

Page 33 of 119 Report No.: 190518039RFC-4

# 5.46 DB BANDWIDTH & OCCUPIED BANDWIDTH

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (e)

RSS-247 Issue 2 Section 6.2.4.1 **Test Method:**KDB 789033 D02 v02r01 Section C.2

Limit: Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall

be at least 500 kHz.

#### **Test Procedure:**

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer.

Spectrum analyzer according to the following Settings:

#### 6dB Bandwidth

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3 \* RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

#### **Occupied Bandwidth**

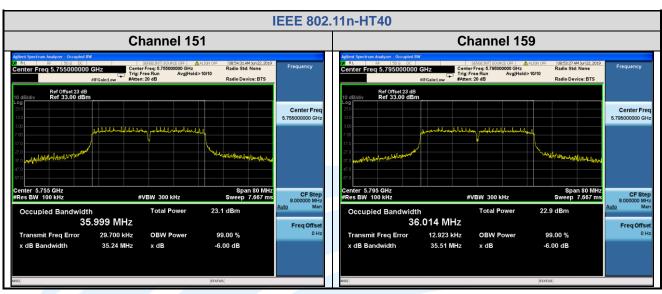
- a) Set RBW = 1% to 5% of the occupied bandwidth
- b) Set the video bandwidth (VBW) ≥ 3 x RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

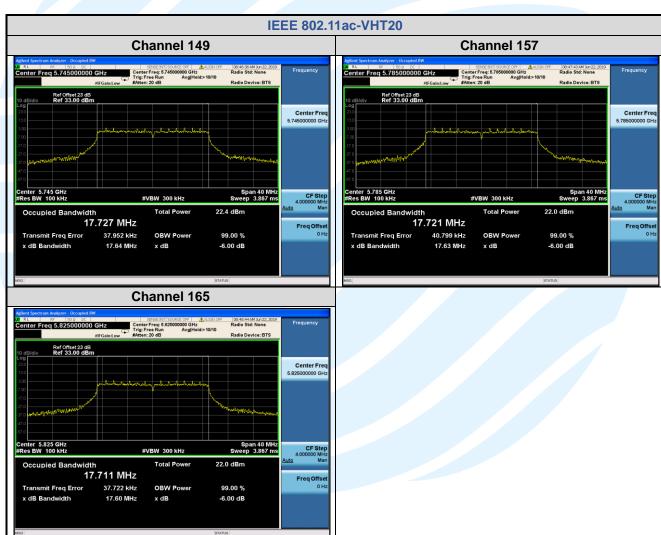
Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

