APPENDIX B - SAR PLOTS

Test Plot 1#: GSM 850 Mid Body Back

DUT: POS terminal; Type: N6 Pro; Serial: 3244-1

Communication System: UID 0, Generic GPRS-4 slots (0); Frequency: 836.6 MHz; Duty Cycle: 1:2

Medium parameters used: f = 836.6 MHz; $\sigma = 0.93 \text{ S/m}$; $\varepsilon_r = 41.808$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3220; ConvF(6.68, 6.68, 6.68) @ 836.6 MHz; Calibrated: 2024/10/15

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn772; Calibrated: 2025/2/17

Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874

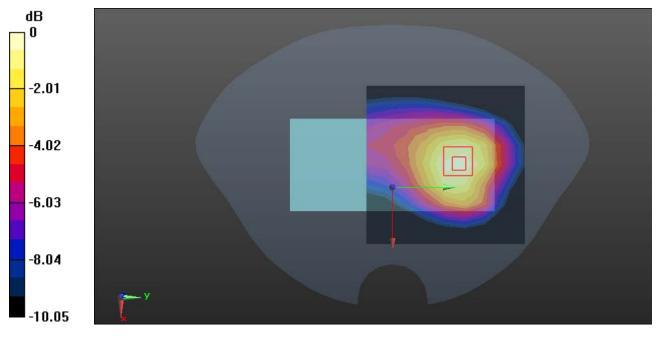
• Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Body Back/GSM 850 Mid/Area Scan (9x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.772 W/kg

Body Back/GSM 850 Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.09 V/m; Power Drift = 0.09 dB


Peak SAR (extrapolated) = 0.888 W/kg

SAR(1 g) = 0.707 W/kg; SAR(10 g) = 0.529 W/kg

Smallest distance from peaks to all points 3 dB below = 23.8 mm

Ratio of SAR at M2 to SAR at M1 = 79.7%

Maximum value of SAR (measured) = 0.778 W/kg

0 dB = 0.778 W/kg = -1.09 dBW/kg

Test Plot 2#: GSM 850 Mid Limb Back

DUT: POS terminal; Type: N6 Pro; Serial: 3244-1

Communication System: UID 0, Generic GPRS-4 slots (0); Frequency: 836.6 MHz; Duty Cycle: 1:2

Medium parameters used: f = 836.6 MHz; $\sigma = 0.93 \text{ S/m}$; $\varepsilon_r = 41.808$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

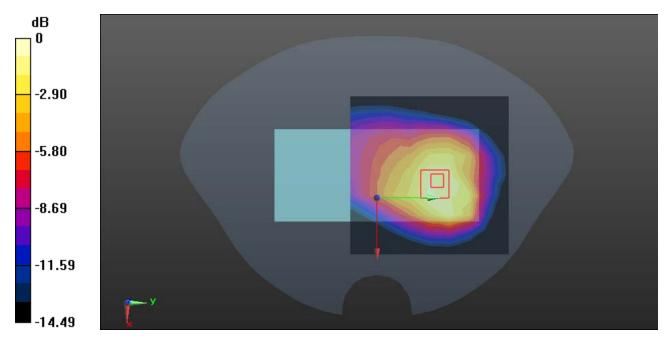
- Probe: ES3DV3 SN3220; ConvF(6.68, 6.68, 6.68) @ 836.6 MHz; Calibrated: 2024/10/15
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Limb Back/GSM 850 Mid/Area Scan (9x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.61 W/kg

Limb Back/GSM 850 Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.93 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 3.56 W/kg

SAR(1 g) = 1.44 W/kg; SAR(10 g) = 1.01 W/kg

Smallest distance from peaks to all points 3 dB below = 23.3 mm

Ratio of SAR at M2 to SAR at M1 = 42.7%

Maximum value of SAR (measured) = 1.88 W/kg

0 dB = 1.88 W/kg = 2.74 dBW/kg

Test Plot 3#: PCS 1900 High Body Left

DUT: POS terminal; Type: N6 Pro; Serial: 3244-1

Communication System: UID 0, Generic GPRS-4 slots (0); Frequency: 1909.8 MHz; Duty Cycle: 1:2

Medium parameters used: f = 1909.8 MHz; $\sigma = 1.426$ S/m; $\varepsilon_r = 39.034$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

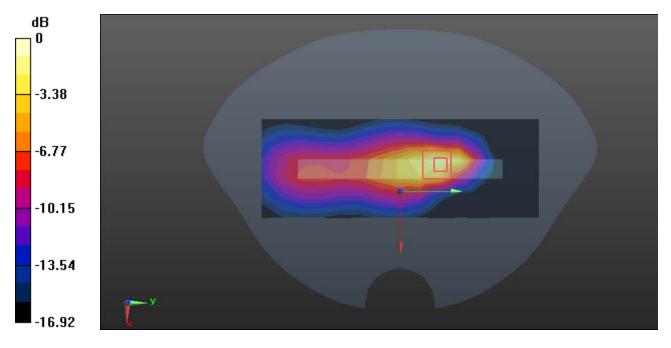
- Probe: ES3DV3 SN3220; ConvF(5.24, 5.24, 5.24) @ 1909.8 MHz; Calibrated: 2024/10/15
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Body Left/PCS 1900 High/Area Scan (6x15x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.26 W/kg

Body Left/PCS 1900 High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.44 V/m; Power Drift = -0.07 dB


Peak SAR (extrapolated) = 2.03 W/kg

SAR(1 g) = 1.19 W/kg; SAR(10 g) = 0.638 W/kg

Smallest distance from peaks to all points 3 dB below = 8.1 mm

Ratio of SAR at M2 to SAR at M1 = 62.7%

Maximum value of SAR (measured) = 1.44 W/kg

0 dB = 1.44 W/kg = 1.58 dBW/kg

Test Plot 4#: PCS 1900 Mid Limb Left

DUT: POS terminal; Type: N6 Pro; Serial: 3244-1

Communication System: UID 0, Generic GPRS-4 slots (0); Frequency: 1880 MHz; Duty Cycle: 1:2

Medium parameters used: f = 1880 MHz; $\sigma = 1.432 \text{ S/m}$; $\varepsilon_r = 39.294$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

