

HAC TEST REPORT

Applicant ecom instruments GmbH

FCC ID XAM500080GR01

Product Featurephone

Brand ecom

Model Ex-Handy 10

Report No. R1906H0306-H1

Issue Date October 24, 2019

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **ANSI C63.19-2011.** The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Performed by: Yu Wang

Approved by: Guangchang Fan

Guangchang Fan

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3

FAX: +86-021-50791141/2/3-8000

Table of Contents

1	Test	t Laboratory	3
	1.1	Notes of the Test Report	3
	1.2	Testing Location	4
	1.3	Laboratory Environment	4
2	Stat	ement of Compliance	5
3	Des	cription of Equipment under Test	6
4	Test	t Specification and Operational Conditions	9
	4.1	Test Specification	9
5	Test	t Information	10
	5.1	Operational Conditions during Test	10
	5.1.1	General Description of Test Procedures	10
	5.2	HAC RF Measurements System Configuration	10
	5.2.1	HAC Measurement Set-up	10
	5.2.2	Probe System	11
	5.2.3	Test Arch Phantom & Phone Positioner	12
	5.3	RF Test Procedures	13
	5.4	System Check	15
	5.5	Modulation Interference Factor	16
	5.6	Justification of Held to Ear Modes Tested	17
	5.6.1	Analysis of RF Air Interface Technologies	17
	5.6.2	Average Antenna Input Power & Evaluation for Low-power Exemption	18
6	Test	t Results	19
	6.1	ANSI C63.19-2011 Limits	19
	6.2	Summary Test Results	20
7	Mea	asurement Uncertainty	21
8	Mai	n Test Instruments	22
		A: System Check Results	
		B: Graph Results	
		C: E-Probe Calibration Certificate	
		D: CD835V3 Dipole Calibration Certificate	
		E: CD1880V3 Dipole Calibration Certificate	
		F: CD2450V3 Dipole Calibration Certificate	
		G: CD2600V3 Dipole Calibration Certificate	
		H: DAE4 Calibration Certificate	. 86
Α	NNFX	I: The FLIT Appearances and Test Configuration	91

IAC Test Report No.: R1906H0306-H1

1 Test Laboratory

1.1 Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **TA Technology** (Shanghai) Co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein .Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

HAC Test Report Report No.: R1906H0306-H1

1.2 Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: xukai@ta-shanghai.com

1.3 Laboratory Environment

Temperature	Min. = 18°C, Max. = 28 °C			
Relative humidity	Min. = 0%, Max. = 80%			
Ground system resistance	< 0.5 Ω			
Ambient noise is checked and found very low and in compliance with requirement of standard				

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

HAC Test Report No.: R1906H0306-H1

2 Statement of Compliance

Table 2.1: The Total M-rating of each tested band

Mode	Rating
GSM 850	M4
GSM 1900	M4
WCDMA Band II	M4
WCDMA Band IV	M4
WCDMA Band V	M4
LTE Band 2	M4
LTE Band 4	M4
LTE Band 5	M4
LTE Band 7	M4
LTE Band 12	M4
LTE Band 13	M4
LTE Band 25	M4
LTE Band 26	M4
LTE Band 41	M4
LTE Band 66	M4
LTE Band 71	M4
Wi-Fi 2.4G 802.11b	M4
Wi-Fi 2.4G 802.11g	M4
Wi-Fi 2.4G 802.11n	M4
Wi-Fi 5G	M4

The Total M-rating is M4

Date of Testing: September 13, 2019

Note: Refer to section 7 Evaluation for Low-power Exemption. RF Emission testing for this device is required only for GSM voice modes, LTE 41/71 and Wi-Fi 2.4G 802.11g modes. WCDMA and LTE mode applicable air-interfaces are exempt from testing in accordance with C93.19-2011 Clause 4.4 and are rated M4.

AC Test Report No.: R1906H0306-H1

3 Description of Equipment under Test

Client Information

Applicant	ecom instruments GmbH			
Applicant address	Industriestrasse 2, 97959 Assamstadt, Germany			
Manufacturer	Pepperl+Fuchs GmbH			
Manufacturer address	Lilienthalstrasse 200, 68307 Mannheim, Germany			

General Technologies

Device Type:	Portable Device							
State of Sample:	Prototype Unit	Prototype Unit						
Model:	Ex-Handy 10							
IMEI:	04403100005430							
Hardware Version:	W3							
Software Version:	AIPH_ROW_M_018_260219							
Antenna Type:	Internal Antenna	nternal Antenna						
Power Class:	GSM 850: 4 GSM 1900: 1 WCDMA Band II/IV/V: 3 LTE FDD 2/4/5/7/12/13/25/26:3 LTE TDD 41/66/71:3 GSM 850: level 5 GSM 1900: level 0 WCDMA Band II/IV/V: All up bits LTE FDD 2/4/5/7/12/13/25/26:max power LTE TDD 41/66/71: max power							
Power Level								
Test Modulation:	(GSM)GMSK;(WCDMA) QPSK; (LTE) QF (Wi-Fi) DSSS,OFDM	PSK, 16QAM;						
	Mode	Tx (MHz)						
	GSM 850	824 ~ 849						
	GSM 1900	1850 ~ 1910						
	WCDMA Band II	1850 ~ 1910						
0	WCDMA Band IV	1710 ~ 1755						
Operating Frequency	WCDMA Band V	824 ~ 849						
Range(s):	LTE Band 2	1850 ~ 1910						
rtunge(5).	LTE Band 4 1710 ~ 1755							
	LTE Band 5	824 ~ 849						
	LTE Band 7	2500 ~ 2570						
	LTE Band 12	699 ~ 716						
	LTE Band 13	777~787						

TA Technology (Shanghai) Co., Ltd.

TA-MB-04-001H

Page 6 of 93

USB Cable

Report No.: R1906H0306-H1 LTE Band 25 1850 ~ 1915 LTE Band 26 824 ~ 849 LTE Band 41 2496 ~ 2690 LTE Band 66 1710 ~ 1780 LTE Band 71 663 ~ 698 Bluetooth: 2402 ~ 2480 WIFI 2.4G: 2412 ~ 2462 5150 ~ 5250 WIFI 5G(U-NII-1): WIFI 5G(U-NII-2A): 5250 ~ 5350 WIFI 5G(U-NII-2C): 5470 ~ 5725 WIFI 5G(U-NII-3): 5725 ~ 5850 **Accessory Equipment** Manufacturer: TEN PAO INTERNATIONAL LTD. **Adapter** Model: S008ACM0500200 Manufacturer: ecom instruments GmbH **Battery** Model: EX-BP H10C

120cm Cable, Shielded

Manufacturer: Dongguan YongGu Electronics Prouduction Co., Ltd.

AC Test Report Report No.: R1906H0306-H1

Air- Interface	Band (MHz)	Туре	ANSI C63.19 tested	Simultaneous Transmissions	Voice over Digital Transport OTT Capability	Name of Voice Service	Power Reduction
	850	VO	Yes	Yes	N/A		
GSM	1900	VO	163	BT or Wi-Fi	IN/A	#	No
	GPRS/EGPRS	DT	No	DI OI WI-I I	No		
	Band II						
WCDMA	Band IV	VO	Yes	Yes	N/A	#	No
VVCDIVIA	Band V			BT or Wi-Fi		#	INO
	HSPA	DT	No		No		
	Band 2			Yes BT or Wi-Fi		Yes##	
	Band 4				No		
	Band 5						
	Band 12		Yes				
LTE	Band 13	VD					No
LIE	Band 25	VD					INO
	Band 26						
	Band 41						
	Band 66						
	Band 71						
Wi-Fi	2450	VD	Yes	Yes GSM, WCDMA, LTE,	No	Wi-Fi Calling	No
Wi-Fi	U-NII-1,U-NII-2A, U-NII-2C, U-NII-3	VD	Yes	Yes GSM, WCDMA, LTE,	No	Wi-Fi Calling	No
Bluetooth (BT)	2450	DT	No	Yes GSM, WCDMA, LTE,	N/A	NA	No

VO= legacy Cellular Voice Service from Table 7.1 in 7.4.2.1 of ANSI C63.19-2011

DT= Digital Transport only (no voice)

VD= IP voice service over digital transport.

#: Ref Lev in accordance with 7.4.2.1 of ANSI C63.19-2011

##: Ref Lev in accordance with the July 2012 VoLTE interpretation.

Remark:

1. It applies the low power exemption based on ANSI C63.19-2011

AC Test Report Report No.: R1906H0306-H1

4 Test Specification and Operational Conditions

4.1 Test Specification

The tests documented in this report were performed in accordance with the following:

FCC CFR47 Part 20.19 ANSI C63.19-2011 285076 D01 HAC Guidance v05 285076 D02 T-Coil Testing v03

HAC Test Report No.: R1906H0306-H1

5 Test Information

5.1 Operational Conditions during Test

5.1.1 General Description of Test Procedures

The phone was tested in all normal configurations for the ear use. The EUT is mounted in the device holder equivalent as for classic dosimeter measurements. The acoustic output of the EUT shall coincide with the center point of the area formed by the dielectric wire and the middle bar of the arch's top frame The EUT shall be moved vertically upwards until it touches the frame. The fine adjustment is possible by sliding the complete. The EUT holder is on the yellow base plate of the Test Arch phantom. These test configurations are tested at the high, middle and low frequency channels of each applicable operating mode.

A communication link is set up with a System Simulator (SS) by air link, and a call is established. The EUT is commanded to operate at maximum transmitting power.

5.2 HAC RF Measurements System Configuration

5.2.1 HAC Measurement Set-up

These measurements are performed using the DASY5 automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Stäubli), robot controller, Intel Core2 computer, near-field probe, probe alignment sensor. The robot is a six-axis industrial robot performing precise movements. Cell controller systems contain the power supply, robot controller, teach pendant (Joystick) and remote control, and are used to drive the robot motors. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification; signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

C Test Report Report No.: R1906H0306-H1

Figure 1 HAC Test Measurement Set-up

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

5.2.2 Probe System

The HAC measurements were conducted with the E-Field Probe ER3DV6 and the H-Field Probe H3DV6 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

E-Field Probe Description

Construction One dipole parallel, two dipoles normal to probe

axis

Built-in shielding against static charges

PEEK enclosure material

Calibration In air from 100 MHz to 3.0 GHz (absolute accuracy

±6.0%, k=2)

Frequency 40 MHz to > 6 GHz (can be extended to < 20 MHz)

Linearity: ± 0.2 dB (100 MHz to 3 GHz)

Figure 2 ER3DV6 E-field

IAC Test Report Report No.: R1906H0306-H1

Probe

Directivity $\pm 0.2 \text{ dB}$ in air (rotation around probe axis)

± 0.4 dB in air (rotation normal to probe axis)

Dynamic Range 2 V/m to > 1000 V/m; Linearity: ± 0.2 dB

Dimensions Overall length: 330 mm (Tip: 16 mm)

Tip diameter: 8 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.5 mm

Application General near-field measurements up to 6 GHz

Field component measurements

Fast automatic scanning in phantoms

5.2.3 Test Arch Phantom & Phone Positioner

The Test Arch phantom should be positioned horizontally on a stable surface. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. It enables easy and well defined positioning of the phone and validation dipoles as well as simple teaching of the robot (Dimensions: $370 \times 370 \times 370 \text{ mm}$). The Device reference point is set for the EUT at 6.3 mm, the Grid reference point is on the upper

surface at the origin of the coordinates, and the "user point \Height Check 0.5 mm" is 0.5mm above the center, allowing verication of the gap of 0.5mm while the probe is positioned there.

The Phone Positioner supports accurate and reliable positioning of any phone with effect on near field <±0.5 dB.

Figure 3 HAC Phantom & Device Holder

5.3 RF Test Procedures

The evaluation was performed with the following procedure:

- 1. Confirm proper operation of the field probe, probe measurement system and other instrumentation and the positioning system.
- 2. Position the WD in its intended test position. The gauge block can simplify this positioning. Note that a separate E-field gauge block will be needed if the center of the probe sensor elements is at different distances from the tip of the probe.
- 3. Configure the WD normal operation for maximum rated RF output power, at the desired channel and other operating parameters (e.g., test mode), as intended for the test.
- 4. The center sub-grid shall center on the center of the axial measurement point or the acoustic output, as appropriate. Locate the field probe at the initial test position in the 50 mm by 50 mm grid, which is contained in the measurement plane. If the field alignment method is used, align the probe for maximum field reception.
- 5. Record the reading.
- 6. Scan the entire 50 mm by 50 mm region in equally spaced increments and record the reading at each measurement point. The grid is 5 cm by 5 cm area that is divided into 9 evenly sized blocks or sub-grids. The distance between measurement points shall be sufficient to assure the identification of the maximum reading.
- 7. Identify the five contiguous sub-grids around the center sub-grid with the lowest maximum field strength readings. Thus the six areas to be used to determine the WD's highest emissions are identified and outlined for the final manual scan. Please note that a maximum of five blocks can be excluded for both E-field measurements for the WD output being measured. Stated another way, the center sub-grid and three others must be common to both the E-field measurements.
- 8. Identify the maximum field reading within the non-excluded sub-grids identified in Step 7.
- 9. Convert the maximum field strength reading identified in Step 8 to V/m or A/m, as appropriate. For probes which require a probe modulation factor, this conversion shall be done using the appropriate probe modulation factor and the calibration.
- 10. Repeat Step 1 through Step 10 for both the E-field measurements.
- 11. Compare this reading to the categories in ANSI C63.19 Clause 8 and record the resulting category. The lowest category number listed in 8.2, Table 8.3 obtained in Step 10 for either E-field determines the M category for the audio coupling mode assessment. Record the WD category rating.

