

TEST REPORT

Applicant: Shenzhen Xinguodu Technology Co., Ltd.

Address: 17B JinSong Mansion, Terra Industrial & Trade Park
Chegongmiao, Futian District, Shenzhen, Guangdong, China.

Product Name: POS TERMINAL

FCC ID: XDQN62-01

47 CFR Part 15, Subpart C(15.247)

Standard(s): ANSI C63.10-2013
KDB 558074 D01 15.247 Meas Guidance v05r02

Report Number: 2402W89350E-RF-00BA1

Report Date: 2024/8/28

The above device has been tested and found compliant with the requirement of the relative standards by Bay Area Compliance Laboratories Corp. (Dongguan).

Gavin Xu

Ivan Cao

Reviewed By: Gavin Xu

Approved By: Ivan Cao

Title: RF Engineer

Title: EMC Manager

Bay Area Compliance Laboratories Corp. (Dongguan)
No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China

Tel: +86-769-86858888

Fax: +86-769-86858891

www.baclcorp.com.cn

Note: The information marked ▲ is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report cannot be reproduced except in full, without prior written approval of the Company. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report may contain data that are not covered by the accreditation scope and shall be marked with ★. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

CONTENTS

DOCUMENT REVISION HISTORY	4
1. GENERAL INFORMATION	5
1.1 GENERAL DESCRIPTION OF EQUIPMENT UNDER TEST	5
1.2 ACCESSORY INFORMATION	5
1.3 ANTENNA INFORMATION DETAIL▲	5
1.4 EQUIPMENT MODIFICATIONS	5
2. SUMMARY OF TEST RESULTS	6
3. DESCRIPTION OF TEST CONFIGURATION	7
3.1 OPERATION FREQUENCY DETAIL	7
3.2 EUT OPERATION CONDITION	7
3.3 SUPPORT EQUIPMENT LIST AND DETAILS	7
3.4 SUPPORT CABLE LIST AND DETAILS	7
3.5 BLOCK DIAGRAM OF TEST SETUP	8
3.6 TEST FACILITY	9
3.7 MEASUREMENT UNCERTAINTY	9
4. REQUIREMENTS AND TEST PROCEDURES	10
4.1 AC LINE CONDUCTED EMISSIONS	10
4.1.1 Applicable Standard	10
4.1.2 EUT Setup	11
4.1.3 EMI Test Receiver Setup	11
4.1.4 Test Procedure	12
4.1.5 Corrected Amplitude & Margin Calculation	12
4.1.6 Test Result	12
4.2 RADIATED SPURIOUS EMISSIONS	13
4.2.1 Applicable Standard	13
4.2.2 EUT Setup	13
4.2.3 EMI Test Receiver & Spectrum Analyzer Setup	15
4.2.4 Test Procedure	15
4.2.5 Corrected Result & Margin Calculation	15
4.2.6 Test Result	15
4.3 MAXIMUM CONDUCTED OUTPUT POWER	16
4.3.1 Applicable Standard	16
4.3.2 EUT Setup	16
4.3.3 Test Procedure	16
4.3.4 Test Result	16
4.4 ANTENNA REQUIREMENT	17
4.4.1 Applicable Standard	17
4.4.2 Judgment	17
5. TEST DATA AND RESULTS	18
5.1 AC LINE CONDUCTED EMISSIONS	18

5.2 RADIATED SPURIOUS EMISSIONS	21
5.3 SPOT CHECK WITH MAXIMUM CONDUCTED OUTPUT POWER	28
EXHIBIT A - EUT PHOTOGRAPHS	29
EXHIBIT B - TEST SETUP PHOTOGRAPHS	30
EXHIBIT C - RF EXPOSURE EVALUATION	31
APPLICABLE STANDARD	31
MEASUREMENT RESULT	31

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
1.0	DG1240227-09527E-RF-00B	Original Report	2024/4/6
2.0	2402W89350E-RF-00BA1	Class II Permissive Change Report	2024/8/28

Note: This is Class II permissive change application which was based on the original report. The differences between them as following:

1. Change the Antenna (WWAN/Bluetooth/Wifi/GPS).
2. Changed the appearance of the product screen printing.

The change between the previous equipment and the current equipment is stated and guaranteed by the applicant. According to the difference, RF Conducted power, Conducted emissions and Radiated spurious emission were tested, test photos and EUT photos was updated.

1. GENERAL INFORMATION

1.1 General Description of Equipment under Test

EUT Name:	POS TERMINAL
EUT Model:	N62
Operation Frequency:	2402-2480 MHz
Maximum Peak Output Power (Conducted):	4.73 dBm
Rated Input Voltage:	DC 3.8V from battery or DC 5.0V from adapter or DC 5.0V from Base
Serial Number:	RE/CE: 2PN1-1 RF Conducted: 2PN1-2
EUT Received Date:	2024/8/9
EUT Received Status:	Good

1.2 Accessory Information

Accessory Description	Manufacturer	Model	Parameters
Adapter 1#	Jiangxi Jian Aohai Technology Co.,Ltd.	A319-050200U-US2	Input: 100-240Vac~50-60Hz 0.3A MAX Output: 5.0Vdc 2000mA
Adapter 2#	RUIJING	RJ49-W050100US	Input: 100-240Vac~50-60Hz 250mA Output: 5.0Vdc 1000mA
Adapter 3#	Dongguan Aohai Technology Co.,Ltd.	A806A-050100U-EU1	Input: 100-240Vac~50-60Hz 0.2A Output: 5.0Vdc 1.0A 5.0W
Adapter 4#	RUIJING	RJ49-W050100EU	Input: 100-240Vac~50-60Hz 250mA Output: 5.0Vdc 1A 5.0W
Adapter 5#	SHENZHEN HONOR ELECTRONIC CO.,LTD.	ADS-6MA-06 05050EPG	Input: 100-240Vac~50-60Hz 0.3A MAX Output: 5.0Vdc 1.0A 5.0W

1.3 Antenna Information Detail ▲

Antenna Manufacturer	Antenna Type	input impedance (Ohm)	Frequency Range	Antenna Gain
Sunny Way Technology(China) Co., Ltd.	LDS	50	2.4~2.5GHz	1.45 dBi
The design of compliance with §15.203:				
<input checked="" type="checkbox"/> Unit uses a permanently attached antenna.				
<input type="checkbox"/> Unit uses a unique coupling to the intentional radiator.				
<input type="checkbox"/> Unit was professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.				

1.4 Equipment Modifications

No modifications are made to the EUT during all test items.

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.207(a)	AC Line Conducted Emissions	Compliant
FCC §15.205, §15.209, §15.247(d)	Radiated Spurious Emissions	Compliant
FCC §15.247(a)(1)	20 dB Emission Bandwidth	Compliant*
FCC §15.247(a)(1)	Channel Separation	Compliant*
FCC §15.247(a)(1)(iii)	Number Of Hopping Frequency	Compliant*
FCC §15.247(a)(1)(iii)	Time Of Occupancy (dwell time)	Compliant*
FCC §15.247(b)(1)	Maximum Conducted Output Power	Reporting
FCC §15.247(d)	100 kHz Bandwidth Of Frequency Band Edge	Compliant*
FCC §15.203	Antenna Requirement	Compliant

Note 1: For AC line conducted emissions, the maximum output power mode and channel was tested.