**Test Setup:** Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

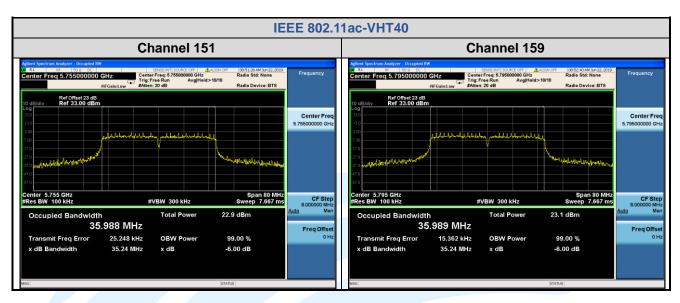
Test Mode: Transmitter mode

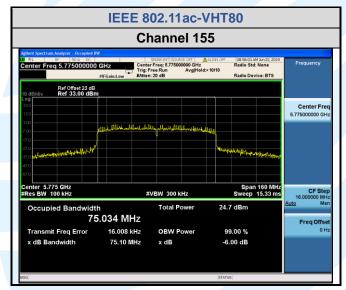
Test Results: Pass


| Mode                | Channel/<br>Frequency<br>(MHz) | 6 dB<br>Bandwidth<br>(MHz) | 99%<br>Bandwidth<br>(MHz) | 6 dB<br>Bandwidth<br>Limit | Pass / Fail |
|---------------------|--------------------------------|----------------------------|---------------------------|----------------------------|-------------|
|                     | 149 (5745)                     | 16.41                      | 17.144                    | > 500 kHz                  | Pass        |
| IEEE 802.11a        | 157 (5785)                     | 16.41                      | 17.252                    | > 500 kHz                  | Pass        |
|                     | 165 (5825)                     | 16.41                      | 17.239                    | > 500 kHz                  | Pass        |
|                     | 149 (5745)                     | 17.63                      | 18.249                    | > 500 kHz                  | Pass        |
| IEEE 802.11n-HT20   | 157 (5785)                     | 17.66                      | 18.271                    | > 500 kHz                  | Pass        |
|                     | 165 (5825)                     | 17.62                      | 18.209                    | > 500 kHz                  | Pass        |
| IEEE 000 44 - LIT40 | 151 (5755)                     | 35.24                      | 36.435                    | > 500 kHz                  | Pass        |
| IEEE 802.11n-HT40   | 159 (5795)                     | 35.51                      | 36.512                    | > 500 kHz                  | Pass        |
|                     | 149 (5745)                     | 17.64                      | 18.151                    | > 500 kHz                  | Pass        |
| IEEE 802.11ac-VHT20 | 157 (5785)                     | 17.63                      | 18.160                    | > 500 kHz                  | Pass        |
|                     | 165 (5825)                     | 17.60                      | 18.159                    | > 500 kHz                  | Pass        |
| IEEE 802.11ac-VHT40 | 151 (5755)                     | 35.24                      | 36.551                    | > 500 kHz                  | Pass        |
| 1EEE 002.11ac-V1140 | 159 (5795)                     | 35.24                      | 36.584                    | > 500 kHz                  | Pass        |
| IEEE 802.11ac-VHT80 | 155 (5775)                     | 75.10                      | 75.245                    | > 500 kHz                  | Pass        |