Figure 4 WD reference and plane for RF emission measurements

C Test Report Report No.: R1906H0306-H1

5.4 System Check

Validation Procedure

Place a dipole antenna meeting the requirements given in ANSI C63.19 D.11 in the position normally occupied by the WD. The dipole antenna serves as a known source for an electrical output. Position the E-field probe so that:

The probes and their cables are parallel to the coaxial feed of the dipole antenna.

The probe cables and the coaxial feed of the dipole antenna approach the measurement area from opposite directions.

Position the E-field probe at a 15 mm distance from the center of the probe element to the top surface. Validation was performed to verify that measured E-field is within +/-18% from the target reference values provided by the manufacturer. "Values within +/-18% are acceptable. Of which 12% is deviation and 13% is measurement uncertainty."

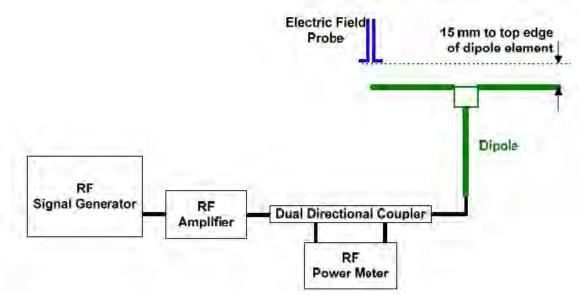


Figure 5 Dipole Validation Setup

Frequency (MHz)	Input Power (mW)	Target ¹ Value (V/m)	Measured ² Value (V/m)	Deviation ³ (%)	Test Date
835	100	106.6	107.3	-0.65	9/13/2019
1880	100	90.5	92.1	1.77	9/13/2019
2450	100	90.7	91.4	-0.77	9/13/2019
2600	100	87.3	87.4	0.11	9/13/2019

IAC Test Report Report No.: R1906H0306-H1

5.5 Modulation Interference Factor

For any specific fixed and repeatable modulated signal, a modulation interference factor (MIF, expressed in dB) may be developed that relates its interference potential to its steady-state rms signal level or average power level. This factor is a function only of the audio-frequency amplitude modulation characteristics of the signal and is the same for field-strength and conducted power measurements. It is important to emphasize that the MIF is valid only for a specific repeatable audio-frequency amplitude modulation characteristic. Any change in modulation characteristic requires determination and application of a new MIF

The MIF may be determined using a radiated RF field or a conducted RF signal,

- b) Using RF illumination or conducted coupling, apply the specific modulated signal in question to the measurement system at a level within its confirmed operating dynamic range.
- c) Measure the steady-state rms level at the output of the fast probe or sensor.
- d) Measure the steady-state average level at the weighting output.
- e) Without changing the square-law detector or weighting system, and using RF illumination or conducted coupling, substitute for the specific modulated signal a 1kHz, 80% amplitude modulated carrier at the same frequency and adjust its strength until the level at the weighting output equals the step d) measurement.
- f) Without changing the carrier level from step e), remove the 1 kHz modulation and again measure the steady-state ms level indicated at the output of the fast probe or sensor.
- g) The MIF for the specific modulation characteristic is provided by the ratio of the step f) measurement to the step c) measurement, expressed in dB (20 x log(step f)/step c)).

Based on the KDB285076 D01v05, the handset can also use the MIF values predetermined by the test equipment manufacturer, and the following table lists the MIF values evaluated by DASY manufacturer (SPEAG), and the test result will be calculated with the MIF parameter automatically.

SPEAG UID	UID version	Communication system	MIF(dB)
10011	CAB	UMTS-FDD (WCDMA)	-27.23
10021	DAC	GSM-FDD (TDMA, GMSK)	3.63
10061	CAB	IEEE 802.11b Wi-Fi 2.4 GHz	-2.02
10077	CAB	IEEE 802.11g Wi-Fi 2.4 GHz	0.12
10170	CAD	LTE-FDD (SC-FDMA, 1RB, 20MHz, 16QAM)	-9.76
10176	CAE	LTE-FDD (SC-FDMA, 1RB, 10MHz, 16QAM)	-9.76
10178	CAE	LTE-FDD (SC-FDMA, 1RB, 5MHz, 16QAM)	-9.76
10182	CAD	LTE-FDD (SC-FDMA, 1RB, 15MHz,16QAM)	-9.76
10185	CAD	LTE-FDD (SC-FDMA, 1RB, 3MHz, 16QAM)	-9.76
10188	CAE	LTE-FDD (SC-FDMA,1RB, 1.4MHz,16QAM)	-9.76
10172	CAD	LTE-FDD (SC-FDMA, 1RB,20MHz,QPSK)	-1.62
10591	AAA	IEEE 802.11n HT20	-5.59
10599	AAA	IEEE 802.11n HT40	-5.59
10069	CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	-3.15
10591	AAA	IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)	-5.59
10599	AAA	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	-5.59

HAC Test Report No.: R1906H0306-H1

5.6 Justification of Held to Ear Modes Tested

5.6.1 Analysis of RF Air Interface Technologies

- a. According to the April 2013 TCB workshop slides, LTE and other OTT data services are outside the current definition of a managed CMRS service and are currently not required to be evaluated.
- b. No associated T-coil measurements for VoIP over WIFI CMRS have been made in accordance with the guidance issued by OET in KDB publication 285076 D02 T-Coil testing for CMRS IP.
- c. An analysis was performed, following the guidance of 4.3 and 4.4 of the ANSI standard, of the RF air interface technologies being evaluated. The factors that will affect the RF interference potential were evaluated, and the worst case operating modes were identified and used in the evaluation. A WD's interference potential is a function both of the WD's average near-field field strength and of the signal's audio-frequency amplitude modulation characteristics. Per 4.4, RF air interface technologies that have low power have been found to produce sufficiently low RF interference potential, So it is possible to exempt them from the product testing specified in Clause 5 of the ANSI standard. An RF air interface technology of a device is exempt from testing when its average antenna input power plus its MIF is <17dBm for all of its operating modes. RF air interface technologies exempted from testing in this manner are automatically assigned an M4 rating to be used in determining the overall rating for the WD.

The worst case MIF plus the worst case average antenna input power for all modes are investigated below to determine the testing requirements for this device.

AC Test Report Report No.: R1906H0306-H1

5.6.2 Average Antenna Input Power & Evaluation for Low-power Exemption

An RF air interface technology of a device is exempt from testing when its average antenna input power plus its **MIF is** ≤17 **dBm** for any of its operating modes. If a device supports multiple RF air interfaces, each RF air interface shall be evaluated individually.

	Maximum Average	Worst	Maximum Average	Low
Band	Antenna Input	Case MIF	Antenna Input	power
	Power (dBm)	(dB)	Power + MIF (dBm)	exemption
GSM 850	33.00	3.63	36.63	no
GSM 1900	30.50	3.63	34.13	no
WCDMA Band II	24.50	-27.23	-2.73	yes
WCDMA Band IV	24.00	-27.23	-3.23	yes
WCDMA Band V	24.50	-27.23	-2.73	yes
LTE FDD B2	23.00	-9.76	13.24	yes
LTE FDD B4	23.00	-9.76	13.24	yes
LTE FDD B5	23.00	-9.76	13.24	yes
LTE FDD B7	23.00	-9.76	13.24	yes
LTE FDD B12	23.00	-9.76	13.24	yes
LTE FDD B13	23.00	-9.76	13.24	yes
LTE FDD B25	23.50	-9.76	13.74	yes
LTE FDD B26	23.50	-9.76	13.74	yes
LTE TDD B41	24.50	-1.62	22.88	no
LTE FDD B66	23.50	-9.76	13.74	yes
LTE TDD B71	23.50	-15.63	7.87	yes
WIFI2.4G: 802.11b	17.00	-2.02	14.98	yes
WIFI2.4G: 802.11g	17.00	0.12	17.12	no
WIFI2.4G: 802.11n HT20	15.00	-5.59	9.41	yes
WIFI5G: 802.11a	15.00	-3.15	11.85	yes
WIFI5G: 802.11n HT20	15.00	-5.59	9.41	yes
WIFI5G: 802.11n HT40	15.50	-5.59	9.91	yes
Note: 1. MIF values applied	in this test report were p	provided by th	e HAC equipment provi	der, SPEAG.

AC Test Report No.: R1906H0306-H1

6 Test Results

6.1 ANSI C63.19-2011 Limits

Category	Telephone RF parameters < 960 MHz	Telephone RF parameters > 960 MHz	
Near field	E-field emissions		
Category M1	50 to 55 dB (V/m)	40 to 45 dB (V/m)	
Category M2	45 to 50 dB (V/m)	35 to 40 dB (V/m)	
Category M3	40 to 45 dB (V/m)	30 to 35 dB (V/m)	
Category M4	< 40 dB (V/m)	< 30 dB (V/m)	

Report No.: R1906H0306-H1

Summary Test Results

Band	Channel /Frenqucy (MHz)	MIF (dB)	E-field (dBV/m)	Power Drift (dB)	Category	Graph Results
	128/824.2	3.63	37.69	0.00	M4	1
GSM 850	190/836.6	3.63	37.94	-0.06	M4	2
	251/848.8	3.63	37.21	-0.05	M4	3
	512/1850.2	3.63	28.44	-0.03	M4	4
GSM 1900	661/1880	3.63	27.96	-0.14	M4	5
	810/1909.8	3.63	27.70	0.04	M4	6
	39750/2506	1.50	20.32	-0.22	M4	7
	40185/2549.5	1.50	20.39	-0.14	M4	8
LTE TDD B41	40620/2593	1.50	19.94	-1.28	M4	9
	41055/2636.5	1.50	19.51	-0.32	M4	10
	41490/2680	1.50	20.51	-0.28	M4	11
	1/2412	0.12	19.84	-0.12	M4	12
WIFI2.4G: 802.11g	6/2437	0.12	18.88	0.08	M4	13
3	11/2462	0.12	19.38	-0.06	M4	14

HAC Test Report No.: R1906H0306-H1

7 Measurement Uncertainty

Measurement uncertainty evaluation template for DUT HAC RF test

Error source	Туре	Uncertainty	Prob.	k	c _{i/} E	c _{i\} H	Standard Uncertainty	Degree of
Liver source	1,750	Value (± %)	Dist.	"	01/2		ui (± %) E	Veff or vi
Measurement system								
Probe Calibration	В	5.1	N	1	1	1	5.1	∞
Axial Isotropy	В	4.7	R	1.732	1	1	2.7	∞
Sensor Displacement	В	16.5	R	1.732	1	0.145	9.5	∞
Boundary Effects	В	2.4	R	1.732	1	1	1.4	∞
Test Arch	В	7.2	R	1.732	1	0	4.2	∞
Linearity	В	4.7	R	1.732	1	1	2.7	∞
Scaling to Peak Envelope Power	В	2.0	R	1.732	1	1	1.2	∞
System Detection Limit	В	1.0	R	1.732	1	1	0.6	∞
Readout Electronics	В	0.3	N	1	1	1	0.3	∞
Response Time	В	0.8	R	1.732	1	1	0.5	∞
Integration Time	В	2.6	R	1.732	1	1	1.5	∞
RF Ambient Conditions	В	3.0	R	1.732	1	1	1.7	∞
RF Reflections	В	12.0	R	1.732	1	1	6.9	∞
Probe Positioner	В	1.2	R	1.732	1	0.67	0.7	∞
Probe Positioning	Α	4.7	R	1.732	1	0.67	2.7	∞
Extra. And Interpolation	В	1.0	R	1.732	1	1	0.6	∞
Test sample related							•	
Device Positioning Vertical	В	4.7	R	1.732	1	0.67	2.7	∞
Device Positioning Lateral	В	1.0	R	1.732	1	1	0.6	8
Device Holder and	В	2.4	R	1.732	1	1	1.4	∞
Phantom	Ь	2.4	K	1.732	1	ľ	1.4	
Power Drift	В	5.0	R	1.732	1	1	2.9	8
Phantom and Setup relate	d							
Phantom Thickness	В	2.4	R	1.732	1	0.67	1.4	8
Combined standard uncertain	inty (%)						15.3	
Expanded Std. uncertainty of	n power (K=2)	-				30.6	
Expanded Std. uncertainty of	n field (K	=2)					15.3	

