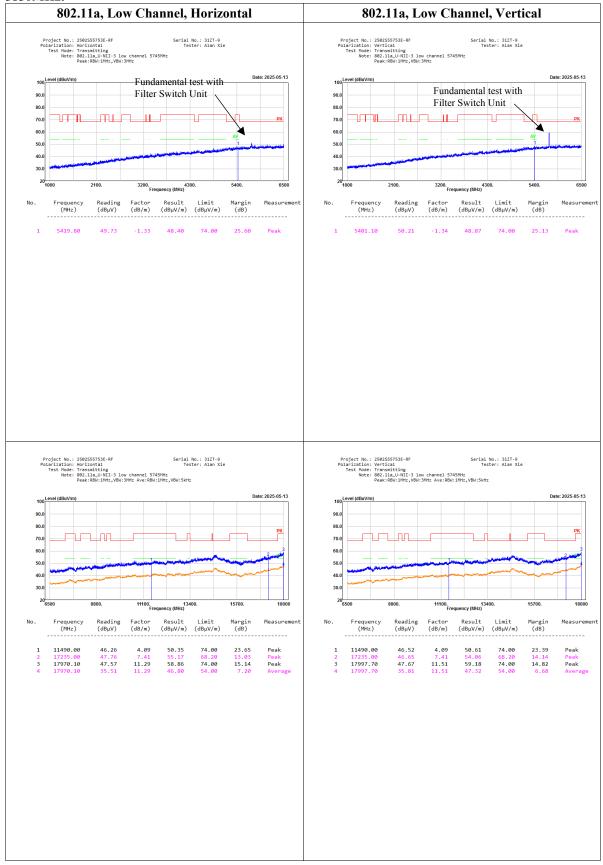


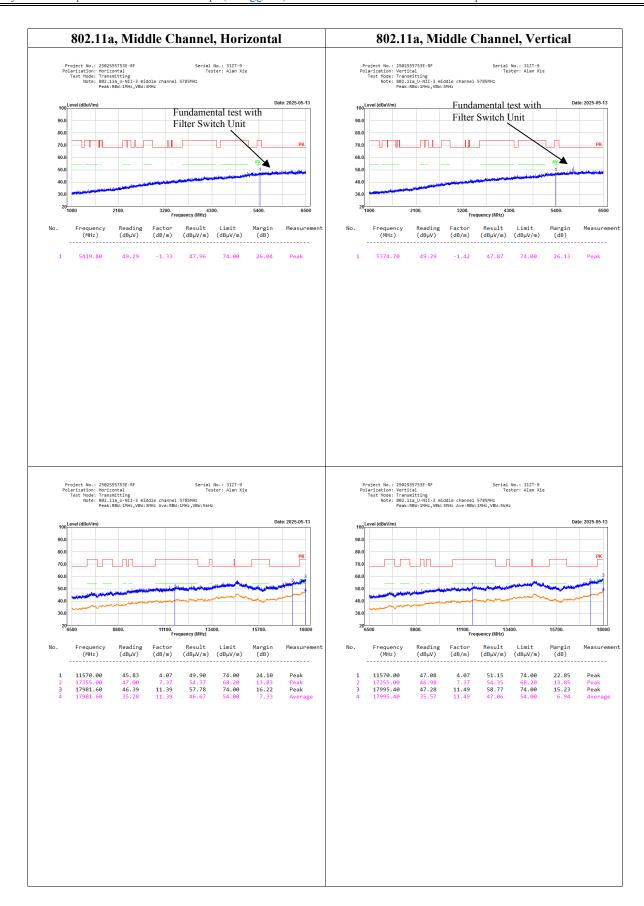


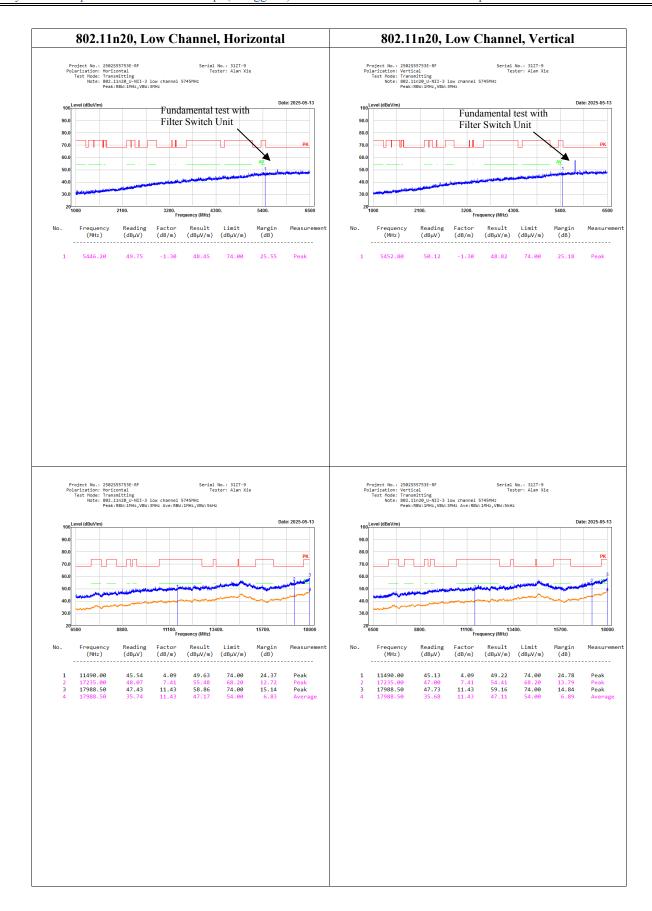




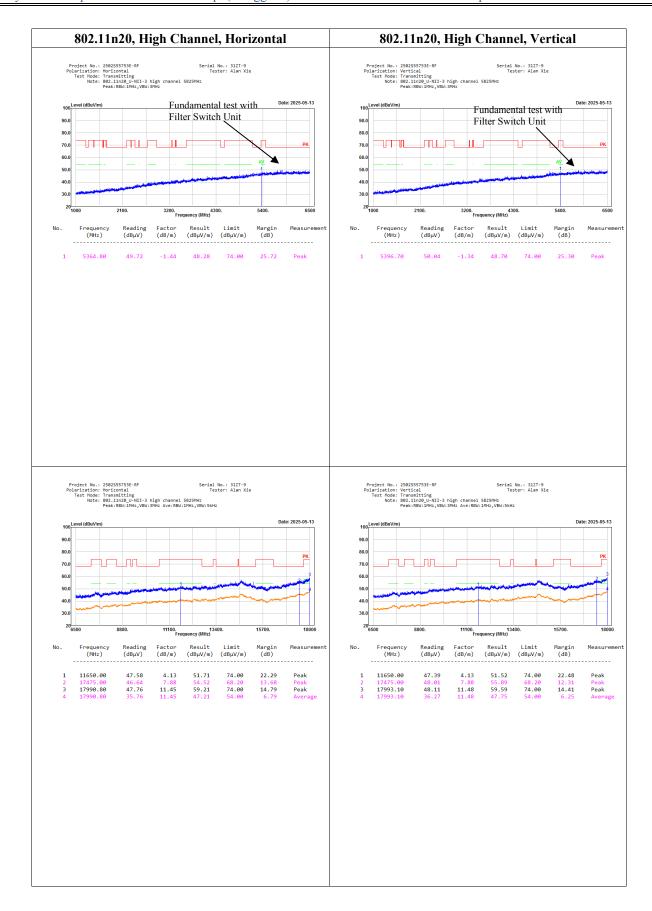