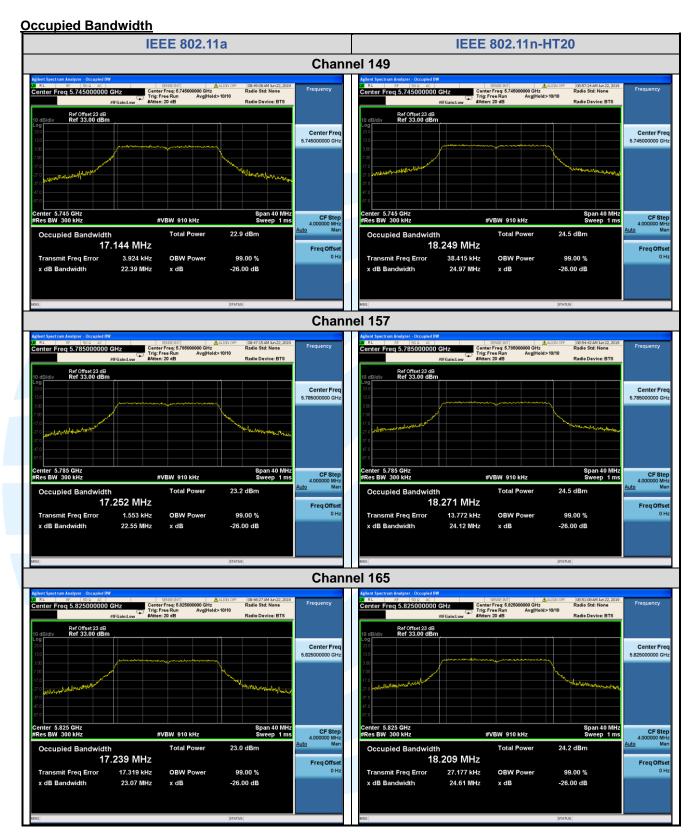



# The test plots as follows:

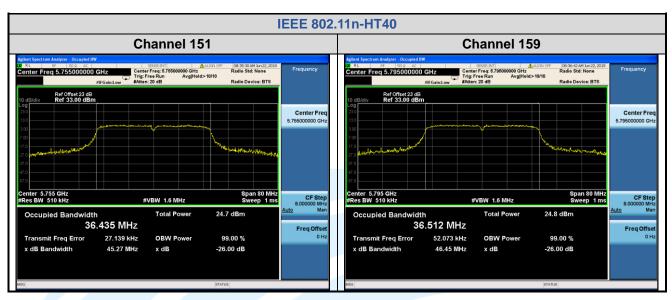

#### 6 dB Bandwidth **IEEE 802.11a** IEEE 802.11n-HT20 Channel 149 ter Freg 5.745000000 GH Ref Offset 23 dB Ref 33.00 dBr Ref Offset 23 dB Ref 33.00 dBn Center Free Center Fre r 5.745 GHz CF Step 4.000000 CF Ste 20.4 dBm 21.5 dBm 16.552 MHz 17.749 MHz 41.758 kHz 99.00 % 41.185 kHz OBW Power 99.00 % 16 41 MHz y dB -6 00 dB y dB Bandwidth 17 63 MHz y dB -6 00 dB **Channel 157** 08:24:34 AM Jun 22, 201 Radio Std: None Center Freq 5.785000000 GHz RE | SD & DC | Center Freq 5.785000000 GHz Ref Offset 23 dB Ref 33.00 dBm Ref Offset 23 dB Ref 33.00 dBn Center Free Center Free er 5.785 GHz BW 100 kHz enter 5.785 GHz tes BW 100 kHz CF Ster 20.6 dBm Total Powe 21.3 dBm 16.532 MHz 17.717 MHz 44.928 kHz OBW Power 99.00 % Transmit Freq Error 44.717 kHz Transmit Freq Error 16.41 MHz -6.00 dB 17.66 MHz -6.00 dB **Channel 165** Ref Offset 23 dB Ref 33.00 dBn Center Fre Center Freq CF Step CF Step #VBW 300 kHz #VBW 300 kHz 20.4 dBm 21.4 dBm 16.553 MHz 17.740 MHz 39.709 kHz OBW Power 99.00 % 24.127 kHz 17.62 MHz





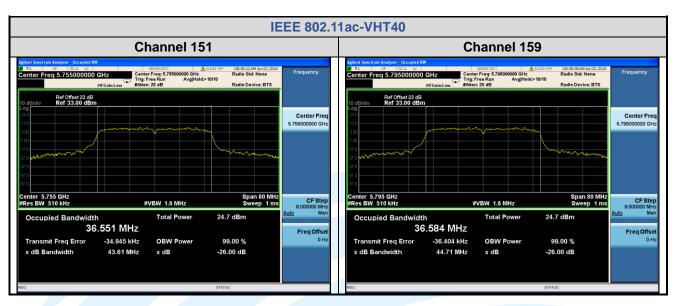



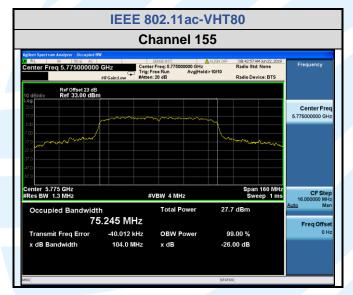



















Page 40 of 119 Report No.: 190518039RFC-4

## 5.5 MAXIMUM CONDUCTED OUTPUT POWER OR E.I.R.P.

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3) RSS-247 Issue 2 Section 6.2.1.1/6.2.2.1/6.2.3.1/6.2.4.1

Test Method: KDB 789033 D02 v02r01 Section E.3.a (Method PM)

Limits: FCC 47 CFR Part 15 Subpart E

For the band 5.15-5.25 GHz.

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 2. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 3. For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.



Page 41 of 119 Report No.: 190518039RFC-4

Limits: RSS-247 Issue 2

## 1. Frequency band 5150-5250 MHz

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log<sub>10</sub>B, dBm, whichever is less. Devices shall implement transmitter power control (TPC) in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

For other devices, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log<sub>10</sub>B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

#### 2. Frequency band 5250-5350 MHz

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or  $1.76 + 10 \log_{10}B$ , dBm, whichever is less. Devices shall implement TPC in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

Devices, other than devices installed in vehicles, shall comply with the following:

- a) The maximum conducted output power shall not exceed 250 mW or 11 + 10 log<sub>10</sub>B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band;
- b) The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log<sub>10</sub>B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

#### **Additional requirements**

In addition to the above requirements, devices shall comply with the following, where applicable:

a) Outdoor fixed devices with a maximum e.i.r.p. greater than 200 mW shall comply with the following e.i.r.p. at different elevations, where θ is the angle above the local horizontal plane (of the Earth) as shown below:

> i. -13 dBW/MHz for  $0^{\circ} \le \theta < 8^{\circ}$ ii. -13 - 0.716 (0-8) dBW/MHz for  $8^{\circ} \le \theta < 40^{\circ}$ iii. -35.9 - 1.22 (0-40) dBW/MHz for  $40^{\circ} \le \theta \le 45^{\circ}$ iv. -42 dBW/MHz for  $\theta > 45^{\circ}$

The measurement procedure defined in Annex A of this document shall be used to verify the compliance to the e.i.r.p. at different elevations.