HAC Test Report No.: R1906H0306-H1

8 Main Test Instruments

Name	Manufacturer	Туре	Serial Number	Calibration Date	Expiration Time
Power meter	Agilent	E4417A	GB41291714	2019-05-19	2020-05-18
Power sensor	Agilent	N8481H	MY50350004	2019-05-19	2020-05-18
Signal Generator	Agilent	N5181A	MY50140143	2019-05-19	2020-05-18
Amplifier	INDEXSAR	IXA-020	0401	2019-05-19	2020-05-18
Wideband radio communication tester	R&S	CMW500	146734	2019-05-19	2020-05-18
E-field Probe	SPEAG	EX3DV4	3677	2019-06-19	2020-06-18
DAE	SPEAG	DAE4	1291	2018-12-04	2019-12-03
Validation Kit 835MHz	SPEAG	CD835V3	1133	2017-11-22	2020-11-21
Validation Kit 1880MHz	SPEAG	CD1880V3	1115	2017-11-22	2020-11-21
Validation Kit 2450MHz	SPEAG	CD2450V3	1111	2017-11-22	2020-11-21
Validation Kit 2600MHz	SPEAG	CD2600V3	1016	2017-11-22	2019-11-21
Hygrothermograph	Anymetr	NT-311	20150731	2019-05-19	2020-05-18
HAC Phantom	SPEAG	SD HAC P01 BB	1117	2017-11-22	2020-11-21
Software for Test	Speag	DASY5	52.8.8.1222	/	/
Software for Tissue	Agilent	85070	E06.01.36	/	/

*****END OF REPORT *****

IAC Test Report Report No.: R1906H0306-H1

ANNEX A: System Check Results

HAC_System Performance Check at 835MHz_E

DUT: Dipole 835 MHz; Type: CD835V3; SN:1023

Date: 9/13/2019

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Phantom section: RF Section

DASY5 Configuration:

Sensor-Surface: 0mm (Mechanical Surface Detection)

Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated: 1/9/2018

Electronics: DAE4 SN1291; Calibrated: 12/4/2018

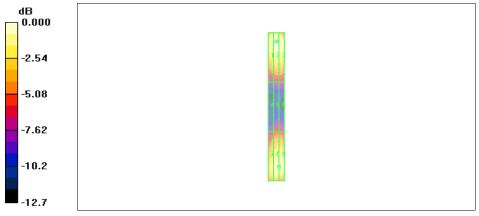
Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

E Scan - measurement distance from the probe sensor center to CD835 Dipole = 15mm 2/Hearing Aid Compatibility Test (41x361x1): Measurement grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 91 V/m; Power Drift = 0.003 dB


Applied MIF = 0.00 dB

Maximum value of peak Total field = 107.3 V/m

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
101.2 M4	104.3 M4	101.5 M4
Grid 4	Grid 5	Grid 6
61.2 M4	64.23 M4	62.39 M4
Grid 7	Grid 8	Grid 9
104.5 M4	107.3 M4	104.3 M4

0 dB = 107.3 V/m

AC Test Report No.: R1906H0306-H1

HAC_System Performance Check at 1880MHz_E

DUT: Dipole 1880 MHz; Type: CD1880V3; SN: 1018

Date: 9/13/2019

Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Phantom section: RF Section

DASY5 Configuration:

Sensor-Surface: 0mm (Mechanical Surface Detection)

Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated: 1/9/2018

Electronics: DAE4 SN1291; Calibrated: 12/4/2018

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

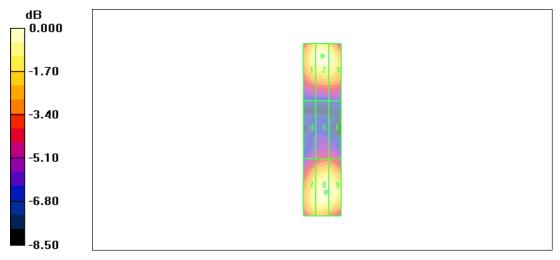
E Scan - measurement distance from the probe sensor center to CD1880 Dipole =

15mm/Hearing Aid Compatibility Test (41x181x1): Measurement grid: dx=0.5000 mm, dy=0.5000

mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 86V/m; Power Drift = 0.002 dB


Applied MIF = 0.00 dB

Maximum value of peak Total field = 92.1 V/m

Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
91.78 M2	98.10 M2	93.42M2
Grid 4	Grid 5	Grid 6
71.76 M3	73.56 M3	71.17 M3
		71.17 M3 Grid 9

0 dB = 98.10 V/m

AC Test Report No.: R1906H0306-H1

HAC_System Performance Check at 2450MHz_E

DUT: Dipole 2450 MHz; Type: CD2450V3; SN: 1111

Date: 9/13/2019

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Phantom section: RF Section

DASY5 Configuration:

Sensor-Surface: 0mm (Mechanical Surface Detection)

Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated: 1/8/2018

Electronics: DAE4 SN1317; Calibrated: 3/23/2018

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

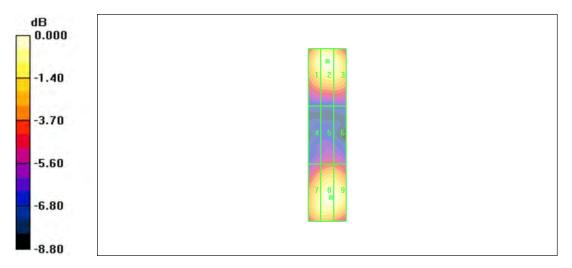
E Scan - measurement distance from the probe sensor center to CD2450 Dipole =

15mm/Hearing Aid Compatibility Test (41x181x1): Measurement grid: dx=0.5000 mm, dy=0.5000

mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 83.71V/m; Power Drift = 0.019 dB


Applied MIF = 0.00 dB

Maximum value of peak Total field = 91.4 V/m

Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
88.9 M2	91.40 M2	90.73M2
Grid 4	Grid 5	Grid 6
88.20 M3	88.56 M3	87.39 M3
Grid 7	Grid 8	Grid 9
	88.05 M2	

0 dB = 91.40 V/m

IAC Test Report No.: R1906H0306-H1

HAC_System Performance Check at 2600MHz_E

DUT: Dipole 2600 MHz; Type: CD2600V3; SN: 1016

Date: 9/13/2019

Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Ambient Temperature:22.3 $^{\circ}\text{C}$ Phantom section: RF Section

DASY5 Configuration:

Sensor-Surface: 0mm (Mechanical Surface Detection)

Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated: 1/9/2018

Electronics: DAE4 SN1291; Calibrated: 12/4/2018

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

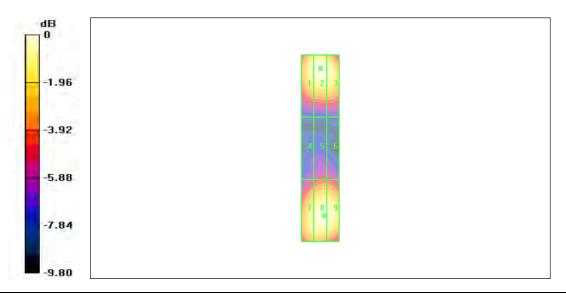
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

E Scan - measurement distance from the probe sensor center to CD2600 Dipole = 15mm/Hearing Aid Compatibility Test (41x181x1): Measurement grid: dx=0.5000 mm, dy=0.5000

mm

Maximum value of peak Total field = 87.40 V/m

Applied MIF = 0.00 dB


Device Reference Point: 0, 0, -6.3 mm

Reference Value = 71.52V/m; Power Drift = 0.01 dB

Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
83.35 M2	86.32 M2	85.70M2
Grid 4	Grid 5	Grid 6
79.62 M3	81.46 M3	81.15 M3
Grid 7	Grid 8	Grid 9
84.28 M2	87.40 M2	86.59 M2

HAC Test Report Report No.: R1906H0306-H1

ANNEX B: Graph Results

Plot 1 HAC RF E-Field GSM 850 Low

Date: 9/13/2019

Communication System: UID 10021 - DAC, GSM-FDD (TDMA, GMSK); Frequency: 824.2 MHz; Duty

Cycle: 1:8.6896

Ambient Temperature:22.3 $^{\circ}$ C Phantom section: RF Section

DASY5 Configuration:

Sensor-Surface: 0mm (Mechanical Surface Detection)

Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated: 1/9/2018

Electronics: DAE4 SN1291; Calibrated: 12/4/2018

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

SAIPH GSM850 HAC RF E-Field/E Scan - ER3D: 15 mm from Probe Center to the Device Low/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000

mm

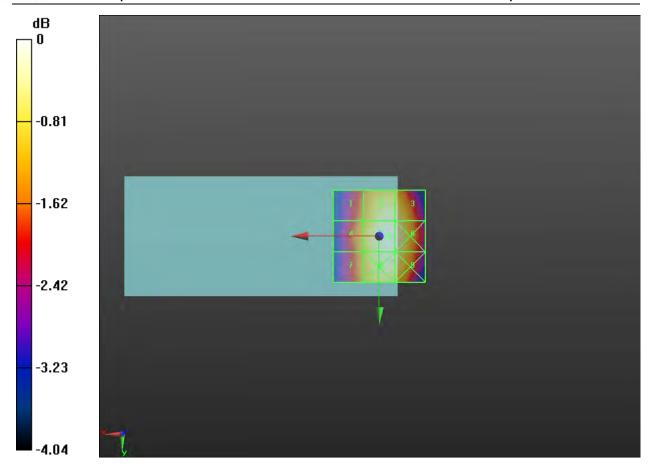
Device Reference Point: 0, 0, -6.3 mm

Reference Value = 64.17 V/m; Power Drift = 0.00 dB

Applied MIF = 3.63 dB

RF audio interference level = 37.69 dBV/m

Emission category: M4


MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
36.38 dBV/m	37.46 dBV/m	37.4 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
36.69 dBV/m	37.69 dBV/m	37.6 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
36.53 dBV/m	37.52 dBV/m	37.43 dBV/m

Cursor:

Total = 37.69 dBV/m E Category: M4

Location: -5, 0, 7.7 mm

0 dB = 76.68 V/m = 37.69 dBV/m

Plot 2 HAC RF E-Field GSM 850 Middle

Date: 9/13/2019

Communication System: UID 10021 - DAC, GSM-FDD (TDMA, GMSK); Frequency: 836.6 MHz; Duty

Cycle: 1:8.6896

Ambient Temperature:22.3 $^{\circ}\text{C}$ Phantom section: RF Section

DASY5 Configuration:

Sensor-Surface: 0mm (Mechanical Surface Detection)

Probe: EF3DV3 – SN4048; ConvF(1, 1, 1); Calibrated: 1/9/2018

Electronics: DAE4 SN1291; Calibrated: 12/4/2018

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

SAIPH GSM850 HAC RF E-Field/E Scan - ER3D: 15 mm from Probe Center to the Device Middle/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000

mm

Device Reference Point: 0, 0, -6.3 mm

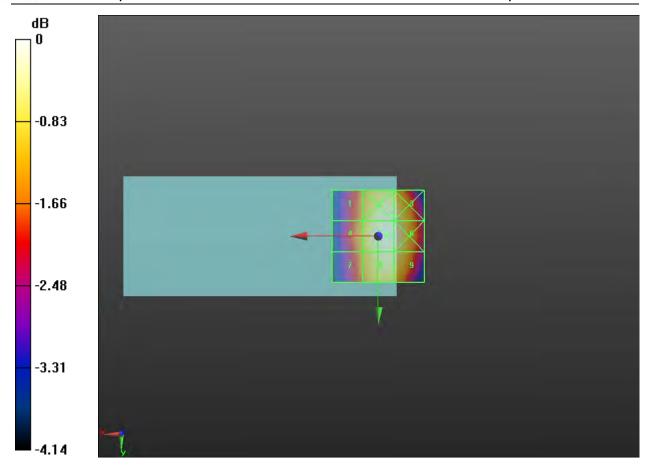
Reference Value = 66.14 V/m; Power Drift = -0.06 dB

Applied MIF = 3.63 dB

RF audio interference level = 37.94 dBV/m

Emission category: M4

MIF scaled E-field


Grid 1 M4	Grid 2 M4	Grid 3 M4
36.59 dBV/m	37.75 dBV/m	37.7 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
36.83 dBV/m	37.94 dBV/m	37.85 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
36.59 dBV/m	37.68 dBV/m	37.59 dBV/m

Cursor:

Total = 37.94 dBV/m

E Category: M4

Location: -5, -0.5, 7.7 mm

0 dB = 78.87 V/m = 37.94 dBV/m

Plot 3 HAC RF E-Field GSM 850 High

Date: 9/13/2019

Communication System: UID 10021 - DAC, GSM-FDD (TDMA, GMSK); Frequency: 848.6 MHz; Duty

Cycle: 1:8.6896

Ambient Temperature:22.3 $^{\circ}\text{C}$ Phantom section: RF Section

DASY5 Configuration:

Sensor-Surface: 0mm (Mechanical Surface Detection)

Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated: 1/9/2018

Electronics: DAE4 SN1291; Calibrated: 12/4/2018

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

SAIPH GSM850 HAC RF E-Field/E Scan - ER3D: 15 mm from Probe Center to the Device High/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000

mm

Device Reference Point: 0, 0, -6.3 mm

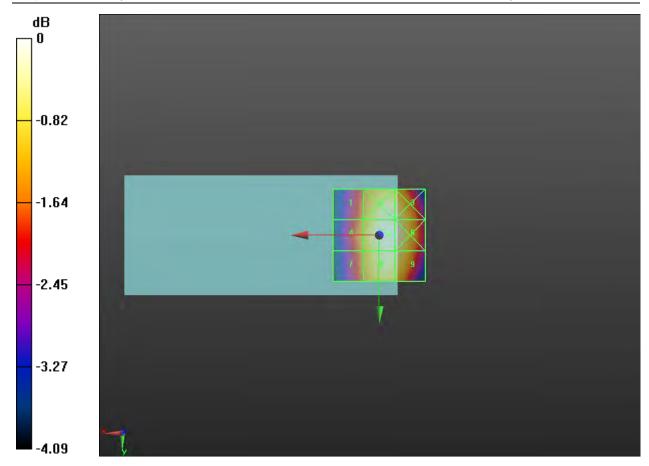
Reference Value = 61.00 V/m; Power Drift = -0.05 dB

