

ANNEX A Graph Results

WCMDA850 5mm

Date: 2025-06-05

Electronics: DAE4 Sn1745 Medium: H700-6000M

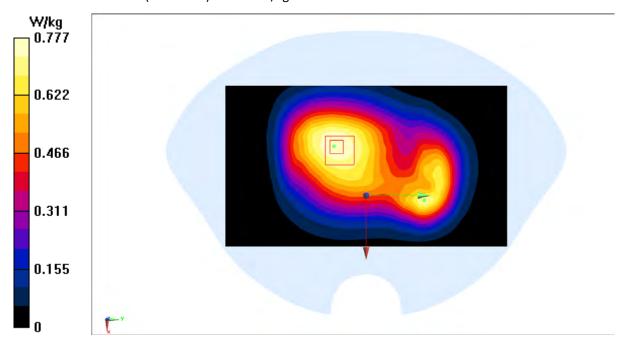
Medium parameters used: f = 825 MHz; σ = 0.906 S/m; ε_r = 42.802; ρ = 1000 kg/m³

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: WCDMA850 (B5) (0) Frequency: 826.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(10.82, 10.82, 10.82)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 0.777 W/kg

Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.39 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.866 W/kg

SAR(1 g) = 0.616 W/kg; SAR(10 g) = 0.457 W/kgMaximum value of SAR (measured) = 0.766 W/kg

WCMDA1700 5mm

Date: 2025-06-20

Electronics: DAE4 Sn1745 Medium: H700-6000M

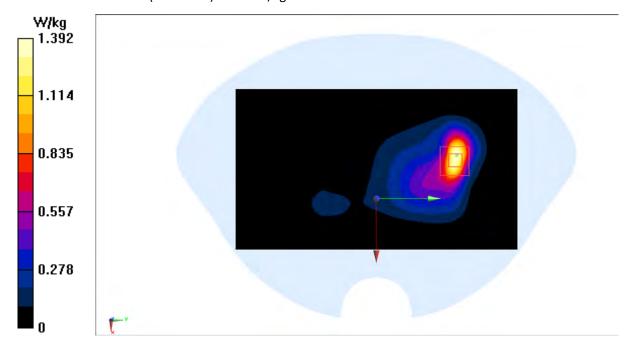
Medium parameters used: f = 1710 MHz; σ = 1.311 S/m; ϵ_r = 41.059; ρ = 1000 kg/m³

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: WCDMA1700 (B4) (0) Frequency: 1712.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(8.95, 8.95, 8.95)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 1.39 W/kg

Zoom Scan (6x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.566 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.87 W/kg

SAR(1 g) = 0.954 W/kg; SAR(10 g) = 0.462 W/kgMaximum value of SAR (measured) = 1.47 W/kg

WCMDA1900 5mm

Date: 2025-06-23

Electronics: DAE4 Sn1745 Medium: H700-6000M

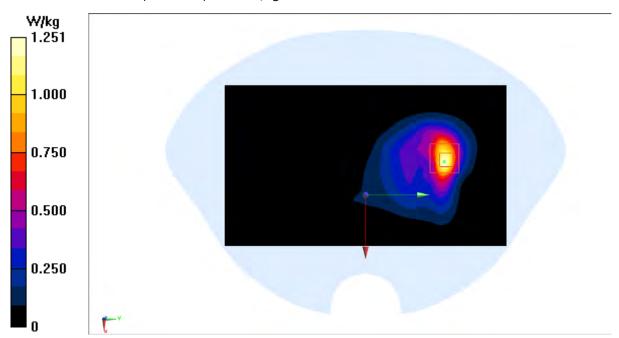
Medium parameters used: f = 1880 MHz; σ = 1.401 S/m; ϵ_r = 40.885; ρ = 1000 kg/m³

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: WCDMA1900 (B2) (0) Frequency: 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(8.6, 8.6, 8.6)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 1.25 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.741 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 1.45 W/kg

SAR(1 g) = 0.749 W/kg; SAR(10 g) = 0.390 W/kgMaximum value of SAR (measured) = 1.15 W/kg

LTE Band2 5mm

Date: 2025-06-23

Electronics: DAE4 Sn1745 Medium: H700-6000M

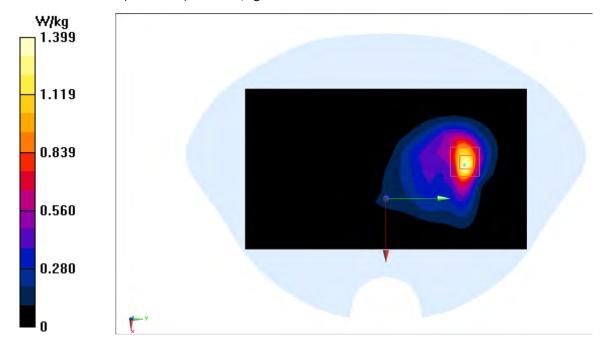
Medium parameters used: f = 1880 MHz; σ = 1.401 S/m; ϵ_r = 40.885; ρ = 1000 kg/m³

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: LTE Band2 (0) Frequency: 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(8.6, 8.6, 8.6)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 1.40 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.469 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 1.63 W/kg

SAR(1 g) = 0.841 W/kg; SAR(10 g) = 0.439 W/kgMaximum value of SAR (measured) = 1.29 W/kg

LTE Band4 5mm

Date: 2025-06-20

Electronics: DAE4 Sn1745 Medium: H700-6000M

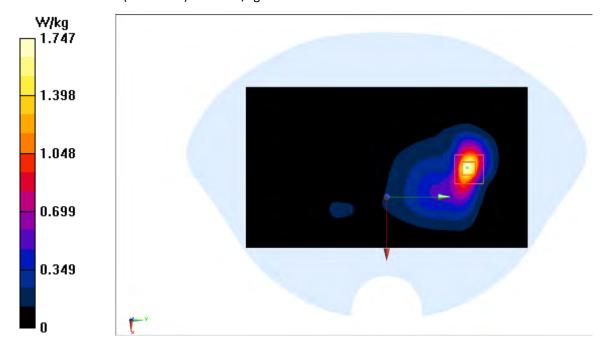
Medium parameters used: f = 1720 MHz; σ = 1.315 S/m; ϵ r = 41.033; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: LTE Band4 (0) Frequency: 1720 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(8.95, 8.95, 8.95)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 1.75 W/kg

Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.088 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 2.07 W/kg

SAR(1 g) = 1.06 W/kg; SAR(10 g) = 0.517 W/kgMaximum value of SAR (measured) = 1.59 W/kg

LTE Band5 5mm

Date: 2025-06-05

Electronics: DAE4 Sn1745 Medium: H700-6000M

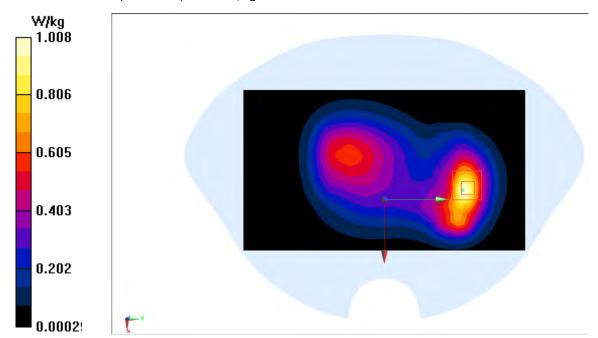
Medium parameters used: f = 845 MHz; σ = 0.914 S/m; ϵ r = 42.752; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: LTE Band5 (0) Frequency: 844 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(10.82, 10.82, 10.82)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 1.01 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.36 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 1.31 W/kg

SAR(1 g) = 0.595 W/kg; SAR(10 g) = 0.329 W/kgMaximum value of SAR (measured) = 1.01 W/kg

LTE Band7 5mm

Date: 2025-06-30

Electronics: DAE4 Sn1745 Medium: H700-6000M

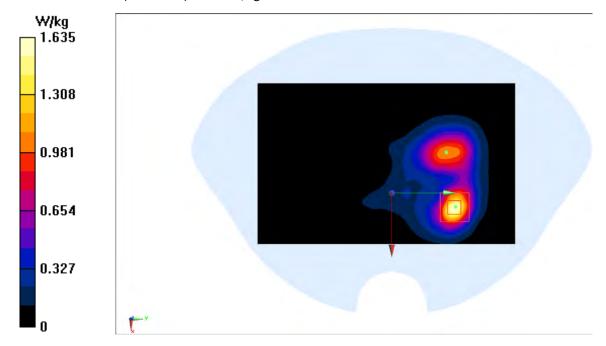
Medium parameters used: f = 2560 MHz; σ = 1.994 S/m; ϵ r = 39.886; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: LTE Band7 (0) Frequency: 2560 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(7.8, 7.8, 7.8)

Area Scan (101x161x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm


Maximum value of SAR (interpolated) = 1.63 W/kg

Zoom Scan (10x11x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.976 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 2.14 W/kg

SAR(1 g) = 0.986 W/kg; SAR(10 g) = 0.436 W/kgMaximum value of SAR (measured) = 1.69 W/kg

LTE Band12 5mm

Date: 2025-06-14

Electronics: DAE4 Sn1745 Medium: H700-6000M

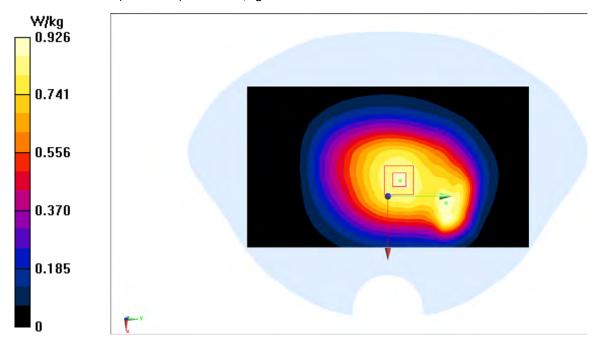
Medium parameters used: f = 710 MHz; σ = 0.865 S/m; ϵ r = 43.104; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: LTE Band12 (0) Frequency: 711 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(10.82, 10.82, 10.82)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 0.926 W/kg

Zoom Scan (9x8x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.15 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.718 W/kg; SAR(10 g) = 0.544 W/kgMaximum value of SAR (measured) = 0.919 W/kg

LTE Band14 5mm

Date: 2025-06-14

Electronics: DAE4 Sn1745 Medium: H700-6000M

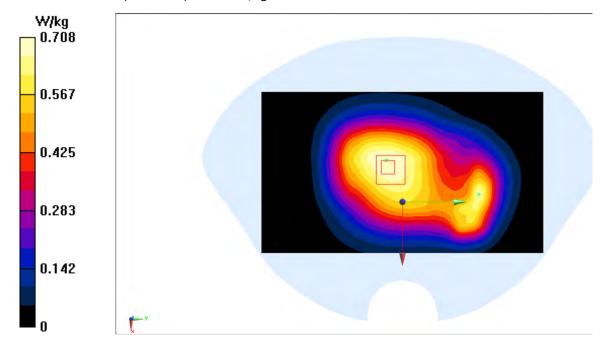
Medium parameters used: f = 795 MHz; σ = 0.896 S/m; ϵ r = 42.889; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: LTE Band14 (0) Frequency: 793 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(10.82, 10.82, 10.82)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 0.708 W/kg

Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.64 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.777 W/kg

SAR(1 g) = 0.565 W/kg; SAR(10 g) = 0.432 W/kgMaximum value of SAR (measured) = 0.691 W/kg

LTE Band30 5mm

Date: 2025-06-16

Electronics: DAE4 Sn1745 Medium: H700-6000M

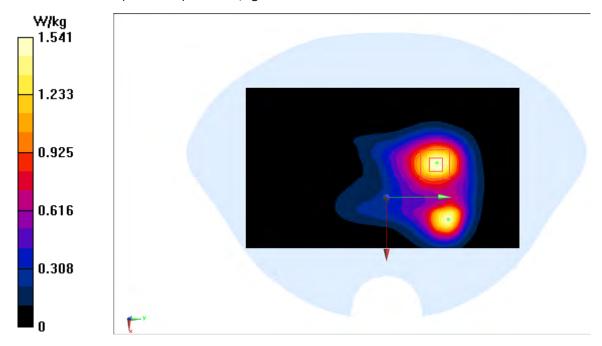
Medium parameters used: f = 2310 MHz; σ = 1.682 S/m; ϵ r = 40.25; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: LTE Band30 (0) Frequency: 2310 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(8.25, 8.25, 8.25)