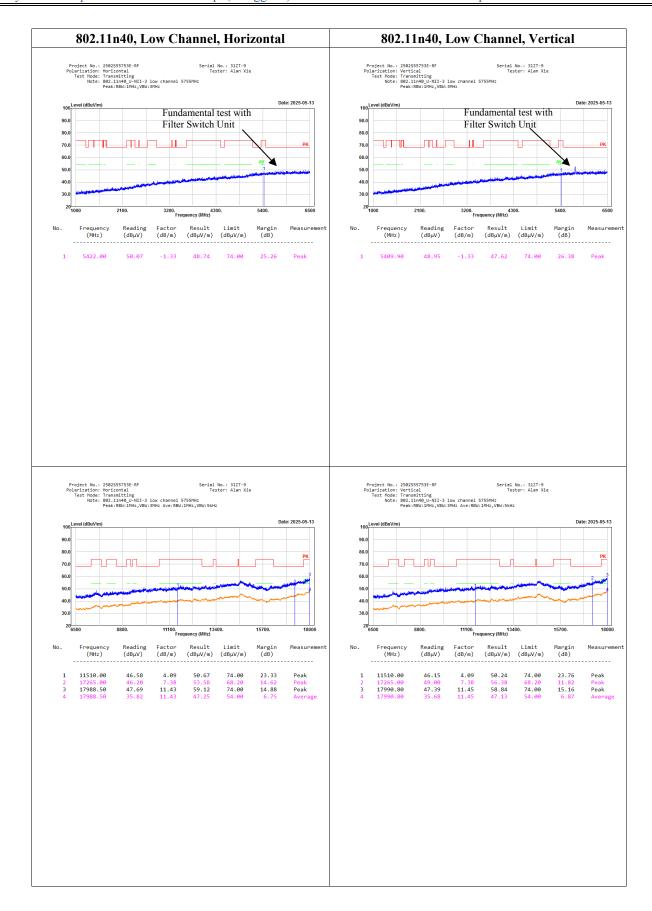


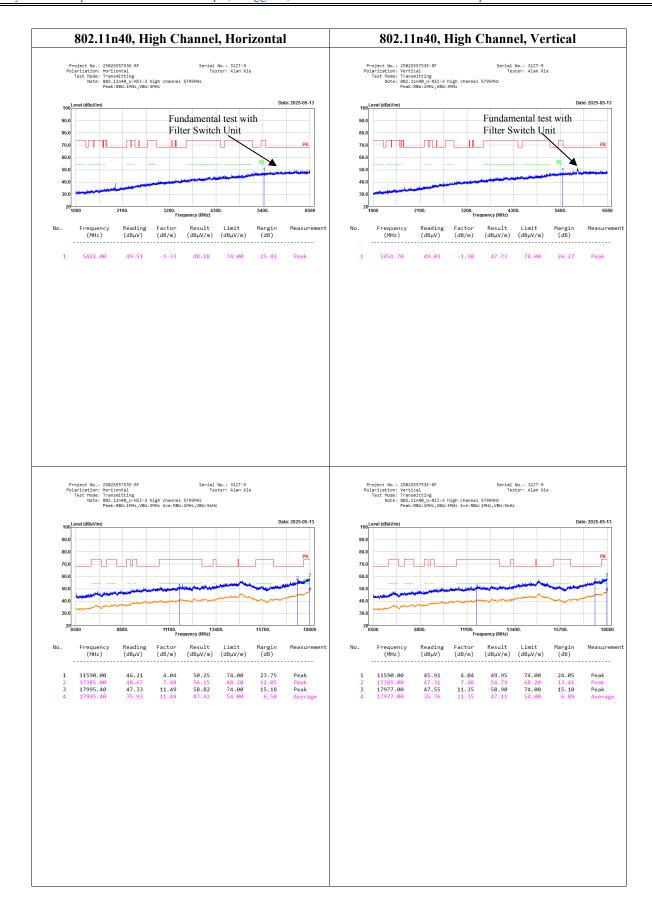


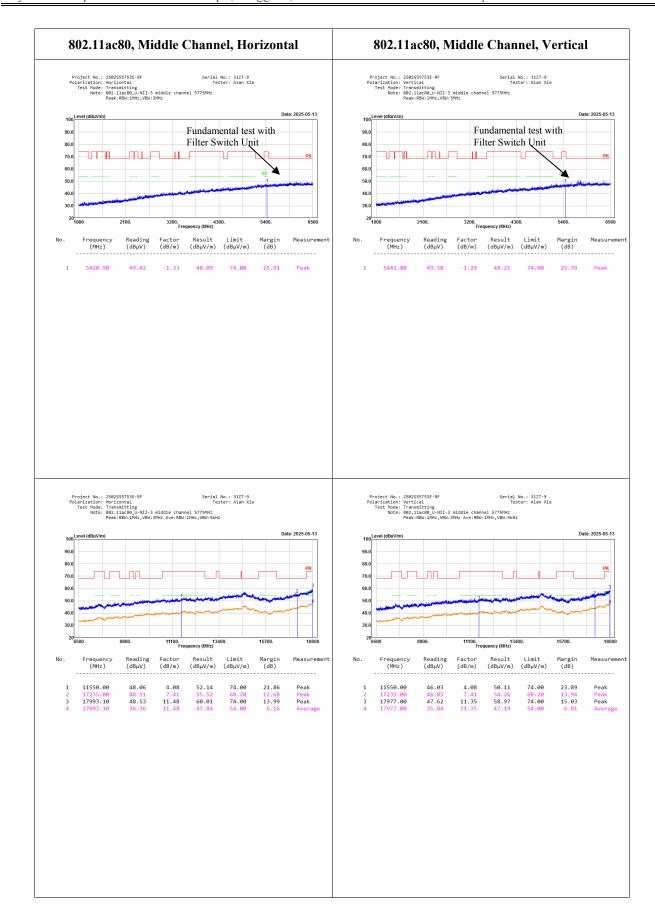


5725-5850MHz:

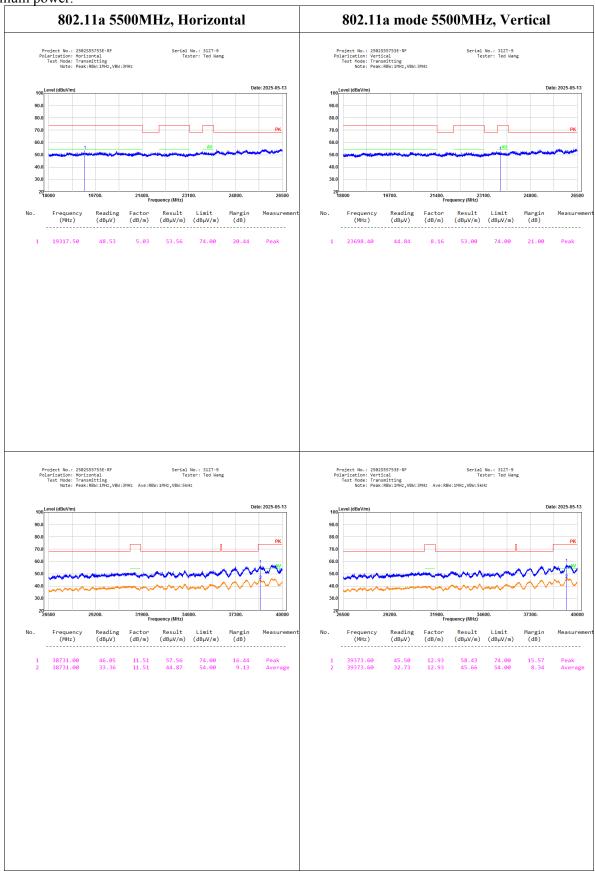


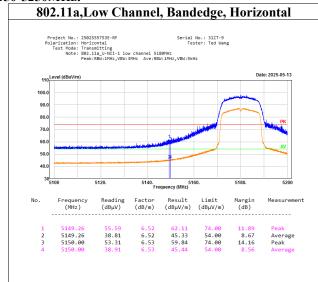


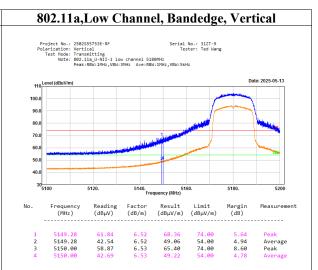


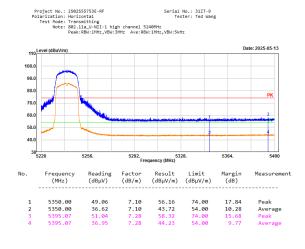


802.11n20, Middle Channel, Horizontal 802.11n20, Middle Channel, Vertical Project No.: 2502555753E-RF Seri Polarization: Horizontal Test Mode: Transmitting Mote: 802.11n20_U-NII-3 middle channel 5785NHz Peak: RBW: 1MWI, VBN: 3MHz Project No.: 250255975BE-RF Seri Polarization: Vertical Test Mode: Transmitting Mote: 802.11n20_U-NII-3 middle channel 5785MHz Peak: RBN: 1MHz, VDN: 3MHz Serial No.: 31ZT-9 Tester: Alan Xie Serial No.: 31ZT-9 Tester: Alan Xie Date: 2025-05-13 Fundamental test with Fundamental test with Filter Switch Unit Filter Switch Unit 70.0 60.0 50.0 50.0 40.0 40.0 3200. 4300. Frequency (MHz) -1.32 47.74 48.16 5418.70 5406.60 Project No.: 2502555753E-RF Serial P Polarization: Vertical Test Test Mode: Transmitting Note: 802.11n20_U-NII-3 middle channel 5785MHz Polar: RBM: 19Mrz, VBM: 3MHz Ave: RBM: 19Mtz, VBM: 5MHz Serial No.: 31ZT-9 Tester: Alan Xie Serial No.: 31ZT-9 Tester: Alan Xie Date: 2025-05-13 Date: 2025-05-13 80.0 80.0 70.0 40.0 1340 Jency (MHz) 11100. 13 Frequency (MHz) 11570.00 46.82 4.07 50.89 74.00 23,11 Peak 11570.00 45.82 4.07 49.89 74.00 24.11 Peak 74.00 54.00 54.14 59.57 47.84 74.00 54.00 47.71 35.84 58.95 47.08 Peak 14.43 Peak Average 17963.20 17963.20 11.24 11.24 15.05 6.92 18000.00 18000.00 48.05 36.32 11.52 11.52

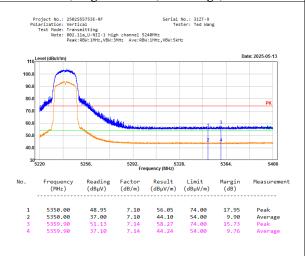


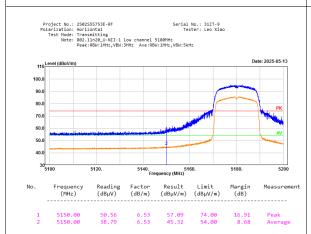

18-40GHz:

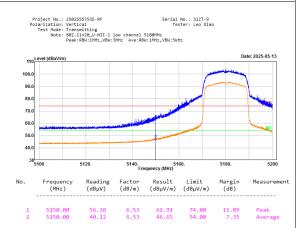

No Emission was detected in the range 18-40GHz, test was performed on the mode and channel which with the maximum power.

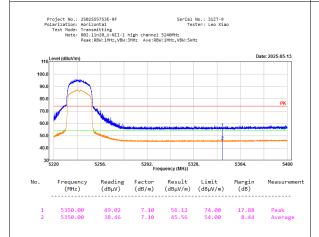

Bandedge:

5150-5250MHz:

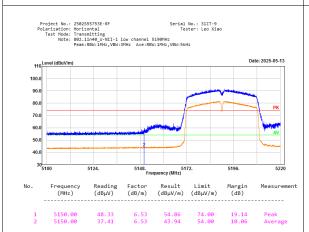


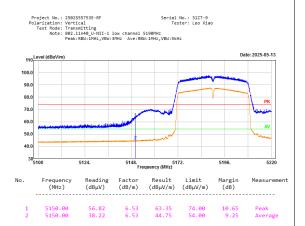

802.11a, High Channel, Bandedge, Horizontal

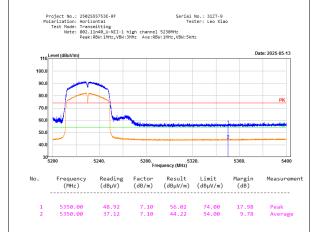

802.11a, High Channel, Bandedge, Vertical

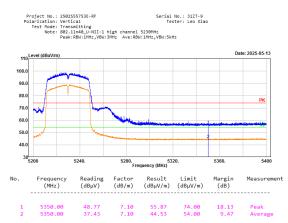

802.11n20,Low Channel, Bandedge, Horizontal

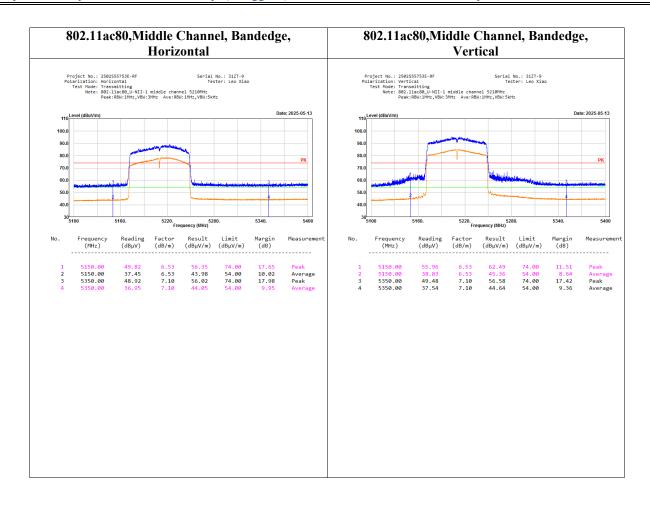
802.11n20,Low Channel, Bandedge, Vertical


802.11n20, High Channel, Bandedge, Horizontal

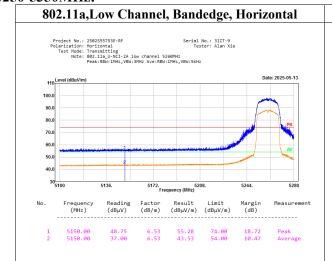

802.11n20,High Channel, Bandedge, Vertical

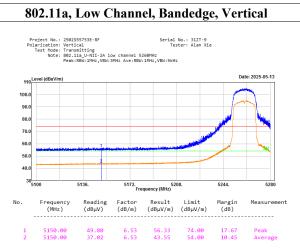

802.11n40,Low Channel, Bandedge, Horizontal

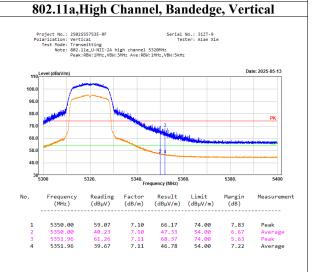

802.11n40,Low Channel, Bandedge, Vertical



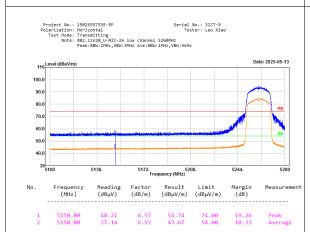
802.11n40, High Channel, Bandedge, Horizontal

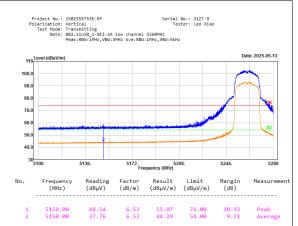


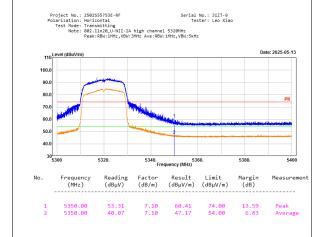

802.11n40, High Channel, Bandedge, Vertical

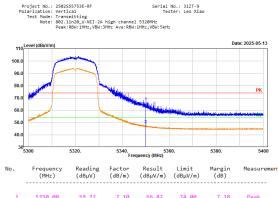


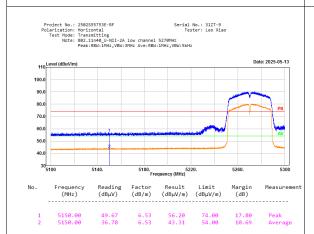
5250-5350MHz:

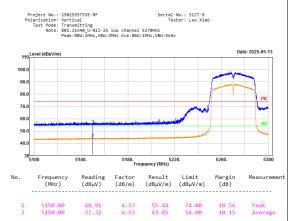


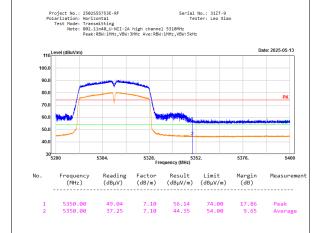

802.11a, High Channel, Bandedge, Horizontal Project No.: 2502555758E-RF Serial N Polarization: Horizontal Test Test Mode: Transmitting Hote: 802.11a_U-HII-2A high channel 5320MHz Hote: 802.11a_U-HII-3Whi_3MHz_Ave:RBH:LMHz_VBW:SkHz Serial No.: 31ZT-9 Tester: Alan Xie Date: 2025-05-13 100.0 70.0 60.0 5340. Frequency (MHz) 5360 Result (dBμV/m) Measurement 5350.76 37.23 7.11 44.34 54.00 9.66 Average