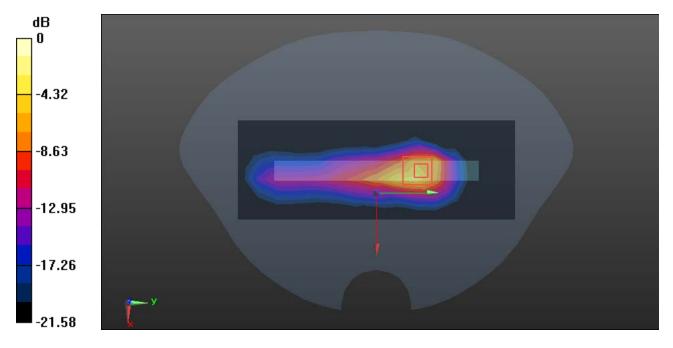
- Probe: ES3DV3 SN3220; ConvF(5.24, 5.24, 5.24) @ 1880 MHz; Calibrated: 2024/10/15
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Limb Left/PCS 1900 Mid/Area Scan (6x15x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 2.60 W/kg

Limb Left/PCS 1900 Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.13 V/m; Power Drift = -0.13 dB


Peak SAR (extrapolated) = 7.32 W/kg

SAR(1 g) = 3.52 W/kg; SAR(10 g) = 1.51 W/kg

Smallest distance from peaks to all points 3 dB below = 10.8 mm

Ratio of SAR at M2 to SAR at M1 = 48.7%

Maximum value of SAR (measured) = 5.38 W/kg

0 dB = 5.38 W/kg = 7.31 dBW/kg

Test Plot 5#: WCDMA Band 2 Mid Body Left

DUT: POS terminal; Type: N6 Pro; Serial: 3244-1

Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.432$ S/m; $\epsilon_r = 39.294$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

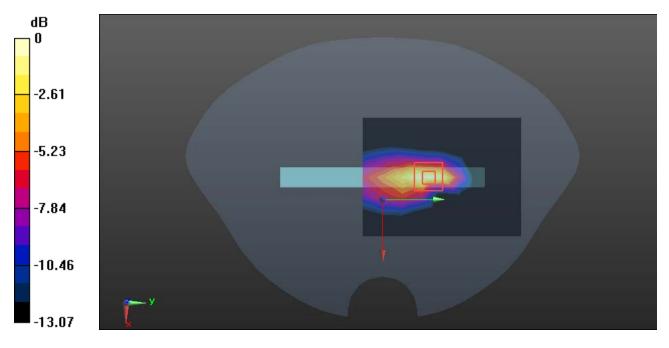
- Probe: ES3DV3 SN3220; ConvF(5.24, 5.24, 5.24) @ 1880 MHz; Calibrated: 2024/10/15
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Body Left/WCDMA Band 2 Mid/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.891 W/kg

Body Left/WCDMA Band 2 Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.68 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 1.37 W/kg

SAR(1 g) = 0.779 W/kg; SAR(10 g) = 0.399 W/kg

Smallest distance from peaks to all points 3 dB below = 8.6 mm

Ratio of SAR at M2 to SAR at M1 = 62.7%

Maximum value of SAR (measured) = 0.917 W/kg

0 dB = 0.917 W/kg = -0.38 dBW/kg

Test Plots 6#: WCDMA Band 2 Mid Limb Left

DUT: POS terminal; Type: N6 Pro; Serial: 3244-1

Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.432$ S/m; $\epsilon_r = 39.294$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

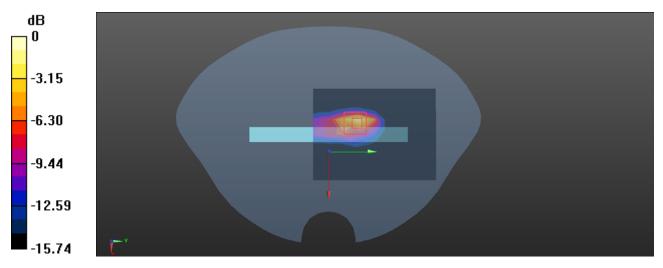
- Probe: ES3DV3 SN3220; ConvF(5.24, 5.24, 5.24) @ 1880 MHz; Calibrated: 2024/10/15
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Limb Left/WCDMA Band 2 Mid/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 6.51 W/kg

Limb Left/WCDMA Band 2 Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 32.34 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 12.5 W/kg

SAR(1 g) = 6.08 W/kg; SAR(10 g) = 2.67 W/kg

Smallest distance from peaks to all points 3 dB below = 11.4 mm

Ratio of SAR at M2 to SAR at M1 = 53.2%

Maximum value of SAR (measured) = 8.52 W/kg

0 dB = 8.52 W/kg = 9.30 dBW/kg

Test Plot 7#: WCDMA Band 5 Mid Body Back

DUT: POS terminal; Type: N6 Pro; Serial: 3244-1

Communication System: UID 0, WCDMA (0); Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; $\sigma = 0.93$ S/m; $\varepsilon_r = 41.808$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3220; ConvF(6.68, 6.68, 6.68) @ 836.6 MHz; Calibrated: 2024/10/15
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Body Back/WCDMA Band 5 Mid/Area Scan (9x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.332 W/kg

Body Back/WCDMA Band 5 Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.06 V/m; Power Drift = 0.06 dB


Peak SAR (extrapolated) = 0.408 W/kg

SAR(1 g) = 0.319 W/kg; SAR(10 g) = 0.239 W/kg

Smallest distance from peaks to all points 3 dB below = 22.6 mm

Ratio of SAR at M2 to SAR at M1 = 78.5%

Maximum value of SAR (measured) = 0.354 W/kg

0 dB = 0.354 W/kg = -4.51 dBW/kg

Test Plot 8#: WCDMA Band 5 Mid Limb Back

DUT: POS terminal; Type: N6 Pro; Serial: 3244-1

Communication System: UID 0, WCDMA (0); Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; $\sigma = 0.93$ S/m; $\varepsilon_r = 41.808$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