Note 2: For Radiated Spurious Emissions 9kHz~ 1GHz, the maximum output power mode and channel was tested.

Note 3: Per DG1240227-09527E-RF-00B report, Powered by Adapter 1# was the worst for AC line conducted emissions and Radiated Spurious Emissions.

Compliant*: The test data please refer to the original report DG1240227-09527E-RF-00B.

3. DESCRIPTION OF TEST CONFIGURATION

3.1 Operation Frequency Detail

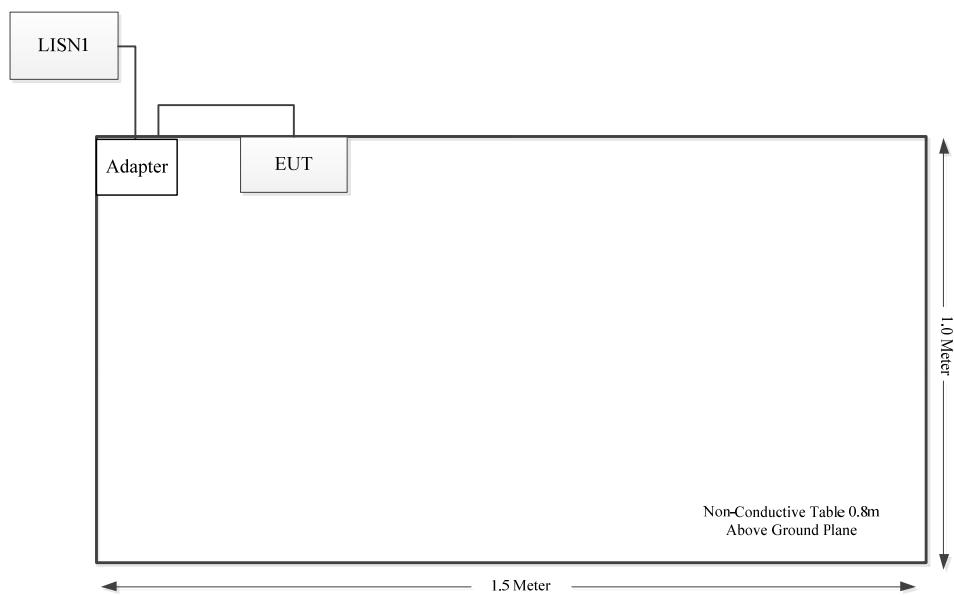
Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	40	2442
1	2403	41	2443
...
...
...	...	78	2480
39	2441	/	/

3.2 EUT Operation Condition

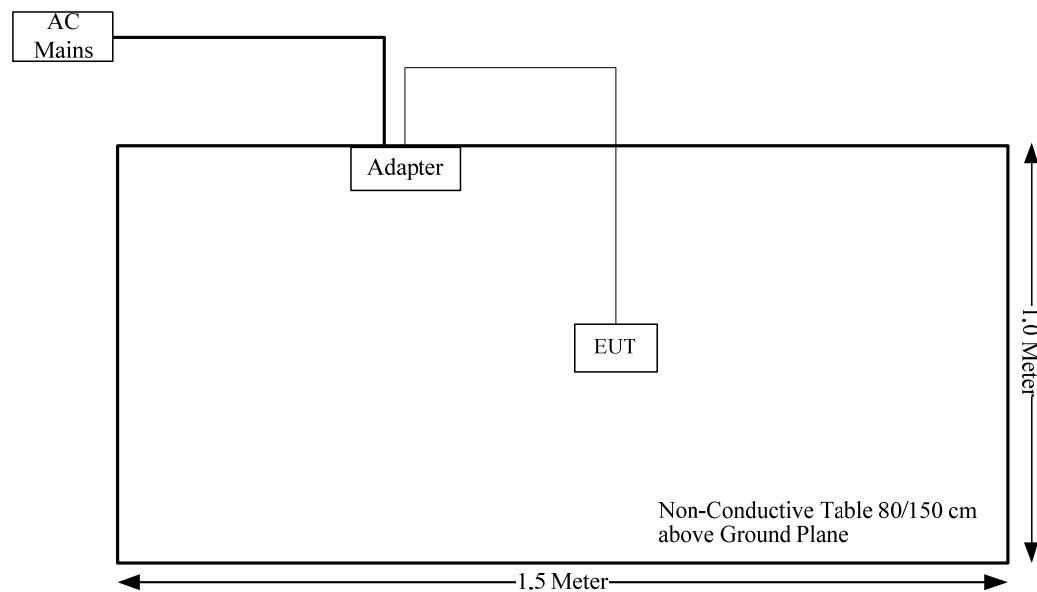
The EUT was configured for testing in Engineering Mode, which was provided by the manufacturer. The EUT configuration is below:

EUT Exercise Software:	Engineering mode		
The software was provided by manufacturer. The maximum power was configured as below, that was provided by the manufacturer▲:			
Test Modes	Power Level Setting		
	Lowest	Middle	Highest
GFSK	Default	Default	Default
$\pi/4$ -DQPSK	Default	Default	Default
8DPSK	Default	Default	Default

3.3 Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
/	/	/	/

3.4 Support Cable List and Details


Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	To
USB Cable	no	no	0.8	Adapter	EUT

3.5 Block Diagram of Test Setup

AC Power Lines Conducted Emission:

Radiated Spurious Emissions:

3.6 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 829273, the FCC Designation No. : CN5044.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0022.

3.7 Measurement Uncertainty

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.61dB
Power Spectral Density, conducted	±0.61 dB
Unwanted Emissions, radiated	9kHz~30MHz: 3.3dB, 30MHz~200MHz: 4.55 dB, 200MHz~1GHz: 5.92 dB, 1GHz~6GHz: 4.98 dB, 6GHz~18GHz: 5.89 dB, 18GHz~26.5GHz: 5.47 dB, 26.5GHz~40GHz: 5.63 dB
Unwanted Emissions, conducted	±2.47 dB
Temperature	±1°C
Humidity	±5%
DC and low frequency voltages	±0.4%
Duty Cycle	1%
AC Power Lines Conducted Emission	3.11 dB (150 kHz to 30 MHz)