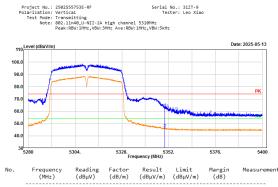

802.11n20,Low Channel, Bandedge, Horizontal

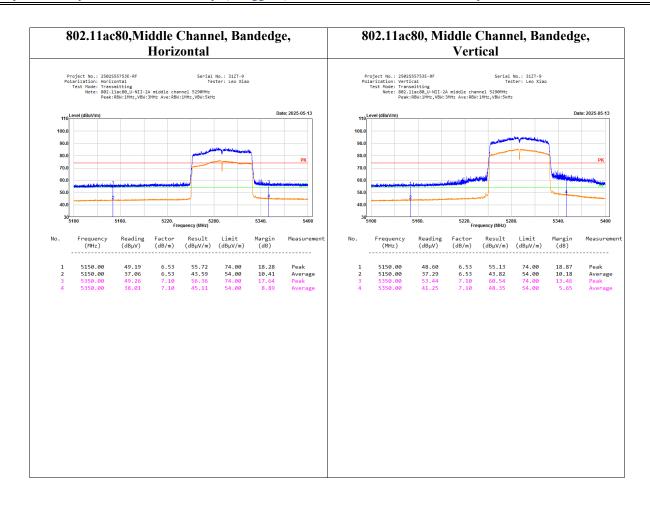

802.11n20, Low Channel, Bandedge, Vertical


802.11n20, High Channel, Bandedge, Horizontal

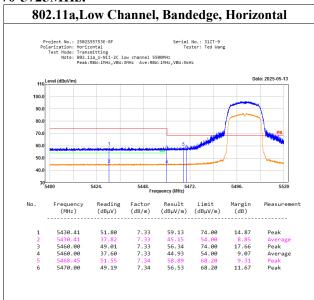

802.11n20, High Channel, Bandedge, Vertical

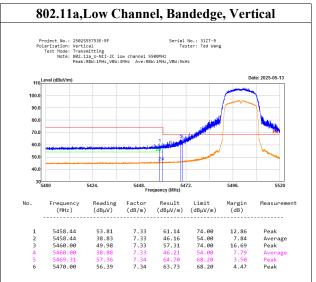

802.11n40,Low Channel, Bandedge, Horizontal

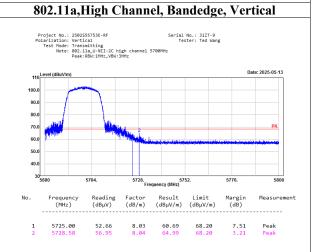

802.11n40,Low Channel, Bandedge, Vertical



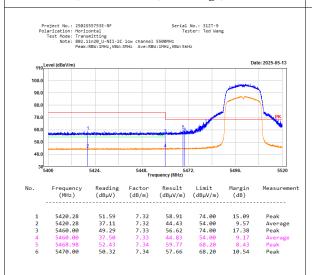
802.11n40, High Channel, Bandedge, Horizontal

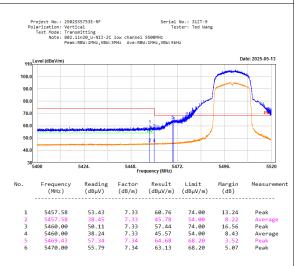


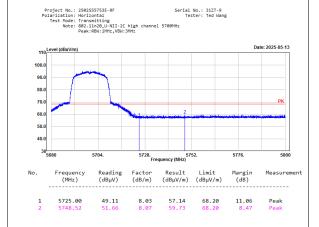

802.11n40, High Channel, Bandedge, Vertical

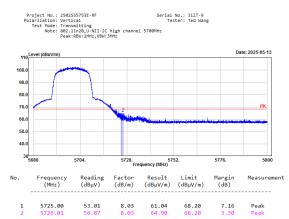


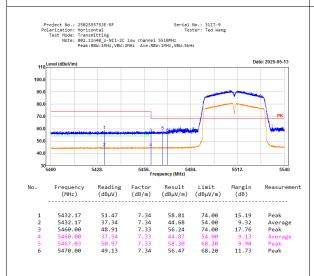
5470-5725MHz:

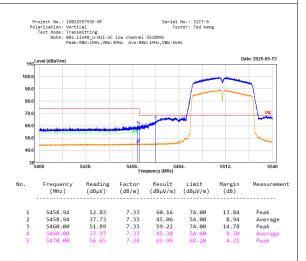


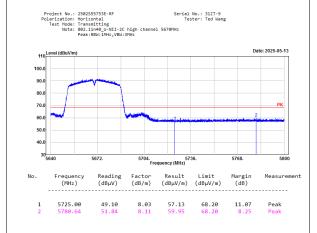

802.11a, High Channel, Bandedge, Horizontal Project No.: 359355553-RP Polarization: Noticintal Test Node: Transmitting Note: 802.11a, UHI 2C nigh channel 5700MHz Date: 2025.05-13 100.0 100.

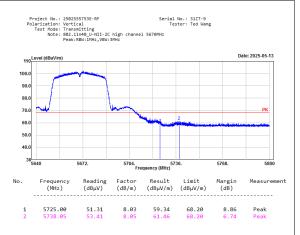

802.11n20,Low Channel, Bandedge, Horizontal


802.11n20,Low Channel, Bandedge, Vertical

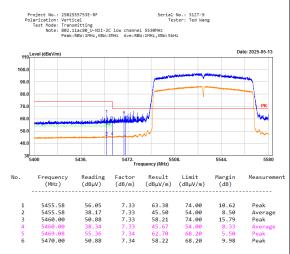

802.11n20, High Channel, Bandedge, Horizontal

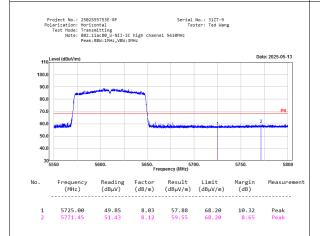

802.11n20, High Channel, Bandedge, Vertical

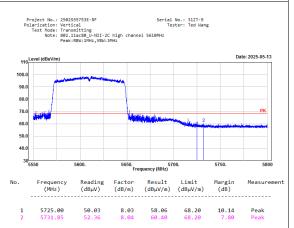

802.11n40,Low Channel, Bandedge, Horizontal


802.11n40,Low Channel, Bandedge, Vertical

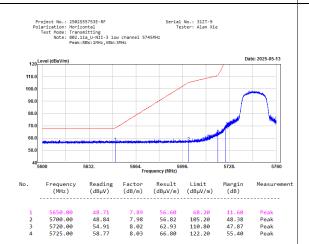
802.11n40, High Channel, Bandedge, Horizontal


802.11n40, High Channel, Bandedge, Vertical

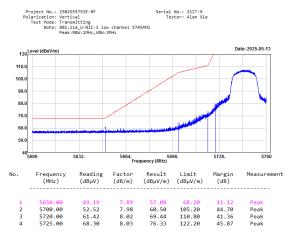

802.11ac80,Low Channel, Bandedge, Horizontal


802.11ac80,Low Channel, Bandedge, Vertical

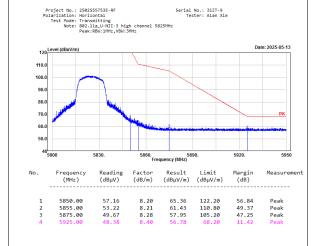
802.11ac80, High Channel, Bandedge, Horizontal

