

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

IIAC MRA

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2300V2-1018_Jul24

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with spacer
Zoom Scan Resolution	dx, $dy = 5mm$, $dz = 1.5mm$	Graded Ratio = 1.5 mm (Z direction)
Frequency	2300MHz ±1MHz	

Head TSL parameters at 2300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.5	1.67 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	38.5 ±6%	1.67 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 2300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	12.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	48.2 W/kg ±17.0% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	5.86 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.3 W/kg ±16.5% (k = 2)

Certificate No: D2300V2-1018_Jul24

Page 3 of 6

D2300V2 - SN: 1018

July 10, 2024

Appendix (Additional assessments outside the scope of SCS 0108) Antenna Parameters with Head TSL at 2300 MHz

Impedance	48.6 Ω – 4.4 jΩ	
Return Loss	-26.6 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.169 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
manuscus of by	

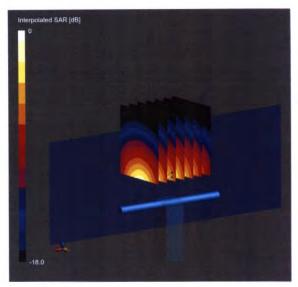
Certificate No: D2300V2-1018_Jul24

Page 4 of 6

System Performance Check Report

10

Summary						
Dipole		Frequency [Mi	Hz] TSL	Power [dBm]		
D2300V2 - SN1018		2300	HSL	24		
Exposure Condition	ıs					
Phantom Section TSI	Test Distance [mm]	Rand Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity


Hardware Setup				
Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date	
MED VO O Control	HSI 2024-07-10	FX3DV4 - SN7349, 2024-06-03	DAE4ip Sn1836, 2024-01-10	

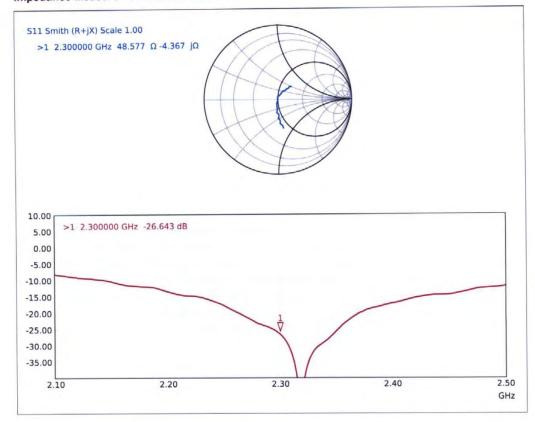
	Zoom Scan
Grid Extents [mm]	30 x 30 x 30
Grid Steps [mm]	5.0 x 5.0 x 1.5
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.5
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measured

CW, 0--

2300, 0

	Zoom Scan
Date	2024-07-10
psSAR1g [W/Kg]	12.1
psSAR10g [W/Kg]	5.86
Power Drift [dB]	-0.01
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 23.7 W/Kg


Certificate No: D2300V2-1018_Jul24

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: D2300V2-1018_Jul24

Page 6 of 6

2450 MHz Dipole Calibration Certificate

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

lac MRA

- S Schweizerischer Kalibrierdienst C Service sulsse d'étalonnage Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

CTTL Beijing Certificate No.

D2450V2-853_Jul24

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 853

Calibration procedure(s) QA CAL-05.v12

Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz

Calibration date July 10, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22\pm3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Power Sensor R&S NRP18A	SN: 101859	21-Mar-24 (No. 4030A315007801)	Mar-25
Spectrum Analyzer R&S FSV40	SN: 101832	25-Jan-24 (No. 4030-315007551)	Jan-25
Mismatch; Short [S4188] Attenuator [S4423]	SN: 1152	28-Mar-24 (No. 217-04050)	Mar-25
OCP DAK-12	SN: 1016	05-Oct-23 (No. OCP-DAK12-1016_Oct23)	Oct-24
OCP DAK-3.5	SN: 1249	05-Oct-23 (No. OCP-DAK3.5-1249_Oct23)	Oct-24
Reference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25
DAE4ip	SN: 1836	10-Jan-24 (No. DAE4ip-1836_Jan24)	Jan-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 0001-300719404)	May-25
Mismatch: SMA	SN: 1102	22-May-24 (No. 675-Mismatch SMA-240522)	May-25

Laboratory Technician

Technical Manager

Name Function

Paulo Pina

Sven Kühn

Issued: July 10, 2024

Signature

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-853_Jul24 Page 1 of 6

Calibrated by

Approved by

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Ilac MRA

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

· DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-853_Jul24

Page 2 of 6

D2450V2 - SN: 853 July 10, 2024

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with spacer
Zoom Scan Resolution	dx, $dy = 5mm$, $dz = 1.5mm$	Graded Ratio = 1.5 mm (Z direction)
Frequency	2450MHz ±1MHz	

Head TSL parameters at 2450 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	38.0 ±6%	1.83 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 2450 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	13.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.2 W/kg ±17.0% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	6.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ±16.5% (k = 2)

Certificate No: D2450V2-853_Jul24

Page 3 of 6

D2450V2 - SN: 853 July 10, 2024

Appendix (Additional assessments outside the scope of SCS 0108) Antenna Parameters with Head TSL at 2450 MHz

Impedance	52.4 Ω + 2.6 jΩ
Return Loss	-29.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.163 ns

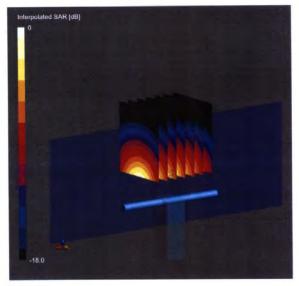
After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D2450V2-853_Jul24