Area Scan (101x171x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm


Maximum value of SAR (interpolated) = 1.54 W/kg

Zoom Scan (10x11x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.49 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 1.84 W/kg

SAR(1 g) = 1.05 W/kg; SAR(10 g) = 0.581 W/kgMaximum value of SAR (measured) = 1.56 W/kg

LTE Band66 5mm

Date: 2025-06-20

Electronics: DAE4 Sn1745 Medium: H700-6000M

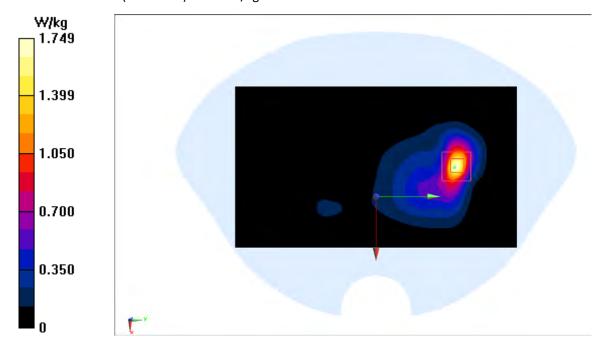
Medium parameters used: f = 1720 MHz; σ = 1.315 S/m; ϵ r = 41.033; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: LTE Band66 (0) Frequency: 1720 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(8.95, 8.95, 8.95)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 1.75 W/kg

Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.242 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 2.05 W/kg

SAR(1 g) = 1.05 W/kg; SAR(10 g) = 0.514 W/kgMaximum value of SAR (measured) = 1.62 W/kg

n2 5mm

Date: 2025-06-23

Electronics: DAE4 Sn1745 Medium: H700-6000M

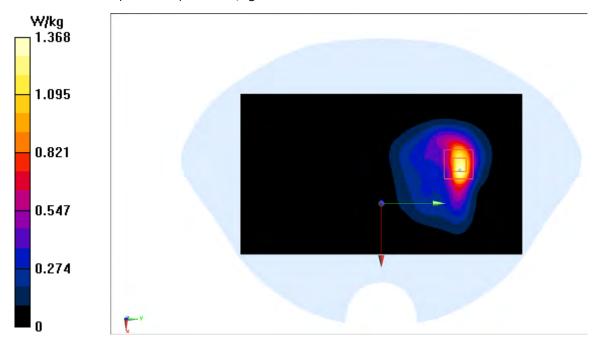
Medium parameters used: f = 1880 MHz; σ = 1.401 S/m; ϵ_r = 40.885; ρ = 1000 kg/m³

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: 5G NR N2 15kHz (0) Frequency: 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(8.6, 8.6, 8.6)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 1.37 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.587 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.66 W/kg

SAR(1 g) = 0.845 W/kg; SAR(10 g) = 0.426 W/kgMaximum value of SAR (measured) = 1.21 W/kg

n5 5mm

Date: 2025-06-05

Electronics: DAE4 Sn1745 Medium: H700-6000M

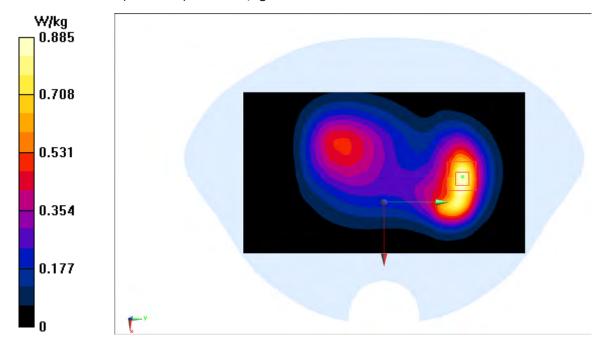
Medium parameters used: f = 845 MHz; σ = 0.914 S/m; ϵ r = 42.752; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: 5G NR N5 15kHz (0) Frequency: 846.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(10.82, 10.82, 10.82)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 0.885 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.63 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 1.24 W/kg

SAR(1 g) = 0.558 W/kg; SAR(10 g) = 0.307 W/kgMaximum value of SAR (measured) = 0.875 W/kg

n14 5mm

Date: 2025-06-14

Electronics: DAE4 Sn1745 Medium: H700-6000M

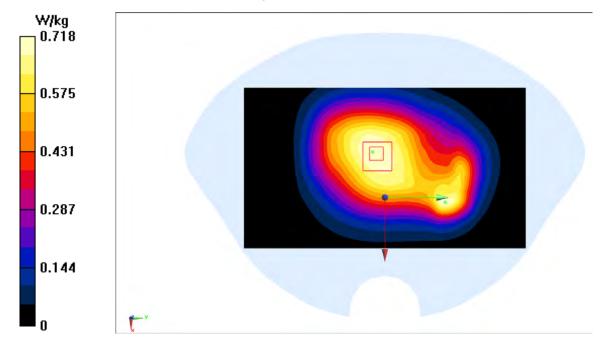
Medium parameters used: f = 795 MHz; σ = 0.896 S/m; ϵ r = 42.889; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: 5G NR N14 15kHz (0) Frequency: 793 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(10.82, 10.82, 10.82)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 0.718 W/kg

Zoom Scan (11x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.67 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.786 W/kg

SAR(1 g) = 0.581 W/kg; SAR(10 g) = 0.444 W/kgMaximum value of SAR (measured) = 0.708 W/kg

n30 5mm

Date: 2025-06-16

Electronics: DAE4 Sn1745 Medium: H700-6000M

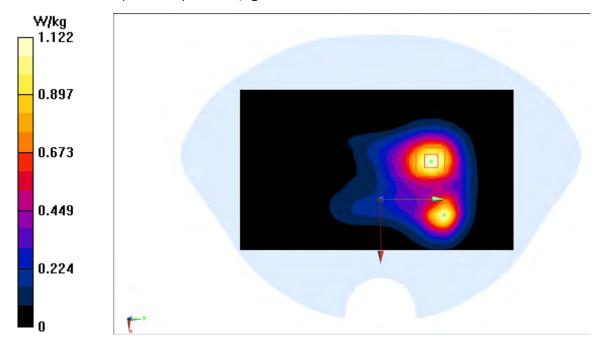
Medium parameters used: f = 2310 MHz; σ = 1.682 S/m; ϵ r = 40.25; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: 5G NR N30 15kHz (0) Frequency: 2312.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(8.25, 8.25, 8.25)

Area Scan (101x171x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm


Maximum value of SAR (interpolated) = 1.12 W/kg

Zoom Scan (10x11x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.050 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.32 W/kg

SAR(1 g) = 0.758 W/kg; SAR(10 g) = 0.420 W/kgMaximum value of SAR (measured) = 1.11 W/kg

n66 5mm

Date: 2025-06-20

Electronics: DAE4 Sn1745 Medium: H700-6000M

Medium parameters used: f = 1710 MHz; σ = 1.311 S/m; ϵ r = 41.059; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: 5G NR N66 15kHz (0) Frequency: 1712.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(8.95, 8.95, 8.95)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 1.36 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.966 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 1.79 W/kg

SAR(1 g) = 0.896 W/kg; SAR(10 g) = 0.437 W/kgMaximum value of SAR (measured) = 1.37 W/kg

n77 PC2 5mm

Date: 2025-07-03

Electronics: DAE4 Sn1745 Medium: H700-6000M

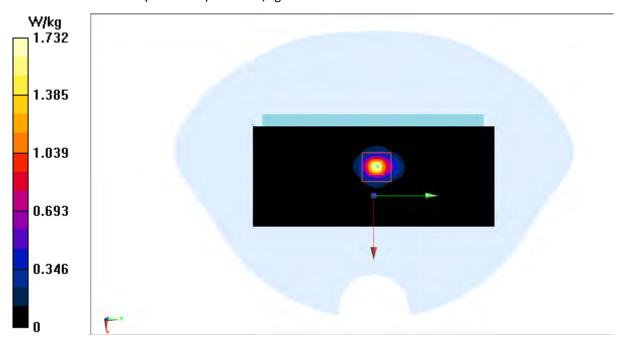
Medium parameters used: f = 3975 MHz; σ = 3.266 S/m; ϵ r = 37.616; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: 5G NR N77 30kHz (3700-3980) (0) Frequency: 3975 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(6.95, 6.95, 6.95)

Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm


Maximum value of SAR (interpolated) = 1.73 W/kg

Zoom Scan (12x13x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 16.08 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 2.20 W/kg

SAR(1 g) = 0.821 W/kg; SAR(10 g) = 0.263 W/kgMaximum value of SAR (measured) = 1.58 W/kg

n77 PC3 5mm

Date: 2025-07-03

Electronics: DAE4 Sn1745 Medium: H700-6000M

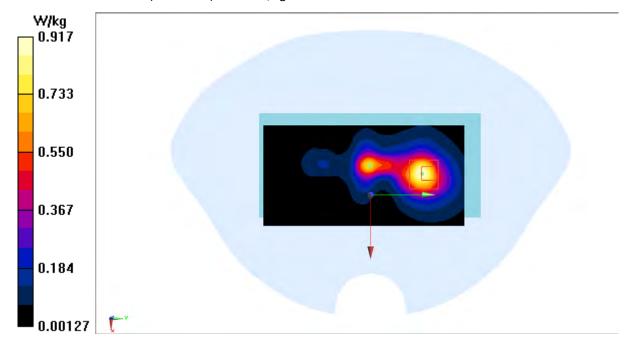
Medium parameters used: f = 3760 MHz; σ = 3.052 S/m; ϵ r = 37.93; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: 5G NR N77 30kHz (3700-3980) (0) Frequency: 3759 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(7, 7, 7)

Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm


Maximum value of SAR (interpolated) = 0.917 W/kg

Zoom Scan (12x14x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 11.93 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 1.60 W/kg

SAR(1 g) = 0.546 W/kg; SAR(10 g) = 0.226 W/kgMaximum value of SAR (measured) = 1.06 W/kg

WCMDA850 10mm

Date: 2025-06-05

Electronics: DAE4 Sn1745 Medium: H700-6000M

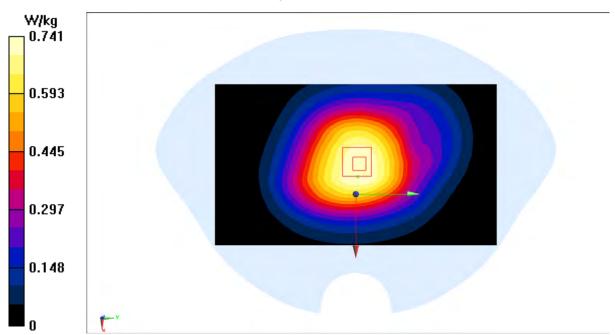
Medium parameters used: f = 825 MHz; σ = 0.906 S/m; ϵ_r = 42.802; ρ = 1000 kg/m³

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: WCDMA850 (B5) (0) Frequency: 826.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(10.82, 10.82, 10.82)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 0.741 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.45 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.832 W/kg

SAR(1 g) = 0.602 W/kg; SAR(10 g) = 0.452 W/kgMaximum value of SAR (measured) = 0.744 W/kg