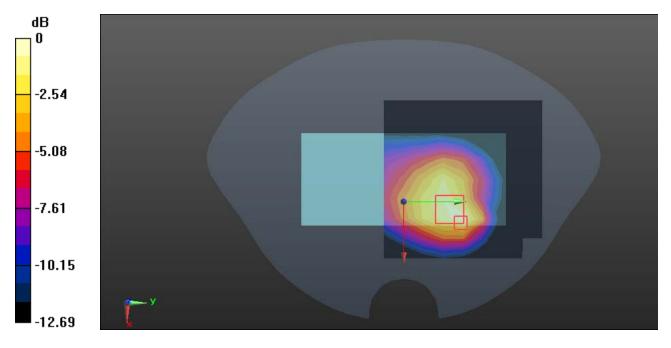
- Probe: ES3DV3 SN3220; ConvF(6.68, 6.68, 6.68) @ 836.6 MHz; Calibrated: 2024/10/15
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Limb Back/WCDMA Band 5 Mid/Area Scan (9x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.38 W/kg

Limb Back/WCDMA Band 5 Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.75 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 2.19 W/kg

SAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.647 W/kg

Smallest distance from peaks to all points 3 dB below = 8.9 mm

Ratio of SAR at M2 to SAR at M1 = 41.6%

Maximum value of SAR (measured) = 1.45 W/kg

0 dB = 1.45 W/kg = 1.61 dBW/kg

Test Plot 9#: LTE Band 2 1RB Mid Body Left

DUT: POS terminal; Type: N6 Pro; Serial: 3244-1

Communication System: UID 0, Generic FDD-LTE (0); Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; $\sigma = 1.432$ S/m; $\varepsilon_r = 39.294$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

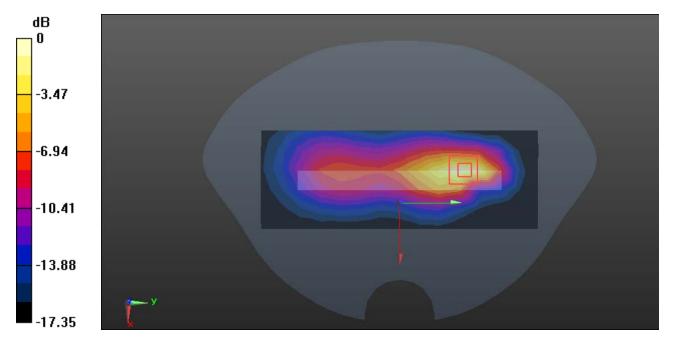
- Probe: ES3DV3 SN3220; ConvF(5.24, 5.24, 5.24) @ 1880 MHz; Calibrated: 2024/10/15
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Body Left/LTE Band 2 1RB Mid/Area Scan (6x15x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.27 W/kg

Body Left/LTE Band 2 1RB Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.94 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 1.83 W/kg

SAR(1 g) = 1.05 W/kg; SAR(10 g) = 0.566 W/kg

Smallest distance from peaks to all points 3 dB below = 8.6 mm

Ratio of SAR at M2 to SAR at M1 = 60.7%

Maximum value of SAR (measured) = 1.29 W/kg

0 dB = 1.29 W/kg = 1.11 dBW/kg

Test Plots 10#: LTE Band 2 1RB High Limb Left

DUT: POS terminal; Type: N6 Pro; Serial: 3244-1

Communication System: UID 0, Generic FDD-LTE (0); Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.435 \text{ S/m}$; $\varepsilon_r = 39.26$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

• Probe: ES3DV3 - SN3220; ConvF(5.24, 5.24, 5.24) @ 1900 MHz; Calibrated: 2024/10/15

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn772; Calibrated: 2025/2/17

Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874

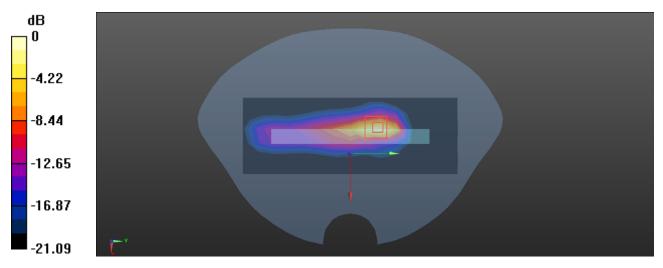
• Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Limb Left/LTE Band 2 1RB High/Area Scan (6x15x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 9.34 W/kg

Limb Left/LTE Band 2 1RB High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 39.02 V/m; Power Drift = 0.05 dB


Peak SAR (extrapolated) = 12.5 W/kg

SAR(1 g) = 6.24 W/kg; SAR(10 g) = 2.79 W/kg

Smallest distance from peaks to all points 3 dB below = 9.7 mm

Ratio of SAR at M2 to SAR at M1 = 50.5%

Maximum value of SAR (measured) = 9.25 W/kg

0 dB = 9.25 W/kg = 9.66 dBW/kg

Test Plot 11#: LTE Band 4 1RB Mid Body Left

DUT: POS terminal; Type: N6 Pro; Serial: 3244-1

Communication System: UID 0, Generic FDD-LTE (0); Frequency: 1732.5 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1732.5 MHz; $\sigma = 1.361$ S/m; $\varepsilon_r = 39.327$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

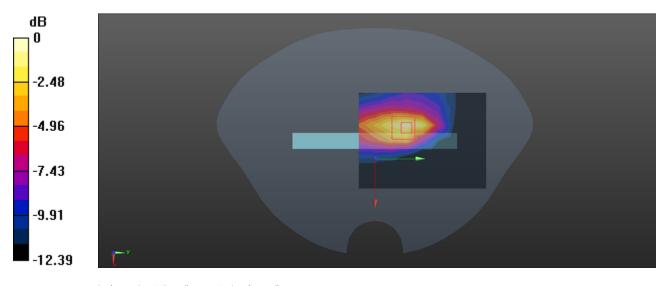
- Probe: ES3DV3 SN3220; ConvF(5.53, 5.53, 5.53) @ 1732.5 MHz; Calibrated: 2024/10/15
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Body Left/LTE Band 4 1RB Mid/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.687 W/kg

Body Left/LTE Band 4 1RB Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.00 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 0.958 W/kg

SAR(1 g) = 0.596 W/kg; SAR(10 g) = 0.352 W/kg

Smallest distance from peaks to all points 3 dB below = 10.1 mm

Ratio of SAR at M2 to SAR at M1 = 66.4%

Maximum value of SAR (measured) = 0.716 W/kg

0 dB = 0.716 W/kg = -1.45 dBW/kg

Test Plot 12#: LTE Band 4 1RB Mid Limb Left

DUT: POS terminal; Type: N6 Pro; Serial: 3244-1

Communication System: UID 0, Generic FDD-LTE (0); Frequency: 1732.5 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1732.5 MHz; $\sigma = 1.361$ S/m; $\varepsilon_r = 39.327$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