Page 4 of 6


D2450V2 - SN: 853

July 10, 2024

System Performance Check Report

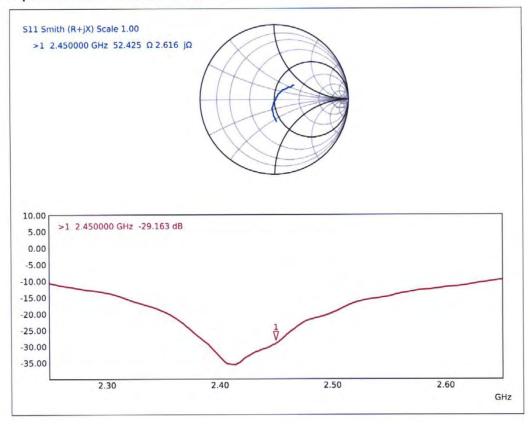
Scan Method

Summary								
Dipole		Fre	equency [MHz]		TSL	Power [dBm]		
D2450V2 - SN853		2450 HSL		HSL	24			
Exposure Condition	s							
Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Ch.	annel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10		CW, 0	2450, 0		7.24	1.83	38.0
Hardware Setup								
Phantom	TSL, Measured	Date		Probe, Calibration Date		DAE	, Calibration Date	
MFP V8.0 Center	HSL, 2024-07-	-10		EX3DV4 - SN7349, 202	4-06-03	DAE	4ip Sn1836, 2024-01-10	
Scans Setup					Measureme	nt Results		
				Zoom Scan				Zoom Scan
Grid Extents [mm]				30 x 30 x 30	Date			2024-07-10
Grid Steps [mm]			5	.0 x 5.0 x 1.5	psSAR1g [W/	(g]		13.1
Sensor Surface [mm]				1.4	psSAR10g [W	/Kg]		6.16
Graded Grid				Yes	Power Drift (d	IB)		0.00
Grading Ratio				1.5	Power Scaling	1		Disabled
MAIA				N/A	Scaling Facto	r [dB]		
Surface Detection				VMS + 6p	TSL Correction	in		Positive / Negative

Measured

0 dB = 26.6 W/Kg

Certificate No: D2450V2-853_Jul24


Page 5 of 6

D2450V2 - SN: 853 July 10, 2024

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-853_Jul24

Page 6 of 6

2600 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

- S Schweizerischer Kalibrierdienst
 C Service suisse d'étalonnage
 Servizio svizzero di taratura
 - **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

CTTL Beijing Certificate No.

D2600V2-1012_Jul24

CALIBRATION CERTIFICATE

Object D2600V2 - SN: 1012

Calibration procedure(s) QA CAL-05.v12

Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz

Calibration date July 10, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22\pm3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Power Sensor R&S NRP18A	SN: 101859	21-Mar-24 (No. 4030A315007801)	Mar-25
Spectrum Analyzer R&S FSV40	SN: 101832	25-Jan-24 (No. 4030-315007551)	Jan-25
Mismatch; Short [S4188] Attenuator [S4423]	SN: 1152	28-Mar-24 (No. 217-04050)	Mar-25
OCP DAK-12	SN: 1016	05-Oct-23 (No. OCP-DAK12-1016_Oct23)	Oct-24
OCP DAK-3.5	SN: 1249	05-Oct-23 (No. OCP-DAK3.5-1249_Oct23)	Oct-24
Reference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25
DAF4in	SN: 1836	10-Jan-24 (No. DAE4ip-1836 Jan24)	Jan-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 0001-300719404)	May-25
Mismatch: SMA	SN: 1102	22-May-24 (No. 675-Mismatch, SMA-240522)	May-25

Page 1 of 6

Name Function Signature

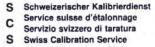
Calibrated by Paulo Pina Laboratory Technician

Approved by Sven Kühn Technical Manager

Issued: July 10, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2600V2-1012_Jul24


Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- · SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2600V2-1012_Jul24

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with spacer
Zoom Scan Resolution	dx, $dy = 5mm$, $dz = 1.5mm$	Graded Ratio = 1.5 mm (Z direction)
Frequency	2600MHz ±1MHz	

Head TSL parameters at 2600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	37.4 ±6%	1.99 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 2600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	13.8 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	54.9 W/kg ±17.0% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	6.24 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.8 W/kg ±16.5% (k = 2)

Certificate No: D2600V2-1012_Jul24

Page 3 of 6

Appendix (Additional assessments outside the scope of SCS 0108) Antenna Parameters with Head TSL at 2600 MHz

Impedance	47.3 Ω – 6.6 jΩ
Return Loss	-22.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns

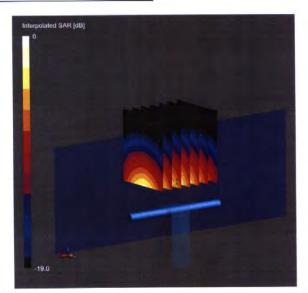
After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D2600V2-1012_Jul24

Page 4 of 6



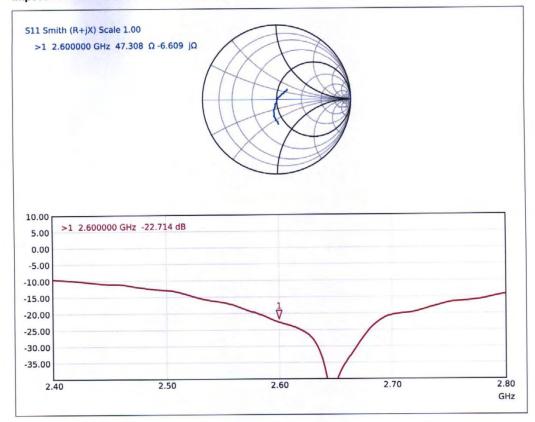
System Performance Check Report

Dipole		Frequency [M	Hz] TSL	Power [dBm]		
D2600V2 - SN1012		2600	HSL	24		
Exposure Condition	s					
Phantom Section, TSL	Test Distance [mm] Ba	nd Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [5/m]	TSL Permittivity
Flat	10	CW, 0	2600, 0	7.29	1.99	37.4
Hardware Setup						
Phantom	TSL, Measured Date		Probe, Calibration Date	DAE	Calibration Date	
MFP V8.0 Center	HSL, 2024-07-10		EX3DV4 - SN7349, 2024-06-03	DAE	4ip Sn1836, 2024-01-10	

cans Setup	
	Zoom Scan
Grid Extents [mm]	30 x 30 x 30
Grid Steps [mm]	5.0 x 5.0 x 1.5
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.5
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measured

	Zoom Scan
Date	2024-07-10
psSAR1g [W/Kg]	13.8
psSAR10g [W/Kg]	6.24
Power Drift [dB]	0.00
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 29.3 W/Kg


Certificate No: D2600V2-1012_Jul24

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: D2600V2-1012_Jul24

Page 6 of 6

3500 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client CTTL Beijing Certificate No. D3500V2-1016_Jun24

CALIBRA	MOITA	CERTI	FICATE
---------	-------	-------	---------------

Object D3500V2 - SN:1016

Calibration procedure(s) QA CAL-22.v7

Calibration Procedure for SAR Validation Sources between 3-10 GHz

Calibration date: June 13, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	26-Mar-24 (No. 217-04036/04037)	Mar-25
Power sensor NRP-Z91	SN: 103244	26-Mar-24 (No. 217-04036)	Mar-25
Power sensor NRP-Z91	SN: 103245	26-Mar-24 (No. 217-04037)	Mar-25
Reference 20 dB Attenuator	SN: BH9394 (20k)	26-Mar-24 (No. 217-04046)	Mar-25
Type-N mismatch combination	SN: 310982 / 06327	26-Mar-24 (No. 217-04047)	Mar-25
Reference Probe EX3DV4	SN: 3503	07-Mar-24 (No. EX3-3503_Mar24)	Mar-25
DAE4	SN: 601	22-May-24 (No. DAE4-601_May24)	May-25
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Krešimir Franjić	Laboratory Technician	y
Approved by:	Sven Kühn	Technical Manager .	A. A. Restal