WCMDA1700 10mm

Date: 2025-06-20

Electronics: DAE4 Sn1745 Medium: H700-6000M

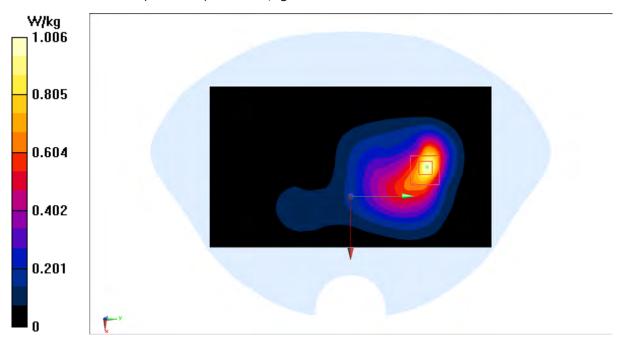
Medium parameters used: f = 1710 MHz; σ = 1.311 S/m; ϵ_r = 41.059; ρ = 1000 kg/m³

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: WCDMA1700 (B4) (0) Frequency: 1712.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(8.95, 8.95, 8.95)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 1.01 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.792 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.684 W/kg; SAR(10 g) = 0.373 W/kgMaximum value of SAR (measured) = 0.962 W/kg

WCMDA1900 10mm

Date: 2025-06-23

Electronics: DAE4 Sn1745 Medium: H700-6000M

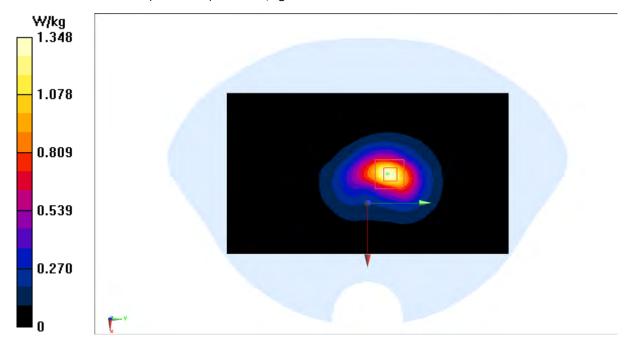
Medium parameters used: f = 1880 MHz; σ = 1.401 S/m; ϵ_r = 40.885; ρ = 1000 kg/m³

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: WCDMA1900 (B2) (0) Frequency: 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(8.6, 8.6, 8.6)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 1.35 W/kg

Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.72 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.60 W/kg

SAR(1 g) = 0.876 W/kg; SAR(10 g) = 0.467 W/kgMaximum value of SAR (measured) = 1.30 W/kg

LTE Band2 10mm

Date: 2025-06-23

Electronics: DAE4 Sn1745 Medium: H700-6000M

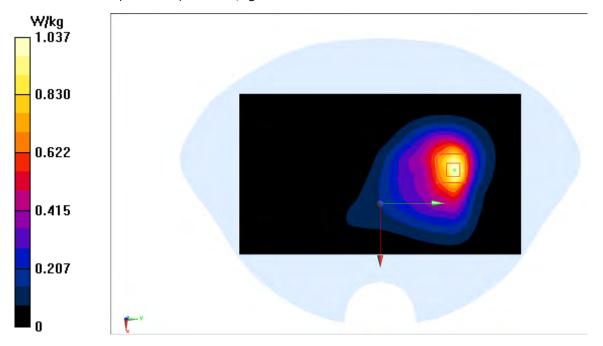
Medium parameters used: f = 1880 MHz; σ = 1.401 S/m; ϵ_r = 40.885; ρ = 1000 kg/m³

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: LTE Band2 (0) Frequency: 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(8.6, 8.6, 8.6)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 1.04 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.803 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.720 W/kg; SAR(10 g) = 0.398 W/kgMaximum value of SAR (measured) = 1.02 W/kg

LTE Band4 10mm

Date: 2025-06-20

Electronics: DAE4 Sn1745 Medium: H700-6000M

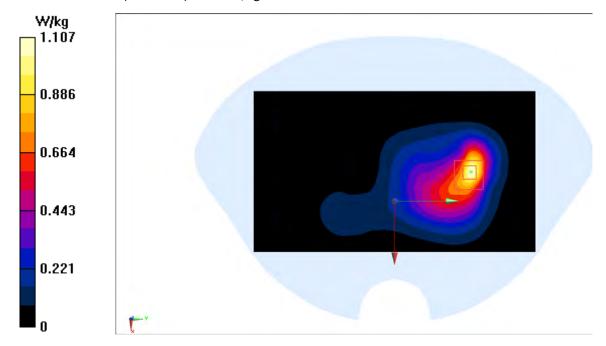
Medium parameters used: f = 1720 MHz; σ = 1.315 S/m; ϵ r = 41.033; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: LTE Band4 (0) Frequency: 1720 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(8.95, 8.95, 8.95)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 1.11 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.28 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.756 W/kg; SAR(10 g) = 0.413 W/kgMaximum value of SAR (measured) = 1.06 W/kg

LTE Band5 10mm

Date: 2025-06-05

Electronics: DAE4 Sn1745 Medium: H700-6000M

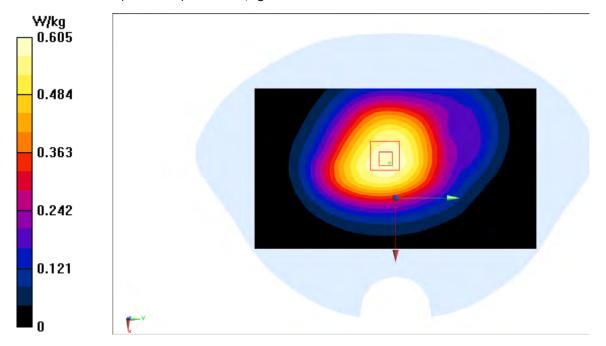
Medium parameters used: f = 845 MHz; σ = 0.914 S/m; ϵ r = 42.752; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: LTE Band5 (0) Frequency: 844 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(10.82, 10.82, 10.82)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 0.605 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.84 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.534 W/kg

SAR(1 g) = 0.383 W/kg; SAR(10 g) = 0.289 W/kgMaximum value of SAR (measured) = 0.472 W/kg

LTE Band7 10mm

Date: 2025-06-30

Electronics: DAE4 Sn1745 Medium: H700-6000M

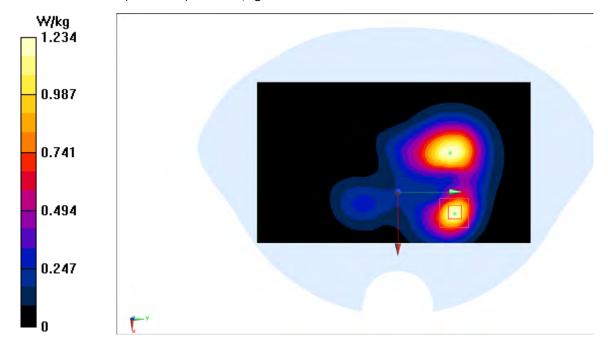
Medium parameters used: f = 2535 MHz; σ = 1.974 S/m; ϵ r = 39.919; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: LTE Band7 (0) Frequency: 2535 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(7.95, 7.95, 7.95)

Area Scan (101x171x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm


Maximum value of SAR (interpolated) = 1.23 W/kg

Zoom Scan (10x11x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.328 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 1.56 W/kg

SAR(1 g) = 0.767 W/kg; SAR(10 g) = 0.367 W/kgMaximum value of SAR (measured) = 1.23 W/kg

LTE Band12 10mm

Date: 2025-06-14

Electronics: DAE4 Sn1745 Medium: H700-6000M

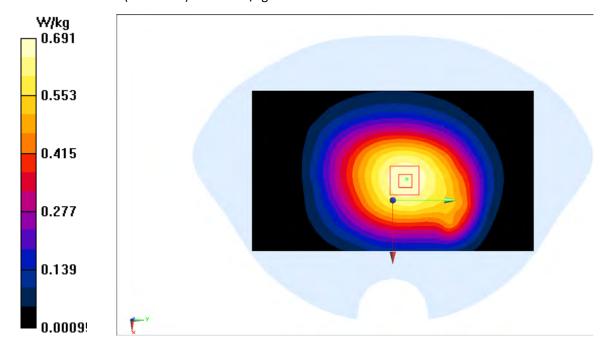
Medium parameters used: f = 710 MHz; σ = 0.865 S/m; ϵ r = 43.104; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: LTE Band12 (0) Frequency: 711 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(10.82, 10.82, 10.82)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 0.691 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.17 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.769 W/kg

SAR(1 g) = 0.559 W/kg; SAR(10 g) = 0.418 W/kgMaximum value of SAR (measured) = 0.689 W/kg

LTE Band14 10mm

Date: 2025-06-14

Electronics: DAE4 Sn1745 Medium: H700-6000M

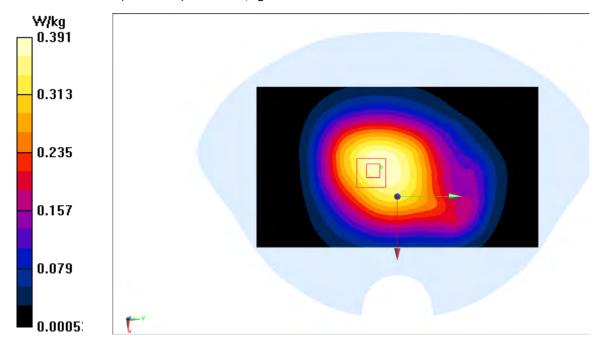
Medium parameters used: f = 795 MHz; σ = 0.896 S/m; ϵ r = 42.889; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: LTE Band14 (0) Frequency: 793 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(10.82, 10.82, 10.82)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 0.391 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.29 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.705 W/kg

SAR(1 g) = 0.488 W/kg; SAR(10 g) = 0.343 W/kgMaximum value of SAR (measured) = 0.618 W/kg

LTE Band30 10mm

Date: 2025-06-16

Electronics: DAE4 Sn1745 Medium: H700-6000M

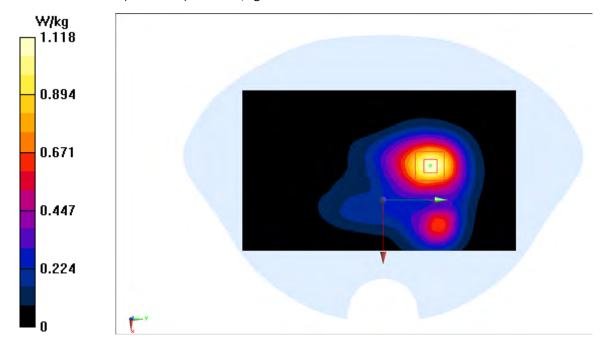
Medium parameters used: f = 2310 MHz; σ = 1.682 S/m; ϵ r = 40.25; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: LTE Band30 (0) Frequency: 2310 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(8.25, 8.25, 8.25)

Area Scan (101x171x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm


Maximum value of SAR (interpolated) = 1.12 W/kg

Zoom Scan (10x11x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.13 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.30 W/kg

SAR(1 g) = 0.751 W/kg; SAR(10 g) = 0.423 W/kgMaximum value of SAR (measured) = 1.10 W/kg

LTE Band66 10mm

Date: 2025-06-20

Electronics: DAE4 Sn1745 Medium: H700-6000M

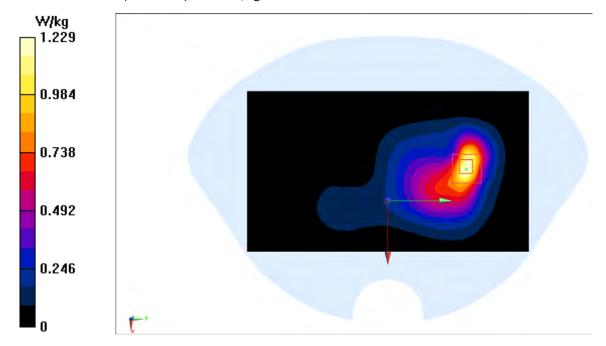
Medium parameters used: f = 1720 MHz; σ = 1.315 S/m; ϵ r = 41.033; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: LTE Band66 (0) Frequency: 1720 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(8.95, 8.95, 8.95)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 1.23 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.13 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 1.51 W/kg