- b) Devices, other than outdoor fixed devices, having an e.i.r.p. greater than 200 mW shall comply with either i. or ii. below:
  - i. devices shall comply with the e.i.r.p. elevation mask in 6.2.2.3(a); or
  - ii. devices shall implement a method to permanently reduce their e.i.r.p. via a firmwarefeature in the event that the Department requires it. The test report must demonstratehow the device's power table can be updated to meet this firmware requirement. Themanufacturer shall provide this firmware to update all systems automatically incompliance with the directions received from the Department.

## 3. Frequency bands 5470-5600 MHz and 5650-5725 MHz

The maximum conducted output power shall not exceed 250 mW or 11 + 10 log<sub>10</sub>B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.

The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log<sub>10</sub>B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

#### 4. Frequency band 5725-5850 MHz

The maximum conducted output power shall not exceed 1 W. The output power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the output power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any

Page 42 of 119 Report No.: 190518039RFC-4

corresponding reduction in transmitter conducted power. Fixed point-to-point operations exclude the use of point-to-multipoint<sup>3</sup> systems, omnidirectional applications and multiple collocated transmitters transmitting the same information.

### **Test Procedure:**

1. Connected the EUT's antenna port to measure device by 10dB attenuator.

2. Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of Tx on burst.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

**Test Setup:** Refer to section 4.5.3 for details.

Instruments Used: Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

**Test Data:** 

## Directional gain and the maximum output power limit.

#### RSS-247 Issue 2

| Frequency Band | Antenna Gain (dBi)) | Power Limits (dBm) |  |
|----------------|---------------------|--------------------|--|
| U-NII-1        | -4.04               | 23.00              |  |
| U-NII-2A       | -3.89               | 24.00              |  |
| U-NII-2C       | -3.77               | 24.00              |  |
| U-NII-3        | -4.09               | 30.00              |  |

FCC 47 CFR Part 15 Subpart E

| Frequency Band | Antenna Gain (dBi)) | Power Limits (dBm) |
|----------------|---------------------|--------------------|
| U-NII-1        | -4.04               | 24.00              |
| U-NII-2A       | -3.89               | 24.00              |
| U-NII-2C       | -3.77               | 24.00              |
| U-NII-3        | -4.09               | 30.00              |

Page 43 of 119

Report No.: 190518039RFC-4

# Frequency band 5150-5250 MHz RSS-247 Issue 2:

For IEEE 802.11a, the minimum 99% emission bandwidth is 17.059 MHz 10 dBm +  $10log_{10}$  (17.059) = 22.32 dBm < 23 dBm So the 22.32 dB limit applicable

For IEEE 802.11n-HT20/ ac-VHT20, the minimum 99% emission bandwidth is 17.988 MHz 10 dBm +  $10log_{10}$  (17.988) = 22.55 dBm < 23 dBm So the 22.55 dB limit applicable

For IEEE 802.11n-HT40/ ac-VHT40/ ac-VHT80, the minimum 99% emission bandwidth is 36.535 MHz 10 dBm +  $10\log_{10}(36.535) = 25.63$  dBm > 23 dBm

So the 23 dB limit applicable

| Mode                 | Channel/<br>Frequency (MHz) | Maximum e.i.r.p<br>(dBm) | Limit<br>(dBm) | Pass / Fail |
|----------------------|-----------------------------|--------------------------|----------------|-------------|
|                      | 36 (5180)                   | 12.36                    | 22.32          | Pass        |
| IEEE 802.11a         | 44 (5220)                   | 12.28                    | 22.32          | Pass        |
|                      | 48 (5240)                   | 12.17                    | 22.32          | Pass        |
|                      | 36 (5180)                   | 12.39                    | 22.55          | Pass        |
| IEEE 802.11n-HT20    | 44 (5220)                   | 12.14                    | 22.55          | Pass        |
|                      | 48 (5240)                   | 12.02                    | 22.55          | Pass        |
| IEEE 902 115 UT40    | 38 (5190)                   | 12.54                    | 23             | Pass        |
| IEEE 802.11n-HT40    | 46 (5230)                   | 12.38                    | 23             | Pass        |
|                      | 36 (5180)                   | 12.11                    | 22.55          | Pass        |
| IEEE 802.11ac-VHT20  | 44 (5220)                   | 11.97                    | 22.55          | Pass        |
|                      | 48 (5240)                   | 11.89                    | 22.55          | Pass        |
| IEEE 902 1100 V/UT40 | 38 (5190)                   | 12.17                    | 23             | Pass        |
| IEEE 802.11ac-VHT40  | 46 (5230)                   | 11.96                    | 23             | Pass        |
| IEEE 802.11ac-VHT80  | 42 (5210)                   | 12.03                    | 23             | Pass        |