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D3500V2-1016_Jun24

Page 1 of 8

Issued: June 14, 2024

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D3500V2-1016_Jun24	Page 2 of 8	

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3400 MHz ± 1 MHz 3500 MHz ± 1 MHz 3600 MHz ± 1 MHz	

Head TSL parameters at 3400 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	38.0	2.81 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.7 ± 6 %	2.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 3400 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	67.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.4 W/kg ± 19.5 % (k=2)

Head TSL parameters at 3500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.9	2.91 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.6 ± 6 %	2.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 3500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.79 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	68.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.56 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.7 W/kg ± 19.5 % (k=2)

Certificate No: D3500V2-1016_Jun24

Page 3 of 8

Head TSL parameters at 3600 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.8	3.02 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.5 ± 6 %	3.01 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	177	

SAR result with Head TSL at 3600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.50 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	65.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 19.5 % (k=2)

Certificate No: D3500V2-1016_Jun24

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 3400 MHz

Impedance, transformed to feed point	46.5 Ω - 7.1 jΩ	
Return Loss	- 21.7 dB	

Antenna Parameters with Head TSL at 3500 MHz

Impedance, transformed to feed point	53.5 Ω - 1.4 jΩ	
Return Loss	- 28.9 dB	

Antenna Parameters with Head TSL at 3600 MHz

Impedance, transformed to feed point	$59.1 \Omega + 1.7 j\Omega$	
Return Loss	- 21.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.137 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D3500V2-1016_Jun24

Page 5 of 8

DASY5 Validation Report for Head TSL

Date: 13.06.2024

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1016

Communication System: UID 0 - CW; Frequency: 3500 MHz, Frequency: 3400 MHz, Frequency: 3600

MHz

Medium parameters used: f = 3500 MHz; $\sigma = 2.94$ S/m; $\epsilon_r = 38.6$; $\rho = 1000$ kg/m³ Medium parameters used: f = 3400 MHz; $\sigma = 2.86$ S/m; $\epsilon_r = 38.7$; $\rho = 1000$ kg/m³ Medium parameters used: f = 3600 MHz; $\sigma = 3.01$ S/m; $\epsilon_r = 38.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.63, 7.63, 7.63) @ 3500 MHz, ConvF(7.63, 7.63, 7.63) @ 3400 MHz, ConvF(7.63, 7.63, 7.63) @ 3600 MHz; Calibrated: 07.03.2024
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 22.05.2024
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3500MHz/Zoom Scan,

dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.49 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 18.3 W/kg

SAR(1 g) = 6.79 W/kg; SAR(10 g) = 2.56 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 74.6%

Maximum value of SAR (measured) = 12.7 W/kg

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3400MHz/Zoom Scan,

dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.47 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 18.1 W/kg

SAR(1 g) = 6.76 W/kg; SAR(10 g) = 2.54 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 74.8%

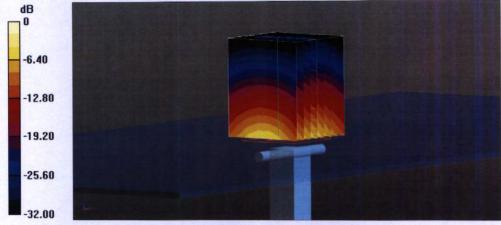
Maximum value of SAR (measured) = 12.6 W/kg

Certificate No: D3500V2-1016_Jun24	Page 6 of 8	

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3600MHz/Zoom Scan,

dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

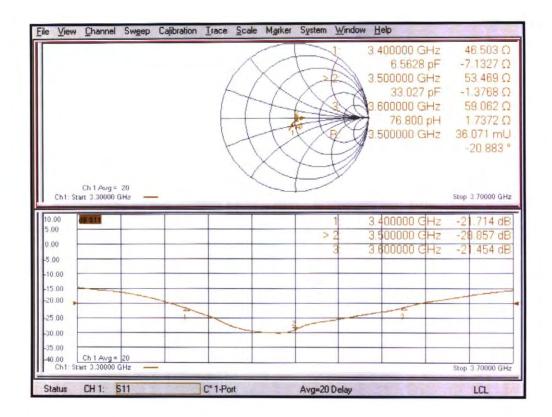
Reference Value = 69.92 V/m; Power Drift = 0.09 dB


Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 6.50 W/kg; SAR(10 g) = 2.43 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 74.2%