Applied MIF = 3.63 dB

RF audio interference level = 37.21 dBV/m

Emission category: M4

MIF scaled E-field


Grid 1 M4	Grid 2 M4	Grid 3 M4
35.8 dBV/m	37.06 dBV/m	37 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
36.08 dBV/m	37.21 dBV/m	37.16 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
35.85 dBV/m	37 dBV/m	36.92 dBV/m

Cursor:

Total = 37.21 dBV/m

E Category: M4

Location: -5, -0.5, 7.7 mm

0 dB = 72.50 V/m = 37.21 dBV/m

Plot 4 HAC RF E-Field GSM 1900 Low

Date: 9/13/2019

Communication System: UID 10021 - DAC, GSM-FDD (TDMA, GMSK); Frequency: 1850.2

MHz;Duty Cycle: 1:8.6896 Ambient Temperature:22.3 ℃ Phantom section: RF Section

DASY5 Configuration:

Sensor-Surface: 0mm (Mechanical Surface Detection)

Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated: 1/9/2018

Electronics: DAE4 SN1291; Calibrated: 12/4/2018

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

SAIPH GSM1900 HAC RF E-Field/E Scan - ER3D: 15 mm from Probe Center to the Device Low/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000

mm

Device Reference Point: 0, 0, -6.3 mm

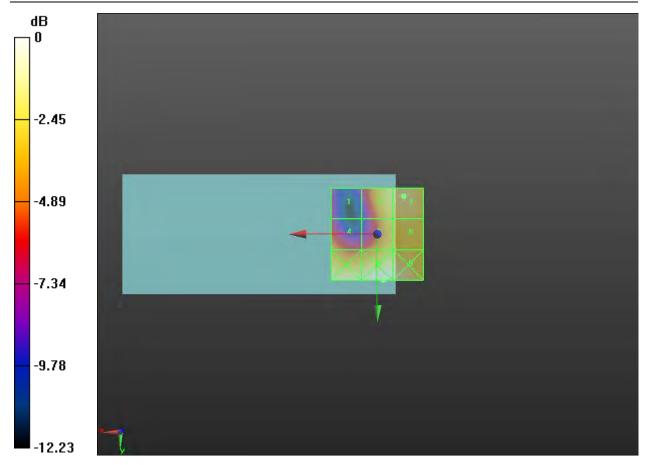
Reference Value = 13.65 V/m; Power Drift = -0.03 dB

Applied MIF = 3.63 dB

RF audio interference level = 28.44 dBV/m

Emission category: M4

MIF scaled E-field


Grid 1 M4	Grid 2 M4	Grid 3 M4
22.64 dBV/m	28.12 dBV/m	28.44 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
25.7 dBV/m	27.21 dBV/m	27.89 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
28.98 dBV/m	29.66 dBV/m	29.47 dBV/m

Cursor:

Total = 29.66 dBV/m

E Category: M4

Location: -3.5, 25, 7.7 mm

0 dB = 30.41 V/m = 29.66 dBV/m

HAC Test Report Report No.: R1906H0306-H1

Plot 5 HAC RF E-Field GSM 1900 Middle

Date: 9/13/2019

Communication System: UID 10021 - DAC, GSM-FDD (TDMA, GMSK); Frequency: 1880 MHz; Duty

Cycle: 1:8.6896

Ambient Temperature:22.3 $^{\circ}\text{C}$ Phantom section: RF Section

DASY5 Configuration:

Sensor-Surface: 0mm (Mechanical Surface Detection)

Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated: 1/9/2018

Electronics: DAE4 SN1291; Calibrated: 12/4/2018

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

SAIPH GSM1900 HAC RF E-Field/E Scan - ER3D: 15 mm from Probe Center to the Device Middle/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000

mm

Device Reference Point: 0, 0, -6.3 mm

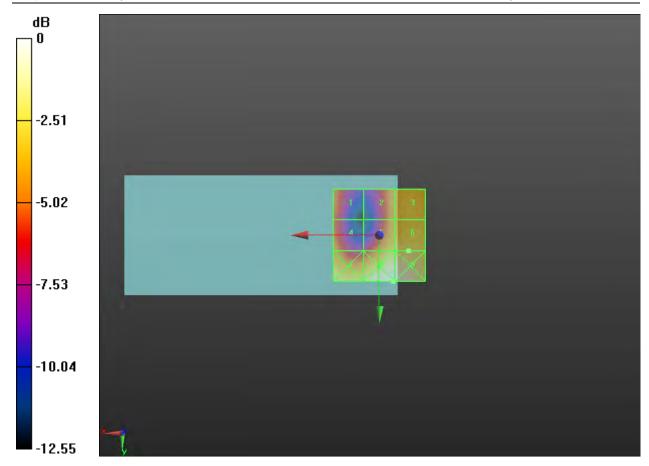
Reference Value = 12.35 V/m; Power Drift = -0.14 dB

Applied MIF = 3.63 dB

RF audio interference level = 27.96 dBV/m

Emission category: M4

MIF scaled E-field


Grid 1 M4	Grid 2 M4	Grid 3 M4
24.99 dBV/m	25.87 dBV/m	26.93 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
25.77 dBV/m	27.39 dBV/m	27.96 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
28.59 dBV/m	29.86 dBV/m	29.85 dBV/m

Cursor:

Total = 29.86 dBV/m

E Category: M4

Location: -7.5, 25, 7.7 mm

0 dB = 31.11 V/m = 29.86 dBV/m

Plot 6 HAC RF E-Field GSM 1900 High

Date: 9/13/2019

Communication System: UID 10021 - DAC, GSM-FDD (TDMA, GMSK); Frequency: 1909.8

MHz;Duty Cycle: 1:8.6896 Ambient Temperature:22.3 ℃ Phantom section: RF Section

DASY5 Configuration:

Sensor-Surface: 0mm (Mechanical Surface Detection)

Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated: 1/9/2018

Electronics: DAE4 SN1291; Calibrated: 12/4/2018

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

SAIPH GSM1900 HAC RF E-Field/E Scan - ER3D: 15 mm from Probe Center to the Device High/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000

mm

Device Reference Point: 0, 0, -6.3 mm

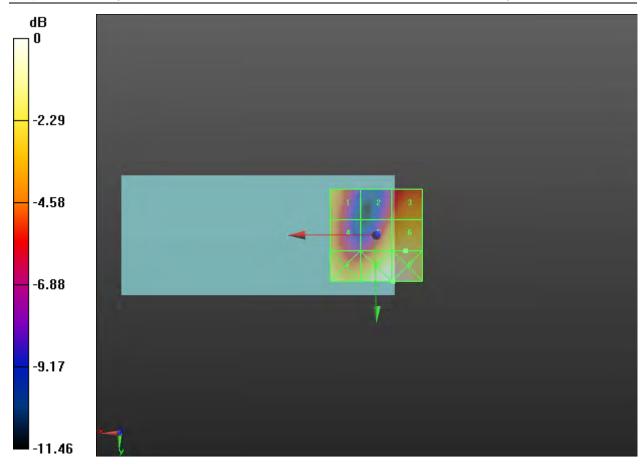
Reference Value = 10.70 V/m; Power Drift = 0.04 dB

Applied MIF = 3.63 dB

RF audio interference level = 27.70 dBV/m

Emission category: M4

MIF scaled E-field


Grid 1 M4	Grid 2 M4	Grid 3 M4
26.06 dBV/m	24.4 dBV/m	25.92 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
25.91 dBV/m	27.09 dBV/m	27.7 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
28.09 dBV/m	29.23 dBV/m	29.23 dBV/m

Cursor:

Total = 29.23 dBV/m

E Category: M4

Location: -9, 25, 7.7 mm

0 dB = 28.94 V/m = 29.23 dBV/m

Plot 7 HAC RF E-Field LTE Band 41 Low CH39750

Date: 9/13/2019

Communication System: UID 10647 - AAC, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL

Subframe=2,7); Frequency: 2506 MHz; Duty Cycle: 1:15.7036

Ambient Temperature:22.3 $^{\circ}\text{C}$ Phantom section: RF Section

DASY5 Configuration:

Sensor-Surface: 0mm (Mechanical Surface Detection)

Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated: 1/9/2018

Electronics: DAE4 SN1291; Calibrated: 12/4/2018

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

SAIPH LTE B41 1RB HAC RF E-Field/E Scan - ER3D: 15 mm from Probe Center to the Device Low/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000

Device Reference Point: 0, 0, -6.3 mm

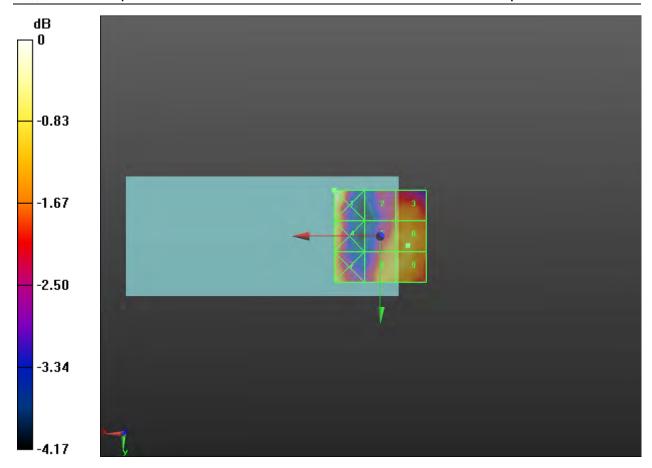
Reference Value = 8.383 V/m; Power Drift = -0.22 dB

Applied MIF = 1.50 dB

RF audio interference level = 20.32 dBV/m

Emission category: M4

MIF scaled E-field


Grid 1 M4	Grid 2 M4	Grid 3 M4
21.14 dBV/m	19.55 dBV/m	19.91 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
20.41 dBV/m	19.88 dBV/m	20.32 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
20.36 dBV/m	20.18 dBV/m	20.31 dBV/m

Cursor:

Total = 21.14 dBV/m

E Category: M4

Location: 25, -25, 7.7 mm

0 dB = 11.41 V/m = 21.15 dBV/m

HAC Test Report Report No.: R1906H0306-H1

Plot 8 HAC RF E-Field LTE Band 41 Low CH40185

Date: 9/13/2019

Communication System: UID 10647 - AAC, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL

Subframe=2,7); Frequency: 2549.5 MHz; Duty Cycle: 1:15.7036

Ambient Temperature:22.3 $^{\circ}\mathrm{C}$ Phantom section: RF Section

DASY5 Configuration:

Sensor-Surface: 0mm (Mechanical Surface Detection)

Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated: 1/9/2018

Electronics: DAE4 SN1291; Calibrated: 12/4/2018

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

SAIPH LTE B41 1RB HAC RF E-Field/E Scan - ER3D: 15 mm from Probe Center to the Device Middle 2/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

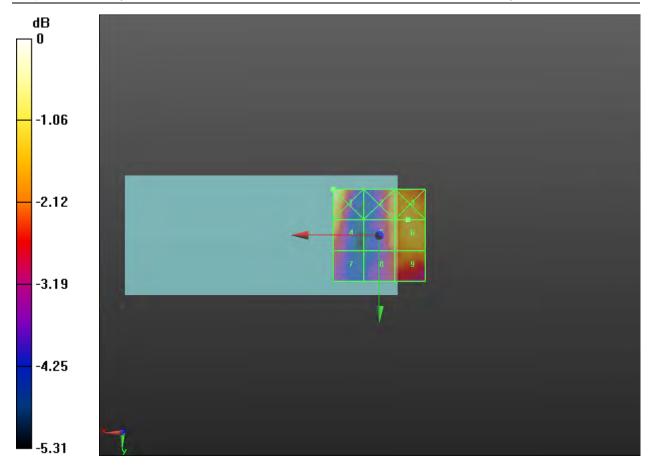
Reference Value = 7.261 V/m; Power Drift = -0.14 dB

Applied MIF = 1.50 dB

RF audio interference level = 20.39 dBV/m

Emission category: M4

MIF scaled E-field


Grid 1 M4	Grid 2 M4	Grid 3 M4
21.46 dBV/m	19.74 dBV/m	20.42 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
19.89 dBV/m	19.64 dBV/m	20.39 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
18.83 dBV/m	19.13 dBV/m	19.91 dBV/m

Cursor:

Total = 21.46 dBV/m

E Category: M4

Location: 25, -25, 7.7 mm

0 dB = 11.83 V/m = 21.46 dBV/m

Plot 9 HAC RF E-Field LTE Band 41 Middle CH40620

Date: 9/13/2019

Communication System: UID 10647 - AAC, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL

Subframe=2,7); Frequency: 2593 MHz; Duty Cycle: 1:15.7036

Ambient Temperature:22.3 $^{\circ}\text{C}$ Phantom section: RF Section

DASY5 Configuration:

Sensor-Surface: 0mm (Mechanical Surface Detection)

Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated: 1/9/2018

Electronics: DAE4 SN1291; Calibrated: 12/4/2018

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

SAIPH LTE B41 1RB HAC RF E-Field/E Scan - ER3D: 15 mm from Probe Center to the Device Middle/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000

mm

Device Reference Point: 0, 0, -6.3 mm

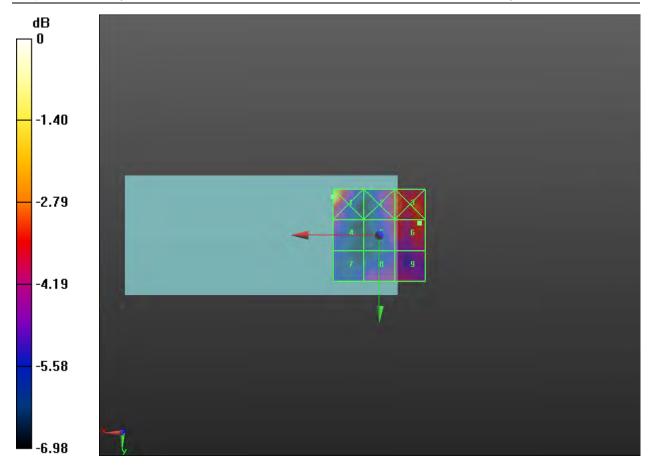
Reference Value = 7.490 V/m; Power Drift = -1.28 dB

Applied MIF = 1.50 dB

RF audio interference level = 19.94 dBV/m

Emission category: M4

MIF scaled E-field


Grid 1 M4	Grid 2 M4	Grid 3 M4
23.26 dBV/m	19.94 dBV/m	20.27 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
19.12 dBV/m	19.51 dBV/m	19.94 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
18.25 dBV/m	19.18 dBV/m	19.28 dBV/m

Cursor:

Total = 23.26 dBV/m

E Category: M4

Location: 25, -21, 7.7 mm

0 dB = 14.56 V/m = 23.26 dBV/m

HAC Test Report No.: R1906H0306-H1

Plot 10 HAC RF E-Field LTE Band 41High CH41055

Date: 9/13/2019

Communication System: UID 10647 - AAC, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL

Subframe=2,7); Frequency: 2636.5 MHz; Duty Cycle: 1:15.7036

Ambient Temperature:22.3 $^{\circ}$ C Phantom section: RF Section

DASY5 Configuration:

Sensor-Surface: 0mm (Mechanical Surface Detection)

Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated: 1/9/2018

Electronics: DAE4 SN1291; Calibrated: 12/4/2018

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

SAIPH LTE B41 1RB HAC RF E-Field/E Scan - ER3D: 15 mm from Probe Center to the Device High 2/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000

Device Reference Point: 0, 0, -6.3 mm

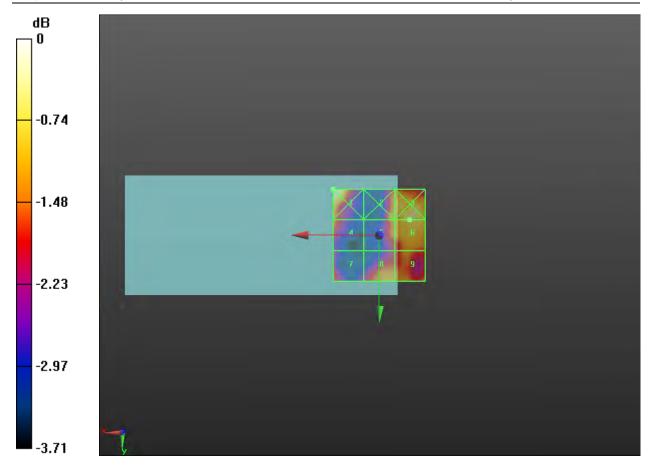
Reference Value = 7.082 V/m; Power Drift = -0.32 dB

Applied MIF = 1.50 dB

RF audio interference level = 19.51 dBV/m

Emission category: M4

MIF scaled E-field


Grid 1 M4	Grid 2 M4	Grid 3 M4
20.09 dBV/m	18.96 dBV/m	19.58 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
18.68 dBV/m	18.86 dBV/m	19.51 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
18.59 dBV/m	19.05 dBV/m	18.95 dBV/m

Cursor:

Total = 20.09 dBV/m

E Category: M4

Location: 25, -25, 7.7 mm

0 dB = 10.11 V/m = 20.10 dBV/m

Plot 11 HAC RF E-Field LTE Band 41High CH41490

Date: 9/13/2019

Communication System: UID 10647 - AAC, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL

Subframe=2,7); Frequency: 2680 MHz; Duty Cycle: 1:15.7036

Ambient Temperature:22.3 $^{\circ}$ C Phantom section: RF Section

DASY5 Configuration:

Sensor-Surface: 0mm (Mechanical Surface Detection)

Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated: 1/9/2018

Electronics: DAE4 SN1291; Calibrated: 12/4/2018

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

SAIPH LTE B41 1RB HAC RF E-Field/E Scan - ER3D: 15 mm from Probe Center to the Device High/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000

Device Reference Point: 0, 0, -6.3 mm

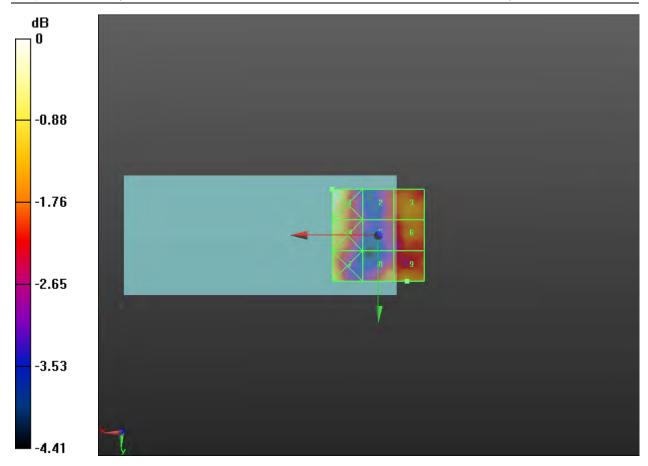
Reference Value = 7.015 V/m; Power Drift = -0.28 dB

Applied MIF = 1.50 dB

RF audio interference level = 20.51 dBV/m

Emission category: M4

MIF scaled E-field


Grid 1 M4	Grid 2 M4	Grid 3 M4
21.31 dBV/m	19.42 dBV/m	20.06 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
20.7 dBV/m	19.14 dBV/m	19.93 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
20.63 dBV/m	19.8 dBV/m	20.51 dBV/m

Cursor:

Total = 21.31 dBV/m

E Category: M4

Location: 25, -25, 7.7 mm

0 dB = 11.63 V/m = 21.31 dBV/m

Plot 12 HAC RF E-Field 802.11g Low

Date: 9/13/2019

Communication System: UID 10077 - CAB, IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps);

Frequency: 2412 MHz; Duty Cycle: 1:12.5893

Ambient Temperature:22.3 $^{\circ}$ C Phantom section: RF Section

DASY5 Configuration:

Sensor-Surface: 0mm (Mechanical Surface Detection)

Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated: 1/8/2018

Electronics: DAE4 SN1317; Calibrated: 3/23/2018

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

SAIPH 802.11g HAC RF E-Field/E Scan - ER3D: 15 mm from Probe Center to the Device Low/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000

mm

Device Reference Point: 0, 0, -6.3 mm

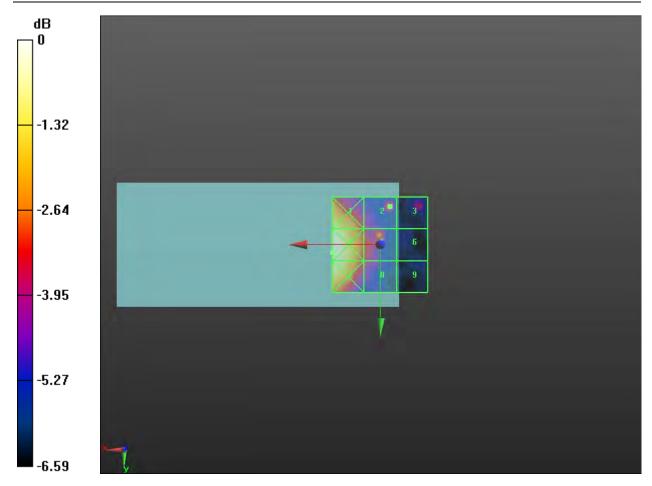
Reference Value = 7.614 V/m; Power Drift = -0.12 dB

Applied MIF = 0.12 dB

RF audio interference level = 19.84 dBV/m

Emission category: M4

MIF scaled E-field


Grid 1 M4	Grid 2 M4	Grid 3 M4
21.26 dBV/m	19.84 dBV/m	17.98 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
21.69 dBV/m	19.25 dBV/m	16.19 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
21.28 dBV/m	18.21 dBV/m	16.29 dBV/m

Cursor:

Total = 21.69 dBV/m

E Category: M4

Location: 25, 4, 7.7 mm

0 dB = 12.15 V/m = 21.69 dBV/m

Plot 13 HAC RF E-Field 802.11g Middle

Date: 9/13/2019

Communication System: UID 10077 - CAB, IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps);

Frequency: 2437 MHz; Duty Cycle: 1:12.5893

Ambient Temperature:22.3 $^{\circ}$ C Phantom section: RF Section

DASY5 Configuration:

Sensor-Surface: 0mm (Mechanical Surface Detection)

P Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated: 1/8/2018

Electronics: DAE4 SN1317; Calibrated: 3/23/2018

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

SAIPH 802.11g HAC RF E-Field/E Scan - ER3D: 15 mm from Probe Center to the Device Middle/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000

mm

Device Reference Point: 0, 0, -6.3 mm

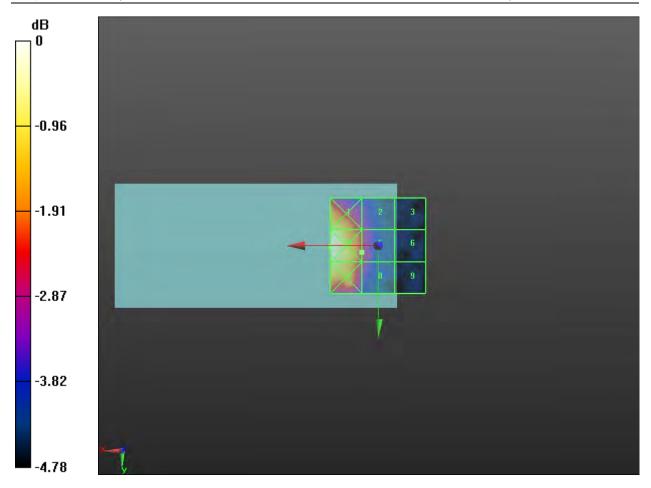
Reference Value = 7.512 V/m; Power Drift = 0.08 dB

Applied MIF = 0.12 dB

RF audio interference level = 18.88 dBV/m

Emission category: M4

MIF scaled E-field


Grid 1 M4	Grid 2 M4	Grid 3 M4
20.71 dBV/m	18.5 dBV/m	17.25 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
21.32 dBV/m	18.88 dBV/m	17.24 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
20.95 dBV/m	18.6 dBV/m	17.2 dBV/m

Cursor:

Total = 21.32 dBV/m

E Category: M4

Location: 25, 0.5, 7.7 mm

0 dB = 11.64 V/m = 21.32 dBV/m

Plot 14 HAC RF E-Field 802.11g High

Date: 9/13/2019

Communication System: UID 10077 - CAB, IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps);

Frequency: 2462 MHz; Duty Cycle: 1:12.5893

Ambient Temperature:22.3 $^{\circ}$ C Phantom section: RF Section

DASY5 Configuration:

Sensor-Surface: 0mm (Mechanical Surface Detection)

Probe: EF3DV3 – SN4048; ConvF(1, 1, 1); Calibrated: 1/8/2018

Electronics: DAE4 SN1317; Calibrated: 3/23/2018

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

SAIPH 802.11g HAC RF E-Field/E Scan - ER3D: 15 mm from Probe Center to the Device High/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000

mm

Device Reference Point: 0, 0, -6.3 mm

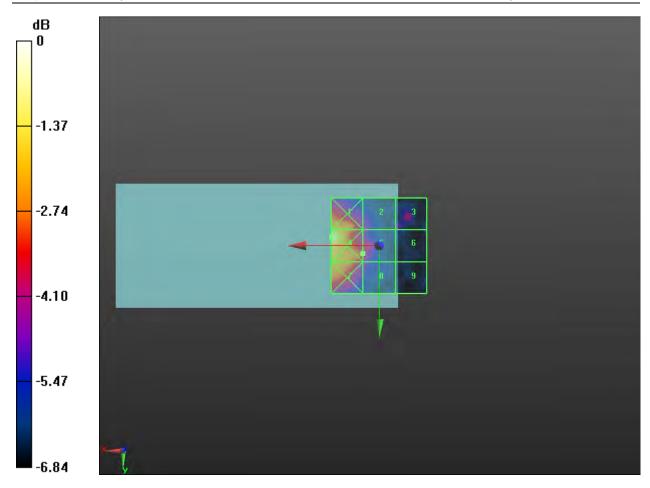
Reference Value = 7.349 V/m; Power Drift = -0.06 dB