#### Remark:

1. Maximum e.i.r.p = Maximum conducted output power + Antenna Gain



FCC 47 CFR Part 15 Subpart E:

| Mode                    | Channel/<br>Frequency |            | ducted output<br>(dBm) | Limit<br>(dBm) | Pass / Fail |
|-------------------------|-----------------------|------------|------------------------|----------------|-------------|
|                         | (MHz)                 | Meas Power | Corr'd Power           | (dbiii)        |             |
|                         | 36 (5180)             | 16.40      | 17.15                  | 24             | Pass        |
| IEEE 802.11a            | 44 (5220)             | 16.32      | 17.07                  | 24             | Pass        |
|                         | 48 (5240)             | 16.21      | 16.96                  | 24             | Pass        |
|                         | 36 (5180)             | 16.43      | 17.28                  | 24             | Pass        |
| IEEE 802.11n-HT20       | 44 (5220)             | 16.18      | 17.03                  | 24             | Pass        |
|                         | 48 (5240)             | 16.06      | 16.91                  | 24             | Pass        |
| IEEE 802.11n-HT40       | 38 (5190)             | 16.58      | 18.06                  | 24             | Pass        |
| IEEE 002.1111-11140     | 46 (5230)             | 16.42      | 17.90                  | 24             | Pass        |
| JEEE 000 44             | 36 (5180)             | 16.15      | 16.94                  | 24             | Pass        |
| IEEE 802.11ac-<br>VHT20 | 44 (5220)             | 16.01      | 16.80                  | 24             | Pass        |
| 71120                   | 48 (5240)             | 15.93      | 16.72                  | 24             | Pass        |
| IEEE 802.11ac-          | 38 (5190)             | 16.21      | 17.70                  | 24             | Pass        |
| VHT40                   | 46 (5230)             | 16.00      | 17.49                  | 24             | Pass        |
| IEEE 802.11ac-<br>VHT80 | 42 (5210)             | 16.07      | 18.71                  | 24             | Pass        |

### Remark:

Corr'd Power = Meas Power + Duty Cycle Factor

Page 45 of 119 Report No.: 190518039RFC-4

# Frequency band 5250-5350 MHz RSS-247 Issue 2:

For IEEE 802.11 a, the minimum 99% emission bandwidth is 16.964 MHz 11 dBm +  $10log_{10}$  (16.964) = 22.30 dBm < 24dBm So the 22.30 dB limit applicable

For IEEE 802.11n-HT20/ ac-VHT20, the minimum 99% emission bandwidth is 18.115 MHz 11 dBm +  $10log_{10}$  (18.115) = 22.58 dBm < 24dBm So the 22.58 dB limit applicable

For IEEE 802.11 n-HT40/ac-VHT40/ac-VHT80, the minimum 99% emission bandwidth is 36.431MHz 11 dBm +  $10log_{10}$  (36.431) = 25.61 dBm > 24 dBm (200mW) So the 24 dB limit applicable

## FCC 47 CFR Part 15 Subpart E:

For IEEE 802.11 a/n/ac, the minimum 26 dB emission bandwidth is 21.95 MHz 11 dBm +  $10log_{10}$  (21.95) = 24.41 dBm > 24 dBm (200mW)

So the 24 dB limit applicable

| Mode                    | Channel/           | nower (dRm) |              | Limit (dBm)     |         | Pass / |
|-------------------------|--------------------|-------------|--------------|-----------------|---------|--------|
| Mode                    | Frequency<br>(MHz) | Meas Power  | Corr'd Power | FCC Part<br>15E | RSS-247 | Fail   |
|                         | 52 (5260)          | 15.99       | 16.74        | 24              | 22.30   | Pass   |
| IEEE 802.11a            | 60 (5300)          | 15.82       | 16.57        | 24              | 22.30   | Pass   |
|                         | 64 (5320)          | 15.83       | 16.58        | 24              | 22.30   | Pass   |
| JEEE 000 44             | 52 (5260)          | 15.94       | 16.79        | 24              | 22.58   | Pass   |
| IEEE 802.11n-<br>HT20   | 60 (5300)          | 15.80       | 16.65        | 24              | 22.58   | Pass   |
| 11120                   | 64 (5320)          | 15.72       | 16.57        | 24              | 22.58   | Pass   |
| IEEE 802.11n-           | 54 (5270)          | 16.21       | 17.69        | 24              | 24      | Pass   |
| HT40                    | 62 (5310)          | 16.03       | 17.51        | 24              | 24      | Pass   |
| JEEE 000 44             | 52 (5260)          | 15.73       | 16.52        | 24              | 22.58   | Pass   |
| IEEE 802.11ac-<br>VHT20 | 60 (5300)          | 15.62       | 16.41        | 24              | 22.58   | Pass   |
| VIIIZO                  | 64 (5320)          | 15.62       | 16.41        | 24              | 22.58   | Pass   |
| IEEE 802.11ac-          | 54 (5270)          | 15.84       | 17.33        | 24              | 24      | Pass   |
| VHT40                   | 62 (5310)          | 15.72       | 17.21        | 24              | 24      | Pass   |
| IEEE 802.11ac-<br>VHT80 | 58 (5290)          | 15.95       | 18.59        | 24              | 24      | Pass   |