Maximum value of SAR (measured) = 12.3 W/kg

0 dB = 12.7 W/kg = 11.05 dBW/kg

Impedance Measurement Plot for Head TSL

Certificate No: D3500V2-1016_Jun24

Page 8 of 8

3700 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner

Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client CTTL

Beijing

Certificate No. D3700V2-1004_Jun24

Object	D3700V2 - SN:10	004	
Calibration procedure(s)	QA CAL-22.v7 Calibration Proce	edure for SAR Validation Sources	between 3-10 GHz
Calibration date:	June 13, 2024		
The measurements and the uncerta	ainties with confidence po	conal standards, which realize the physical uniforbability are given on the following pages and by facility: environment temperature $(22 \pm 3)^{\circ}$ C	d are part of the certificate.
Calibration Equipment used (M&TE Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	26-Mar-24 (No. 217-04036/04037)	Mar-25
Power sensor NRP-Z91	SN: 103244	26-Mar-24 (No. 217-04036)	Mar-25
	SN: 103245	26-Mar-24 (No. 217-04037)	Mar-25
ower sensor NRP-Z91	OIT. TOOL TO		
	SN: BH9394 (20k)	26-Mar-24 (No. 217-04046)	Mar-25
Reference 20 dB Attenuator Type-N mismatch combination	SN: BH9394 (20k) SN: 310982 / 06327	26-Mar-24 (No. 217-04046) 26-Mar-24 (No. 217-04047)	Mar-25 Mar-25
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: BH9394 (20k)		
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503	26-Mar-24 (No. 217-04047) 07-Mar-24 (No. EX3-3503_Mar24)	Mar-25 Mar-25
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601	26-Mar-24 (No. 217-04047) 07-Mar-24 (No. EX3-3503_Mar24) 22-May-24 (No. DAE4-601_May24)	Mar-25 Mar-25 May-25
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601	26-Mar-24 (No. 217-04047) 07-Mar-24 (No. EX3-3503_Mar24) 22-May-24 (No. DAE4-601_May24) Check Date (in house)	Mar-25 Mar-25 May-25 Scheduled Check
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315	26-Mar-24 (No. 217-04047) 07-Mar-24 (No. EX3-3503_Mar24) 22-May-24 (No. DAE4-601_May24) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22)	Mar-25 Mar-25 May-25 Scheduled Check In house check; Oct-24
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972	26-Mar-24 (No. 217-04047) 07-Mar-24 (No. EX3-3503_Mar24) 22-May-24 (No. DAE4-601_May24) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22)	Mar-25 May-25 May-25 Scheduled Check In house check; Oct-24 In house check: Oct-24
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315	26-Mar-24 (No. 217-04047) 07-Mar-24 (No. EX3-3503_Mar24) 22-May-24 (No. DAE4-601_May24) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22)	Mar-25 May-25 May-25 Scheduled Check In house check; Oct-24 In house check: Oct-24 In house check: Oct-24
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name	26-Mar-24 (No. 217-04047) 07-Mar-24 (No. EX3-3503_Mar24) 22-May-24 (No. DAE4-601_May24) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22)	Mar-25 May-25 May-25 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477	26-Mar-24 (No. 217-04047) 07-Mar-24 (No. EX3-3503_Mar24) 22-May-24 (No. DAE4-601_May24) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22)	Mar-25 May-25 May-25 Scheduled Check In house check: Oct-24

Certificate No: D3700V2-1004_Jun24

Page 1 of 7

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage

S Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D3700V2-1004_Jun24

Page 2 of 7

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3700 MHz ± 1 MHz 3800 MHz ± 1 MHz	

Head TSL parameters at 3700 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.7	3.12 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.4 ± 6 %	3.10 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 3700 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.83 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	68.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.48 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.9 W/kg ± 19.5 % (k=2)

Head TSL parameters at 3800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.6	3.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.2 ± 6 %	3.18 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL at 3800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	64.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.6 W/kg ± 19.5 % (k=2)

Certificate No: D3700V2-1004_Jun24

Page 3 of 7

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 3700 MHz

Impedance, transformed to feed point	49.0 Ω - 6.2 jΩ
Return Loss	- 24.0 dB

Antenna Parameters with Head TSL at 3800 MHz

Impedance, transformed to feed point	57.6 Ω - 3.0 jΩ
Return Loss	- 22.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.140 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
A CONTRACT OF THE CONTRACT OF	

Certificate No: D3700V2-1004_Jun24

Page 4 of 7

DASY5 Validation Report for Head TSL

Date: 13.06.2024

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1004

Communication System: UID 0 - CW; Frequency: 3700 MHz, Frequency: 3800 MHz Medium parameters used: f = 3700 MHz; $\sigma = 3.1$ S/m; $\varepsilon_r = 38.4$; $\rho = 1000$ kg/m³ Medium parameters used: f = 3800 MHz; $\sigma = 3.18$ S/m; $\varepsilon_r = 38.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.35, 7.35, 7.35) @ 3700 MHz, ConvF(7.35, 7.35, 7.35) @ 3800 MHz; Calibrated: 07.03.2024
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 22.05.2024
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3700MHz/Zoom Scan,

dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.27 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 19.2 W/kg

SAR(1 g) = 6.83 W/kg; SAR(10 g) = 2.48 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 73.5%

Maximum value of SAR (measured) = 13.1 W/kg

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3800MHz/Zoom Scan,

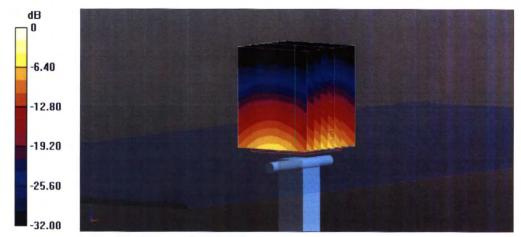
dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.79 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 17.3 W/kg

SAR(1 g) = 6.39 W/kg; SAR(10 g) = 2.35 W/kg

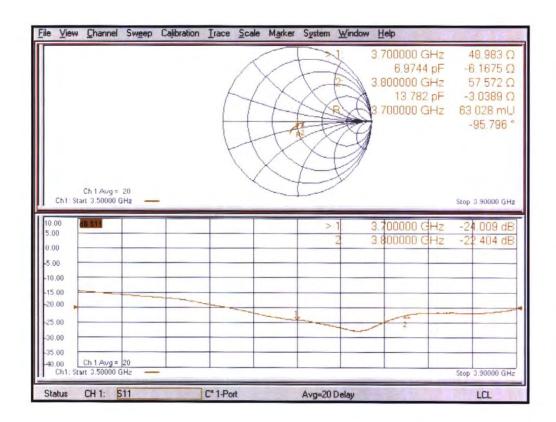
Smallest distance from peaks to all points 3 dB below = 8.4 mm


Ratio of SAR at M2 to SAR at M1 = 74.5%

Maximum value of SAR (measured) = 12.2 W/kg

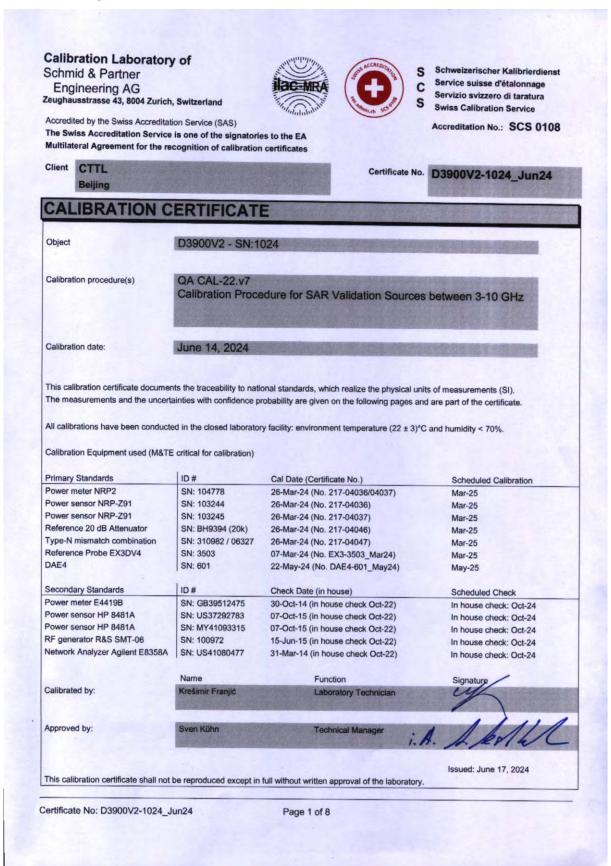
Certificate No: D3700V2-1004_Jun24

Page 5 of 7



0 dB = 13.1 W/kg = 11.17 dBW/kg

Impedance Measurement Plot for Head TSL



Certificate No: D3700V2-1004_Jun24

3900 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D3900V2-1024_Jun24	Page 2 of 8	
------------------------------------	-------------	--