SAR(1 g) = 0.854 W/kg; SAR(10 g) = 0.466 W/kgMaximum value of SAR (measured) = 1.18 W/kg

n2 10mm

Date: 2025-06-23

Electronics: DAE4 Sn1745 Medium: H700-6000M

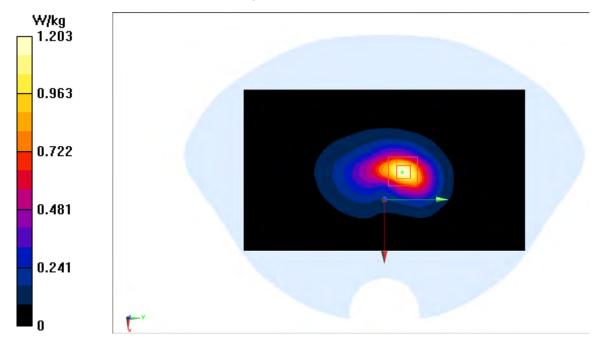
Medium parameters used: f = 1880 MHz; σ = 1.401 S/m; ϵ_r = 40.885; ρ = 1000 kg/m³

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: 5G NR N2 15kHz (0) Frequency: 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(8.6, 8.6, 8.6)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 1.20 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.11 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.43 W/kg

SAR(1 g) = 0.779 W/kg; SAR(10 g) = 0.413 W/kgMaximum value of SAR (measured) = 1.15 W/kg

n5 10mm

Date: 2025-06-05

Electronics: DAE4 Sn1745 Medium: H700-6000M

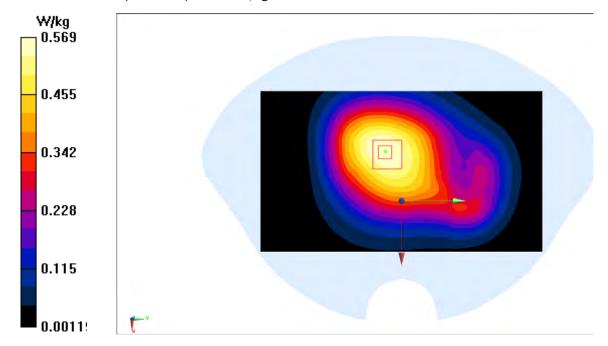
Medium parameters used: f = 825 MHz; σ = 0.906 S/m; ϵ r = 42.802; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: 5G NR N5 15kHz (0) Frequency: 826.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(10.82, 10.82, 10.82)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 0.569 W/kg

Zoom Scan (7x12x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.90 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.634 W/kg

SAR(1 g) = 0.460 W/kg; SAR(10 g) = 0.241 W/kgMaximum value of SAR (measured) = 0.566 W/kg

n14 10mm

Date: 2025-06-14

Electronics: DAE4 Sn1745 Medium: H700-6000M

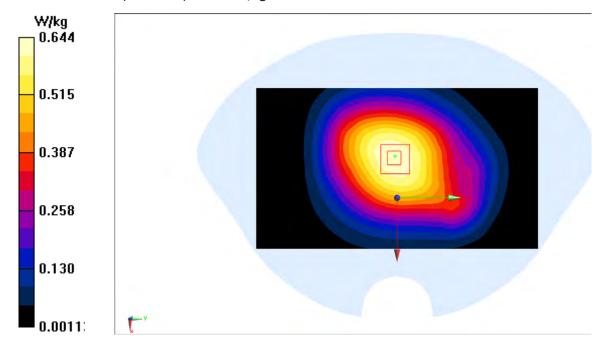
Medium parameters used: f = 795 MHz; σ = 0.896 S/m; ϵ r = 42.889; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: 5G NR N14 15kHz (0) Frequency: 793 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(10.82, 10.82, 10.82)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 0.644 W/kg

Zoom Scan (8x11x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.38 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.715 W/kg

SAR(1 g) = 0.525 W/kg; SAR(10 g) = 0.398 W/kgMaximum value of SAR (measured) = 0.645 W/kg

n30 10mm

Date: 2025-06-16

Electronics: DAE4 Sn1745 Medium: H700-6000M

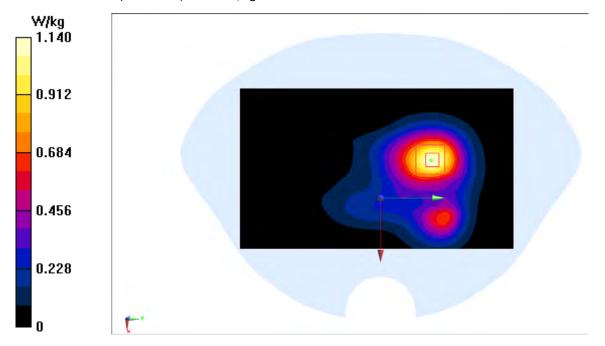
Medium parameters used: f = 2305 MHz; σ = 1.678 S/m; ϵ r = 40.255; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: 5G NR N30 15kHz (0) Frequency: 2307.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(8.25, 8.25, 8.25)

Area Scan (101x171x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm


Maximum value of SAR (interpolated) = 1.14 W/kg

Zoom Scan (10x11x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.898 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.773 W/kg; SAR(10 g) = 0.435 W/kgMaximum value of SAR (measured) = 1.12 W/kg

n66 10mm

Date: 2025-06-20

Electronics: DAE4 Sn1745 Medium: H700-6000M

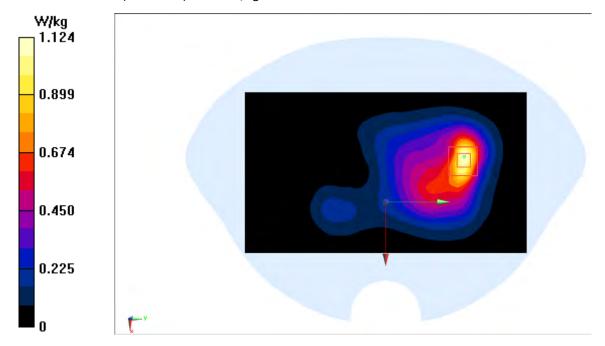
Medium parameters used: f = 1745 MHz; σ = 1.327 S/m; ϵ r = 40.989; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: 5G NR N66 15kHz (0) Frequency: 1745 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(8.95, 8.95, 8.95)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 1.12 W/kg

Zoom Scan (6x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.85 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 1.35 W/kg

SAR(1 g) = 0.765 W/kg; SAR(10 g) = 0.420 W/kgMaximum value of SAR (measured) = 1.07 W/kg

n77 PC2 10mm

Date: 2025-07-03

Electronics: DAE4 Sn1745 Medium: H700-6000M

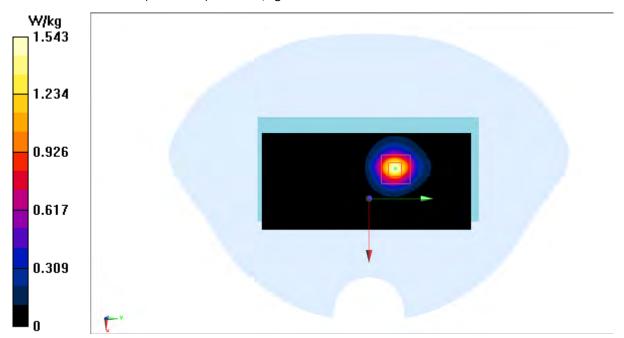
Medium parameters used: f = 3975 MHz; σ = 3.266 S/m; ϵ r = 37.616; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: 5G NR N77 30kHz (3700-3980) (0) Frequency: 3975 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(6.95, 6.95, 6.95)

Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm


Maximum value of SAR (interpolated) = 1.54 W/kg

Zoom Scan (12x13x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 5.413 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 2.02 W/kg

SAR(1 g) = 0.841 W/kg; SAR(10 g) = 0.324 W/kgMaximum value of SAR (measured) = 1.54 W/kg

n77 PC3 10mm

Date: 2025-07-03

Electronics: DAE4 Sn1745 Medium: H700-6000M

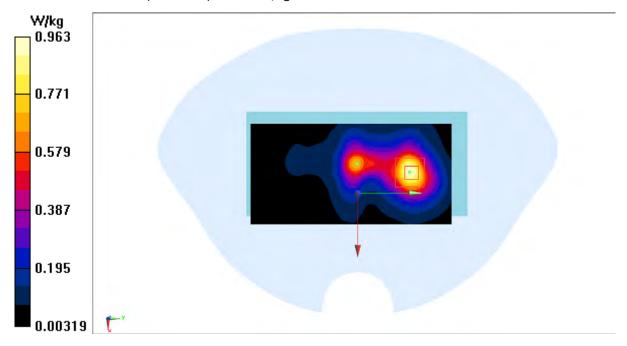
Medium parameters used: f = 3705 MHz; σ = 3.001 S/m; ϵ r = 38.008; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: 5G NR N77 30kHz (3700-3980) (0) Frequency: 3705 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(7, 7, 7)

Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm


Maximum value of SAR (interpolated) = 0.963 W/kg

Zoom Scan (13x13x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 11.90 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.38 W/kg

SAR(1 g) = 0.537 W/kg; SAR(10 g) = 0.237 W/kgMaximum value of SAR (measured) = 0.975 W/kg

WIFI2.4G 10mm

Date: 2025-06-10

Electronics: DAE4 Sn1745 Medium: H700-6000M

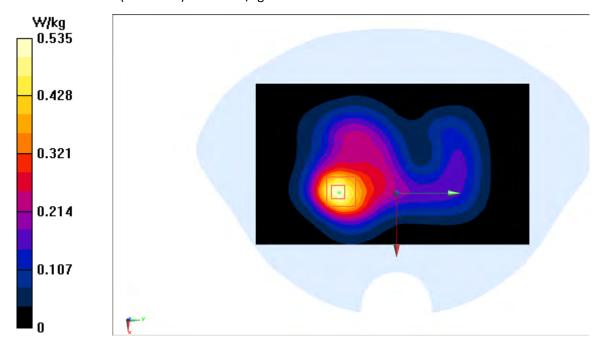
Medium parameters used: f = 2440 MHz; σ = 1.777 S/m; ϵ r = 40.068; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: WIFI 2450 (0) Frequency: 2437 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(7.95, 7.95, 7.95)

Area Scan (101x171x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm


Maximum value of SAR (interpolated) = 0.535 W/kg

Zoom Scan (10x11x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.949 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.636 W/kg

SAR(1 g) = 0.331 W/kg; SAR(10 g) = 0.180 W/kgMaximum value of SAR (measured) = 0.509 W/kg

WIFI5G 10mm

Date: 2025-06-12

Electronics: DAE4 Sn1745 Medium: H700-6000M

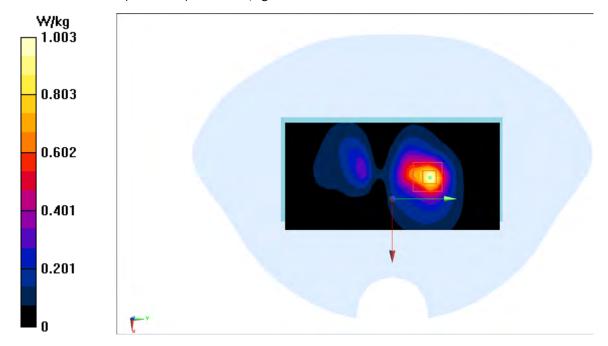
Medium parameters used: f = 5190 MHz; σ = 4.619 S/m; ϵ r = 35.688; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: WLAN 11a (0) Frequency: 5190 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(5.64, 5.64, 5.64)

Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm


Maximum value of SAR (interpolated) = 1.00 W/kg

Zoom Scan (13x13x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 4.999 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 1.48 W/kg

SAR(1 g) = 0.417 W/kg; SAR(10 g) = 0.152 W/kgMaximum value of SAR (measured) = 0.955 W/kg