4. REQUIREMENTS AND TEST PROCEDURES

4.1 AC Line Conducted Emissions

4.1.1 Applicable Standard

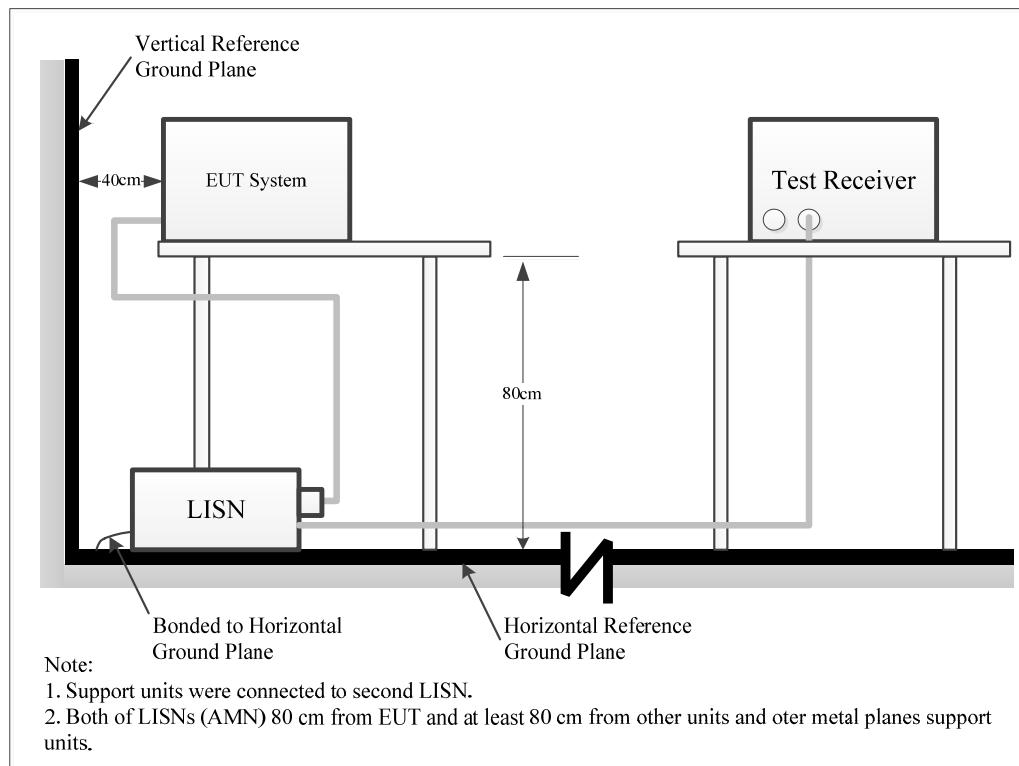
FCC§15.207(a).

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of emission (MHz)	Conducted limit (dB μ V)	
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

(b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:


(1) For carrier current system containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.

(2) For all other carrier current systems: 1000 μ V within the frequency band 535-1705 kHz, as measured using a 50 μ H/50 ohms LISN.

(3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits in §15.205, §15.209, §15.221, §15.223, or §15.227, as appropriate.

(c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

4.1.2 EUT Setup

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter or EUT was connected to the main LISN with a 120 V/60 Hz AC power source.

4.1.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

4.1.4 Test Procedure

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase (“hot”) line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit from among all the measurements identifying the frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the current-carrying conductors, or the six highest emissions may be reported over all the current-carrying conductors.

4.1.5 Corrected Amplitude & Margin Calculation

The basic equation is as follows:

Result = Reading + Factor

Factor = attenuation caused by cable loss + voltage division factor of AMN

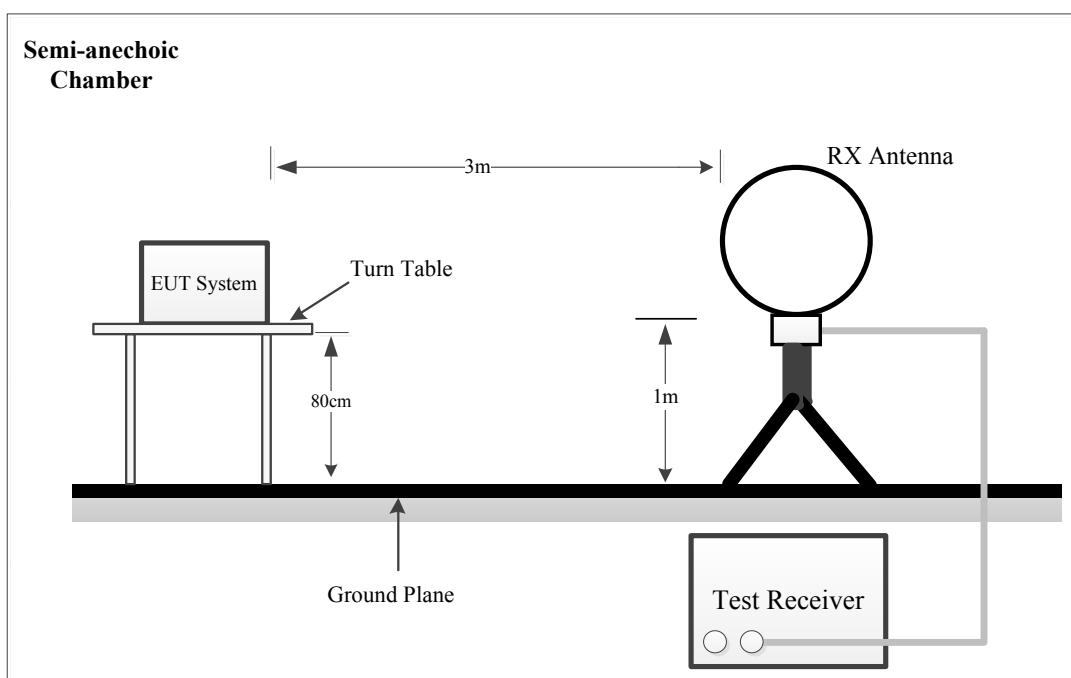
The “**Margin**” column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

