

MPE REPORT

FCC ID: XBD-BT32ISC

Date of issue: Mar. 23, 2018

Report Number: MTi190312E037

Sample Description: BluJax

Model(s): BT32IS Rev C, BTS320 Rev C

Applicant: AAMP of Florida, Inc. dba AAMP Global

Address: 15500 Lightwave Dr. Suite 202 Clearwater,
Florida 33760 United States

Date of Test: Mar. 04, 2019 – Mar. 13, 2019

Shenzhen Microtest Co., Ltd.

<http://www.mtitest.com>

This test report is valid for the tested samples only. It cannot be reproduced except in full without prior written consent of Shenzhen Microtest Co., Ltd.

TEST RESULT CERTIFICATION	
Applicant's name:	AAMP of Florida, Inc. dba AAMP Global
Address:	15500 Lightwave Dr. Suite 202 Clearwater, Florida 33760 United States
Manufacture's Name:	Skytech creations limited
Address:	Unit 507, 5/F., IC Development Centre, No.6 Science Park West Avenue, Shatin, Hong Kong
Product name:	BluJax
Trademark:	iSimple
Model and/or type reference:	BT32IS Rev C
Serial Model:	BTS320 Rev C
Difference in series models:	All models are the same circuit and RF module, except for the appearance of the model silk screen.
RF Exposure Procedures:	KDB 447498 D01 v06

This device described above has been tested by Shenzhen Microtest Co., Ltd and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

Tested by:

Demi Mu

Mar. 13, 2019

Reviewed by:

Blue Zheng

Mar. 23, 2019

Approved by:

Smith Chen

Mar. 23, 2019

RF EXPOSURE EVALUATION

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) Radiation as specified in §1.1307(b)

Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
(A) Limits for Occupational/Controlled Exposure				
0.3-3.0	614	1.63	*100	6
3.0-30	1842/f	4.89/f	*900/f ²	6
30-300	61.4	0.163	1.0	6
300-1,500			f/300	6
1,500-100,000			5	6
(B) Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*100	30
1.34-30	824/f	2.19/f	*180/f ²	30
30-300	27.5	0.073	0.2	30
300-1,500			f/1500	30
1,500-100,000			1.0	30

f = frequency in MHz * = Plane-wave equivalent power density

MPE Calculation Method

Friis transmission formula: $P_d = (P_{out} \cdot G) / (4 \cdot \pi \cdot R^2)$

Where

P_d = Power density in mW/cm²

P_{out} = output power to antenna in mW

G = Numeric gain of the antenna relative to isotropic antenna

$\pi = 3.1415926$

R = distance between observation point and center of the radiator in cm(20cm)

P_d the limit of MPE, 1mW/cm². If we know the maximum gain of the antenna and total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

Measurement Result

BT:

Operation Frequency: BT GFSK/ $\pi/4$ -DQPSK/8DPSK: 2402-2480MHz,

Power density limited: 1mW/ cm²

Antenna Type: BT Antenna: PCB Antenna;

BT antenna gain: 0dBi

R=20cm

mW=10^(dBm/10)

antenna gain Numeric=10^(dBi/10)= 10^(0/10)=1.00

Channel Freq. (MHz)	modulation	conducted power (dBm)	Tune-up power (dBm)	Max		Antenna		Evaluation result (mW/cm ²)	Power density Limits (mW/cm ²)	
				tune-up power (dBm) (mW)		Gain (dBi) Numeric				
		(dBm)		(dBm)	(mW)	(dBi)	Numeric			
2402	GFSK	-1.936	-2±1	-1	0.794	0	1.00	0.0002	1	
2441		-2.450	-2±1	-1	0.794	0	1.00	0.0002	1	
2480		-2.460	-2±1	-1	0.794	0	1.00	0.0002	1	
2402	$\pi/4$ -DQPSK	-1.891	-1±1	0	1.000	0	1.00	0.0002	1	
2441		-1.914	-1±1	0	1.000	0	1.00	0.0002	1	
2480		-1.950	-1±1	0	1.000	0	1.00	0.0002	1	
2402	8DPSK	-1.724	-1±1	0	1.000	0	1.00	0.0002	1	
2441		-1.745	-1±1	0	1.000	0	1.00	0.0002	1	
2480		-1.778	-1±1	0	1.000	0	1.00	0.0002	1	

Conclusion:

For the max result: 0.0002≤ 1.0 for 1g SAR, No SAR is required.

----END OF REPORT----