ANNEX B System Verification Results

750MHz

Date: 2025-06-14

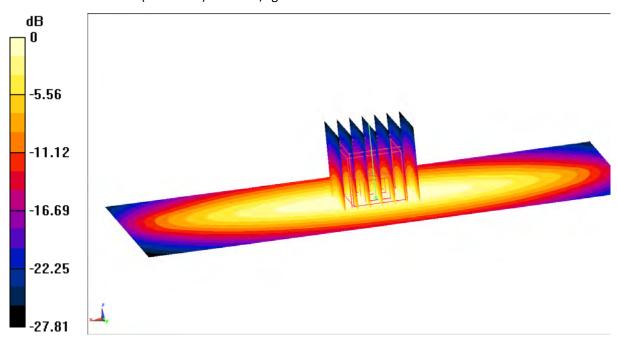
Electronics: DAE4 Sn1745 Medium: H700-6000M

Medium parameters used: f = 750 MHz; σ = 0.881 S/m; ϵ r = 43.04; ρ = 1000 kg/m3

Ambient Temperature: 23.3° C Liquid Temperature: 22.5° C Communication System: CW (0) Frequency: 750 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(10.82, 10.82, 10.82)

Area Scan (131x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 2.98 W/kg

Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.45 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 3.47 W/kg

SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.41 W/kgMaximum value of SAR (measured) = 2.94 W/kg

0 dB = 2.95 W/kg = 4.70 dBW/kg

Date: 2025-06-05

Electronics: DAE4 Sn1745 Medium: H700-6000M

Medium parameters used: f = 835 MHz; σ = 0.91 S/m; ϵ r = 42.77; ρ = 1000 kg/m3

Ambient Temperature: $23.3^{\circ}C$ Liquid Temperature: $22.5^{\circ}C$ Communication System: CW (0) Frequency: 835 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(10.82, 10.82, 10.82)

Area Scan (131x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 3.31 W/kg

Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.17 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 3.81 W/kg

SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.59 W/kgMaximum value of SAR (measured) = 3.28 W/kg

0 dB = 3.29 W/kg = 5.17 dBW/kg

Date: 2025-06-20

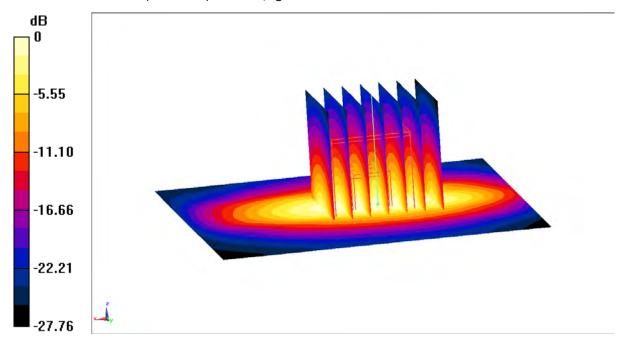
Electronics: DAE4 Sn1745 Medium: H700-6000M

Medium parameters used: f = 1750 MHz; σ = 1.329 S/m; ϵ r = 40.98; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 1750 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(8.95, 8.95, 8.95)

Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 13.9 W/kg

Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.56 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 16.6 W/kg

SAR(1 g) = 9.02 W/kg; SAR(10 g) = 4.83 W/kgMaximum value of SAR (measured) = 13.8 W/kg

0 dB = 13.9 W/kg = 11.43 dBW/kg

Date: 2025-06-23

Electronics: DAE4 Sn1745 Medium: H700-6000M

Medium parameters used: f = 1900 MHz; σ = 1.415 S/m; ϵ r = 40.87; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(8.6, 8.6, 8.6)

Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 15.7 W/kg

Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.3 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 19.1 W/kg

SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.27 W/kgMaximum value of SAR (measured) = 15.8 W/kg

0 dB = 15.6 W/kg = 11.93 dBW/kg

Date: 2025-06-16

Electronics: DAE4 Sn1745 Medium: H700-6000M

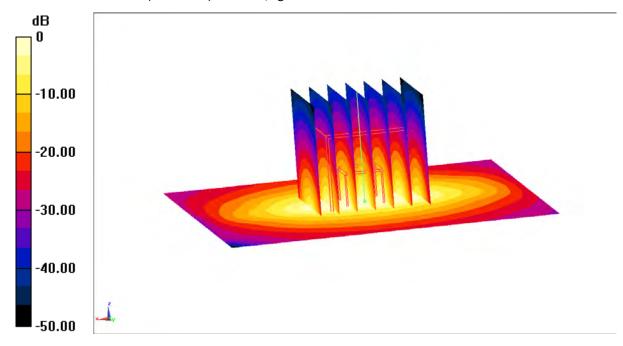
Medium parameters used: f = 2300 MHz; σ = 1.676 S/m; ϵ r = 40.26; ρ = 1000 kg/m3

 $\label{eq:linear_equation} \mbox{Ambient Temperature: 23.3°C} \qquad \mbox{Liquid Temperature: 22.5°C}$

Communication System: CW (0) Frequency: 2300 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(8.25, 8.25, 8.25)

Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 19.7 W/kg

Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.6 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 25.1 W/kg

SAR(1 g) = 12.4 W/kg; SAR(10 g) = 5.89 W/kgMaximum value of SAR (measured) = 20.4 W/kg

0 dB = 19.6 W/kg = 12.92 dBW/kg

Date: 2025-06-10

Electronics: DAE4 Sn1745 Medium: H700-6000M

Medium parameters used: f = 2450 MHz; σ = 1.784 S/m; ϵ r = 40.05; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: CW (0) Frequency: 2450 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(7.95, 7.95, 7.95)

Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 21.6 W/kg

Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.06 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 27.7 W/kg

SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.33 W/kgMaximum value of SAR (measured) = 22.3 W/kg

0 dB = 21.5 W/kg = 13.32 dBW/kg

Date: 2025-06-30

Electronics: DAE4 Sn1745 Medium: H700-6000M

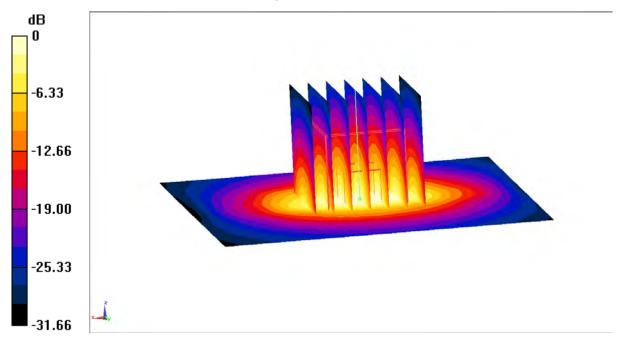
Medium parameters used: f = 2600 MHz; σ = 2.027 S/m; ϵ r = 39.83; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: CW (0) Frequency: 2600 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(7.8, 7.8, 7.8)

Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm


Maximum value of SAR (interpolated) = 22.5 W/kg

Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.84 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 29.1 W/kg

SAR(1 g) = 13.9 W/kg; SAR(10 g) = 6.18 W/kgMaximum value of SAR (measured) = 23.9 W/kg

0 dB = 22.8 W/kg = 13.58 dBW/kg

Date: 2025-07-03

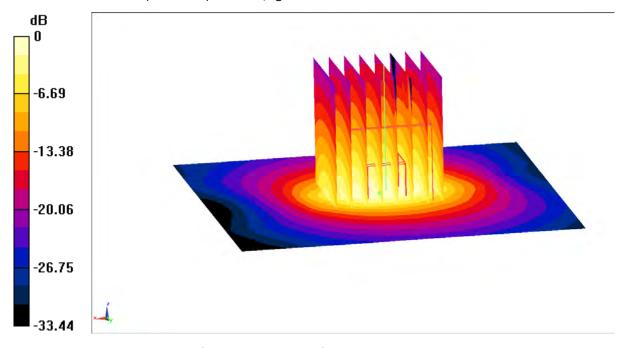
Electronics: DAE4 Sn1745 Medium: H700-6000M

Medium parameters used: f = 3500 MHz; σ = 2.81 S/m; ϵ r = 38.3; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 3500 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(7.2, 7.2, 7.2)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm


Maximum value of SAR (interpolated) = 12.9 W/kg

Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 69.12 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 17.6 W/kg

SAR(1 g) = 6.66 W/kg; SAR(10 g) = 2.59 W/kgMaximum value of SAR (measured) = 12.3 W/kg

0 dB = 12.8 W/kg = 11.07 dBW/kg

Date: 2025-07-03

Electronics: DAE4 Sn1745 Medium: H700-6000M

Medium parameters used: f = 3700 MHz; σ = 2.996 S/m; ϵ r = 38.02; ρ = 1000 kg/m3

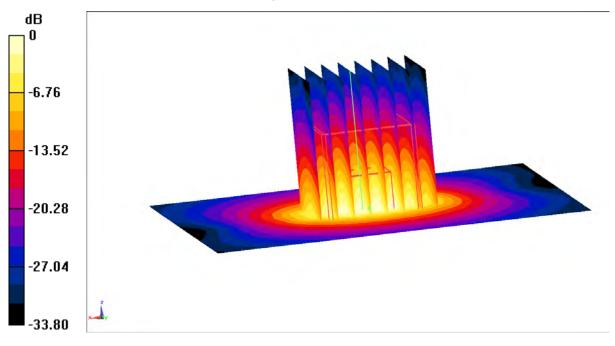
 $\label{eq:linear_equation} \mbox{Ambient Temperature: 23.3 $^{\circ}$C} \qquad \mbox{Liquid Temperature: 22.5 $^{\circ}$C}$

Communication System: CW (0) Frequency: 3700 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(7, 7, 7)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 13.1 W/kg


Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.74 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 18.5 W/kg

SAR(1 g) = 6.67 W/kg; SAR(10 g) = 2.48 W/kg

Maximum value of SAR (measured) = 12.6 W/kg

0 dB = 13.2 W/kg = 11.21 dBW/kg

Date: 2025-07-03

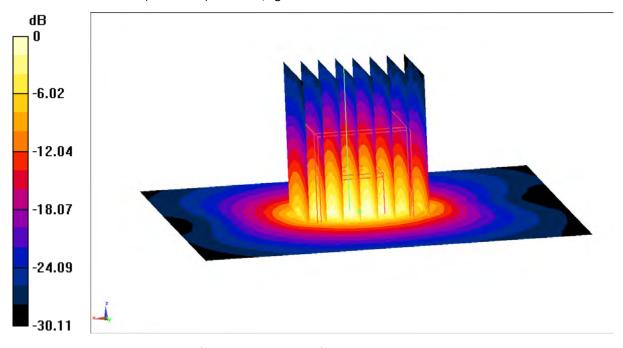
Electronics: DAE4 Sn1745 Medium: H700-6000M

Medium parameters used: f = 3900 MHz; σ = 3.193 S/m; ϵ r = 37.72; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 3900 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(6.95, 6.95, 6.95)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm


Maximum value of SAR (interpolated) = 14.2 W/kg

Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.91 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 19.8 W/kg

SAR(1 g) = 6.89 W/kg; SAR(10 g) = 2.44 W/kgMaximum value of SAR (measured) = 13.2 W/kg

0 dB = 14.3 W/kg = 11.55 dBW/kg

Date: 2025-06-12

Electronics: DAE4 Sn1745 Medium: H700-6000M

Medium parameters used: f = 5250 MHz; σ = 4.685 S/m; ϵ r = 35.58; ρ = 1000 kg/m3

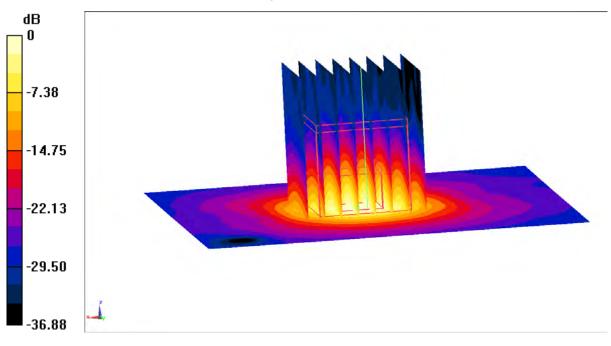
 $\label{eq:linear_line$

Communication System: CW (0) Frequency: 5250 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(5.64, 5.64, 5.64)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 18.2 W/kg


Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.48 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 31.7 W/kg