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3900 MHz ± 1 MHz 4000 MHz ± 1 MHz 4100 MHz ± 1 MHz	

Head TSL parameters at 3900 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.5	3.32 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.1 ± 6 %	3.27 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 3900 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.98 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	70.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 4000 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.4	3.43 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.0 ± 6 %	3.36 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL at 4000 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.85 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	68.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.1 W/kg ± 19.5 % (k=2)

Certificate No: D3900V2-1024_Jun24

Page 3 of 8

Head TSL parameters at 4100 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.2	3.53 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.9 ± 6 %	3.45 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 4100 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.94 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	69.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.2 W/kg ± 19.5 % (k=2)

Certificate No: D3900V2-1024_Jun24

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 3900 MHz

Impedance, transformed to feed point	45.6 Ω - 5.1 jΩ	
Return Loss	- 23.1 dB	

Antenna Parameters with Head TSL at 4000 MHz

Impedance, transformed to feed point	51.9 Ω - 2.3 jΩ	
Return Loss	- 30.5 dB	

Antenna Parameters with Head TSL at 4100 MHz

Impedance, transformed to feed point	58.1 Ω - 0.9 jΩ	
Return Loss	- 22.4 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.107 ns
	11.101.110

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: D3900V2-1024_Jun24

Page 5 of 8

DASY5 Validation Report for Head TSL

Date: 14.06.2024

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3900 MHz; Type: D3900V2; Serial: D3900V2 - SN:1024

Communication System: UID 0 - CW; Frequency: 3900 MHz, Frequency: 4100 MHz Medium parameters used: f = 3900 MHz; $\sigma = 3.27$ S/m; $\epsilon_r = 38.1$; $\rho = 1000$ kg/m³ Medium parameters used: f = 4000 MHz; $\sigma = 3.36$ S/m; $\epsilon_r = 38.0$; $\rho = 1000$ kg/m³ Medium parameters used: f = 4100 MHz; $\sigma = 3.45$ S/m; $\epsilon_r = 37.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.32, 7.32, 7.32) @ 3900 MHz, ConvF(7.39, 7.39, 7.39) @ 4000 MHz; Calibrated: 07.03.2024, ConvF(6.86, 6.86, 6.86) @ 4100 MHz; Calibrated: 07.03.2024
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 22.05.2024
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3900MHz/Zoom Scan,

dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.20 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 19.9 W/kg

SAR(1 g) = 6.98 W/kg; SAR(10 g) = 2.44 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 73.9%

Maximum value of SAR (measured) = 13.6 W/kg

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=4000MHz/Zoom Scan,

dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.25 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 18.8 W/kg

SAR(1 g) = 6.85 W/kg; SAR(10 g) = 2.40 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 73.9%

Maximum value of SAR (measured) = 13.3 W/kg

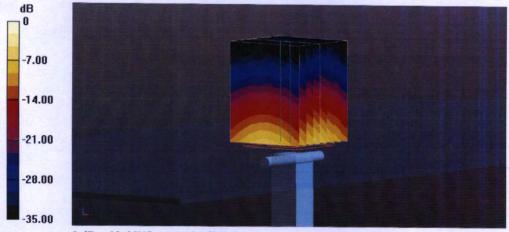
Certificate No: D3900V2-1024_Jun24

Page 6 of 8

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=4100MHz/Zoom Scan,

dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 69.30 V/m; Power Drift = 0.08 dB

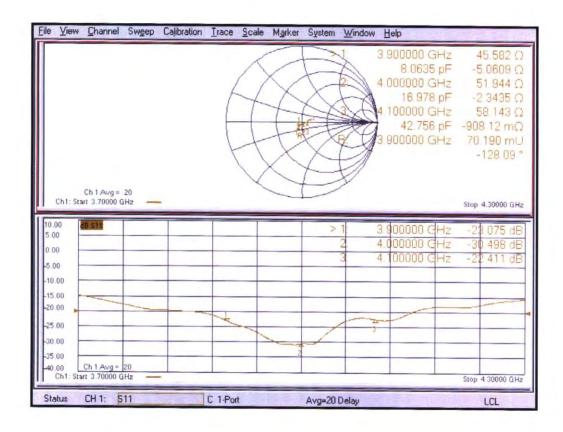

Peak SAR (extrapolated) = 19.7 W/kg

SAR(1 g) = 6.94 W/kg; SAR(10 g) = 2.41 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 73.9%

Maximum value of SAR (measured) = 13.6 W/kg


0 dB = 13.6 W/kg = 11.34 dBW/kg

Certificate No: D3900V2-1024_Jun24

Page 7 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D3900V2-1024_Jun24

Page 8 of 8

5 GHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

The proposition of the

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

CTTL Beijing

Certificate No.

D5GHzV2-1262_Jan25

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1262

Calibration procedure(s)

QA CAL-22.v7

Calibration Procedure for SAR Validation Sources between 3 - 10 GHz

Calibration date

January 17, 2025

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Power Sensor R&S NRP18A	SN: 101859	22-Jul-24 (No. 4030A315008547)	Jul-25
Spectrum Analyzer R&S FSV40	SN: 101832	25-Jan-24 (No. 4030-315007551)	Jan-25
Mismatch; Short [S4188] Attenuator [S4423]	SN: 1152	28-Mar-24 (No. 217-04050)	Mar-25
OCP DAK-12	SN: 1016	24-Sept-24 (No. OCP-DAK12-1016_Sep24)	Sep-25
OCP DAK-3.5	SN: 1249	23-Sept-24 (No. OCP-DAK3.5-1249_Sep24)	Sep-25
Reference Probe EX3DV4	SN: 7349	10-Jan-25 (No. EX3-7349_Jan25)	Jan-26
DAF4in	SN: 1836	28-Oct-24 (No. DAE4ip-1836, Oct24)	Oct-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
nal Generator R&S SMB100A SN: 182081 28-May-24 (No. 675-CAL16-S4588-240528)		May-25	
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25

	Name	Function	Signature
Calibrated by	Paulo Pina	Laboratory Technician	Tank
Approved by	Sven Kühn	Technical Manager	i.A. A. Sell
This calibration certifica	ate shall not be reproduced except	in full without written approval of the	Issued: January 23, 2025 laboratory.