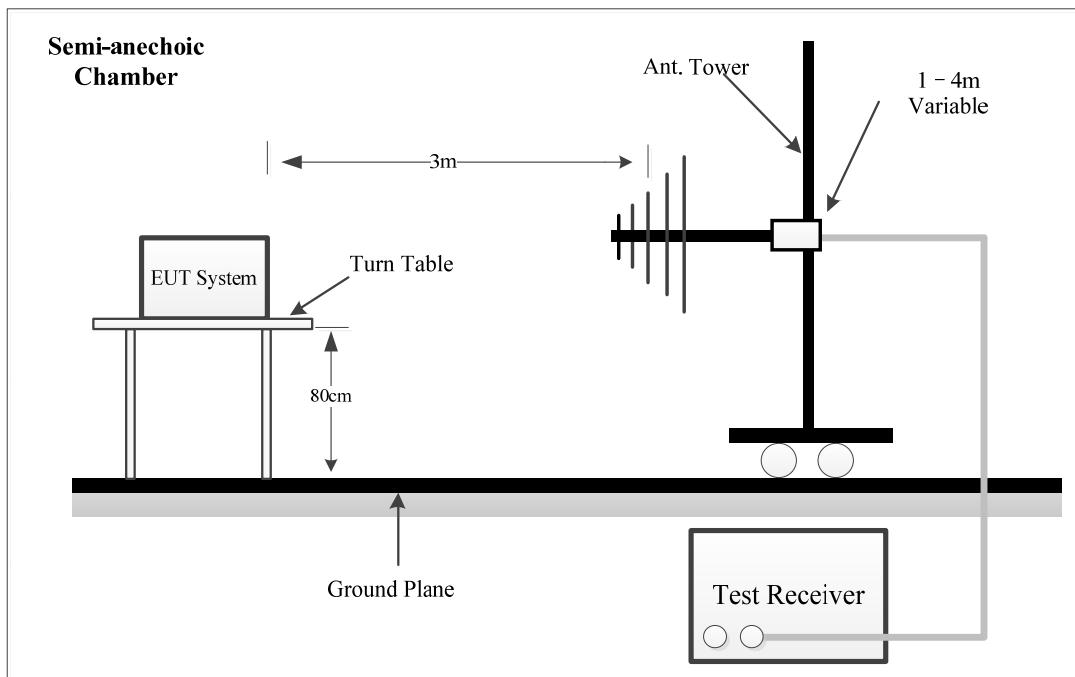
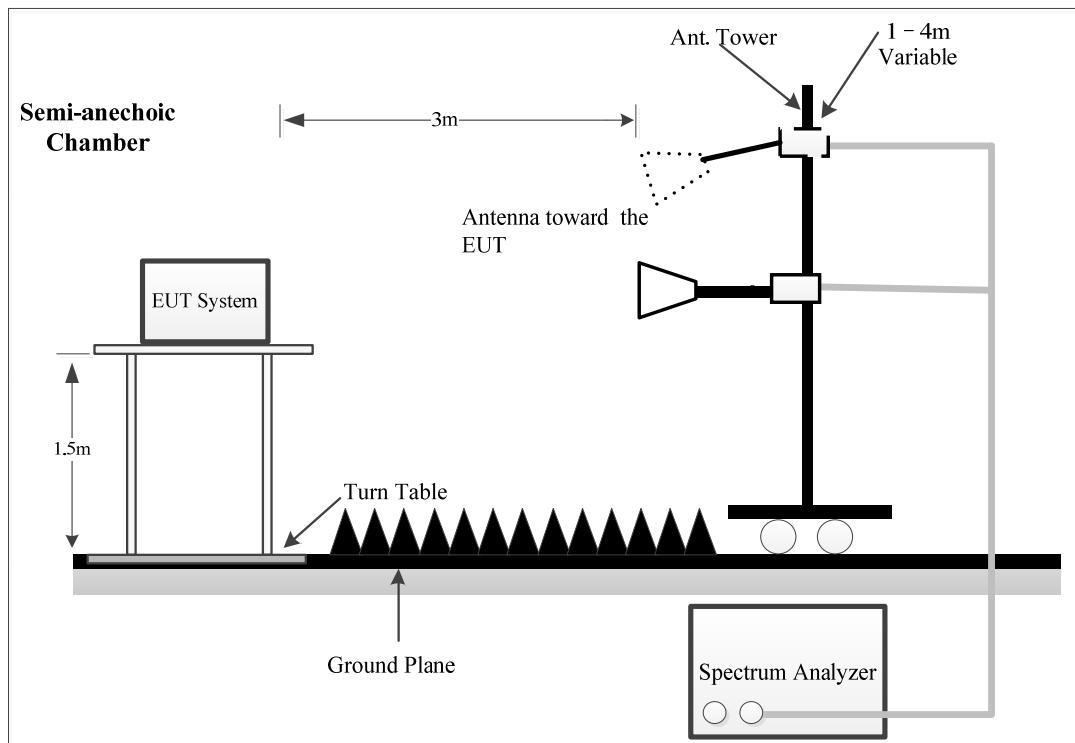
Margin = Limit – Result

4.1.6 Test Result

Please refer to section 5.1.

4.2 Radiated Spurious Emissions


4.2.1 Applicable Standard



FCC §15.247 (d);

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

4.2.2 EUT Setup

9kHz~30MHz:

30MHz~1GHz:**Above 1GHz:**

The radiated emissions were performed in the 3 meters distance, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

For 9kHz-30MHz test, the lowest height of the magnetic antenna shall be 1 m above the ground and three antenna orientations (parallel, perpendicular, and ground-parallel) shall be measured.

4.2.3 EMI Test Receiver & Spectrum Analyzer Setup

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
9 kHz – 150 kHz	200 Hz	1 kHz	200 Hz	QP/AV
150 kHz – 30 MHz	9 kHz	30 kHz	9 kHz	QP/AV
30 MHz – 1000 MHz	100 kHz	300 kHz	/	PK
	/	/	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	/	PK
	1MHz	10 Hz	/	AV

If the maximized peak measured value is under the QP limit by more than 6dB, then it is unnecessary to perform an QP measurement.

If the maximized peak measured value is under the average limit, then it is unnecessary to perform an QP measurement.

4.2.4 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 9 kHz-1 GHz except 9-90 kHz, 110-490 kHz, employing an average detector, peak and Average detection modes for frequencies above 1 GHz.

4.2.5 Corrected Result & Margin Calculation

The basic equation is as follows:

$$\text{Result} = \text{Reading} + \text{Factor}$$

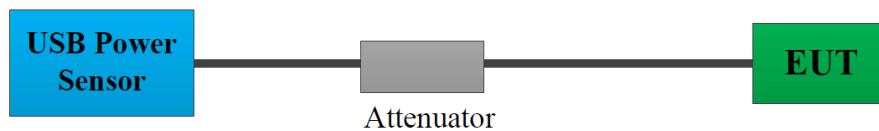
$$\text{Factor} = \text{Antenna Factor} + \text{Cable Loss} - \text{Amplifier Gain}$$

The “Margin” column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Result}$$

4.2.6 Test Result

Please refer to section 5.2.


4.3 Maximum Conducted Output Power

4.3.1 Applicable Standard

FCC §15.247 (b)(1)

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts

4.3.2 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The cable loss of this RF cable was offset into the setting of test equipment, which was provided by manufacturer▲.

4.3.3 Test Procedure

According to ANSI C63.10-2013 Section 11.9.1.3

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

- a) Set the EUT in transmitting mode.
- b) Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to test equipment.
- c) Add a correction factor to the display.
- d) Set the power meter to test peak output power, record the result.

4.3.4 Test Result

Please refer to section 5.3.

4.4 Antenna Requirement

4.4.1 Applicable Standard

FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

4.4.2 Judgment

Compliant. Please refer to the Antenna Information detail in Section 1.3.