SAR(1 g) = 7.77 W/kg; SAR(10 g) = 2.17 W/kg

Maximum value of SAR (measured) = 18.4 W/kg

0 dB = 18.3 W/kg = 12.62 dBW/kg

Date: 2025-06-12

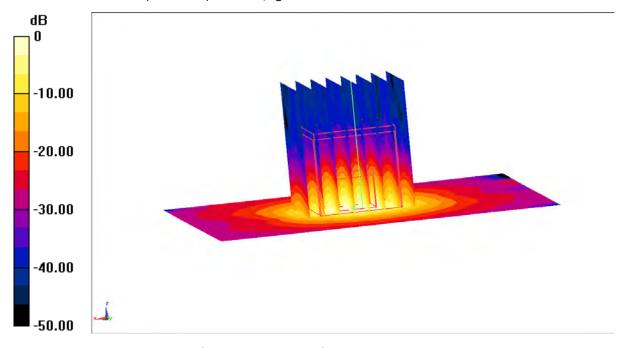
Electronics: DAE4 Sn1745 Medium: H700-6000M

Medium parameters used: f = 5750 MHz; σ = 5.256 S/m; ϵ r = 34.8; ρ = 1000 kg/m3

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 5750 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7600 ConvF(5.16, 5.16, 5.16)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm


Maximum value of SAR (interpolated) = 19.8 W/kg

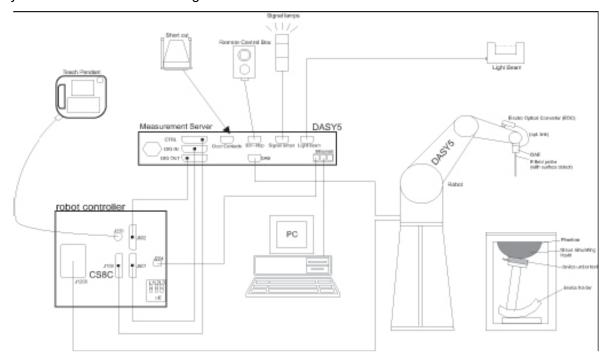
Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 71.06 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 36.1 W/kg

SAR(1 g) = 7.78 W/kg; SAR(10 g) = 2.19 W/kgMaximum value of SAR (measured) = 19.3 W/kg

0 dB = 19.8 W/kg = 12.97 dBW/kg



ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

The Dasy5 or DASY8 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals
 for the digital communication to the DAE. To use optical surface detection, a special version of
 the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win10 and the DASY5 or DASY8 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2 DASY5 or DASY8 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 or DASY8 software reads the reflection during a software approach and looks for the maximum using 2nd curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model: EX3DV4

Frequency 10MHz — 6.0GHz(EX3DV4)

Range:

Calibration: In head and body simulating tissue at

Frequencies from 835 up to 5800MHz

Linearity: ± 0.2 dB(30 MHz to 6 GHz) for EX3DV4

Dynamic Range: 10 mW/kg — 100W/kg

Probe Length: 330 mm

Probe Tip

Length: 20 mm
Body Diameter: 12 mm
Tip Diameter: 2.5 mm
Tip-Center: 1 mm

Application: SAR Dosimetry Testing

Compliance tests of mobile phones

Dosimetry in strong gradient fields

Picture C.2 Near-field Probe

Picture C.3 E-field Probe

C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

C.4 Other Test Equipment

C.4.1 Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Picture C.4: DAE

C.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY5: RX160L; DASY8: TX2-90XL spe) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5 DASY 5

Picture C.6 DASY 8

C.4.3 Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (DASY5/DASY8: 400 MHz, Intel Celeron), chipdisk (DASY5/DASY8: 128MB), RAM (DASY5/DASY8: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

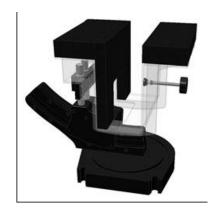
Picture C.7 Server for DASY 5

Picture C.8 Server for DASY 8

C.4.4 Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.


The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\mathcal{E}=3$ and loss tangent $\mathcal{S}=0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

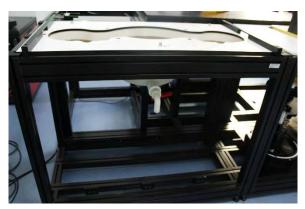
The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture C.9: Device Holder

Picture C.10: Laptop Extension Kit

C.4.5 Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to


Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

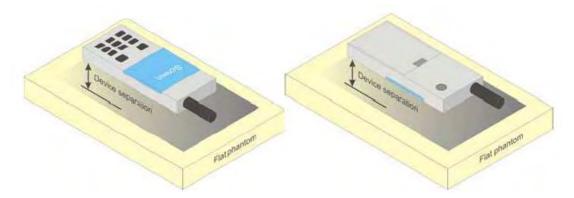
Shell Thickness: 2±0.2 mm

Filling Volume: Approx. 25 liters

Dimensions: 810 x 1000 x 500 mm (H x L x W)

Available: Special

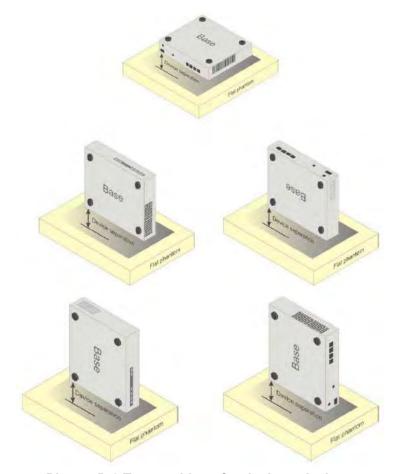
Picture C.11 SAM Twin Phantom



ANNEX D Position of the wireless device in relation to the phantom

D.1 Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.


Picture D.1 Test positions for body-worn devices

D.2 Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.2 Test positions for desktop devices

D.3 DUT Setup Photos

Picture D.3

ANNEX E Equivalent Media Recipes

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE Std 1528 and EN IEC/IEEE 62209-1528:2021.

TableE.1: Composition of the Tissue Equivalent Matter

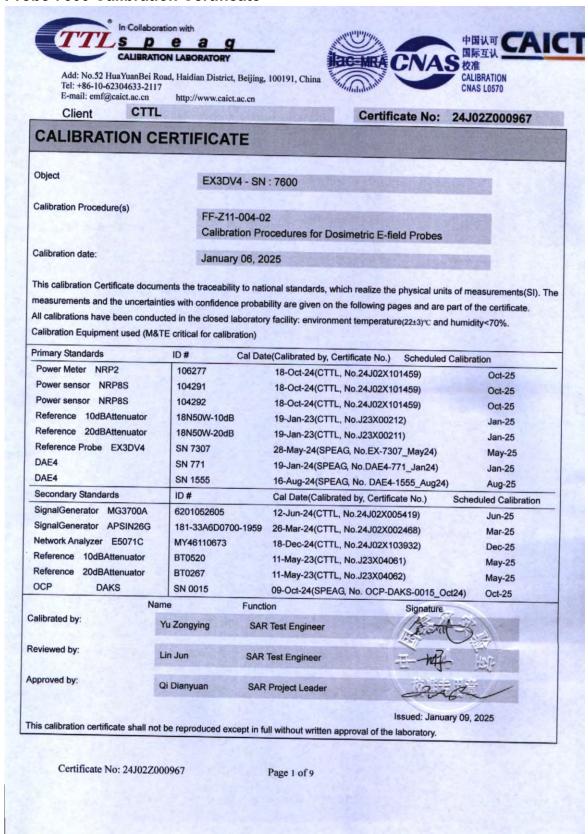
Frequency	835Hea	835Bod	1900	1900	2450	2450	5800	5800		
(MHz)	d	у	Head	Body	Head	Body	Head	Body		
Ingredients (% by weight)										
Water	41.45	52.5	55.242	69.91	58.79	72.60	65.53	65.53		
Sugar	56.0	45.0	\	\	\	\	/	\		
Salt	1.45	1.4	0.306	0.13	0.06	0.18	\	\		
Preventol	0.1	0.1	\	/	\	/	/	\		
Cellulose	1.0	1.0	\	/	\	/	/	\		
Glycol	1	1	44.452	29.96	41.15	27.22	\	1		
Monobutyl	\	\	44.452	29.90	41.13	21.22	١	\		
Diethylenglycol										
monohexylethe	\	\	\	\	\	\	17.24	17.24		
r										
Triton X-100	\	1	\	\	\	\	17.24	17.24		
Dielectric	ε=41.5	ε=55.2	ε=40.0	ε=53.3	ε=39.2	ε=52.7	ε=35.3	ε=48.2		
Parameters		ε=35.2 σ=0.97	σ=1.4	σ=1.5	σ=1.8	σ=1.9	σ=5.2	σ=6.0		
Target Value	σ=0.90	0-0.97	0	2	0	5	7	0		

Note: There are a little adjustment respectively for 750, 1750, 2600, 5200, 5300 and 5600 based on the recipe of closest frequency in table E.1.

ANNEX F System Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

Table F.1: System Validation for 7600


Probe SN.	Liquid name	Validation date	Frequency point	Status (OK or Not)
7600	Head 750MHz	January 13,2025	750MHz	OK
7600	Head 900MHz	January 13,2025	900MHz	OK
7600	Head 1450MHz	January 13,2025	1450MHz	OK
7600	Head 1750MHz	January 13,2025	1750MHz	OK
7600	Head 1900MHz	January 13,2025	1900MHz	OK
7600	Head 2100MHz	January 14,2025	2100MHz	OK
7600	Head 2300MHz	January 14,2025	2300MHz	OK
7600	Head 2450MHz	January 14,2025	2450MHz	OK
7600	Head 2600MHz	January 14,2025	2600MHz	OK
7600	Head 3300MHz	January 15,2025	3300MHz	OK
7600	Head 3500MHz	January 15,2025	3500MHz	OK
7600	Head 3700MHz	January 15,2025	3700MHz	OK
7600	Head 3900MHz	January 15,2025	3900MHz	OK
7600	Head 4100MHz	January 15,2025	4100MHz	OK
7600	Head 4200MHz	January 15,2025	4200MHz	OK
7600	Head 4400MHz	January 16,2025	4400MHz	OK
7600	Head 4600MHz	January 16,2025	4600MHz	OK
7600	Head 4800MHz	January 16,2025	4800MHz	OK
7600	Head 4950MHz	January 16,2025	4950MHz	OK
7600	Head 5250MHz	January 16,2025	5250MHz	OK
7600	Head 5600MHz	January 16,2025	5600MHz	OK
7600	Head 5750MHz	January 16,2025	5750MHz	OK

ANNEX G Probe Calibration Certificate

Probe 7600 Calibration Certificate

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ Φ rotation around probe axis

θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i Polarization θ

θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF).

 $NORM(f)x, y, z = NORMx, y, z^*$ frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.

DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.

PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics

Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.

ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.

Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.


Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:24J02Z000967

Page 2 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7600

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
$Norm(\mu V/(V/m)^2)^A$	0.67	0.65	0.66	±10.0%
DCP(mV) ^B	110.3	110.8	109.4	210.070

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0 CW	X	0.0	0.0	1.0	0.00	222.9	±2.1%	
		Y	0.0	0.0	1.0		217.2	
		Z	0.0	0.0	1.0		221.6	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

Certificate No:24J02Z000967

Page 3 of 9

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4).