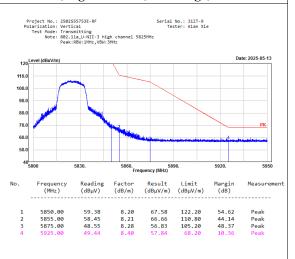


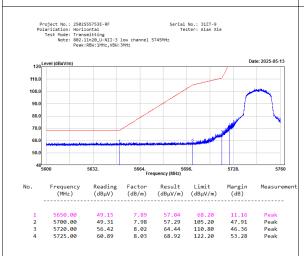
802.11ac80, High Channel, Bandedge, Vertical

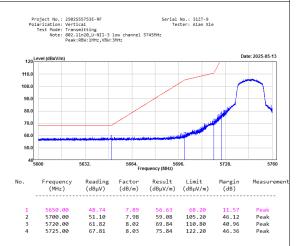


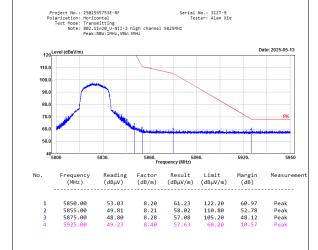
5725-5850MHz:


802.11a,Low Channel, Bandedge, Horizontal


802.11a, Low Channel, Bandedge, Vertical

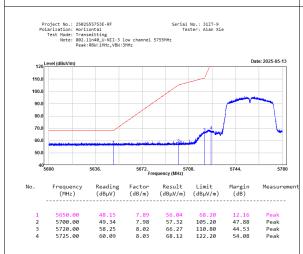

802.11a, High Channel, Bandedge, Horizontal


802.11a, High Channel, Bandedge, Vertical

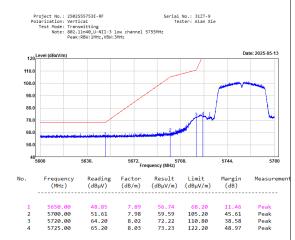

802.11n20,Low Channel, Bandedge, Horizontal

802.11n20, Low Channel, Bandedge, Vertical

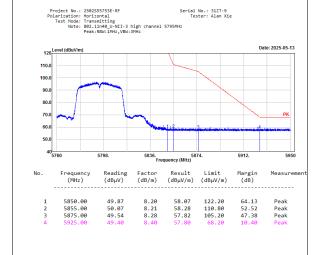
802.11n20, High Channel, Bandedge, Horizontal



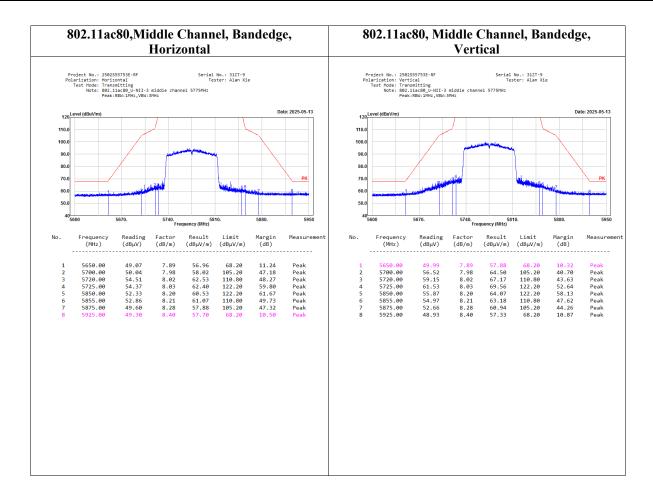
802.11n20, High Channel, Bandedge, Vertical



1	5850.00	59.81	8.20	68.01	122.20	54.19	Peak
2	5855.00	55.38	8.21	63.59	110.80	47.21	Peak
3	5875.00	49.35	8.28	57.63	105.20	47.57	Peak
4	5025 00	48 42	8 40	56.82	68 20	11 38	Doole


802.11n40,Low Channel, Bandedge, Horizontal

802.11n40,Low Channel, Bandedge, Vertical


802.11n40, High Channel, Bandedge, Horizontal

802.11n40, High Channel, Bandedge, Vertical

1	5850.00	52.32	8.20	60.52	122.20	61.68	Peak
2	5855.00	51.64	8.21	59.85	110.80	50.95	Peak
3	5875.00	49.59	8.28	57.87	105.20	47.33	Peak
- 4	5025 00	40.00	0 40	58 23	68 20	0 07	Dook

5.3 Emission Bandwidth

Test Information:

Serial No.:	31ZT-1	Test Date:	2025/05/10~2025/05/12
Test Site:	RF	Test Mode:	Transmitting
Tester:	Bill Yang	Test Result:	Pass

Environmental Conditions:

Temperature:	Relative umidity: 51-57	ATM Pressure: (kPa)	100.6-101
--------------	-------------------------	---------------------	-----------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Eastsheep	Coaxial Attenuator	5W-N-JK-6G- 10dB	F-08-EM502	2024/06/07	2025/06/06
R&S	Coaxial Attenuator	10dB	F-08-EM512	2024/06/13	2025/06/12
R&S	Spectrum Analyzer	FSV40	101589	2024/09/05	2025/09/04
R&S	Spectrum Analyzer	FSV40	101947	2024/09/05	2025/09/04

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Report No.: 2502S55753E-RF-00D

Test Data:

26dB Emission Bandwidth 5150-5250MHz

Mode	Test Frequency (MHz)	Result (MHz)
	5180	24.137
802.11a	5200	21.949
	5240	26.873
	5180	23.138
802.11n20	5200	23.086
	5240	23.138
902 11 11 10	5190	40.941
802.11n40	5230	40.741
802.11ac80	5210	82.082

5250-5350MHz

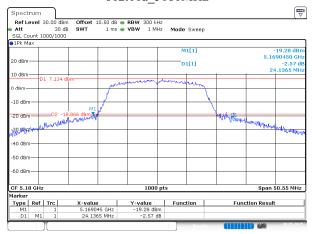
3230-3330WIIIZ	TD 4 TD	D 1/
Mode	Test Frequency (MHz)	Result (MHz)
	5260	22.709
802.11a	5280	24.554
	5320	24.464
	5260	24.359
802.11n20	5280	24.270
	5320	24.309
902 11-40	5270	40.741
802.11n40	5310	41.041
802.11ac80	5290	81.481

5470-5725MHz

Mode	Test Frequency (MHz)	Result (MHz)
	5500	25.363
802.11a	5580	24.325
802.11a	5700	22.745
	5720	19.970
802.11n20	5500	24.281

Report Template Version: FCC-WiFi5-Client-V2.0

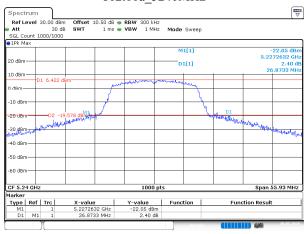
Report No.: 2502S55753E-RF-00D


Mode	Test Frequency (MHz)	Result (MHz)
	5580	26.030
802.11n20	5700	24.188
	5720	26.304
	5510	40.841
802.11n40	5550	40.741
002.111140	5670	41.141
	5710	41.241
	5530	81.882
802.11ac80	5610	81.281
	5690	81.481

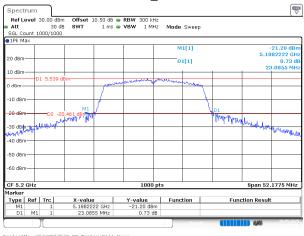
6dB Emission Bandwidth 5725-5850MHz

Mode	Test Frequency (MHz)	Result (MHz)	Limit (MHz)	Verdict
	5745	15.265	0.5	Pass
802.11a	5785	15.766	0.5	Pass
	5825	15.215	0.5	Pass
	5745	15.215	0.5	Pass
802.11n20	5785	15.215	0.5	Pass
	5825	15.566	0.5	Pass
802.11n40	5755	35.235	0.5	Pass
002.111140	5795	35.235	0.5	Pass
802.11ac80	5775	75.475	0.5	Pass