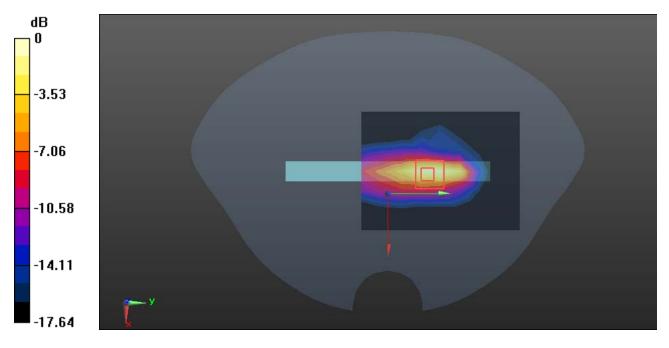
DASY5 Configuration:

- Probe: ES3DV3 SN3220; ConvF(5.53, 5.53, 5.53) @ 1732.5 MHz; Calibrated: 2024/10/15
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Limb Left/LTE Band 4 1RB Mid/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 4.59 W/kg

Limb Left/LTE Band 4 1RB Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 32.52 V/m; Power Drift = 0.05 dB


Peak SAR (extrapolated) = 7.75 W/kg

SAR(1 g) = 3.86 W/kg; SAR(10 g) = 1.83 W/kg

Smallest distance from peaks to all points 3 dB below = 10.4 mm

Ratio of SAR at M2 to SAR at M1 = 51.1%

Maximum value of SAR (measured) = 5.43 W/kg

0 dB = 5.43 W/kg = 7.35 dBW/kg

Test Plot 13#: LTE Band 5 1RB Mid Body Back

DUT: POS terminal; Type: N6 Pro; Serial: 3244-1

Communication System: UID 0, Generic FDD-LTE (0); Frequency: 836.5 MHz; Duty Cycle: 1:1

Medium parameters used: f = 836.5 MHz; $\sigma = 0.93$ S/m; $\varepsilon_r = 41.809$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

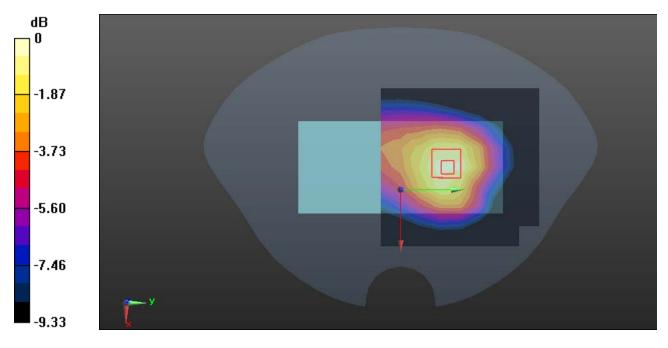
- Probe: ES3DV3 SN3220; ConvF(6.68, 6.68, 6.68) @ 836.5 MHz; Calibrated: 2024/10/15
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Body Back/LTE Band 5 1RB Mid/Area Scan (9x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.450 W/kg

Body Back/LTE Band 5 1RB Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.79 V/m; Power Drift = 0.16 dB


Peak SAR (extrapolated) = 0.538 W/kg

SAR(1 g) = 0.425 W/kg; SAR(10 g) = 0.323 W/kg

Smallest distance from peaks to all points 3 dB below = 22.6 mm

Ratio of SAR at M2 to SAR at M1 = 80%

Maximum value of SAR (measured) = 0.468 W/kg

0 dB = 0.468 W/kg = -3.30 dBW/kg

Test Plot 14#: LTE Band 5 1RB Mid Limb Back

DUT: POS terminal; Type: N6 Pro; Serial: 3244-1

Communication System: UID 0, Generic FDD-LTE (0); Frequency: 836.5 MHz; Duty Cycle: 1:1

Medium parameters used: f = 836.5 MHz; $\sigma = 0.93 \text{ S/m}$; $\varepsilon_r = 41.809$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

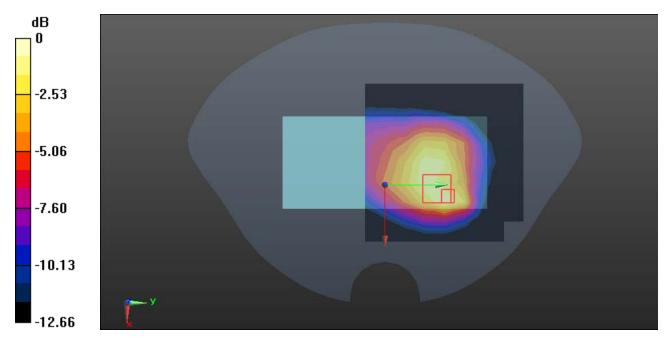
- Probe: ES3DV3 SN3220; ConvF(6.68, 6.68, 6.68) @ 836.5 MHz; Calibrated: 2024/10/15
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Limb Back/LTE Band 5 1RB Mid/Area Scan (9x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.26 W/kg

Limb Back/LTE Band 5 1RB Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.38 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 2.85 W/kg

SAR(1 g) = 1.1 W/kg; SAR(10 g) = 0.669 W/kg

Smallest distance from peaks to all points 3 dB below = 8.6 mm

Ratio of SAR at M2 to SAR at M1 = 38.7%

Maximum value of SAR (measured) = 1.51 W/kg

0 dB = 1.51 W/kg = 1.79 dBW/kg

Test Plot 15#: LTE Band 7 1RB Low Body Left

DUT: POS terminal; Type: N6 Pro; Serial: 3244-1

Communication System: UID 0, Generic FDD-LTE (0); Frequency: 2510 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2510 MHz; $\sigma = 1.922$ S/m; $\varepsilon_r = 40.235$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

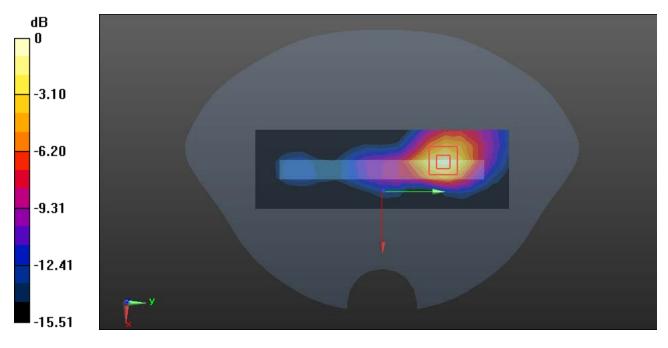
- Probe: ES3DV3 SN3220; ConvF(4.83, 4.83, 4.83) @ 2510 MHz; Calibrated: 2024/10/15
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Body Left/LTE Band 7 1RB Low/Area Scan (6x17x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 1.41 W/kg