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7600

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	10.82	10.82	10.82	0.14	1.13	±12.7%
900	41.5	0.97	10.38	10.38	10.38	0.11	1.50	±12.7%
1450	40.5	1.20	9.21	9.21	9.21	0.17	1.04	±12.7%
1750	40.1	1.37	8.95	8.95	8.95	0.22	1.01	±12.7%
1900	40.0	1.40	8.60	8.60	8.60	0.27	0.91	±12.7%
2100	39.8	1.49	8.65	8.65	8.65	0.18	1.17	±12.7%
2300	39.5	1.67	8.25	8.25	8.25	0.52	0.69	±12.7%
2450	39.2	1.80	7.95	7.95	7.95	0.52	0.72	±12.7%
2600	39.0	1.96	7.80	7.80	7.80	0.57	0.67	±12.7%
3300	38.2	2.71	7.43	7.43	7.43	0.40	0.90	±13.9%
3500	37.9	2.91	7.20	7.20	7.20	0.35	1.15	±13.9%
3700	37.7	3.12	7.00	7.00	7.00	0.30	1.37	±13.9%
3900	37.5	3.32	6.95	6.95	6.95	0.30	1.52	±13.9%
4100	37.2	3.53	6.90	6.90	6.90	0.35	1.25	±13.9%
4200	37.1	3.63	6.78	6.78	6.78	0.35	1.35	±13.9%
4400	36.9	3.84	6.68	6.68	6.68	0.35	1.35	±13.9%
4600	36.7	4.04	6.58	6.58	6.58	0.45	1.22	±13.9%
4800	36.4	4.25	6.50	6.50	6.50	0.45	1.25	±13.9%
4950	36.3	4.40	6.25	6.25	6.25	0.45	1.25	±13.9%
5250	35.9	4.71	5.64	5.64	5.64	0.45	1.40	±13.9%
5600	35.5	5.07	5.05	5.05	5.05	0.45	1.40	
5750	35.4	5.22	5.16	5.16	5.16	0.40	1.52	±13.9%

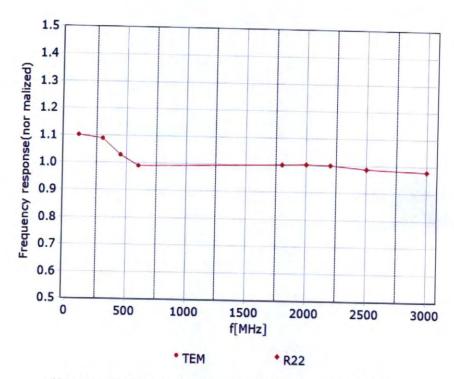
^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No:24J02Z000967

Page 4 of 9

F At frequency up to 6 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.



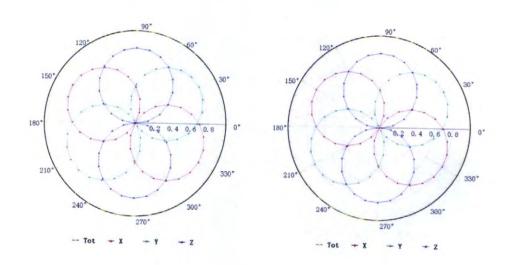
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caiet.ac.cn http://www.caict.ac.cn

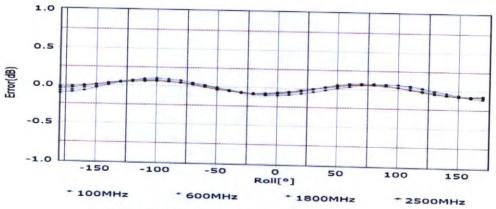
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No:24J02Z000967

Page 5 of 9




Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Receiving Pattern (Φ), θ=0°

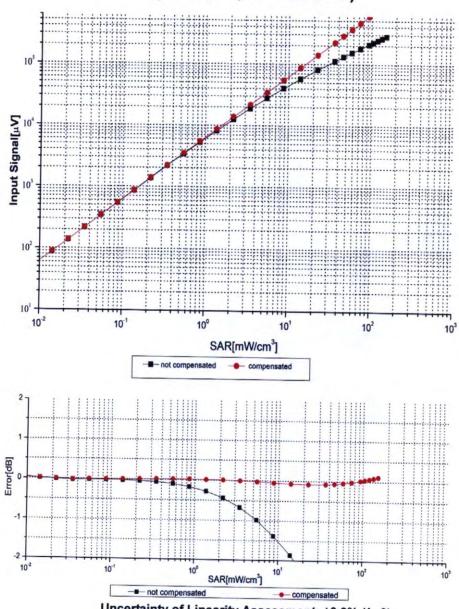
f=600 MHz, TEM

f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2)

Certificate No:24J02Z000967

Page 6 of 9



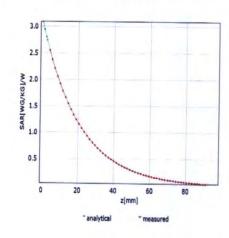
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

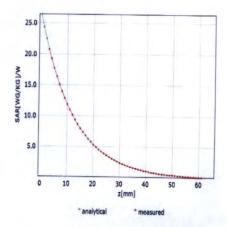
Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ±0.9% (k=2)

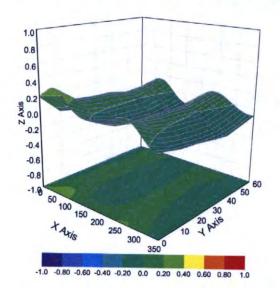
Certificate No:24J02Z000967

Page 7 of 9




Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Conversion Factor Assessment


f=750 MHz,WGLS R9(H_convF)

f=1750 MHz,WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:24J02Z000967

Page 8 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7600

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	11.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:24J02Z000967

Page 9 of 9

ANNEX H Dipole Calibration Certificate

750 MHz Dipole Calibration Certificate

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

lac MRA

Schweizerischer Kalibrierdienst Service sulsse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

CTTL Beijing Certificate No.

D750V3-1017 Jul24

CALIBRATION CERTIFICATE

Object

D750V3 - SN: 1017

Calibration procedure(s)

QA CAL-05.v12

Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz

Calibration date

July 9, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Power Sensor R&S NRP18A	SN: 101859	21-Mar-24 (No. 4030A315007801)	Mar-25
Spectrum Analyzer R&S FSV40	SN: 101832	25-Jan-24 (No. 4030-315007551)	Jan-25
Mismatch; Short [S4188] Attenuator [S4423]	SN: 1152	28-Mar-24 (No. 217-04050)	Mar-25
OCP DAK-12	SN: 1016	05-Oct-23 (No. OCP-DAK12-1016_Oct23)	Oct-24
OCP DAK-3.5	SN: 1249	05-Oct-23 (No. OCP-DAK3.5-1249_Oct23)	Oct-24
Reference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25
DAE4ip	SN: 1836	10-Jan-24 (No. DAE4lp-1836_Jan24)	Jan-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 0001-300719404)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25

Name Function Signature

Calibrated by Paulo Pina Laboratory Technician

Approved by Sven Kühn Technical Manager

Issued: July 9, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D750V3-1017_Jul24

Page 1 of 6

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

IIAC MRA

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

· DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- · SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D750V3-1017_Jul24

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with spacer
Zoom Scan Resolution	dx, $dy = 6mm$, $dz = 1.5mm$	Graded Ratio = 1.5 mm (Z direction
Frequency	750MHz ±1MHz	

Head TSL parameters at 750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.890 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	42.5 ±6%	0.910 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	2.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.52 W/kg ±17.0% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	1.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.53 W/kg ±16.5% (k = 2)

Certificate No: D750V3-1017_Jul24

Appendix (Additional assessments outside the scope of SCS 0108) Antenna Parameters with Head TSL at 750 MHz

Impedance	53.2 Ω – 0.7 jΩ	
Return Loss	-30.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.034 ns

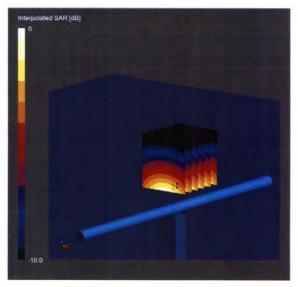
After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D750V3-1017_Jul24

Page 4 of 6

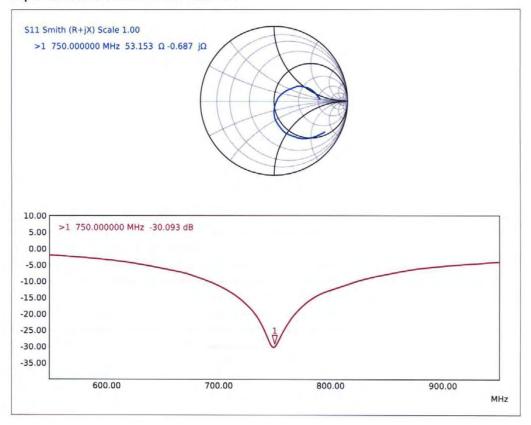


System Performance Check Report

Summary							
Dipole		Fre	equency [MHz]	TSL	Power [dBm]		
D750V3 - SN1017		75	0	HSL	24		
Exposure Condition	is						
Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	15		CW, 0	750, 0	9.9	0.91	42.5
Hardware Setup							
Phantom	TSL, Measured Dat	e	Probe, Calibration Date		DAE,	Calibration Date	
Flat V4.9 mod	HSL, 2024-07-09		EX3DV4 - SN7349, 2024-06-03		DAE4	ip Sn1836, 2024-01-10	

Scans Setup	
	Zoom Scan
Grid Extents [mm]	30 x 30 x 30
Grid Steps [mm]	6.0 x 6.0 x 1.5
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.5
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measured

	Zoom Scan
Date	2024-07-09
psSAR1g [W/Kg]	2.14
psSAR10g [W/Kg]	1.39
Power Drift [dB]	0.00
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative


0 dB = 3.48 W/Kg

Certificate No: D750V3-1017_Jul24

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: D750V3-1017_Jul24

Page 6 of 6

835 MHz Dipole Calibration Certificate

Calibration Laboratory of

Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

CTTL Beijing Certificate No.

D835V2-4d069_Jul24

CALIBRATION CERTIFICATE

Object

D835V2 - SN: 4d069

Calibration procedure(s)

QA CAL-05.v12

Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz

Calibration date

July 9, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Power Sensor R&S NRP18A	SN: 101859	21-Mar-24 (No. 4030A315007801)	Mar-25
Spectrum Analyzer R&S FSV40	SN: 101832	25-Jan-24 (No. 4030-315007551)	Jan-25
Mismatch; Short [S4188] Attenuator [S4423]	SN: 1152	28-Mar-24 (No. 217-04050)	Mar-25
OCP DAK-12	SN: 1016	05-Oct-23 (No. OCP-DAK12-1016_Oct23)	Oct-24
OCP DAK-3.5	SN: 1249	05-Oct-23 (No. OCP-DAK3.5-1249_Oct23)	Oct-24
Reference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25
DAE4ip	SN: 1836	10-Jan-24 (No. DAE4ip-1836_Jan24)	Jan-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 0001-300719404)	May-25
Mismatch: SMA	SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25

Name Function Paulo Pina Laboratory Technician Calibrated by Technical Manager Approved by Issued: July 9, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d069_Jul24

Page 1 of 6

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Glossary

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

· DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d069_Jul24

Page 2 of 6

D835V2 - SN: 4d069

July 9, 2024

Measurement Conditions

DASY system configuration, as far as not given on page 1.