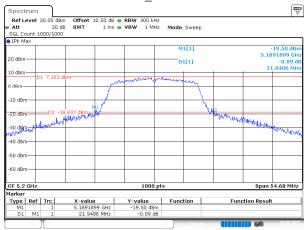
5150-5250MHz


802.11a_5180MHz

ProjectNo.:2502S55753E-RF Tester:Bill Yang

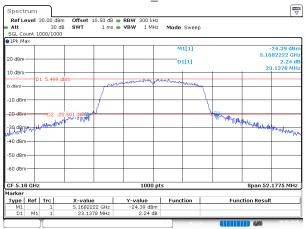

Date: 10.MAY.2025 11:21:22

802.11a_5240MHz

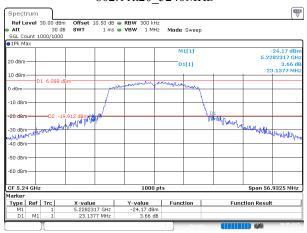

ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 11:24:28

802.11n20 5200MHz

ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 11:40:01

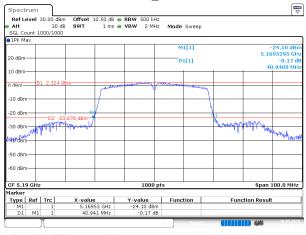

802.11a_5200MHz

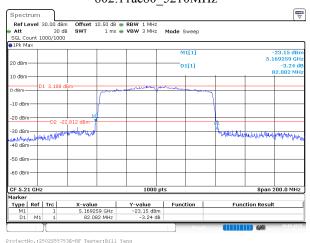
ProjectNo.:2502S55753E-RF Tester:Bill Yang


Date: 10.MAY.2025 11:22:58

802.11n20_5180MHz

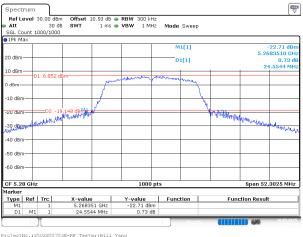
ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 11:38:22


802.11n20 5240MHz

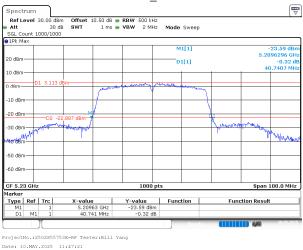

ProjectNo.:2502S55753E-RF Tester:Bill Yang

Date: 10.MAY.2025 11:43:06

802.11n40_5190MHz

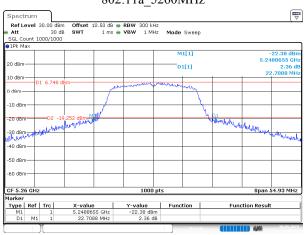

802.11ac80_5210MHz

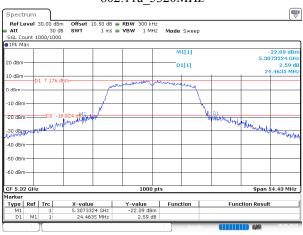
Date: 10.MAY.2025 11:48:46


Date: 10.MAY.2025 11:46:23

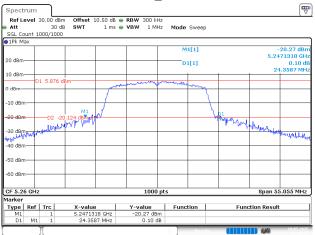
802.11a_5280MHz

ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 13:03:04

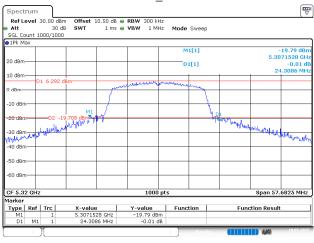

802.11n40_5230MHz


5250-5350MHz

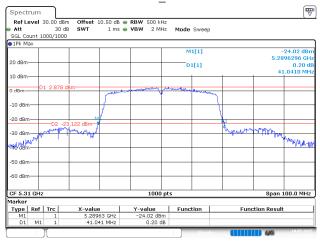
802.11a_5260MHz


ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 13:01:38

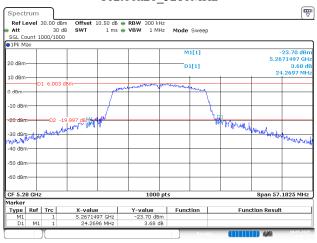
802.11a 5320MHz


ProjectNo.:2502S55753E-RF Tester:Bill Yang

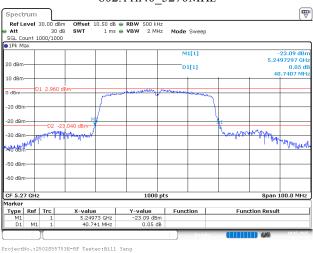
802.11n20_5260MHz


ProjectNo.:2502S55753B-RF Tester:Bill Yang Date: 10.MAY.2025 13:06:19

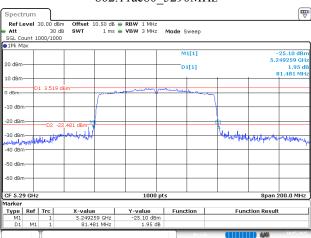
802.11n20_5320MHz


ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 13:30:37

802.11n40_5310MHz

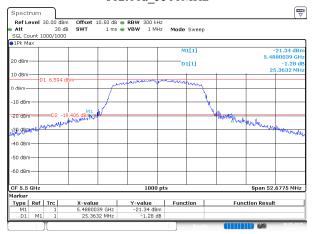

ProjectNo.:2502S55753E-RF Tester:Bill Yang
Date: 10.MAY.2025 13:39:41

802.11n20_5280MHz

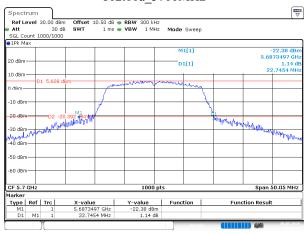

ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 13:07:49

802.11n40_5270MHz

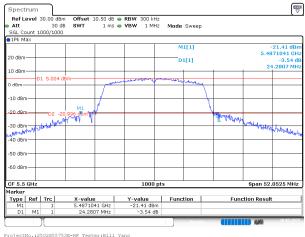
Date: 10.MAY.2025 13:32:19


802.11ac80_5290MHz

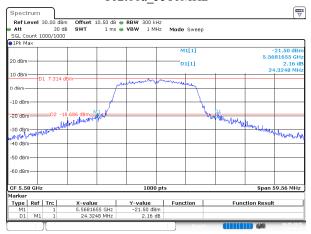
ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 13:41:22


5470-5725MHz

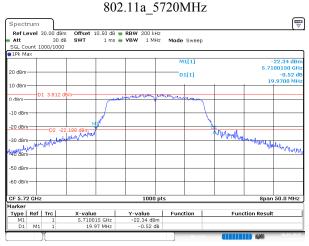
802.11a_5500MHz


Date: 10.MAY.2025 14:02:51

802.11a_5700MHz

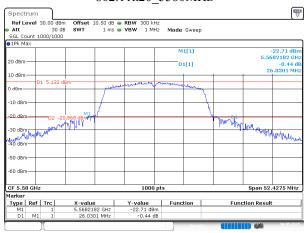

ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 14:10:17

802.11n20 5500MHz



Date: 10.MAY.2025 14:28:50

802.11a_5580MHz

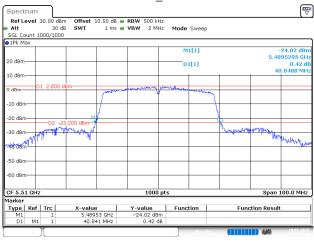


Date: 10.MAY.2025 14:04:28

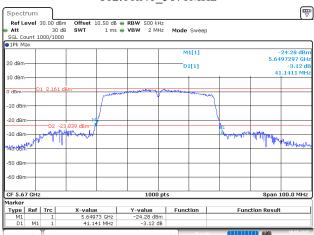
ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 14:26:29

802.11n20 5580MHz

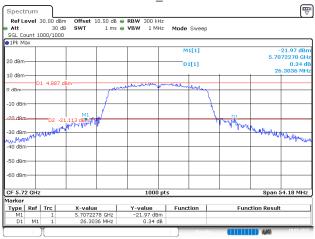
ProjectNo.:2502S55753E-RF Tester:Bill Yang