This calibration certificate shall not be reproduced except in full without written approval of the laborator

Certificate No: D5GHzV2-1262_Jan25

Page 1 of 9

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

lac MRA

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

· DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- · SAR normalized; SAR as measured, normalized to an input power of 1 W at the antenna connector.
- · SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1262_Jan25

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with spacer
Zoom Scan Resolution	dx, dy = 4mm, dz = 1.4mm	Graded Ratio = 1.4 mm (Z direction)
Frequency	5250MHz ±1MHz 5600MHz ±1MHz 5750MHz ±1MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	35.6 ±6%	4.58 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	7.78 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.8 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.3 W/kg ±19.5% (k = 2)

Certificate No: D5GHzV2-1262_Jan25

Page 3 of 9

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	35.0 ±6%	4.96 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	8.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.2 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.4 W/kg ±19.5% (k = 2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	34.8 ±6%	5.12 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	7.61 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	76.1 W/kg ±19.9% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	20 dBm input power	2.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.7 W/kg ±19.5% (k = 2)

Certificate No: D5GHzV2-1262_Jan25

Page 4 of 9

D5GHzV2 - SN: 1262

January 17, 2025

Appendix (Additional assessments outside the scope of SCS 0108) Antenna Parameters with Head TSL at 5250 MHz

Impedance	47.7 Ω – 2.7 jΩ		
Return Loss	-28.7 dB		

Antenna Parameters with Head TSL at 5600 MHz

Impedance	52.0 Ω + 0.7 jΩ		
Return Loss	-33.6 dB		

Antenna Parameters with Head TSL at 5750 MHz

Impedance	52.3 Ω + 2.6 jΩ		
Return Loss	-29.3 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.194 ns
----------------------------------	----------

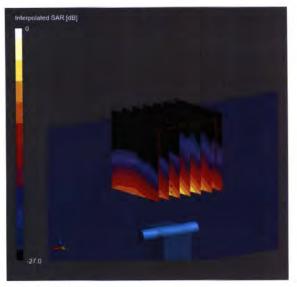
After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D5GHzV2-1262_Jan25

Page 5 of 9



System Performance Check Report

Summary							
Dipole		- 1	Frequency [Mi	Hz] TSL	Power [dBm]		
D5GHzV2 - SN1262			5250	HSL	20		
Exposure Condition	s						
Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [5/m]	TSL Permittivity
Flat	10		CW, 0	5250, 0	5.68	4.58	35.6
Hardware Setup							
Phantom	TSL, Measured	Date	F	Probe, Calibration Date	DAE	Calibration Date	
MFP V8.0 Center	HSL, 2025-01-	17		X3DV4 - SN7349, 2025-01-10	DAE	4ip Sn1836, 2024-10-28	

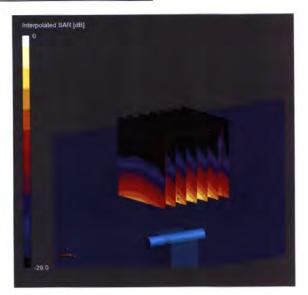
icans Setup	
	Zoom Scan
Crid Extents [mm]	22 × 22 × 22
Grid Steps [mm]	4.0 x 4.0 x 1.4
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.4
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measured

	Zoom Scan
Date	2025-01-17
psSAR1g [W/Kg]	7.78
psSAR10g [W/Kg]	2.23
Power Drift [dB]	-0.09
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 31.3 W/Kg

Certificate No: D5GHzV2-1262_Jan25

Page 6 of 9



System Performance Check Report

Summary								
Dipole			Frequency [Mi	(z) TSL	Power (dBm)			
DSGHzV2 - SN1262			5600	HSL	20	20		
Exposure Condition	s							
Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity	
Flat	10		CW, 0	5600, 0	5.21	4.96	35.0	
Hardware Setup								
Phantom	TSL, Measured Date Pr		Probe, Calibration Date	DAE, Calibration Date				
MFP V8.0 Center	HSL, 2025-01-	-17		X3DV4 - \$N7349, 2025-01-10	DAE4ip Sn1836, 2024-10-28			

Scans Setup	
	Zoom Scan
Grid Extents [mm]	22 x 22 x 22
Grid Steps [mm]	4.0 x 4.0 x 1.4
Sensor Surface [mm]	1,4
Graded Grid	Yes
Grading Ratio	1.4
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measured

Measurement Results	
	Zoom Scar
Date	2025-01-17
psSAR1g [W/Kg]	8.12
psSAR10g [W/Kg]	2.34
Power Drift [dB]	-0.02
Power Scaling	Disabled
Scaling Factor (dB)	
TSL Correction	Positive / Negative

0 dB = 35.1 W/Kg

Certificate No: D5GHzV2-1262_Jan25

Page 7 of 9

System Performance Check Report

MFP V8.0 Center

Scan Method

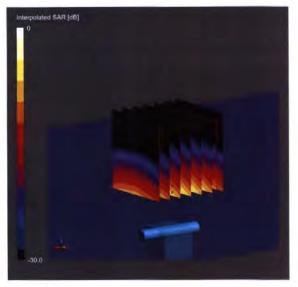
Summary Dipole			Frequency (MF	tz] TSL	Power [dBm]		
D5GHzV2 - SN1262			5750	HSL	20		
Tropa San Lag							
Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivit

Probe, Calibration Date

Measured

EX3DV4 - SN7349, 2025-01-10

Scans Setup	
	Zoom Scan
Grid Extents [mm]	22 x 22 x 22
Grid Steps [mm]	4.0 x 4.0 x 1.4
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.4
MAIA	N/A
Surface Detection	VMS + 60


TSL, Measured Date

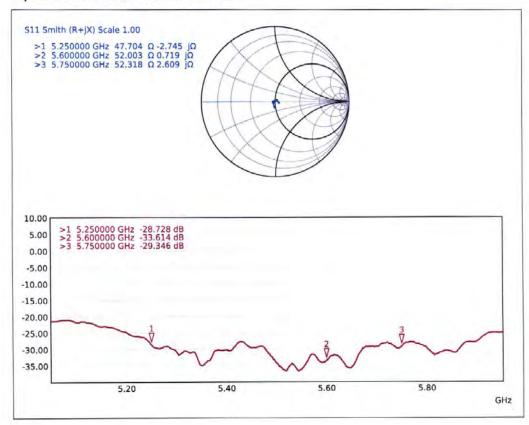
HSL, 2025-01-17

	Zoom Scan
Date	2025-01-17
psSAR1g [W/Kg]	7.61
psSAR10g [W/Kg]	2.17
Power Drift [dB]	-0.01
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