5. TEST DATA AND RESULTS

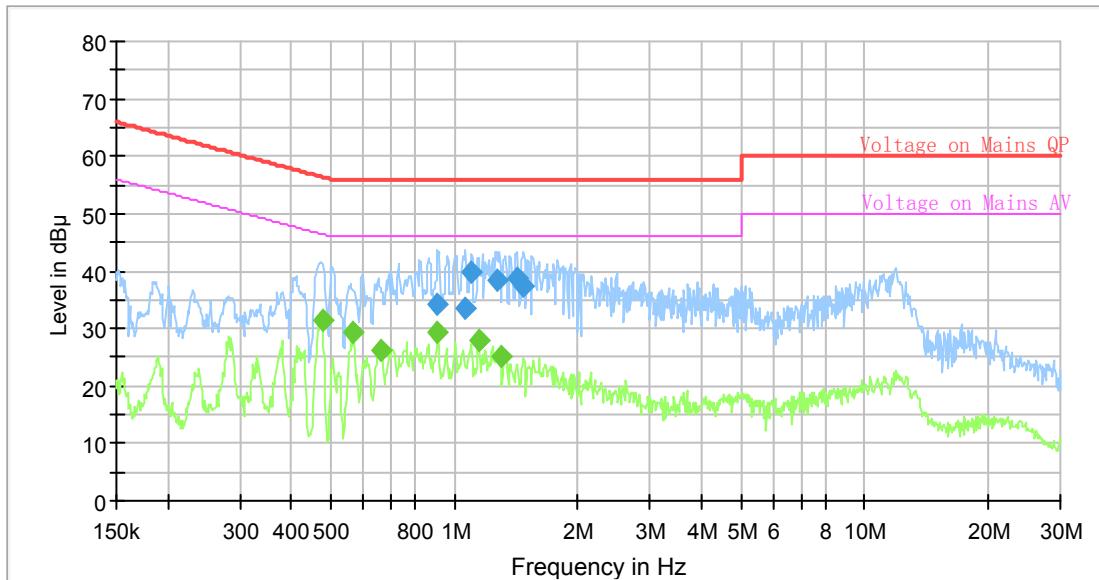
5.1 AC Line Conducted Emissions

Serial Number:	2PN1-1	Test Date:	2024/8/18
Test Site:	CE	Test Mode:	Transmitting
Tester:	Lane Sun	Test Result:	Pass

Environmental Conditions:

Temperature: (°C)	23.6	Relative Humidity: (%)	69	ATM Pressure: (kPa)	100.6
-------------------	------	------------------------	----	---------------------	-------

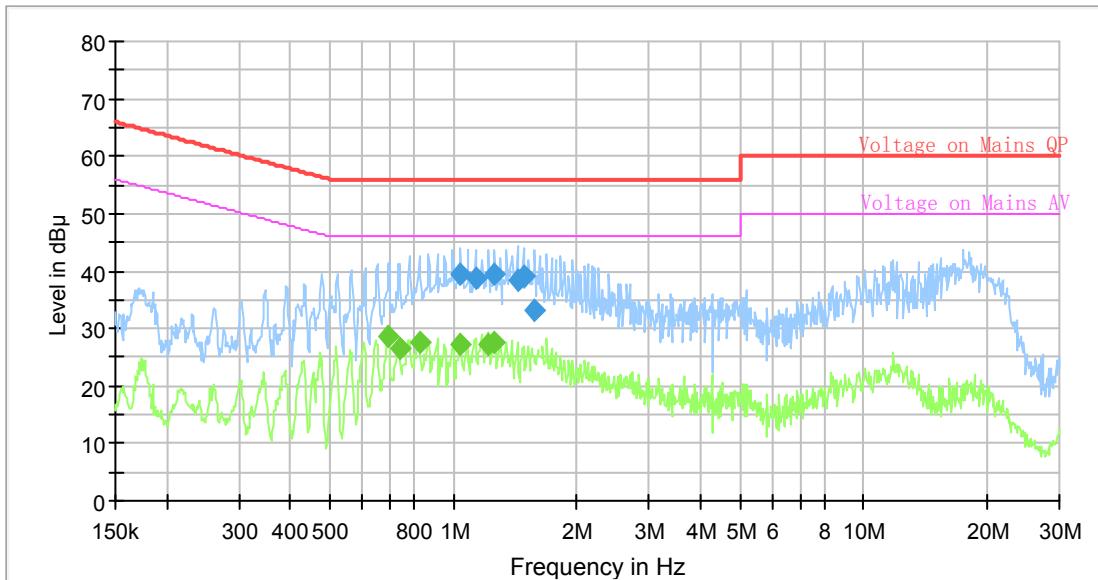
Test Equipment List and Details:


Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	LISN	ENV216	101614	2023/10/18	2024/10/17
MICRO-COAX	Coaxial Cable	C-NJNJ-50	C-0200-01	2023/9/7	2024/9/6
R&S	EMI Test Receiver	ESCI	100035	2024/8/18	2025/8/17
R&S	Test Software	EMC32	V9.10.00	N/A	N/A

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Note: the maximum output power channel was tested.


Project No: 2402W89350E-RF-A1
 Test Engineer: Lane Sun
 Test Date: 2024-8-18
 Port: L
 Test Mode: Transmitting
 Power Source: AC 120V/60Hz
 Note: BDR Low Channel

Final Result

Frequency (MHz)	QuasiPeak (dB μ V)	Average (dB μ V)	Limit (dB μ V)	Margin (dB)	Bandwidth (kHz)	Line	Corr. (dB)
0.477109	---	31.60	46.39	14.79	9.000	L1	10.8
0.568106	---	29.48	46.00	16.52	9.000	L1	10.8
0.659799	---	26.09	46.00	19.91	9.000	L1	10.8
0.907903	---	29.42	46.00	16.58	9.000	L1	10.9
0.907903	34.08	---	56.00	21.92	9.000	L1	10.9
1.065010	33.63	---	56.00	22.37	9.000	L1	10.8
1.102849	39.82	---	56.00	16.18	9.000	L1	10.8
1.147742	---	27.88	46.00	18.12	9.000	L1	10.8
1.268136	38.40	---	56.00	17.60	9.000	L1	10.8
1.293689	---	25.15	46.00	20.85	9.000	L1	10.8
1.422280	38.86	---	56.00	17.14	9.000	L1	10.8
1.472813	37.30	---	56.00	18.70	9.000	L1	10.8

Project No: 2402W89350E-RF-A1
 Test Engineer: Lane Sun
 Test Date: 2024-8-18
 Port: N
 Test Mode: Transmitting
 Power Source: AC 120V/60Hz
 Note: BDR Low Channel

Final Result

Frequency (MHz)	QuasiPeak (dB μ V)	Average (dB μ V)	Limit (dB μ V)	Margin (dB)	Bandwidth (kHz)	Line	Corr. (dB)
0.693541	---	28.54	46.00	17.46	9.000	N	10.8
0.739999	---	26.62	46.00	19.38	9.000	N	10.8
0.825818	---	27.55	46.00	18.45	9.000	N	10.8
1.038779	---	27.15	46.00	18.85	9.000	N	10.9
1.043973	39.43	---	56.00	16.57	9.000	N	10.9
1.130697	38.92	---	56.00	17.08	9.000	N	10.9
1.218533	---	27.31	46.00	18.69	9.000	N	10.9
1.261826	39.31	---	56.00	16.69	9.000	N	10.9
1.261826	---	27.58	46.00	18.42	9.000	N	10.9
1.436538	38.47	---	56.00	17.53	9.000	N	10.9
1.480177	39.06	---	56.00	16.94	9.000	N	10.9
1.579328	33.33	---	56.00	22.67	9.000	N	10.9