Date: 10.MAY.2025 14:30:43

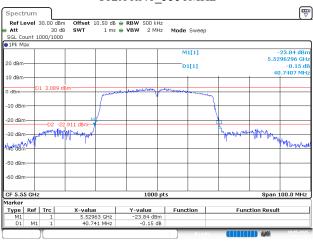
802.11n20_5700MHz


ProjectNo.:2502S55753E-RF Tester:Bill Yang
Date: 10.MAY.2025 14:32:50

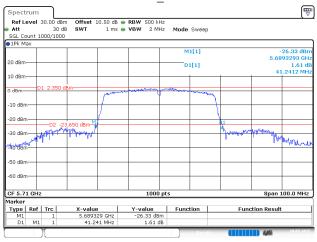
802.11n40_5510MHz


ProjectNo.:2502S55753B-RF Tester:Bill Yang Date: 10.MAY.2025 14:38:47

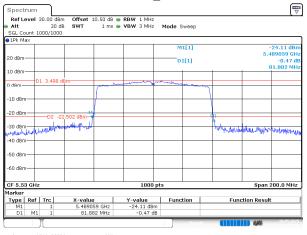
802.11n40_5670MHz


ProjectNo.:2502S55753E-RF Tester:Bill Yang
Date: 10.MAY.2025 14:41:13

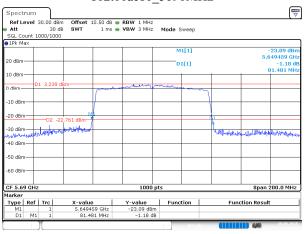
802.11n20_5720MHz


ProjectNo.:2502S55753B-RF Tester:Bill Yang
Date: 10.MAY.2025 14:34:17

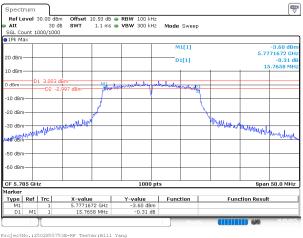
802.11n40_5550MHz


ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 14:39:58

802.11n40_5710MHz


ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 14:44:12

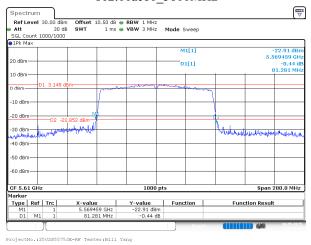
802.11ac80_5530MHz



802.11ac80_5690MHz

Date: 10.MAY.2025 14:45:52

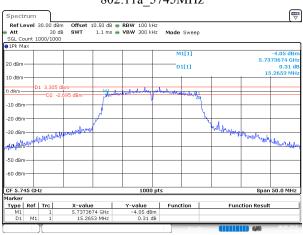
802.11a 5785MHz



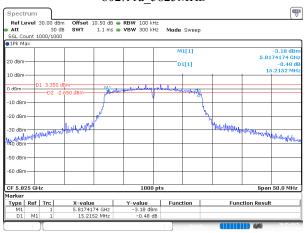
ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 15:38:31

ProjectNo.:2502S55753E-RF Tester:Bill Yang

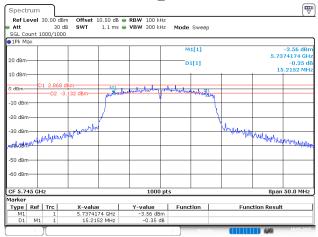
Date: 10.MAY.2025 14:48:28


802.11ac80_5610MHz

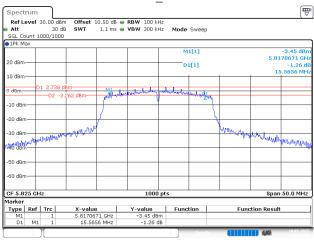
Date: 10.MAY.2025 14:47:07


5725-5850MHz

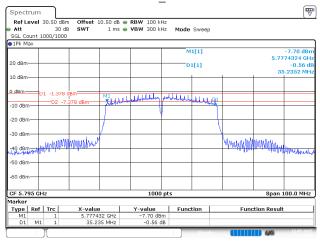
802.11a_5745MHz


ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 15:36:49

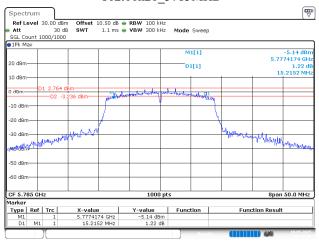
802.11a 5825MHz


ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 15:58:09

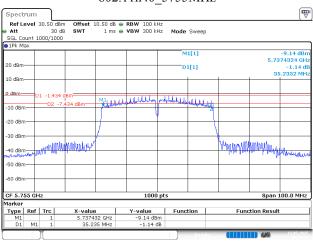
802.11n20_5745MHz


ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 16:01:18

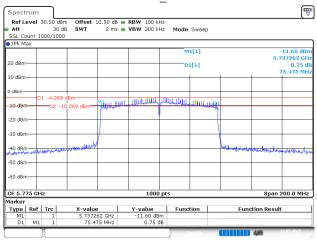
802.11n20 5825MHz


ProjectNo.:2502S55753B-RF Tester:Bill Yang
Date: 10.MAY.2025 16:04:48

802.11n40_5795MHz


ProjectNo.:2502S55753E-RF Tester:Bill Yang
Date: 12.MAY.2025 17:19:56

802.11n20_5785MHz


ProjectNo.:2502S55753E-RF Tester:Bill Yang
Date: 10.MAY.2025 16:02:45

802.11n40_5755MHz

ProjectNo.:2502S55753B-RF Tester:Bill Yang
Date: 12.MAY.2025 17:18:44

802.11ac80_5775MHz

ProjectNo.:2502S55753E-RF Tester:Bill Yang
Date: 12.MAY.2025 17:24:25

5.4 99% Occupied Bandwidth

Test Information:

Serial No.:	31ZT-1	Test Date:	2025/05/10~2025/05/12
Test Site:	RF	Test Mode:	Transmitting
Tester:	Bill Yang	Test Result:	/

Environmental Conditions:

Temperature: (°C)	6.1-26.4	Relative Humidity: (%)	51-57	ATM Pressure: (kPa)	100.6-101
-------------------	----------	------------------------------	-------	------------------------	-----------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Eastsheep	Coaxial Attenuator	5W-N-JK-6G- 10dB	F-08-EM502	2024/06/07	2025/06/06
R&S	Coaxial Attenuator	10dB	F-08-EM512	2024/06/13	2025/06/12
R&S	Spectrum Analyzer	FSV40	101589	2024/09/05	2025/09/04
R&S	Spectrum Analyzer	FSV40	101947	2024/09/05	2025/09/04

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Report No.: 2502S55753E-RF-00D

Test Data:

5150-5250MHz

Mode	Test Frequency (MHz)	99% OBW (MHz)
	5180	16.650
802.11a	5200	16.600
	5240	16.600
	5180	17.650
802.11n20	5200	17.650
	5240	17.650
002.1140	5190	36.300
802.11n40	5230	36.200
802.11ac80	5210	75.200

Note:

The 99% Occupied Bandwidth have not fall into the band 5250-5350MHz, please refer to the test plots of 99% Occupied Bandwidth.

5250-5350MHz

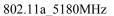
Mode	Test Frequency (MHz)	99% OBW (MHz)
	5260	16.650
802.11a	5280	16.600
	5320	16.600
	5260	17.700
802.11n20	5280	17.650
	5320	17.700
802.11n40	5270	36.200
002.111140	5310	36.300
802.11ac80	5290	75.200

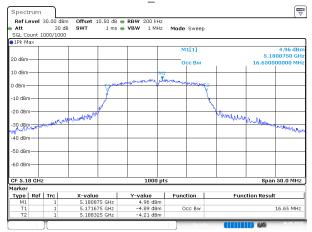
5470-5725MHz

Mode	Test Frequency (MHz)	99% OBW (MHz)
802.11a	5500	16.600
	5580	16.650
	5700	16.550
	5720	16.550

Report No.: 2502S55753E-RF-00D

Mode	Test Frequency (MHz)	99% OBW (MHz)
	5500	17.650
802.11n20	5580	17.650
802.11n20	5700	17.650
	5720	17.650
	5510	36.300
802.11n40	5550	36.200
802.11140	5670	36.200
	5710	36.200
	5530	75.400
802.11ac80	5610	75.200
	5690	75.400

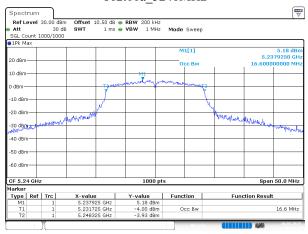

5725-5850MHz


Mode	Test Frequency (MHz)	99% OBW (MHz)
	5745	16.650
802.11a	5785	16.650
	5825	16.650
	5745	17.700
802.11n20	5785	17.700
	5825	17.750
002.11.40	5755	36.200
802.11n40	5795	36.300
802.11ac80	5775	75.400

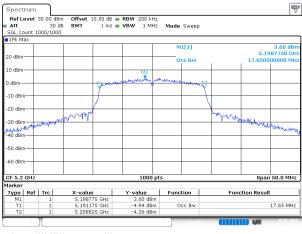
Note:

The 99% Occupied Bandwidth have not fall into the band 5470-5725MHz, please refer to the test plots of 99% Occupied Bandwidth.