DAE, Calibration Date

DAE4ip 5n1836, 2024-10-28

0~dB=33.9~W/Kg

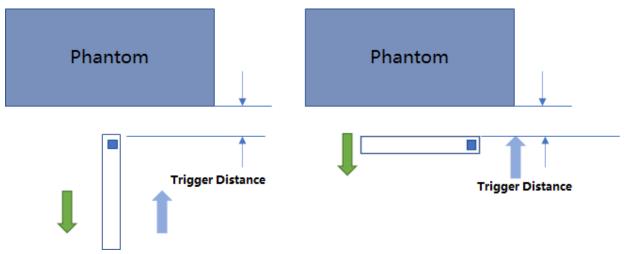

Certificate No: D5GHzV2-1262_Jan25

Page 8 of 9

Impedance Measurement Plot for Head TSL

Certificate No: D5GHzV2-1262_Jan25

Page 9 of 9


ANNEX I Sensor Triggering Data Summary

ANT	Front	Rear	Left Side	Right Side	Bottom Side	Top Side
1	35mm	33mm	/	50mm	/	30mm
2	26mm	18mm	/	17mm	/	/
4	/	16mm	/	/	15mm	/
5	25mm	33mm	50mm	/	20mm	/
6	16mm	20mm	22mm	/	/	17mm

Front, Rear, Left, Right, Bottom and Top of the DUT was placed directly below the flat phantom. The DUT was moved toward the phantom to determine the trigger distance for enabling power reduction. The DUT was moved away from the phantom to determine the trigger distance for resuming full power.

To ensure all production units are compliant it is necessary to test SAR at a distance 1mm less than the smallest distance from the device and SAR phantom with the device at maximum output power without power reduction.

The DUT featured a visual indicator on its display that showed the status of the proximity sensor (Triggered or not triggered). This was used to determine the status of the sensor during the proximity sensor assessment as monitoring the output power directly was not practical without affecting the measurement. It was confirmed separately that the output power according to locking the proximity sensor status. Section 10 contains both the full and reduced conducted power measurements.

Blue arrow : Direction of DUT travel for determination of power reduction triggering point. Green arrow: Direction of DUT travel for determination of normal power triggering point

Front

Moving device toward the phantom:

sensor Triggered or Not Triggered											
Distance [mm] 40 39 38 37 36 35 34 33 32 31 30									30		
Main antenna	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

Moving device away from the phantom:

sensor Triggered or Not Triggered											
Distance [mm] 30 31 32 33 34 35 36 37 38 39 40								40			
Main antenna	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO

Rear

Moving device toward the phantom:

sensor Triggered or Not Triggered											
Distance [mm] 38 37 36 35 34 33 32 31 30 29							28				
Main antenna	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

Moving device away from the phantom:

<u> </u>		,										
			sei	nsor Tri	ggered	or Not T	riggered					
Distance [mm] 28 29 30 31 32 33 34 35 36 37 38												
Main antenna	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO	

Right

Moving device toward the phantom:

sensor Triggered or Not Triggered													
Distance [mm] 55 54 53 52 51 50 49 48 47 46 45													
Main antenna	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES		

Moving device away from the phantom:

			ser	nsor Tri	ggered	or Not T	sensor Triggered or Not Triggered													
Distance [mm]	Distance [mm] 45 46 47 48 49 50 51 52 53 54 55																			
Main antenna	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO									

Top

Moving device toward the phantom:

			senso	or Trigge	ered or	Not Trigg	ered				
Distance [mm] 35 34 33 32 31 30 29 28 27 26 25											
Main antenna	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

	sensor Triggered or Not Triggered													
Distance [mm] 25 26 27 28 29 30 31 32 33 34 35														
Main antenna YES YES YES YES YES YES NO NO NO NO NO														

Front

Moving device toward the phantom:

			senso	or Trigge	ered or	Not Trigg	gered					
Distance [mm] 31 30 29 28 27 26 25 24 23 22 21												
Main antenna	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES	

Moving device away from the phantom:

		sensor Triggered or Not Triggered														
Distance [mm] 21 22 23 24 25 26 27 28 29 30 31																
Main antenna	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO					

Rear

Moving device toward the phantom:

	sensor Triggered or Not Triggered													
Distance [mm] 23 22 21 20 19 18 17 16 15 14 13														
Main antenna NO NO NO NO NO YES YES YES YES YES YES														

Moving device away from the phantom:

			sei	nsor Tri	ggered	or Not T	riggered					
Distance [mm] 13 14 15 16 17 18 19 20 21 22 23												
Main antenna YES YES YES YES YES NO NO NO NO NO											NO	

Right

Moving device toward the phantom:

			senso	r Trigge	ered or	Not Trigg	jered				
Distance [mm] 22 21 20 19 18 17 16 15 14 13 12											
Main antenna	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

			sei	nsor Tri	ggered	or Not T	riggered						
Distance [mm]	Distance [mm]												
Main antenna YES YES YES YES YES YES NO NO NO NO NO													

Rear

Moving device toward the phantom:

			senso	sensor Triggered or Not Triggered													
Distance [mm] 21 20 19 18 17 16 15 14 13 12 11																	
Main antenna	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES						

Moving device away from the phantom:

		,												
	sensor Triggered or Not Triggered													
Distance [mm]														
Main antenna	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO			

Bottom

Moving device toward the phantom:

			senso	or Trigge	ered or	Not Trigg	jered					
Distance [mm] 20 19 18 17 16 15 14 13 12 11 10												
Main antenna NO NO NO NO NO YES YES YES YES YES YES												

	sensor Triggered or Not Triggered													
Distance [mm]	Distance [mm]													
Main antenna	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO			

Front

Moving device toward the phantom:

			senso	or Trigge	ered or	Not Trigg	gered				
Distance [mm] 30 29 28 27 26 25 24 23 22 21 20											
Main antenna	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

Moving device away from the phantom:

	sensor Triggered or Not Triggered													
Distance [mm] 20 21 22 23 24 25 26 27 28 29 30														
Main antenna	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO			

Rear

Moving device toward the phantom:

			senso	or Trigge	ered or	Not Trigg	gered				
Distance [mm] 38 37 36 35 34 33 32 31 30 29 28											
Main antenna	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

Moving device away from the phantom:

		,												
	sensor Triggered or Not Triggered													
Distance [mm] 28 29 30 31 32 33 34 35 36 37 38														
Main antenna	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO			