5.2 Radiated Spurious Emissions

Serial Number:	2PN1-1	Test Date:	Below 1GHz: 2024/8/16 Above 1GHz: 2024/8/15
Test Site:	Chamber 10m, Chamber B	Test Mode:	Transmitting
Tester:	Zoo Zou, Nat Zhou	Test Result:	Pass

Environmental Conditions:			
Temperature: (°C)	25.8-27.8	Relative Humidity (%)	52-53
			ATM Pressure: (kPa)
			100.4-100.5

Test Equipment List and Details:

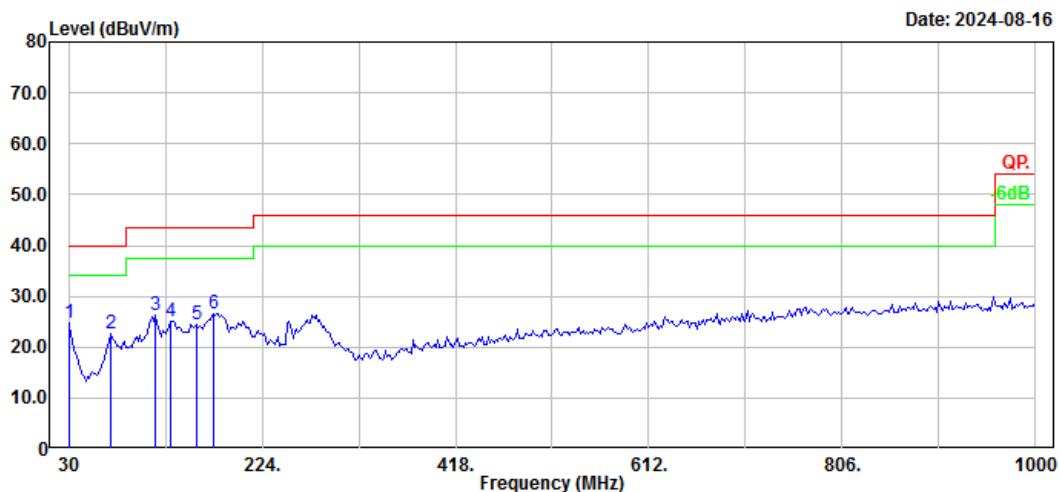
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
9kHz~1000MHz					
EMCO	Passive Loop Antenna	6512	9706-1206	2023/10/21	2026/10/20
Sunol Sciences	Hybrid Antenna	JB3	A060611-1	2023/9/6	2026/9/5
Narda	Coaxial Attenuator	779-6dB	04269	2023/9/6	2026/9/5
Unknown	Coaxial Cable	C-NJNJ-50	C-1000-01	2024/8/1	2025/7/31
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-04	2024/8/1	2025/7/31
Unknown	Coaxial Cable	C-NJNJ-50	C-0530-01	2024/8/1	2025/7/31
Sonoma	Amplifier	310N	185914	2024/8/1	2025/7/31
R&S	EMI Test Receiver	ESCI	101121	2023/10/18	2024/10/17
Audix	Test Software	E3	191218 V9	N/A	N/A
Above 1GHz					
ETS-Lindgren	Horn Antenna	3115	000 527 35	2023/9/7	2024/9/6
R&S	Spectrum Analyzer	FSV40	101944	2023/10/18	2024/10/17
Xinhang Macrowave	Coaxial Cable	XH750A-N/J-SMA/J-10M	20231117004 #0001	2023/11/17	2024/11/16
Audix	Test Software	E3	191218 (V9)	N/A	N/A
AH	Preamplifier	PAM-0118P	469	2023/8/19	2024/8/18
Ducommun Technologies	Horn Antenna	ARH-4223-02	1007726-03 1304	2023/2/22	2026/2/21
Xinhang Macrowave	Coaxial Cable	XH360A-2.92/J-2.92/J-6M-A	20231208001 #0001	2023/12/11	2024/12/10
AH	Preamplifier	PAM-1840VH	191	2023/9/7	2024/9/6
E-Microwave	Band Rejection Filter	OBSF-2400-2483.5-S	OE01601525	2024/2/21	2025/2/20
Micro-tronics	High Pass Filter	HPM50111	G217	2023/12/1	2024/11/30

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Please refer to the below table and plots.

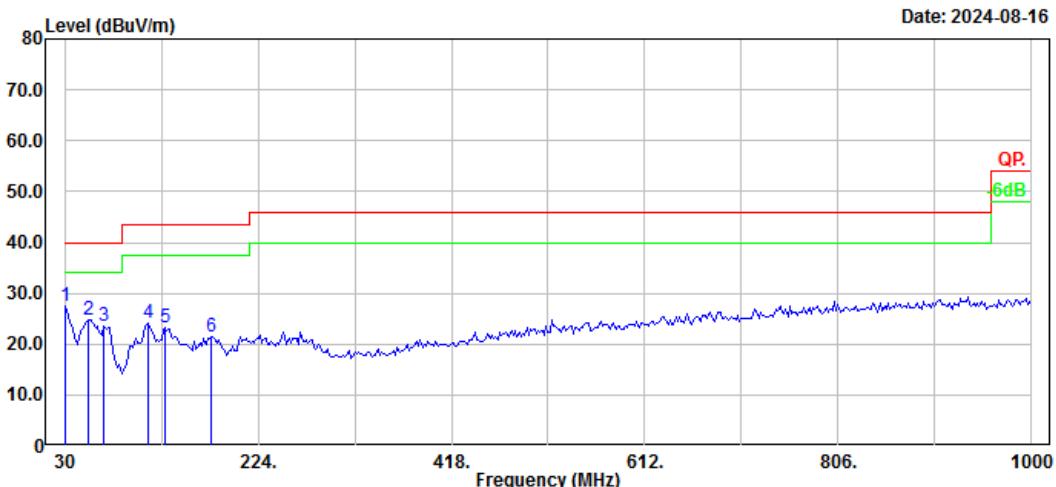
After pre-scan in the X, Y and Z axes of orientation, the worst case is below:


1) 9kHz~30MHz

The BDR low channel was tested. The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