Applied MIF = 0.12 dB

RF audio interference level = 19.38 dBV/m

Emission category: M4

MIF scaled E-field


Grid 1 M4	Grid 2 M4	Grid 3 M4
21.25 dBV/m	18.5 dBV/m	19.18 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
22.91 dBV/m	19.38 dBV/m	17.78 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
20.95 dBV/m	18.58 dBV/m	16.92 dBV/m

Cursor:

Total = 22.91 dBV/m

E Category: M4

Location: 25, -4.5, 7.7 mm

0 dB = 13.97 V/m = 22.90 dBV/m

AC Test Report Report No.: R1906H0306-H1

ANNEX C: E-Probe Calibration Certificate

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

91, China 2504

Client

TA(Shanghai)

Certificate No: Z19-60169

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3677

Calibration Procedure(s)

FF-Z11-004-01

Calibration Procedures for Dosimetric E-field Probes

Calibration date: June 19, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Lin Hao

Qi Dianyuan

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Power sensor NRP-Z91	101547	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Power sensor NRP-Z91	101548	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Reference10dBAttenuator	18N50W-10dB	09-Feb-18(CTTL, No.J18X01133)	Feb-20
Reference20dBAttenuator	18N50W-20dB	09-Feb-18(CTTL, No.J18X01132)	Feb-20
Reference Probe EX3DV4	SN 3617	31-Jan-19(SPEAG,No.EX3-3617_Jan19)	Jan-20
DAE4	SN 1331	06-Feb-19(SPEAG, No.DAE4-1331_Feb19)	Feb -20
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A		21-Jun-18 (CTTL, No.J18X05033)	Jun-19
Network Analyzer E5071C	MY46110673	24-Jan-19 (CTTL, No.J19X00547)	Jan -20
	Name	Function //	Signalare
Calibrated by:	Yu Zongying	SAR Test Engineer	WA THE

SAR Test Engineer

SAR Project Leader

Issued: June 20, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z19-60169

Reviewed by:

Approved by:

Page 1 of 11

AC Test Report No.: R1906H0306-H1

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttls/chinattl.com Hup://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ Φ rotation around probe axis

Polarization 8 8 rotation around an axis that is in the plane normal to probe axis (at measurement center), i

θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z19-60169 Page 2 of 11

Report No.: R1906H0306-H1

Probe EX3DV4

SN: 3677

Calibrated: June 19, 2019

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z19-60169

Page 3 of 11

In Collaboration with S p e a g

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
$Norm(\mu V/(V/m)^2)^A$	0.41	0.46	0.40	±10.0%
DCP(mV) ⁸	101.1	102.9	101.9	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc E (k=2)
0 CW	0	X	0.0	0.0	1.0	0.00	152.0	±2.6%
	100	Y	0.0	0.0	1.0		170.1	
		Z	0.0	0.0	1.0		147.7	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z19-60169

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Test Report No.: R1906H0306-H1

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.54	9.54	9.54	0.11	1.56	±12.1%
835	41.5	0.90	9.20	9.20	9.20	0.11	1.61	±12.1%
1750	40.1	1.37	8.21	8.21	8.21	0.22	1.11	±12.1%
1900	40.0	1.40	7.79	7.79	7.79	0.22	1.04	±12.1%
2300	39.5	1.67	7.66	7.66	7.66	0.57	0.72	±12.1%
2450	39.2	1.80	7.50	7.50	7.50	0.59	0.71	±12.1%
2600	39.0	1.96	7.20	7.20	7.20	0.65	0.68	±12.1%
5250	35.9	4.71	5.56	5.56	5.56	0.40	1.40	±13.3%
5600	35.5	5.07	4.90	4.90	4.90	0.45	1.40	±13.3%
5750	35.4	5.22	4.99	4.99	4.99	0.50	1.35	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z19-60169 Page 5 of 11

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

C Test Report No.: R1906H0306-H1

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677

Calibration Parameter Determined in Body Tissue Simulating Media

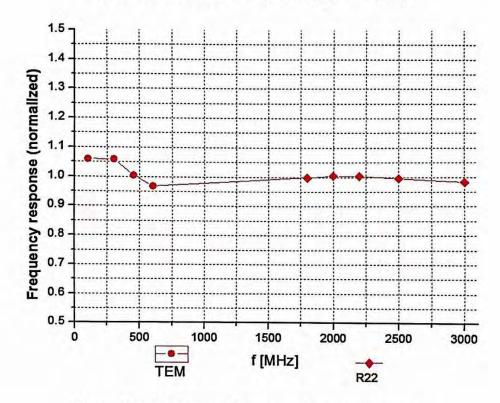
f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.75	9.75	9.75	0.40	0.75	±12.1%
835	55.2	0.97	9.40	9.40	9.40	0.18	1.38	±12.1%
1750	53.4	1.49	7.86	7.86	7.86	0.23	1.09	±12.1%
1900	53.3	1.52	7.62	7.62	7.62	0.22	1.15	±12.1%
2300	52.9	1.81	7.67	7.67	7.67	0.55	0.81	±12.1%
2450	52.7	1.95	7.57	7.57	7.57	0.59	0.75	±12.1%
2600	52.5	2.16	7.33	7.33	7.33	0.74	0.65	±12.1%
5250	48.9	5.36	4.93	4.93	4.93	0.45	1.55	±13.3%
5600	48.5	5.77	4.24	4.24	4.24	0.50	1.45	±13.3%
5750	48.3	5.94	4.35	4.35	4.35	0.50	1.50	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z19-60169 Page 6 of 11

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

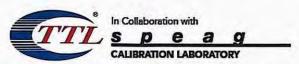
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.



Test Report Report No.: R1906H0306-H1

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

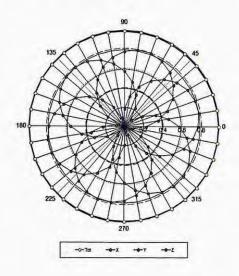
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

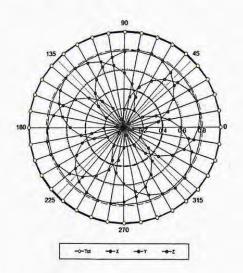


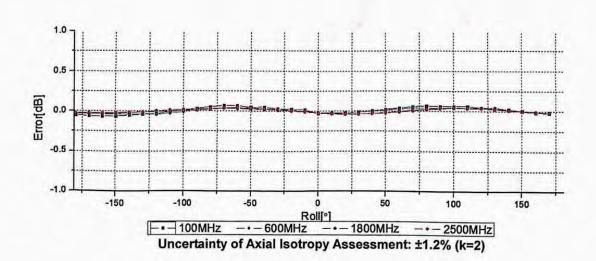
Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No: Z19-60169 Page 7 of 11

Test Report No.: R1906H0306-H1




Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

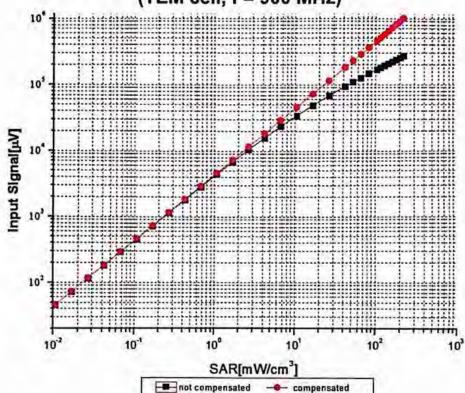

Receiving Pattern (Φ), θ=0°

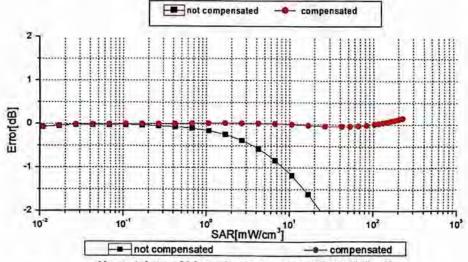
f=600 MHz, TEM

f=1800 MHz, R22

Certificate No: Z19-60169

Page 8 of 11



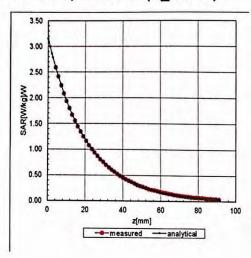

Report No.: R1906H0306-H1

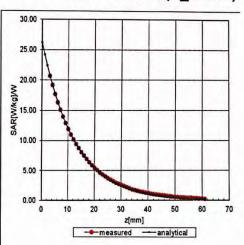
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com Http://www.chinattl.en

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

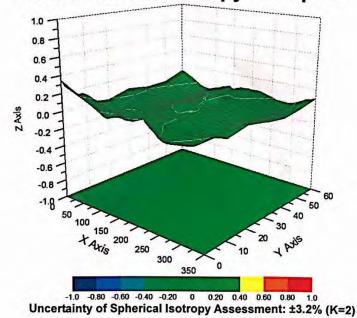
Uncertainty of Linearity Assessment: ±0.9% (k=2)

C Test Report Report No.: R1906H0306-H1

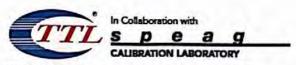



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Conversion Factor Assessment


f=750 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)


Deviation from Isotropy in Liquid

Certificate No: Z19-60169 Page 10 of 11

Test Report Report No.: R1906H0306-H1

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	117.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1,4mm

Certificate No: Z19-60169

Page II of II

AC Test Report No.: R1906H0306-H1

ANNEX D: CD835V3 Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

TA-SH (Auden)

Certificate No: CD835V3-1133_Nov17

Object	CD835V3 - SN: 1	1133	
Calibration procedure(s)	QA CAL-20.v6 Calibration proce	dure for dipoles in air	
Calibration date:	November 22, 20	017	
The measurements and the unce	rtainties with confidence p	onal standards, which realize the physical un robability are given on the following pages an ry facility: environment temperature $(22 \pm 3)^{\circ}$	d are part of the certificate.
Calibration Equipment used (M&	TE critical for calibration)	Orl Date (Orationte No.)	0.1.1.10.15.15
Primary Standards Power meter NRP	SN: 104778	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP-Z91	SN: 104778 SN: 103244	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 103244 SN: 103245	04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522)	Apr-18 Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02522)	
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02526) 07-Apr-17 (No. 217-02529)	Apr-18 Apr-18
Probe ER3DV6	SN: 2336	30-Dec-16 (No. ER3-2336_Dec16)	Dec-17
DAE4	SN: 781	13-Jul-17 (No. DAE4-781_Jul17)	Jul-18
Secondary Standards	IID#	Check Date (in house)	Scheduled Check
Power meter Agilent 4419B	SN: GB42420191	09-Oct-09 (in house check Oct-17)	In house check: Oct-20
Power sensor HP E4412A	SN: US38485102	05-Jan-10 (in house check Oct-17)	In house check: Oct-20
Power sensor HP 8482A	SN: US37295597	09-Oct-09 (in house check Oct-17)	In house check: Oct-20
RF generator R&S SMT-06	SN: 832283/011	27-Aug-12 (in house check Oct-17)	In house check: Oct-20
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Seif Ille
Approved by:	Katja Pokovic	Technical Manager	ERM
			Exet

Certificate No: CD835V3-1133_Nov17

Page 1 of 5

AC Test Report No.: R1906H0306-H1

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

References

[1] ANSI-C63.19-2011 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna
 (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes.
 In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CD835V3-1133_Nov17

Page 2 of 5

AC Test Report Report No.: R1906H0306-H1

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	835 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 835 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	106.6 V/m = 40.56 dBV/m
Maximum measured above low end	100 mW input power	104.9 V/m = 40.42 dBV/m
Averaged maximum above arm	100 mW input power	105.8 V/m ± 12.8 % (k=2)

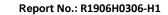
Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
800 MHz	16.1 dB	40.1 Ω - 10.1 jΩ
835 MHz	28.4 dB	$52.7 \Omega + 2.8 j\Omega$
900 MHz	17.0 dB	48.5 Ω - 14.0 jΩ
950 MHz	20.0 dB	49.4 Ω + 10.0 jΩ
960 MHz	15.0 dB	61.5 Ω + 16.3 jΩ

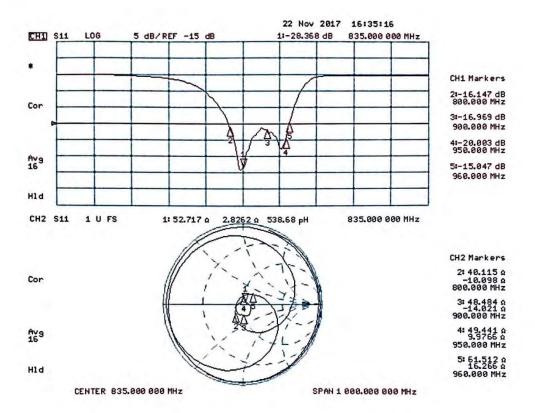
3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.


The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.