Body Left/LTE Band 7 1RB Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.829 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 1.87 W/kg

SAR(1 g) = 1.15 W/kg; SAR(10 g) = 0.627 W/kg

Smallest distance from peaks to all points 3 dB below = 10.8 mm

Ratio of SAR at M2 to SAR at M1 = 64.9%

Maximum value of SAR (measured) = 1.41 W/kg

0 dB = 1.41 W/kg = 1.49 dBW/kg

Test Plots 16#: LTE Band 7 1RB Low Limb Left

DUT: POS terminal; Type: N6 Pro; Serial: 3244-1

Communication System: UID 0, Generic FDD-LTE (0); Frequency: 2510 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2510 MHz; $\sigma = 1.922$ S/m; $\varepsilon_r = 40.235$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

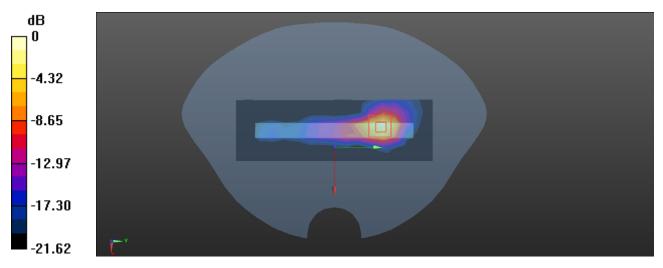
- Probe: ES3DV3 SN3220; ConvF(4.83, 4.83, 4.83) @ 2510 MHz; Calibrated: 2024/10/15
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Limb Left/LTE Band 7 1RB Low/Area Scan (6x17x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 7.32 W/kg

Limb Left/LTE Band 7 1RB Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.72 V/m; Power Drift = 0.06 dB


Peak SAR (extrapolated) = 12.2 W/kg

SAR(1 g) = 5.98 W/kg; SAR(10 g) = 2.61 W/kg

Smallest distance from peaks to all points 3 dB below = 7.6 mm

Ratio of SAR at M2 to SAR at M1 = 53.6%

Maximum value of SAR (measured) = 8.17 W/kg

0 dB = 8.17 W/kg = 9.12 dBW/kg

Test Plot 17#: LTE Band 41 1RB Mid Body Left

DUT: POS terminal; Type: N6 Pro; Serial: 3244-1

Communication System: UID 0, Generic TDD-LTE (0); Frequency: 2593 MHz; Duty Cycle: 1:1.58

Medium parameters used: f = 2593 MHz; $\sigma = 2.016$ S/m; $\varepsilon_r = 40.009$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

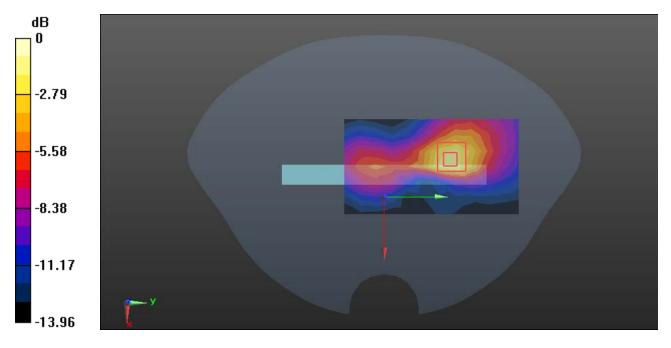
- Probe: ES3DV3 SN3220; ConvF(4.66, 4.66, 4.66) @ 2593 MHz; Calibrated: 2024/10/15
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Body Left/LTE Band 41 1RB Mid/Area Scan (7x12x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.710 W/kg

Body Left/LTE Band 41 1RB Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.16 V/m; Power Drift = 0.05 dB


Peak SAR (extrapolated) = 1.18 W/kg

SAR(1 g) = 0.711 W/kg; SAR(10 g) = 0.393 W/kg

Smallest distance from peaks to all points 3 dB below = 9.5 mm

Ratio of SAR at M2 to SAR at M1 = 63.7%

Maximum value of SAR (measured) = 0.884 W/kg

0 dB = 0.884 W/kg = -0.54 dBW/kg

Test Plot 18#: LTE Band 41 1RB Mid Limb Left

DUT: POS terminal; Type: N6 Pro; Serial: 3244-1

Communication System: UID 0, Generic TDD-LTE (0); Frequency: 2593 MHz; Duty Cycle: 1:1.58

Medium parameters used: f = 2593 MHz; $\sigma = 2.016$ S/m; $\varepsilon_r = 40.009$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

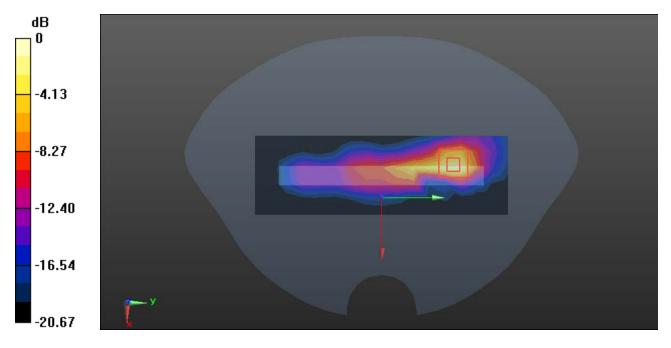
- Probe: ES3DV3 SN3220; ConvF(4.66, 4.66, 4.66) @ 2593 MHz; Calibrated: 2024/10/15
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Limb Left/LTE Band 41 1RB Mid/Area Scan (6x17x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 4.48 W/kg

Limb Left/LTE Band 41 1RB Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.18 V/m; Power Drift = -0.13 dB


Peak SAR (extrapolated) = 7.84 W/kg

SAR(1 g) = 4.04 W/kg; SAR(10 g) = 1.8 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 56.4%