2) 30MHz-1GHz

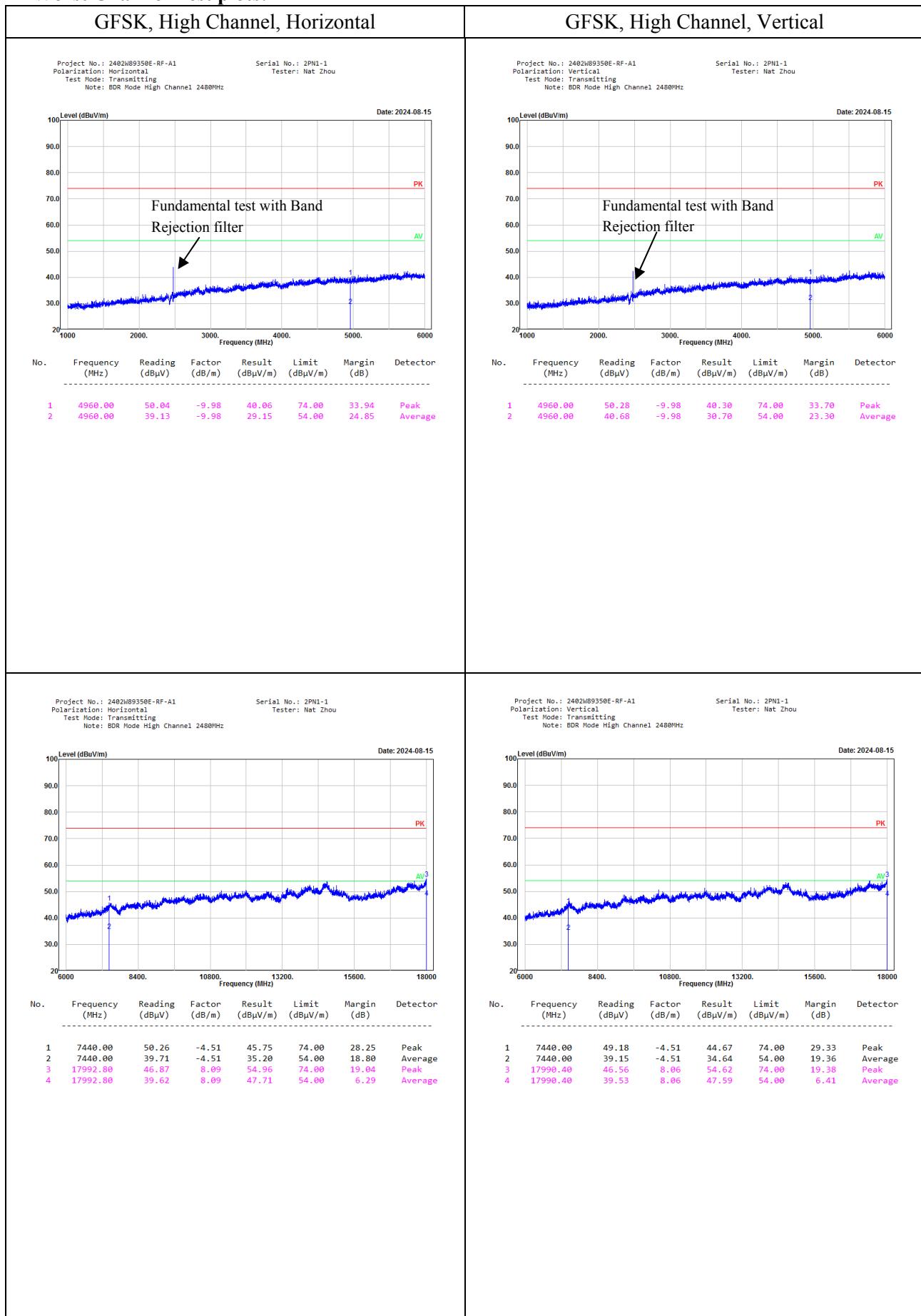
Project No.: 2402W89350E-RF-A1
Polarization: Horizontal
Test Mode: Transmitting
Note: BDR Low Channel