Certificate No: CD835V3-1133_Nov17

Page 3 of 5

Impedance Measurement Plot

Certificate No: CD835V3-1133_Nov17

Page 4 of 5

Report No.: R1906H0306-H1

DASY5 E-field Result

Date: 22.11.2017

Test Laboratory: SPEAG Lab2

DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN: 1133

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

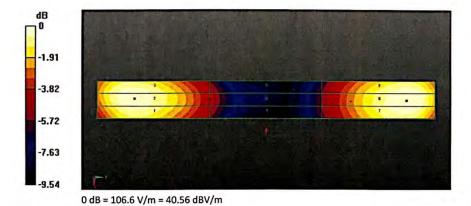
- Probe: ER3DV6 SN2336; ConvF(1, 1, 1); Calibrated: 30.12.2016;
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 13.07.2017
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole E-Field measurement @ 835MHz/E-Scan - 835MHz d=15mm/Hearing Aid Compatibility Test (41x361x1):

Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 109.1 V/m; Power Drift = -0.00 dB


Applied MIF = 0.00 dB

RF audio interference level = 40.56 dBV/m

Emission category: M3

MIF scaled E-field

Grid 1 M3	Grid 2 M3	Grid 3 M3
40.18 dBV/m	40.42 dBV/m	40.33 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
35.75 dBV/m	35.91 dBV/m	35.79 dBV/m
Grid 7 M3	Grid 8 M3	Grid 9 M3
40.44 dBV/m	40.56 dBV/m	40.39 dBV/m

Certificate No: CD835V3-1133_Nov17

Page 5 of 5

AC Test Report No.: R1906H0306-H1

ANNEX E: CD1880V3 Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

TA-SH (Auden)

Certificate No: CD1880V3-1115_Nov17

Accreditation No.: SCS 0108

Object	CD1880V3 - SN:	1115	
Calibration procedure(s)	QA CAL-20.v6 Calibration proce	dure for dipoles in air	
Calibration date:	November 22, 20	017	
This calibration certificate docur	nents the traceability to nati	onal standards, which realize the physical uni	ts of measurements (SI).
ne measurements and the unc	ertainties with confidence p	robability are given on the following pages and	d are part of the certificate.
W Pt W t			
all calibrations have been cond	ucted in the closed laborator	ry facility: environment temperature (22 \pm 3)°C	and humidity < 70%.
Calibration Equipment used (M	TE critical for calibration		
Calibration Equipment used (Ma Primary Standards	ID #	2.20.20.20.00	180 601 000 000
	11()#	Cal Date (Certificate No.)	
		TO A SECURE A SECURE A SECURITION OF THE SECURITIES OF THE SECURITION OF THE SECURIT	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power meter NRP Power sensor NRP-Z91	SN: 104778 SN: 103244	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521)	
ower meter NRP lower sensor NRP-Z91 lower sensor NRP-Z91	SN: 104778 SN: 103244 SN: 103245	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522)	Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521)	Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522)	Apr-18 Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe ER3DV6	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 2336	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-16 (No. ER3-2336_Dec16)	Apr-18 Apr-18 Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe ER3DV6	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe ER3DV6 DAE4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 2336	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-16 (No. ER3-2336_Dec16) 13-Jul-17 (No. DAE4-781_Jul17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe ER3DV6 DAE4 Secondary Standards	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 2336 SN: 781	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-16 (No. ER3-2336_Dec16) 13-Jul-17 (No. DAE4-781_Jul17) Check Date (in house)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18 Scheduled Check
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe ER3DV6 DAE4 Secondary Standards Power meter Agilent 4419B	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 2336 SN: 781	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-16 (No. ER3-2336_Dec16) 13-Jul-17 (No. DAE4-781_Jul17) Check Date (in house) 09-Oct-09 (in house check Oct-17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18 Scheduled Check In house check: Oct-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe ER3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 2336 SN: 781 ID # SN: GB42420191 SN: US38485102	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-16 (No. ER3-2336_Dec16) 13-Jul-17 (No. DAE4-781_Jul17) Check Date (in house) 09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18 Scheduled Check In house check: Oct-20 In house check: Oct-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe ER3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 2336 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-16 (No. ER3-2336_Dec16) 13-Jul-17 (No. DAE4-781_Jul17) Check Date (in house) 09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe ER3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 2336 SN: 781 ID # SN: GB42420191 SN: US38485102	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-16 (No. ER3-2336_Dec16) 13-Jul-17 (No. DAE4-781_Jul17) Check Date (in house) 09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18 Scheduled Check In house check: Oct-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe ER3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 2336 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 832283/011	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-16 (No. ER3-2336_Dec16) 13-Jul-17 (No. DAE4-781_Jul17) Check Date (in house) 09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17) 27-Aug-12 (in house check Oct-17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18 Scheduled Check In house check: Oct-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe ER3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 2336 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 832283/011 SN: US37390585	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-16 (No. ER3-2336_Dec16) 13-Jul-17 (No. DAE4-781_Jul17) Check Date (in house) 09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17) 27-Aug-12 (in house check Oct-17) 18-Oct-01 (in house check Oct-17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18 Scheduled Check In house check: Oct-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe ER3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 2336 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 832283/011 SN: US37390585 Name	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-16 (No. ER3-2336_Dec16) 13-Jul-17 (No. DAE4-781_Jul17) Check Date (in house) 09-Oct-09 (in house check Oct-17) 09-Oct-09 (in house check Oct-17) 27-Aug-12 (in house check Oct-17) 18-Oct-01 (in house check Oct-17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18 Scheduled Check In house check: Oct-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe ER3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 2336 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 832283/011 SN: US37390585 Name	04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-16 (No. ER3-2336_Dec16) 13-Jul-17 (No. DAE4-781_Jul17) Check Date (in house) 09-Oct-09 (in house check Oct-17) 09-Oct-09 (in house check Oct-17) 27-Aug-12 (in house check Oct-17) 18-Oct-01 (in house check Oct-17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18 Scheduled Check In house check: Oct-20

Certificate No: CD1880V3-1115_Nov17

Page 1 of 5

AC Test Report Report No.: R1906H0306-H1

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

References

 ANSI-C63.19-2011
 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna
 (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes.
 In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a
 distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CD1880V3-1115_Nov17

Page 2 of 5

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	1880 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 1880 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	90.5 V/m = 39.13 dBV/m
Maximum measured above low end	100 mW input power	87.8 V/m = 38.87 dBV/m
Averaged maximum above arm	100 mW input power	89.2 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

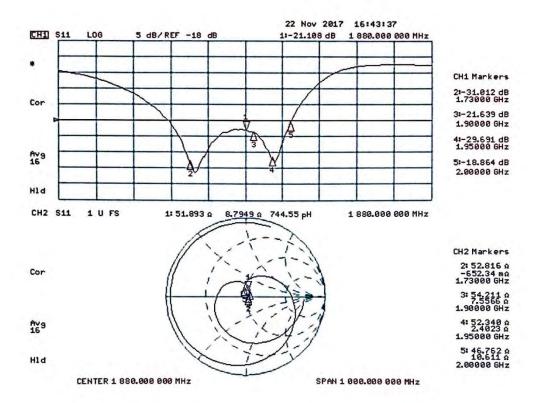
Frequency	Return Loss	Impedance
1730 MHz	31.0 dB	52.8 Ω - 0.7 jΩ
1880 MHz	21.1 dB	51.9 Ω + 8.8 jΩ
1900 MHz	21.6 dB	$54.2 \Omega + 7.6 j\Omega$
1950 MHz	29.7 dB	$52.3 \Omega + 2.4 j\Omega$
2000 MHz	18.9 dB	46.8 Ω + 10.6 jΩ

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.


After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Certificate No: CD1880V3-1115_Nov17

Page 3 of 5

Impedance Measurement Plot

Certificate No: CD1880V3-1115_Nov17

Page 4 of 5

DASY5 E-field Result

Date: 22.11.2017

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: CD1880V3 - SN: 1115

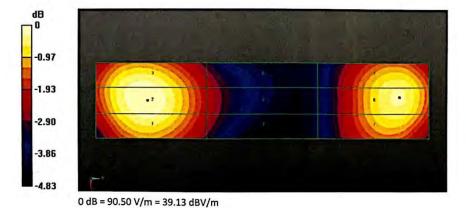
Communication System: UID 0 - CW ; Frequency: 1880 MHz Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³

Phantom section: RF Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ER3DV6 SN2336; ConvF(1, 1, 1); Calibrated: 30.12.2016;
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 13.07.2017
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


Dipole E-Field measurement @ 1880MHz/E-Scan - 1880MHz d=15mm/Hearing Aid Compatibility Test (41x181x1):

Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 155.7 V/m; Power Drift = -0.01 dB Applied MIF = 0.00 dB RF audio interference level = 39.13 dBV/m

Emission category: M2

MIF scaled E-field

Grid 1 M2	Grid 2 M2	Grid 3 M2
38.94 dBV/m	39.13 dBV/m	39.02 dBV/m
Grid 4 M2	Grid 5 M2	Grid 6 M2
36.82 dBV/m	36.95 dBV/m	36.82 dBV/m
Grid 7 M2	Grid 8 M2	Grid 9 M2
38.67 dBV/m	38.87 dBV/m	38.79 dBV/m

Account and administration

Certificate No: CD1880V3-1115_Nov17

ANNEX F: CD2450V3 Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

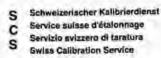
Client

'A-SH (Auden)

Cartificate No: CD2450V3-1111 Nov17

Object	CD2450V3 - SN: 1111		
Calibration procedure(s)	QA CAL-20.v6 Calibration procedure for dipoles in air		
Calibration date:	November 22, 20	017	
This calibration certificate docum	ents the traceability to nati	onal standards, which realize the physical ur	nits of measurements (SI).
The measurements and the unce	ertainties with confidence p	robability are given on the following pages a	nd are part of the certificate.
All calibrations have been condu	etad in the closed laborato	y facility: environment temperature (22 ± 3)°	C and humidity > 70%
Pul Calandions have been contox	cted in the closed laborato	y lacinty. environment temperature (22 ± 3)	C and individually C 70%.
Calibration Equipment used (M&	TE critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Type-N mismatch combination			
The state of the s	SN: 2336	30-Dec-16 (No. ER3-2336_Dec16)	Dec-17
Type-N mismatch combination Probe ER3DV6 DAE4	(Table 2 to 100		Dec-17 Jul-18
Probe ER3DV6 DAE4	SN: 2336 SN: 781	30-Dec-16 (No. ER3-2336_Dec16) 13-Jul-17 (No. DAE4-781_Jul17)	Jul-18
Probe ER3DV6 DAE4 Secondary Standards	SN: 2336 SN: 781	30-Dec-16 (No. ER3-2336_Dec16) 13-Jul-17 (No. DAE4-781_Jul17) Check Date (in house)	Jul-18 Scheduled Check
Probe ER3DV6 DAE4 Secondary Standards Power meter Agilent 4419B	SN: 2336 SN: 781 ID # SN: GB42420191	30-Dec-16 (No. ER3-2336_Dec16) 13-Jul-17 (No. DAE4-781_Jul17) Check Date (in house) 09-Oct-09 (in house check Oct-17)	Jul-18 Scheduled Check In house check: Oct-20
Probe ER3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A	SN: 2336 SN: 781 ID # SN: GB42420191 SN: US38485102	30-Dec-16 (No. ER3-2336_Dec16) 13-Jul-17 (No. DAE4-781_Jul17) Check Date (in house) 09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17)	Jul-18 Scheduled Check In house check: Oct-20 In house check: Oct-20
Probe ER3DV6 DAE4 Secondary Standards Power meter Agilent 4419B	SN: 2336 SN: 781 ID # SN: GB42420191	30-Dec-16 (No. ER3-2336_Dec16) 13-Jul-17 (No. DAE4-781_Jul17) Check Date (in house) 09-Oct-09 (in house check Oct-17)	Jul-18 Scheduled Check In house check: Oct-20
Probe ER3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A	SN: 2336 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597	30-Dec-16 (No. ER3-2336_Dec16) 13-Jul-17 (No. DAE4-781_Jul17) Check Date (in house) 09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17)	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Probe ER3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06	SN: 2336 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 832283/011	30-Dec-16 (No. ER3-2336_Dec16) 13-Jul-17 (No. DAE4-781_Jul17) Check Date (in house) 09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17) 27-Aug-12 (in house check Oct-17)	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-18 Signature
Probe ER3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06	SN: 2336 SN: 781 ID # SN: GB42420191 SN: US3485102 SN: US37295597 SN: 832283/011 SN: US37390585	30-Dec-16 (No. ER3-2336_Dec16) 13-Jul-17 (No. DAE4-781_Jul17) Check Date (in house) 09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17) 27-Aug-12 (in house check Oct-17) 18-Oct-01 (in house check Oct-17)	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-18 Signature
Probe ER3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	SN: 2336 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 832283/011 SN: US37390585 Name	30-Dec-16 (No. ER3-2336_Dec16) 13-Jul-17 (No. DAE4-781_Jul17) Check Date (in house) 09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17) 27-Aug-12 (in house check Oct-17) 18-Oct-01 (in house check Oct-17) Function Laboratory Technician	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-18 Signature
Probe ER3DV6 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 2336 SN: 781 ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 832283/011 SN: US37390585	30-Dec-16 (No. ER3-2336_Dec16) 13-Jul-17 (No. DAE4-781_Jul17) Check Date (in house) 09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17) 27-Aug-12 (in house check Oct-17) 18-Oct-01 (in house check Oct-17)	Scheduled Check In house check: Oct-20 In house check: Oct-18

Certificate No: CD2450V3-1111_Nov17


Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

References

 ANSI-C63.19-2011
 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms, z-axis is from the basis of the antenna
 (mounted on the table) towards its feed point between the two dipole arms, x-axis is normal to the other axes,
 In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a
 distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CD2450V3-1111_Nov17

Page 2 of 5

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	2450 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 2450 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	90.7 V/m = 39.16 dBV/m
Maximum measured above low end	100 mW input power	85.5 V/m = 38.64 dBV/m
Averaged maximum above arm	100 mW input power	88,1 V/m ± 12,8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

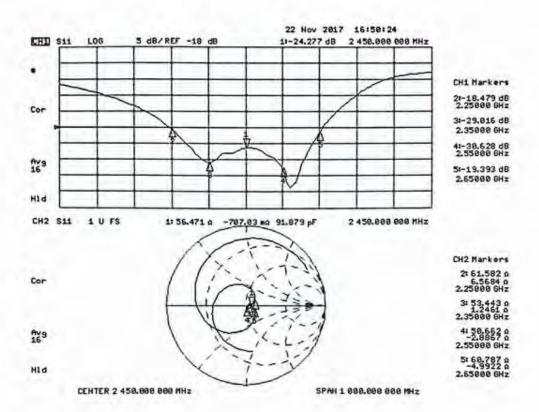
Frequency	Return Loss	Impedance
2250 MHz	18.5 dB	61.6 Ω + 6.6 jΩ
2350 MHz	29.0 dB	53.4 Ω + 1.2 jΩ
2450 MHz	24,3 dB	56.5 Ω - 0.7]Ω
2550 MHz	30,6 dB	50.7 Ω - 2.9 jΩ
2650 MHz	19,4 dB	60.8 Ω - 5.0 jΩ

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.