Frequency	835MHz ±1MHz	
Zoom Scan Resolution	dx, $dy = 6mm$, $dz = 1.5mm$	Graded Ratio = 1.5 mm (Z direction
Distance Dipole Center - TSL	15 mm	with spacer
Phantom	Modular Flat Phantom	
Extrapolation	Advanced Extrapolation	
DASY Version	DASY8 Module SAR	16.4.0

Head TSL parameters at 835 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.900 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	42.3 ±6%	0.930 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 835 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.47 W/kg ±17.0% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	1.53 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.09 W/kg ±16.5% (k = 2)

Certificate No: D835V2-4d069_Jul24

Page 3 of 6

D835V2 - SN: 4d069 July 9, 2024

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 835 MHz

Impedance	51.1 Ω – 4.5 jΩ	
Return Loss	-26.8 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.393 ns
Electrical Delay (one direction)	1.000 110

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured by	SILAG
0.0000000000000000000000000000000000000	

Certificate No: D835V2-4d069_Jul24

Page 4 of 6

D835V2 - SN: 4d069 July 9, 2024

System Performance Check Report

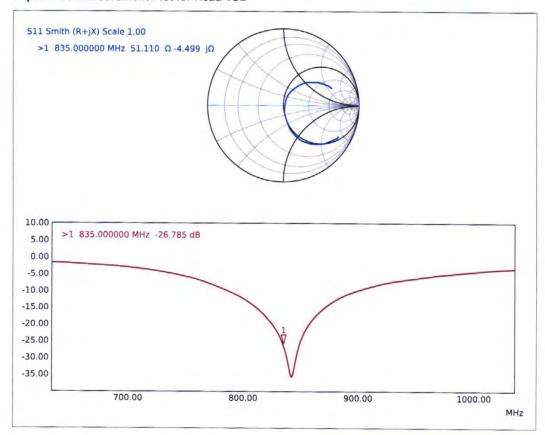
Summary							
Dipole		1	requency [MH	z] TSL	Power [dBm]		
D835V2 - SN4d069			835	HSL	24		
Exposure Condition	s						
Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Numbe	r Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	15		CW, 0	835, 0	9.61	0.93	42.3
Hardware Setup							
Phantom	TSL, Measured Dat	e	Probe, Calibration Date		DAE,	Calibration Date	
Flat V4.9 mod	HSL, 2024-07-09		EX3DV4 - SN7349, 2024-06-03		DAE4	ip Sn1836, 2024-01-10	

cans Setup	
	Zoom Scan
Grid Extents [mm]	30 x 30 x 30
Grid Steps [mm]	6.0 × 6.0 × 1.5
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1,5
MAIA	N/A
Surface Detection	VMS + 6p
Scan Method	Measured

	Zoom Scan
Date	2024-07-09
psSAR1g [W/Kg]	2.38
psSAR10g [W/Kg]	1.53
Power Drift [dB]	0.00
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative

0 dB = 3.85 W/Kg

Certificate No: D835V2-4d069_Jul24


Page 5 of 6

D835V2 - SN: 4d069 July 9, 2024

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-4d069_Jul24

Page 6 of 6

1750 MHz Dipole Calibration Certificate

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

IIac MRA

- S Schweizerischer Kalibrierdienst
 C Service suisse d'étalonnage
 - Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

CTTL Beljing

Certificate No.

D1750V2-1003_Jul24

CALIBRATION CERTIFICATE

Object

D1750V2 - SN: 1003

Calibration procedure(s)

QA CAL-05.v12

Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz

Calibration date

July 11, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22\pm3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Power Sensor R&S NRP18A	SN: 101859	21-Mar-24 (No. 4030A315007801)	Mar-25
Spectrum Analyzer R&S FSV40	SN: 101832	25-Jan-24 (No. 4030-315007551)	Jan-25
Mismatch; Short [S4188] Attenuator [S4423]	SN: 1152	28-Mar-24 (No. 217-04050)	Mar-25
OCP DAK-12	SN: 1016	05-Oct-23 (No. OCP-DAK12-1016_Oct23)	Oct-24
OCP DAK-3.5	SN: 1249	05-Oct-23 (No. OCP-DAK3.5-1249_Oct23)	Oct-24
Reference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25
DAE4ip	SN: 1836	10-Jan-24 (No. DAE4ip-1836 Jan24)	Jan-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 0001-300719404)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch SMA-240522)	May-25

Name Function Signature . .

Calibrated by Paulo Pina Laboratory Technician I . V. Hullisk

Approved by Sven Kühn Technical Manager

Issued: July 11, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: D1750V2-1003_Jul24

Page 1 of 6

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service sulsse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

· DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1750V2-1003_Jul24

Page 2 of 6

D1750V2 - SN: 1003 July 11, 2024

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with spacer
Zoom Scan Resolution	dx, $dy = 6mm$, $dz = 1.5mm$	Graded Ratio = 1.5 mm (Z direction)
Frequency	1750MHz ±1MHz	

Head TSL parameters at 1750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	40.6 ±6%	1.35 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 1750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	9.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.2 W/kg ±17.0% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	4.97 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.8 W/kg ±16.5% (k = 2)

Certificate No: D1750V2-1003_Jul24

Page 3 of 6

D1750V2 - SN: 1003

July 11, 2024

Appendix (Additional assessments outside the scope of SCS 0108) Antenna Parameters with Head TSL at 1750 MHz

Impedance	49.2 Ω – 0.4 jΩ		
Return Loss	-41.0 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.214 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

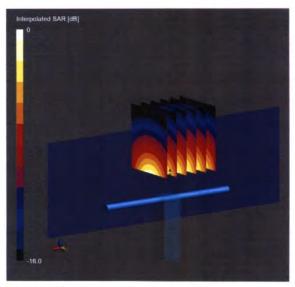
Manufactured by	SPEAG

Certificate No: D1750V2-1003_Jul24

Page 4 of 6

D1750V2 - SN: 1003

July 11, 2024


Positive / Negative

System Performance Check Report

Surface Detection

Scan Method

Summary								
Dipole			Frequency [MH	iz]	TSL	Power [dBm]		
D1750V2 - SN1003			1750		HSL	24		
Exposure Condition	S							
Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MHz]	, Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10		CW, 0	1750, 0		7.96	1.35	40.6
Hardware Setup								
Phantom	TSL, Measured Da	ate	Probe, Calibration Date		DAE, Calibration Date			
MFP V8.0 Right	HSL, 2024-07-1	ĺ	EX3DV4 - SN7349, 2024-06-03		DAE4	ip Sn1836, 2024-01-10		
Scans Setup					Measuremen	nt Results		
				Zoom Scan				Zoom Scan
Grid Extents [mm]	30 × 30 × 30		Date			2024-07-11		
Grid Steps [mm]	6.0 x 6.0 x 1.5		psSAR1g [W/	(g)		9.34		
Sensor Surface [mm]		1.4		psSAR10g [W	(Kg)		4.97	
Graded Grid			Yes Power Drift		Power Drift (d	B)		0.00
Grading Ratio				1.5	Power Scaling			Disabled
					_			

N/A

All points

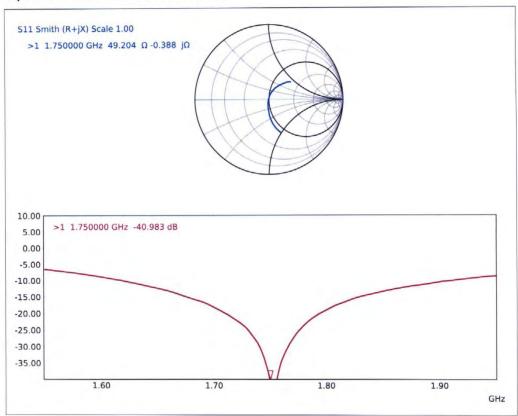
Measured

Scaling Factor [dB]

TSL Correction

0~dB = 16.6~W/Kg

Certificate No: D1750V2-1003_Jul24


Page 5 of 6

D1750V2 - SN: 1003

July 11, 2024

Impedance Measurement Plot for Head TSL

Certificate No: D1750V2-1003_Jul24

Page 6 of 6

1900 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

CTTL Beijing

Certificate No.

D1900V2-5d101_Jul24

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 5d101

Calibration procedure(s)

QA CAL-05.v12

Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz

Calibration date

July 8, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Power Sensor R&S NRP18A	SN: 101859	21-Mar-24 (No. 4030A315007801)	Mar-25
Spectrum Analyzer R&S FSV40	SN: 101832	25-Jan-24 (No. 4030-315007551)	Jan-25
Mismatch; Short [S4188] Attenuator [S4423]	SN: 1152	28-Mar-24 (No. 217-04050)	Mar-25
OCP DAK-12	SN: 1016	05-Oct-23 (No. OCP-DAK12-1016_Oct23)	Oct-24
OCP DAK-3.5	SN: 1249	05-Oct-23 (No. OCP-DAK3.5-1249_Oct23)	Oct-24
Reference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25
DAE4ip	SN: 1836	10-Jan-24 (No. DAE4ip-1836_Jan24)	Jan-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 0001-300719404)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch SMA-240522)	May-25

Name Function Calibrated by Paulo Pina Laboratory Technician Approved by Sven Kühn Technical Manager Issued: July 8, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d101_Jul24

Page 1 of 6

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

lac-MRA

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

· DASY System Handbook

Methods Applied and Interpretation of Parameters

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled
 phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return
 Loss ensures low reflected power. No uncertainty required.
- · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- · SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d101_Jul24

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with spacer
Zoom Scan Resolution	dx, $dy = 6mm$, $dz = 1.5mm$	Graded Ratio = 1.5 mm (Z direction)
Frequency	1900MHz ±1MHz	

Head TSL parameters at 1900 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ±0.2)°C	41.3 ±6%	1.38 mho/m ±6%
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 1900 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	9.83 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.1 W/kg ±17.0% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	5.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.6 W/kg ±16.5% (k = 2)

Certificate No: D1900V2-5d101_Jul24

Page 3 of 6

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 1900 MHz

Impedance	49.4 Ω + 4.2 jΩ		
Return Loss	-27.3 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.203 ns
----------------------------------	----------

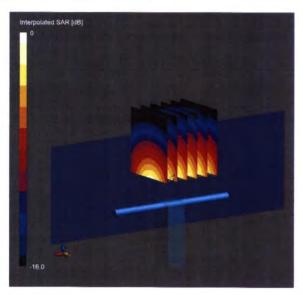
After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
5 C C C C C C C C C C C C C C C C C C C	

Certificate No: D1900V2-5d101_Jul24

Page 4 of 6



System Performance Check Report

Summary						
Dipole		Frequency [MHz] TSL	Power [dBm]		
D1900V2 - \$N5d101		1900	HSL	24		
Exposure Condition	is					
Phantom Section, TSL	Test Distance [mm] Ban	d Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat	10	CW, 0	1900, 0	7.73	1.38	41,3
Hardware Setup						
Phantom	TSL, Measured Date	Pr	Probe, Calibration Date		Calibration Date	
MED VS O Bight	USI 2024_07_08	EV	EV20VA - SN72A9 2024 OF 02		In Select 2024 01 10	

Scans Setup	
	Zoom Scan
Grid Extents [mm]	30 x 30 x 30
Grid Steps [mm]	6.0 x 6.0 x 1.5
Sensor Surface [mm]	1.4
Graded Grid	Yes
Grading Ratio	1.5
MAIA	N/A
Surface Detection	All points
Scan Method	Measured

	Zoom Scan
Date	2024-07-08
psSAR1g [W/Kg]	9.83
psSAR10g [W/Kg]	5.18
Power Drift [dB]	-0.01
Power Scaling	Disabled
Scaling Factor [dB]	
TSL Correction	Positive / Negative


0~dB=17.3~W/Kg

Certificate No: D1900V2-5d101_Jul24

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d101_Jul24

Page 6 of 6

2300 MHz Dipole Calibration Certificate

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Ilac MRA

S Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

CTTL Beijing Certificate No.

D2300V2-1018_Jul24

CALIBRATION CERTIFICATE

Object

D2300V2 - SN: 1018

Calibration procedure(s)

QA CAL-05.v12

Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz

Calibration date

July 10, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Power Sensor R&S NRP18A	SN: 101859	21-Mar-24 (No. 4030A315007801)	Mar-25
Spectrum Analyzer R&S FSV40	SN: 101832	25-Jan-24 (No. 4030-315007551)	Jan-25
Mismatch; Short [S4188] Attenuator [S4423]	SN: 1152	28-Mar-24 (No. 217-04050)	Mar-25
OCP DAK-12	SN: 1016	05-Oct-23 (No. OCP-DAK12-1016_Oct23)	Oct-24
OCP DAK-3.5	SN: 1249	05-Oct-23 (No. OCP-DAK3.5-1249_Oct23)	Oct-24
Reference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25
DAE4in	SN: 1836	10-Jan-24 (No. DAE4ip-1836 Jan24)	Jan-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 0001-300719404)	May-25
Mismatch: SMA	SN: 1102	22-May-24 (No. 675-Mismatch, SMA-240522)	May-25

Name

Signatur

Calibrated by

Paulo Pina

Laboratory Technician

Function

Approved by Sven Kühn Technical Manager

Issued: July 10, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2300V2-1018_Jul24

Page 1 of 6