Maximum value of SAR (measured) = 5.50 W/kg

0 dB = 5.50 W/kg = 7.40 dBW/kg

Test Plot 19#: WLAN 2.4G Mid Body Back

DUT: POS terminal; Type: N6 Pro; Serial: 3244-1

Communication System: UID 0, 802.11b (0); Frequency: 2437 MHz; Duty Cycle: 1:1.01 Medium parameters used: f = 2437 MHz; $\sigma = 1.83$ S/m; $\varepsilon_r = 40.423$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

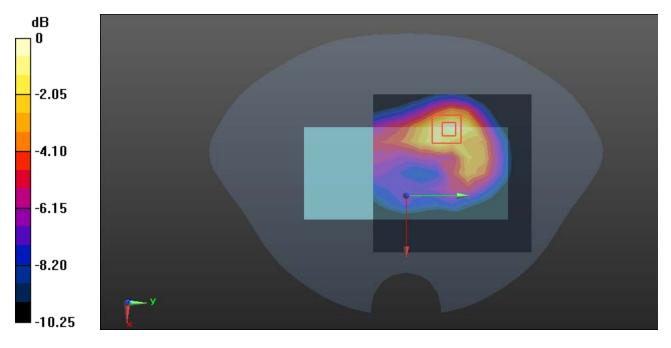
- Probe: ES3DV3 SN3220; ConvF(4.83, 4.83, 4.83) @ 2437 MHz; Calibrated: 2024/10/15
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Body Back/WLAN 2.4G Mid/Area Scan (11x11x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.413 W/kg

Body Back/WLAN 2.4G Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.082 V/m; Power Drift = 0.05 dB


Peak SAR (extrapolated) = 0.582 W/kg

SAR(1 g) = 0.341 W/kg; SAR(10 g) = 0.199 W/kg

Smallest distance from peaks to all points 3 dB below = 12.7 mm

Ratio of SAR at M2 to SAR at M1 = 60.9%

Maximum value of SAR (measured) = 0.415 W/kg

0 dB = 0.415 W/kg = -3.82 dBW/kg

Test Plot 20#: WLAN 2.4G Mid Limb Back

DUT: POS terminal; Type: N6 Pro; Serial: 3244-1

Communication System: UID 0, 802.11b (0); Frequency: 2437 MHz; Duty Cycle: 1:1.01 Medium parameters used: f = 2437 MHz; $\sigma = 1.83$ S/m; $\epsilon_r = 40.423$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

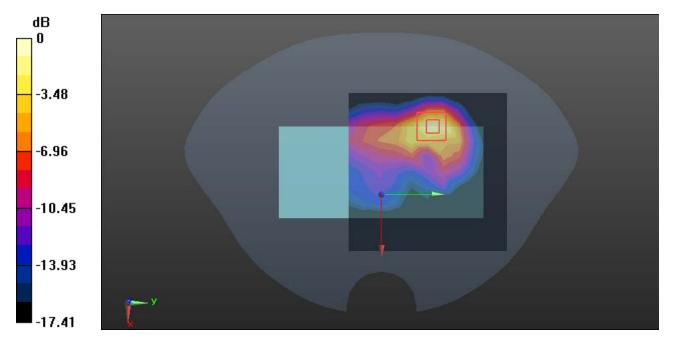
- Probe: ES3DV3 SN3220; ConvF(4.83, 4.83, 4.83) @ 2437 MHz; Calibrated: 2024/10/15
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Limb Back/WLAN 2.4G Mid/Area Scan (11x11x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 2.52 W/kg

Limb Back/WLAN 2.4G Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.615 V/m; Power Drift = 0.17 dB


Peak SAR (extrapolated) = 4.08 W/kg

SAR(1 g) = 2.07 W/kg; SAR(10 g) = 0.977 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 55.4%

Maximum value of SAR (measured) = 2.71 W/kg

0 dB = 2.71 W/kg = 4.33 dBW/kg

Test Plot 21#: WLAN 5.2G Mid Body Back

DUT: POS terminal; Type: N6 Pro; Serial: 3244-1

Communication System: UID 0, 802.11a (0); Frequency: 5200 MHz; Duty Cycle: 1:1.04 Medium parameters used: f = 5200 MHz; $\sigma = 4.842$ S/m; $\epsilon_r = 36.607$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

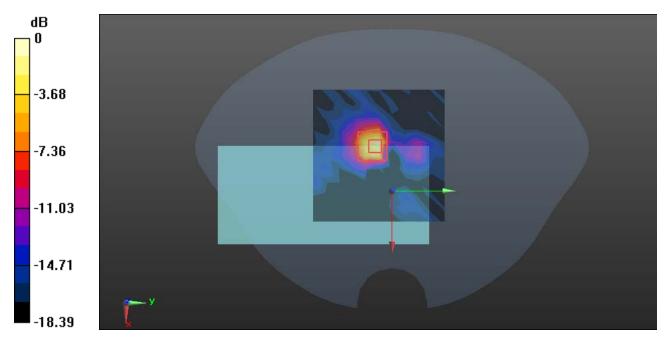
- Probe: EX3DV4 SN7441; ConvF(5.43, 5.43, 5.43) @ 5200 MHz; Calibrated: 2024/3/4
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Body Back/WLAN 5.2G Mid/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.500 W/kg

Body Back/WLAN 5.2G Mid/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 0.8860 V/m; Power Drift = -0.19 dB


Peak SAR (extrapolated) = 2.11 W/kg

SAR(1 g) = 0.188 W/kg; SAR(10 g) = 0.046 W/kg

Smallest distance from peaks to all points 3 dB below = 5.7 mm

Ratio of SAR at M2 to SAR at M1 = 45.4%

Maximum value of SAR (measured) = 0.559 W/kg

0 dB = 0.559 W/kg = -2.53 dBW/kg

Test Plot 22#: WLAN 5.2G Mid Limb Back

DUT: POS terminal; Type: N6 Pro; Serial: 3244-1

Communication System: UID 0, 802.11a (0); Frequency: 5200 MHz; Duty Cycle: 1:1.04 Medium parameters used: f = 5200 MHz; $\sigma = 4.842$ S/m; $\epsilon_r = 36.607$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