Left

Moving device toward the phantom:

			senso	or Trigge	ered or	Not Trigg	jered				
Distance [mm] 55 54 53 52 51 50 49 48 47 46 45											45
Main antenna	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

Moving device away from the phantom:

	sensor Triggered or Not Triggered													
Distance [mm]	Distance [mm] 45 46 47 48 49 50 51 52 53 54 55													
Main antenna	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO			

Bottom

Moving device toward the phantom:

	sensor Triggered or Not Triggered													
Distance [mm]														
Main antenna	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES			

	sensor Triggered or Not Triggered													
Distance [mm]	Distance [mm] 15 16 17 18 19 20 21 22 23 24 25													
Main antenna	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO			

Front

Moving device toward the phantom:

			senso	r Trigge	ered or	Not Trigg	gered					
Distance [mm] 21 20 19 18 17 16 15 14 13 12 11												
Main antenna	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES	

Moving device away from the phantom:

sensor Triggered or Not Triggered											
Distance [mm]											
Main antenna	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO

Rear

Moving device toward the phantom:

sensor Triggered or Not Triggered											
Distance [mm]	Distance [mm] 25 24 23 22 21 20 19 18 17 16 15										15
Main antenna	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

Moving device away from the phantom:

<u> </u>		,									
sensor Triggered or Not Triggered											
Distance [mm] 15 16 17 18 19 20 21 22 23 24 25											
Main antenna	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO

Left

Moving device toward the phantom:

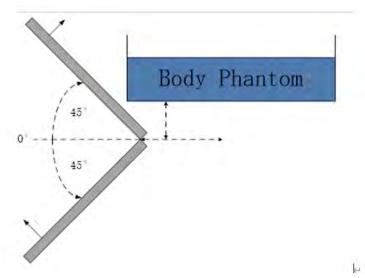
sensor Triggered or Not Triggered											
Distance [mm] 27 26 25 24 23 22 21 20 19 18 17											
Main antenna	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

Moving device away from the phantom:

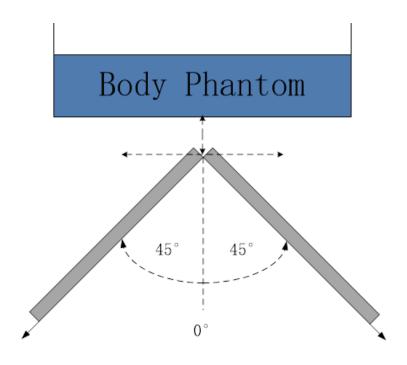
sensor Triggered or Not Triggered											
Distance [mm]	Distance [mm] 17 18 19 20 21 22 23 24 25 26 27										
Main antenna	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO

Top

Moving device toward the phantom:


sensor Triggered or Not Triggered											
Distance [mm]	Distance [mm] 22 21 20 19 18 17 16 15 14 13 12										
Main antenna	NO	NO	NO	NO	NO	YES	YES	YES	YES	YES	YES

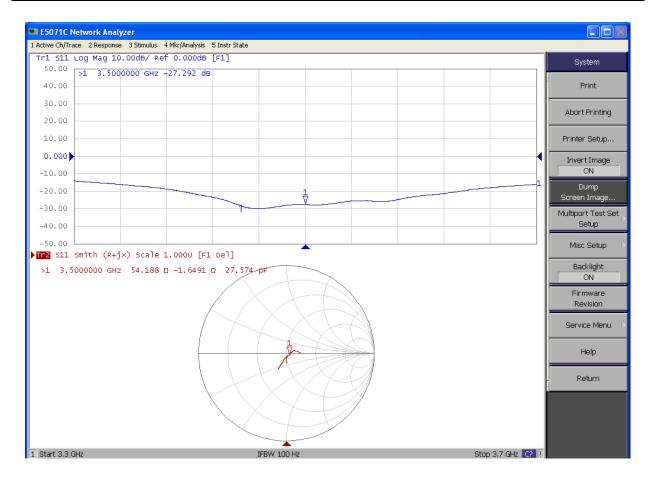
		,									
sensor Triggered or Not Triggered											
Distance [mm]											
Main antenna	YES	YES	YES	YES	YES	YES	NO	NO	NO	NO	NO



The influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distance by rotating the device around the edge next to the phantom in \leq 10° increments until the tablet is $\pm 45^{\circ}$ or more from the vertical position at 0°.

The Front/Rear evaluation

The Left/Right/Bottom/Top edge evaluation

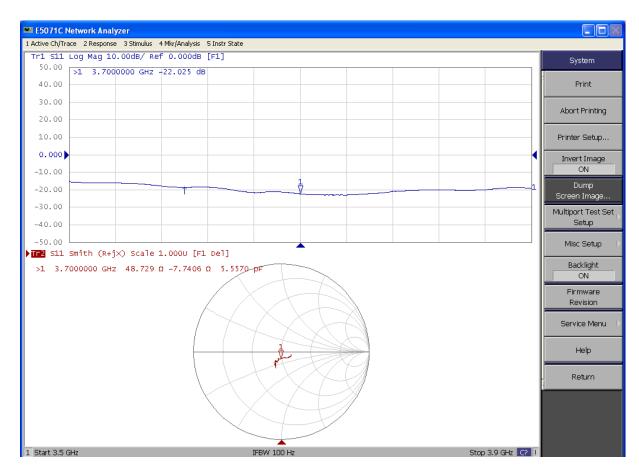


ANNEX J Extended Calibration SAR Dipole

Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dBm, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Justification of Extended Calibration SAR Dipole D3500V2- serial no.1016

	Head											
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)						
2024-06-13	-28.86	1	53.47	1	-1.38	1						
2025-06-05	-27.29	5.44	54.19	-0.72	-1.65	0.27						



Justification of Extended Calibration SAR Dipole D3700V2- serial no.1004

	Head											
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)						
2024-06-13	-24.01	1	48.98	1	-6.17	1						
2025-06-05	-22.03	8.25	48.73	0.25	-7.74	1.57						



Justification of Extended Calibration SAR Dipole D3900V2- serial no.1024

	Head											
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)						
2024-06-14	-23.08	1	45.58	1	-5.06	1						
2025-06-05	-22.83	1.08	46.29	-0.71	-5.90	0.13						

The Return-Loss is <-20dB, and within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the value result should support extended cabration.

ANNEX K Accreditation Certificate

Accredited Laboratory

A2LA has accredited

TELECOMMUNICATION TECHNOLOGY LABS, CAICT

Beijing, People's Republic of China

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized international Standard ISO/IEC 17025:2017

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 23rd day of July 2024.

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council Certificate Number 7049.01

Valid to July 31, 2026

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.