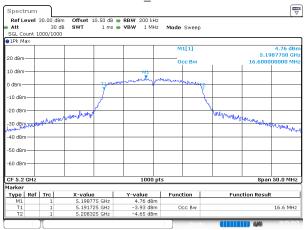
5150-5250MHz



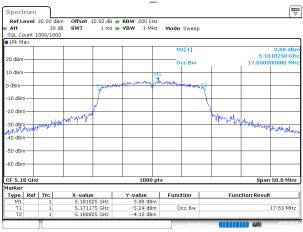
ProjectNo.:2502S55753E-RF Tester:Bill Yang


Date: 10.MAY.2025 11:21:47

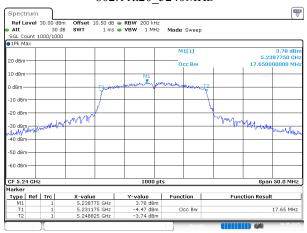
802.11a_5240MHz


ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 11:24:50

802.11n20 5200MHz

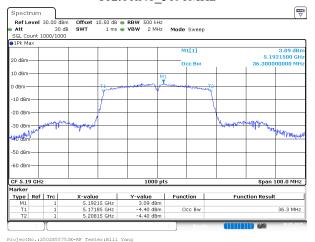

ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 11:40:22

802.11a_5200MHz


ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 11:23:19

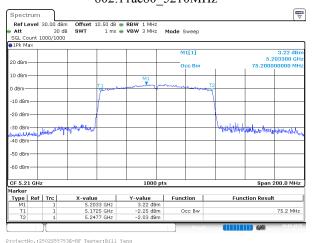
802.11n20_5180MHz

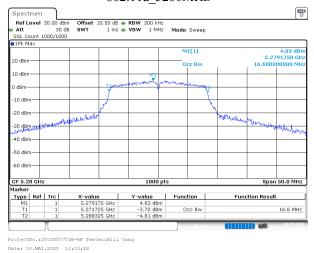
ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 11:38:47


802.11n20 5240MHz

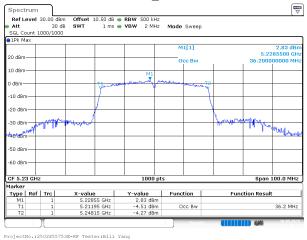
ProjectNo.:2502S55753E=RF Tester:Bill Yang

Date: 10.MAY.2025 11:43:29

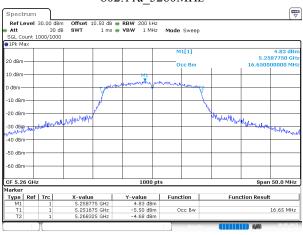

802.11n40_5190MHz


802.11ac80_5210MHz

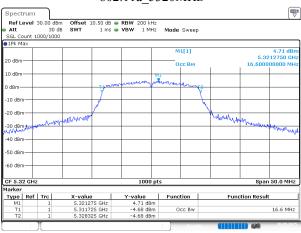
Date: 10.MAY.2025 11:46:35


Date: 10.MAY.2025 11:49:01

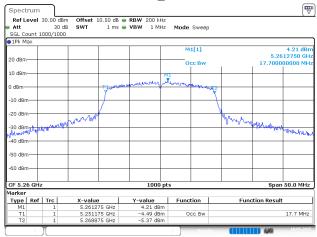
802.11a 5280MHz



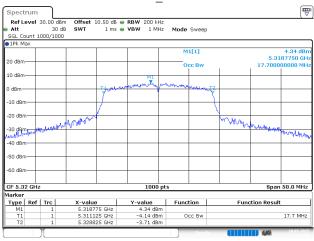
802.11n40_5230MHz


Date: 10.MAY.2025 11:47:33 5250-5350MHz

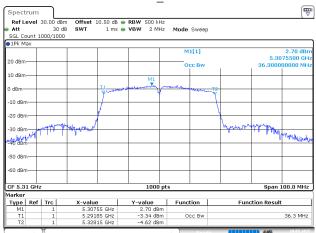
802.11a_5260MHz


ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 13:02:00

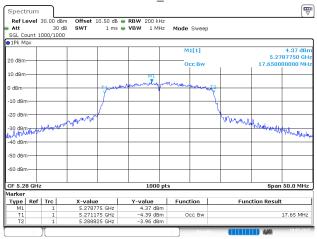
802.11a 5320MHz


ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 13:04:48

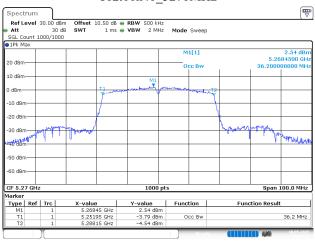
802.11n20_5260MHz


ProjectNo.:2502S55753E-RF Tester:Bill Yang
Date: 10.MAY.2025 13:06:43

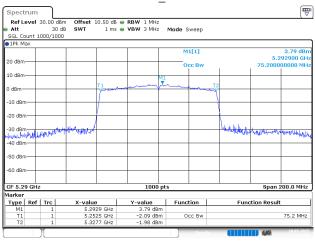
802.11n20_5320MHz


ProjectNo.:2502S55753B-RF Tester:Bill Yang Date: 10.MAY.2025 13:31:00

802.11n40_5310MHz

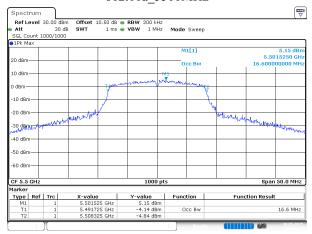

ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 13:39:55

802.11n20_5280MHz

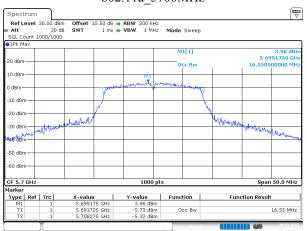

ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 13:08:15

802.11n40_5270MHz

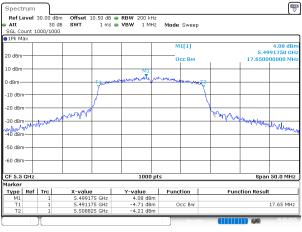
ProjectNo.:2502S55753B-RF Tester:Bill Yang Date: 10.MAY.2025 13:32:33


802.11ac80_5290MHz

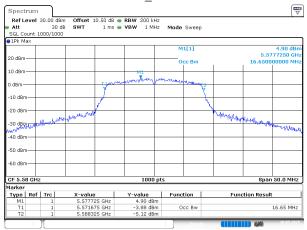
ProjectNo.:2502S55753E-RF Tester:Bill Yang


5470-5725MHz

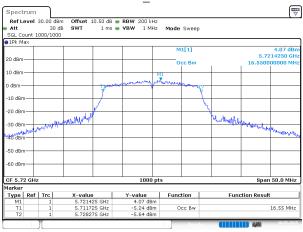
802.11a_5500MHz


ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 14:03:20

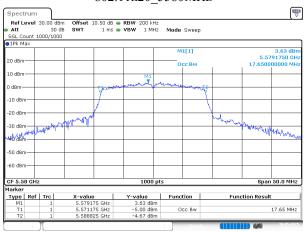
802.11a_5700MHz


ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 14:10:45

802.11n20 5500MHz


ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 14:29:20

802.11a_5580MHz


ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 14:04:54

802.11a_5720MHz

ProjectNo.:2502S55753E-RF Tester:Bill Yang Date: 10.MAY.2025 14:26:55

802.11n20 5580MHz

ProjectNo.:2502S55753E-RF Tester:Bill Yang

Date: 10.MAY.2025 14:31:12