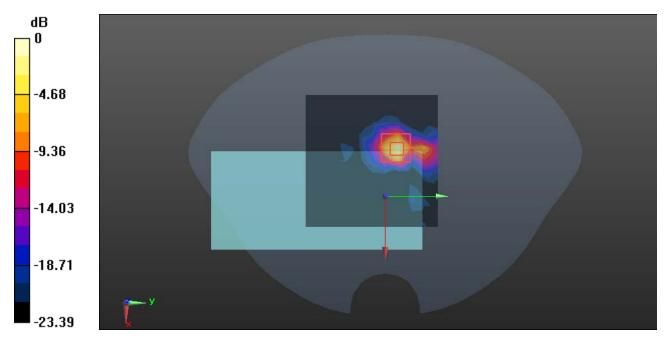
DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(5.43, 5.43, 5.43) @ 5200 MHz; Calibrated: 2024/3/4
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Limb Back/WLAN 5.2G Mid/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 2.97 W/kg

Limb Back/WLAN 5.2G Mid/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 1.454 V/m; Power Drift = -0.12 dB


Peak SAR (extrapolated) = 4.38 W/kg

SAR(1 g) = 1.09 W/kg; SAR(10 g) = 0.225 W/kg

Smallest distance from peaks to all points 3 dB below = 6.2 mm

Ratio of SAR at M2 to SAR at M1 = 56.3%

Maximum value of SAR (measured) = 2.91 W/kg

0 dB = 2.91 W/kg = 4.64 dBW/kg

Test Plot 23#: WLAN 5.3G Mid Body Back

DUT: POS terminal; Type: N6 Pro; Serial: 3244-1

Communication System: UID 0, 802.11a (0); Frequency: 5280 MHz; Duty Cycle: 1:1.04 Medium parameters used: f = 5280 MHz; $\sigma = 4.976$ S/m; $\varepsilon_r = 36.233$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

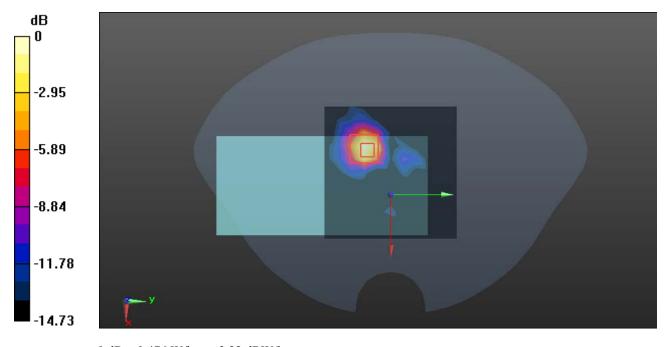
- Probe: EX3DV4 SN7441; ConvF(5.43, 5.43, 5.43) @ 5280 MHz; Calibrated: 2024/3/4
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Body Back/WLAN 5.3G Mid/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.452 W/kg

Body Back/WLAN 5.3G Mid/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 1.213 V/m; Power Drift = -0.19 dB


Peak SAR (extrapolated) = 2.66 W/kg

SAR(1 g) = 0.174 W/kg; SAR(10 g) = 0.043 W/kg

Smallest distance from peaks to all points 3 dB below = 6.6 mm

Ratio of SAR at M2 to SAR at M1 = 43%

Maximum value of SAR (measured) = 0.476 W/kg

0 dB = 0.476 W/kg = -3.22 dBW/kg

Test Plot 24#: WLAN 5.3G Mid Limb Back

DUT: POS terminal; Type: N6 Pro; Serial: 3244-1

Communication System: UID 0, 802.11a (0); Frequency: 5280 MHz; Duty Cycle: 1:1.04 Medium parameters used: f = 5280 MHz; $\sigma = 4.976$ S/m; $\epsilon_r = 36.233$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

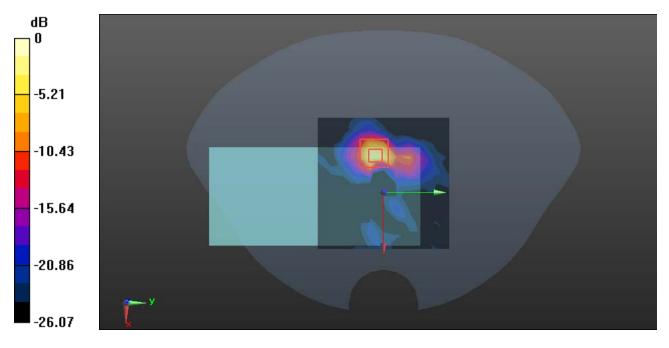
DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(5.43, 5.43, 5.43) @ 5280 MHz; Calibrated: 2024/3/4
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Limb Back/WLAN 5.3G Mid/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 2.46 W/kg

Limb Back/WLAN 5.3G Mid/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 0.7840 V/m; Power Drift = -0.15 dB


Peak SAR (extrapolated) = 10.0 W/kg

SAR(1 g) = 1.24 W/kg; SAR(10 g) = 0.267 W/kg

Smallest distance from peaks to all points 3 dB below = 6.2 mm

Ratio of SAR at M2 to SAR at M1 = 58.5%

Maximum value of SAR (measured) = 3.27 W/kg

0 dB = 3.27 W/kg = 5.15 dBW/kg

Test Plot 25#: WLAN 5.6G Mid Body Back

DUT: POS terminal; Type: N6 Pro; Serial: 3244-1

Communication System: UID 0, 802.11a (0); Frequency: 5580 MHz;Duty Cycle: 1:1.04 Medium parameters used: f = 5580 MHz; $\sigma = 4.812$ S/m; $\epsilon_r = 36.697$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

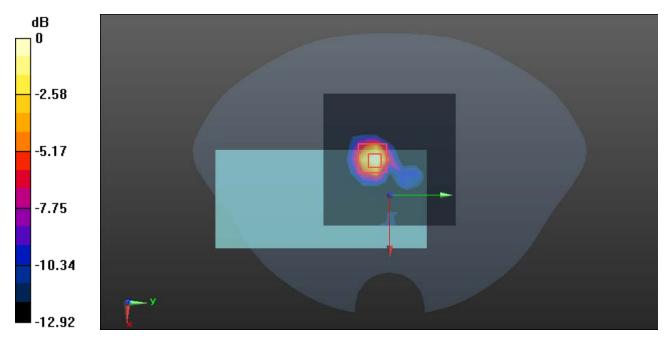
DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(4.71, 4.71, 4.71) @ 5580 MHz; Calibrated: 2024/3/4
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Body Back/WLAN 5.6G Mid/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.619 W/kg