After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Certificate No: CD2450V3-1111_Nov17

Page 3 of 5

Report No.: R1906H0306-H1

Impedance Measurement Plot

Certificate No: CD2450V3-1111_Nov17

Page 4 of 5

DASY5 E-field Result

Date: 22.11.2017

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 2450 MHz; Type: CD2450V3; Serial: CD2450V3 - SN: 1111

Communication System: UID 0 - CW; Frequency; 2450 MHz Medium parameters used: σ = 0 S/m, ε, = 1; ρ = 1000 kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

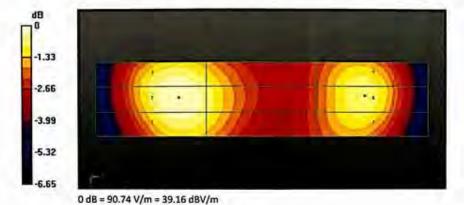
- Probe: ER3DV6 SN2336; Convf(1, 1, 1); Calibrated: 30.12.2016;
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 13.07.2017
- Phantom: HAC Test Arch with AMCC; Type: SD HAC PO1 BA; Serial: 1070
- DASYS2 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole E-Field measurement @ 2450MHz/E-Scan - 2450MHz d=15mm/Hearing Aid Compatibility Test (41x181x1):

Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 83.43 V/m; Power Drift = -0.02 dB


Applied MIF = 0.00 dB

RF audio interference level = 39.16 dBV/m

Emission category: M2

MIF scaled E-field

Grid 1 M2	Grid 2 M2	Grid 3 M2
38.95 dBV/m	39.16 dBV/m	39.05 dBV/m
Grid 4 M2	Grid 5 M2	Grid 6 M2
38.42 dBV/m	38.57 dBV/m	38.43 dBV/m
Grid 7 M2	Grid 8 M2	Grid 9 M2
38.39 d8V/m	38.64 dBV/m	38.6 dBV/m

Certificate No: CD2450V3-1111_Nov17

Page 5 of 5

ANNEX G: CD2600V3 Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

TA-SH (Auden)

Certificate No: CD2600V3-1016 Jan18

	CERTIFICATI		
Object	CD2600V3 - SN: 1016		
Calibration procedure(s)	QA CAL-20.v6 Calibration proce	dure for dipoles in air	
Calibration date:	January 09, 2018		
		onal standards, which realize the physical uni	
he measurements and the unce	ertainties with confidence p	robability are given on the following pages and	d are part of the certificate.
All calibrations have been condu	cted in the closed laborator	ry facility: environment temperature (22 ± 3)°C	and humidity < 70%.
Calibratian Environment word (MR	TE addisol (as as Destina)		
Calibration Equipment used (M&	ID #	Cal Data (Cadificate No.)	Cabaddad Carbania
Primary Standards Power meter NRP	SN: 104778	Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522)	Scheduled Calibration Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Probe EF3DV3	SN: 4013	14-Jun-17 (No. EF3-4013_Jun17)	Jun-18
TOOG EL DUYU	SN: 6065	30-Dec-17 (No. H3-6065_Dec17)	Dec-18
Pmhe H3DV6		13-Jul-17 (No. DAE4-781_Jul17)	Jul-18
19991199119	SN: 781		
Probe H3DV6 DAE4 Secondary Standards	SN: 781	Check Date (in house)	Scheduled Check
DAE4 Secondary Standards	14.5	Check Date (in house) 09-Oct-09 (in house check Oct-17)	Scheduled Check In house check: Oct-20
DAE4 Secondary Standards Power meter Agilent 4419B	ID#		
DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A	ID # SN: GB42420191	09-Oct-09 (in house check Oct-17)	In house check: Oct-20
DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A	ID # SN: GB42420191 SN: US38485102	09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17)	In house check: Oct-20 In house check: Oct-20
DAE4	ID # SN: GB42420191 SN: US38485102 SN: US37295597	09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17)	In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06	ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 832283/011	09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17) 27-Aug-12 (in house check Oct-17)	In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06	ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 832283/011 SN: US37390585	09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17) 27-Aug-12 (in house check Oct-17) 18-Oct-01 (in house check Oct-17)	In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-18
DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 832283/011 SN: US37390585 Name Leif Klysner	09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17) 27-Aug-12 (in house check Oct-17) 18-Oct-01 (in house check Oct-17) Function Laboratory Technician	In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-18
DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 832283/011 SN: US37390585 Name	09-Oct-09 (in house check Oct-17) 05-Jan-10 (in house check Oct-17) 09-Oct-09 (in house check Oct-17) 27-Aug-12 (in house check Oct-17) 18-Oct-01 (in house check Oct-17) Function	In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-18

Certificate No: CD2600V3-1016_Jan18

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swisa Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

References

[1] ANSI-C63.19-2011 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms, z-axis is from the basis of the antenna
 (mounted on the table) towards its feed point between the two dipole arms, x-axis is normal to the other axes.
 In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a
 distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network
 Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was
 eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any
 obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the
coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%

Certificate No: CD2600V3-1016_Jan18

Page 2 of 5

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.10.0
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	2600 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 2600 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	87.3 V/m = 38.82 dBV/m
Maximum measured above low end	100 mW input power	86.3 V/m = 38.72 dBV/m
Averaged maximum above arm	100 mW input power	86.8 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

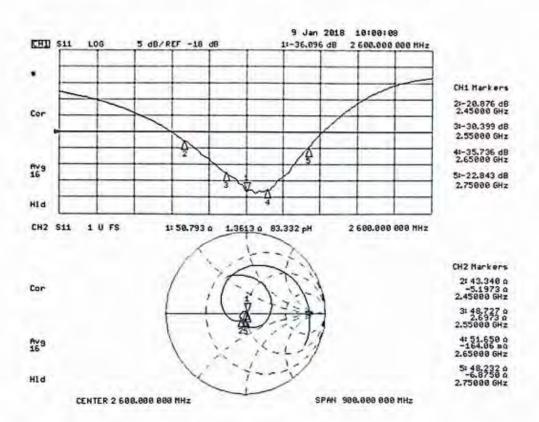
Frequency	Return Loss	Impedance
2450 MHz	20.9 dB	43.3 Ω - 5,2 Ω
2550 MHz	30.4 dB	48.7 Ω + 2.7 jΩ
2600 MHz	36,1 dB	50.8 Ω + 1.4 jΩ
2650 MHz	35.7 dB	51.7 Ω - 0.2 jΩ
2750 MHz	22.8 dB	48.2 Ω - 6.9 jΩ

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.


After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Certificate No: GD2600V3-1016_Jan18

Page 3 of 5

Impedance Measurement Plot

Certificate No: CD2600V3-1016_Jan18

Page 4 of 5

DASY5 E-field Result

Date: 09.01.2018

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 2600 MHz; Type: CD2600V3; Serial: CD2600V3 - SN: 1016

Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: σ = 0 S/m, ϵ_s = 1; ρ = 1000 kg/m³

Phantom section: RF Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

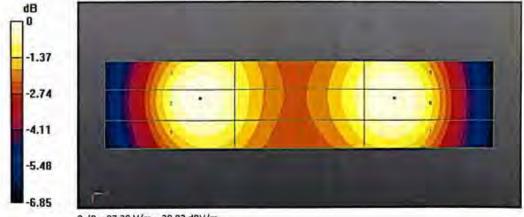
- Probe: EF3DV3 SN4013; ConvF(1, 1, 1); Calibrated: 14.06.2017;
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 13.07.2017
- Phantom: HAC Test Arch with AMCC; Type: SD HAC PO1 BA; Serial: 1070
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole E-Field measurement @ 2600MHz/E-Scan - 2600MHz d=15mm/Hearing Aid Compatibility Test (41x181x1):

Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 66.44 V/m; Power Drift = -0.00 dB


Applied MIF = 0.00 dB

RF audio interference level = 38.82 dBV/m

Emission category: M2

MIF scaled E-field

Grid 1 M2	Grid 2 M2	Grid 3 M2
38.42 dBV/m	38.72 dBV/m	38.67 dBV/m
Grid 4 M2	Grid 5 M2	Grid 6 M2
38.01 dBV/m	38.27 dBV/m	38.24 dBV/m
Grid 7 M2	Grid 8 M2	Grid 9 M2
38.53 dBV/m	38.82 dBV/m	38.76 dBV/m

0 dB = 87.29 V/m = 38.82 dBV/m

Certificate No: CD2600V3-1016_Jan18

Page 5 of 5

ANNEX H: DAE4 Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

TA-SH (Auden)

Accreditation No.: SCS 0108

Certificate No: DAE4-1291_Dec18

CALIBRATION CERTIFICATE

Object DAE4 - SD 000 D04 BM - SN: 1291

Calibration procedure(s) QA CAL-06.v29

Calibration procedure for the data acquisition electronics (DAE)

Calibration date: December 04, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	03-Sep-18 (No:23488)	Sep-19
Secondary Standards	10#	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	04-Jan-18 (in house check)	In house check: Jan-19
Calibrator Box V2.1	SE UMS 006 AA 1002	04-Jan-18 (in house check)	In house check: Jan-19

Calibrated by:

Name Dominique Steffen

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Function Laboratory Technician

no

Approved by:

Sven Kûhn Deputy Manager

Issued: December 4, 2018

Certificate No: DAE4-1291_Dec18

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

 DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.

- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an
 input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1291_Dec18

Page 2 of 5

Report No.: R1906H0306-H1

DC Voltage Measurement
A/D - Converter Resolution nominal
High Range: 1LSB = full range = -100...+300 mV full range = -1......+3mV 6.1µV . Low Range: 1LSB = 61nV. DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	402.580 ± 0.02% (k=2)	403.249 ± 0.02% (k=2)	403.163 ± 0.02% (k=2)
		3.97886 ± 1.50% (k=2)	

Connector Angle

Connector Angle to be used in DASY system	164.5°±1°
	101.0 -1

Certificate No: DAE4-1291_Dec18

Page 3 of 5

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	200038.51	1.95	0.00
Channel X + Input	20006.61	1.29	0.01
Channel X - Input	-20003.34	2.94	-0.01
Channel Y + Input	200036.77	0.05	0.00
Channel Y + Input	20003.65	-1.54	-0.01
Channel Y - Input	-20006.11	0.22	-0.00
Channel Z + Input	200035.08	-1.41	-0.00
Channel Z + Input	20002.62	-2.58	-0.01
Channel Z - Input	-20006.40	-0.06	0.00

Low Range	Reading (μV)	Difference (µV)	Error (%)
Channel X + Input	2001.29	0.31	0.02
Channel X + Input	201.13	0.32	0.16
Channel X - Input	-198.59	0.30	-0.15
Channel Y + Input	2000.40	-0.49	-0.02
Channel Y + Input	200.21	-0.66	-0.33
Channel Y - Input	-199.89	-0.99	0.50
Channel Z + Input	2000.44	-0.41	-0.02
Channel Z + Input	199.70	-1.05	-0.52
Channel Z - Input	-200.88	-1.78	0.89

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	10.02	7.91
	- 200	-6.52	-8.20
Channel Y	200	14.18	13.58
	- 200	-15.10	-15.62
Channel Z	200	-17.07	-17.23
	- 200	14.74	14.83

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	1000000	-0.01	-4.47
Channel Y	200	7.58		0.48
Channel Z	200	11.17	4.87	

Certificate No: DAE4-1291_Dec18

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16117	16241
Channel Y	15930	16718
Channel Z	16177	17128

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.59	-1.81	0.89	0.47
Channel Y	1.17	-0.04	2.05	0.45
Channel Z	-1.12	-2.70	0.51	0.57

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1291_Dec18

ANNEX I: The EUT Appearances and Test Configuration

a: EUT

b: Adapter

c: USB Cable

Picture 1: Constituents of EUT

Report No.: R1906H0306-H1

Picture 2: Test Setup