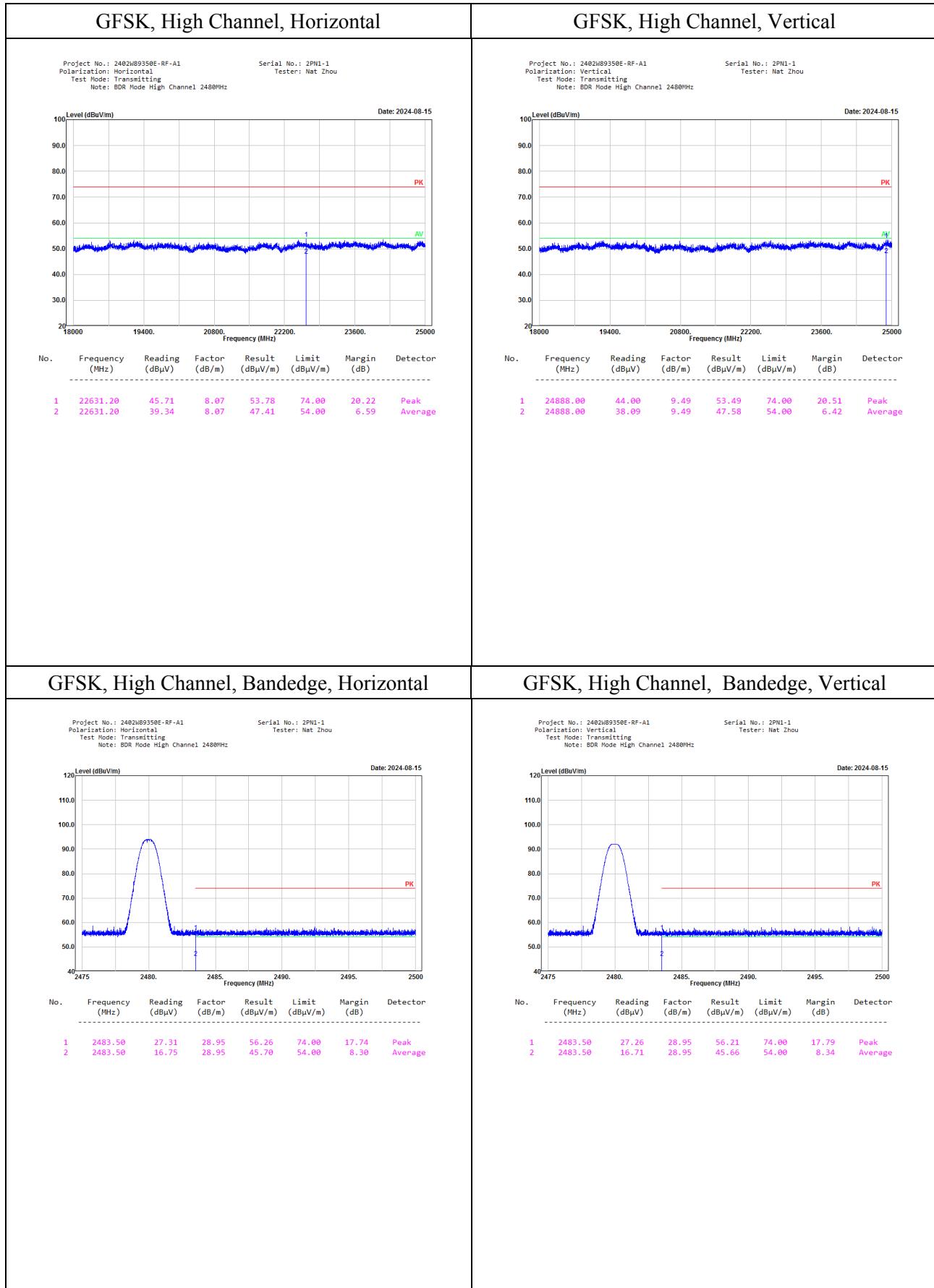

Serial No.: 2PN1-1
Tester: Zoo Zou

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	30.00	28.50	-3.80	24.70	40.00	15.30	Peak
2	72.68	38.98	-16.20	22.78	40.00	17.22	Peak
3	117.30	36.67	-10.33	26.34	43.50	17.16	Peak
4	132.82	35.15	-10.03	25.12	43.50	18.38	Peak
5	158.04	35.54	-11.13	24.41	43.50	19.09	Peak
6	175.50	38.63	-12.10	26.53	43.50	16.97	Peak

Project No.: 2402W89350E-RF-A1
Polarization: Vertical
Test Mode: Transmitting
Note: BDR Low Channel

Serial No.: 2PN1-1
Tester: Zoo Zou


No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	30.00	31.39	-3.80	27.59	40.00	12.41	Peak
2	53.28	41.29	-16.52	24.77	40.00	15.23	Peak
3	68.80	39.82	-16.33	23.49	40.00	16.51	Peak
4	113.42	35.15	-10.87	24.28	43.50	19.22	Peak
5	130.88	33.03	-9.91	23.12	43.50	20.38	Peak
6	177.44	33.52	-12.21	21.31	43.50	22.19	Peak


3) 1-25GHz:

BDR Mode(GFSK):

Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Limit	Margin
MHz	dB μ V	PK/QP/AV	H/V	dB/m	dB μ V/m	dB μ V/m	dB
Low Channel				2402	MHz		
2390.00	27.43	PK	H	28.57	56.00	74.00	18.00
2390.00	17.13	AV	H	28.57	45.70	54.00	8.30
2390.00	27.32	PK	V	28.57	55.89	74.00	18.11
2390.00	17.21	AV	V	28.57	45.78	54.00	8.22
4804.00	49.68	PK	H	-10.12	39.56	74.00	34.44
4804.00	39.41	AV	H	-10.12	29.29	54.00	24.71
4804.00	49.54	PK	V	-10.12	39.42	74.00	34.58
4804.00	39.31	AV	V	-10.12	29.19	54.00	24.81
7206.00	49.65	PK	H	-5.52	44.13	74.00	29.87
7206.00	39.62	AV	H	-5.52	34.10	54.00	19.90
7206.00	49.22	PK	V	-5.52	43.70	74.00	30.30
7206.00	39.23	AV	V	-5.52	33.71	54.00	20.29
Middle Channel				2441	MHz		
4882.00	49.98	PK	H	-10	39.98	74.00	34.02
4882.00	39.78	AV	H	-10	29.78	54.00	24.22
4882.00	49.89	PK	V	-10	39.89	74.00	34.11
4882.00	39.67	AV	V	-10	29.67	54.00	24.33
7323.00	49.83	PK	H	-5.01	44.82	74.00	29.18
7323.00	39.64	AV	H	-5.01	34.63	54.00	19.37
7323.00	49.56	PK	V	-5.01	44.55	74.00	29.45
7323.00	39.10	AV	V	-5.01	34.09	54.00	19.91
High Channel				2480	MHz		
2483.50	27.31	PK	H	28.95	56.26	74.00	17.74
2483.50	16.75	AV	H	28.95	45.70	54.00	8.30
2483.50	27.26	PK	V	28.95	56.21	74.00	17.79
2483.50	16.71	AV	V	28.95	45.66	54.00	8.34
4960.00	50.04	PK	H	-9.98	40.06	74.00	33.94
4960.00	39.13	AV	H	-9.98	29.15	54.00	24.85
4960.00	50.28	PK	V	-9.98	40.30	74.00	33.70
4960.00	40.68	AV	V	-9.98	30.70	54.00	23.30
7440.00	50.26	PK	H	-4.51	45.75	74.00	28.25
7440.00	39.71	AV	H	-4.51	35.20	54.00	18.80
7440.00	49.18	PK	V	-4.51	44.67	74.00	29.33
7440.00	39.15	AV	V	-4.51	34.64	54.00	19.36

Worst Channel Test plots:

5.3 Spot Check With Maximum Conducted Output Power

Serial No.:	2PN1-2	Test Date:	2024/8/21
Test Site:	RF	Test Mode:	Transmitting
Tester:	Jeff Wei	Test Result:	Pass

Environmental Conditions:

Temperature: (°C)	25.5	Relative Humidity: (%)	52	ATM Pressure: (kPa)	100.9
-----------------------------	------	----------------------------------	----	-------------------------------	-------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Anritsu	Microwave Peak Power Sensor	MA24418A	12618	2023/9/4	2024/9/3
Eastsheep	Coaxial Attenuator	5W-N-JK-6G-10dB	F-08-EM504	2024/6/7	2025/6/6

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Mode	Value (dBm)	Limit (dBm)	Result
GFSK_Low_DH1	4.73	21.00	Pass
GFSK_Mid_DH1	3.85	21.00	Pass
GFSK_High_DH1	3.76	21.00	Pass
π/4-DQPSK_Low_2DH1	3.58	21.00	Pass
π/4-DQPSK_Mid_2DH1	2.87	21.00	Pass
π/4-DQPSK_High_2DH1	2.79	21.00	Pass
8DPSK_Low_3DH1	3.77	21.00	Pass
8DPSK_Mid_3DH1	3.15	21.00	Pass
8DPSK_High_3DH1	3.09	21.00	Pass

Note:

The Spot Check data were similar to the original data, so this report can reuse data.

EXHIBIT A - EUT PHOTOGRAPHS

Please refer to the attachment 2402W89350E-RF-A1-EXP EUT external photographs and 2402W89350E-RF-A1-INP EUT internal photographs.

EXHIBIT B - TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2402W89350E-RF-00BA1-TSP test setup photographs.

EXHIBIT C - RF EXPOSURE EVALUATION

Applicable Standard

According to §15.247(i) and §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB447498 D01 General RF Exposure Guidance v06:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- $f(\text{GHz})$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is $<$ 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

Measurement Result

The max conducted power including tune-up tolerance is 5.0 dBm (3.16 mW).
 $[(\text{max. power of channel, mW}) / (\text{min. test separation distance, mm})][\sqrt{f(\text{GHz})}]$
 $= 3.16 / 5 * (\sqrt{2.480}) = 1.0 < 3.0$

Note: the max conducted power including tune-up tolerance was declared by manufacturer.

Result: Compliant. The stand-alone SAR evaluation is not necessary.

===== END OF REPORT =====