Body Back/WLAN 5.6G Mid/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 1.492 V/m; Power Drift = -0.17 dB


Peak SAR (extrapolated) = 4.42 W/kg

SAR(1 g) = 0.344 W/kg; SAR(10 g) = 0.068 W/kg

Smallest distance from peaks to all points 3 dB below = 6.2 mm

Ratio of SAR at M2 to SAR at M1 = 42.3%

Maximum value of SAR (measured) = 0.499 W/kg

0 dB = 0.499 W/kg = -3.02 dBW/kg

Test Plot 26#: WLAN 5.6G Mid Limb Back

DUT: POS terminal; Type: N6 Pro; Serial: 3244-1

Communication System: UID 0, 802.11a (0); Frequency: 5580 MHz;Duty Cycle: 1:1.04 Medium parameters used: f = 5580 MHz; $\sigma = 4.812$ S/m; $\epsilon_r = 36.697$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

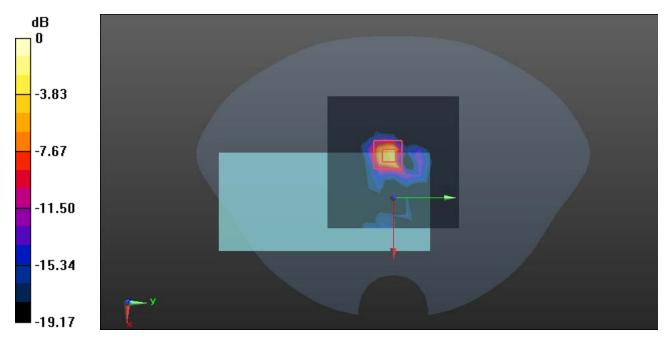
DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(4.71, 4.71, 4.71) @ 5580 MHz; Calibrated: 2024/3/4
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Limb Back/WLAN 5.6G Mid/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.19 W/kg

Limb Back/WLAN 5.6G Mid/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 2.139 V/m; Power Drift = -0.08 dB


Peak SAR (extrapolated) = 4.16 W/kg

SAR(1 g) = 0.910 W/kg; SAR(10 g) = 0.176 W/kg

Smallest distance from peaks to all points 3 dB below = 5.7 mm

Ratio of SAR at M2 to SAR at M1 = 53.1%

Maximum value of SAR (measured) = 2.17 W/kg

0 dB = 2.17 W/kg = 3.36 dBW/kg

Test Plot 27#: WLAN 5.8G Mid Body Back

DUT: POS terminal; Type: N6 Pro; Serial: 3244-1

Communication System: UID 0, 802.11a (0); Frequency: 5785 MHz;Duty Cycle: 1:1.04 Medium parameters used: f = 5785 MHz; $\sigma = 5.323$ S/m; $\epsilon_r = 36.488$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

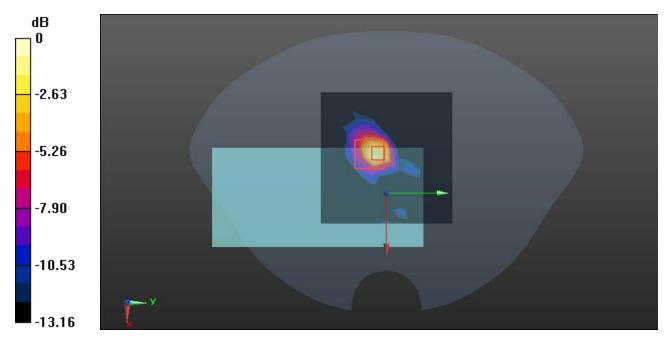
- Probe: EX3DV4 SN7441; ConvF(4.84, 4.84, 4.84) @ 5785 MHz; Calibrated: 2024/3/4
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0_20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Body Back/WLAN 5.8G Mid/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.336 W/kg

Body Back/WLAN 5.8G Mid/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 1.020 V/m; Power Drift = -0.19 dB


Peak SAR (extrapolated) = 1.51 W/kg

SAR(1 g) = 0.066 W/kg; SAR(10 g) = 0.013 W/kg

Smallest distance from peaks to all points 3 dB below = 5.2 mm

Ratio of SAR at M2 to SAR at M1 = 37.2%

Maximum value of SAR (measured) = 0.379 W/kg

0 dB = 0.379 W/kg = -4.21 dBW/kg

Test Plot 28#: WLAN 5.8G Mid Limb Back

DUT: POS terminal; Type: N6 Pro; Serial: 3244-1

Communication System: UID 0, 802.11a (0); Frequency: 5785 MHz;Duty Cycle: 1:1.04 Medium parameters used: f = 5785 MHz; $\sigma = 5.323$ S/m; $\epsilon_r = 36.488$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

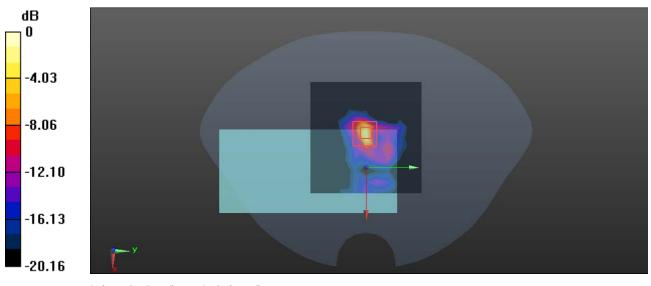
DASY5 Configuration:

- Probe: EX3DV4 SN7441; ConvF(4.84, 4.84, 4.84) @ 5785 MHz; Calibrated: 2024/3/4
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2025/2/17
- Phantom: SAM (30deg probe tilt) with CRP v5.0 20150321; Type: QD000P40CD; Serial: TP:1874
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

Limb Back/WLAN 5.8G Mid/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.91 W/kg

Limb Back/WLAN 5.8G Mid/Zoom Scan (8x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 4.509 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 4.18 W/kg

SAR(1 g) = 0.853 W/kg; SAR(10 g) = 0.166 W/kg

Smallest distance from peaks to all points 3 dB below = 5.7 mm

Ratio of SAR at M2 to SAR at M1 = 50.8%

Maximum value of SAR (measured) = 2.59 W/kg

0 dB = 2.59 W/kg = 4.13 dBW/kg