## Remark:

1. Maximum conducted output power = Conducted output power + Duty Cycle Factor

Page 46 of 119 Report No.: 190518039RFC-4

# Frequency bands 5470-5725 MHz (RSS-247 Issue 2 Not including 5600-5650 MHz) RSS-247 Issue 2:

For IEEE 802.11 a, the minimum 99% emission bandwidth is 16.952 MHz 11 dBm +  $10log_{10}$  (16.952) = 23.29 dBm < 24 dBm So the 23.29 dB limit applicable

For IEEE 802.11n-HT20/ac-VHT20, the minimum 99% emission bandwidth is 18.008 MHz 11 dBm +  $10log_{10}$  (18.008) = 23.55 dBm < 24 dBm So the 23.55 dB limit applicable

For IEEE 802.11 n-HT40/ac-VHT40/ac-VHT80, the minimum 99% emission bandwidth is 36.146 MHz 11 dBm +  $10\log_{10}$  (36.146) = 26.58 dBm > 24 dBm So the 24 dB limit applicable

## FCC 47 CFR Part 15 Subpart E:

For IEEE 802.11 a/n/ac, the minimum 26 dB emission bandwidth is 21.49 MHz 11 dBm +  $10\log_{10}(21.49) = 24.32$  dBm > 24 dBm

So the 24 dB limit applicable

| Mode                    | Channel/<br>Frequency | Maximum conducted output power (dBm) SISO |              | Limit (dBm)     |         | Pass /<br>Fail |
|-------------------------|-----------------------|-------------------------------------------|--------------|-----------------|---------|----------------|
|                         | (MHz)                 | Meas Power                                | Corr'd Power | FCC Part<br>15E | RSS-247 | ган            |
|                         | 100 (5500)            | 15.37                                     | 16.12        | 24              | 23.29   | Pass           |
| IEEE 802.11a            | 116 (5580)            | 15.05                                     | 15.80        | 24              | 23.29   | Pass           |
|                         | 140 (5700)            | 14.61                                     | 15.36        | 24              | 23.29   | Pass           |
| IEEE 000 44             | 100 (5500)            | 16.47                                     | 17.32        | 24              | 23.55   | Pass           |
| IEEE 802.11n-<br>HT20   | 116 (5580)            | 16.11                                     | 16.96        | 24              | 23.55   | Pass           |
| 11120                   | 140 (5700)            | 15.48                                     | 16.33        | 24              | 23.55   | Pass           |
| IEEE 000 44             | 102 (5510)            | 15.66                                     | 17.14        | 24              | 24      | Pass           |
| IEEE 802.11n-<br>HT40   | 110 (5550)            | 15.60                                     | 17.08        | 24              | 24      | Pass           |
| 11140                   | 134 (5670)            | 14.88                                     | 16.36        | 24              | 24      | Pass           |
| IEEE 000 44             | 100 (5500)            | 16.34                                     | 17.13        | 24              | 23.55   | Pass           |
| IEEE 802.11ac-<br>VHT20 | 116 (5580)            | 16.03                                     | 16.82        | 24              | 23.55   | Pass           |
| V11120                  | 140 (5700)            | 15.46                                     | 16.25        | 24              | 23.55   | Pass           |
| IEEE 000 44             | 102 (5510)            | 15.37                                     | 16.86        | 24              | 24      | Pass           |
| IEEE 802.11ac-<br>VHT40 | 110 (5550)            | 15.16                                     | 16.65        | 24              | 24      | Pass           |
| V11140                  | 134 (5670)            | 14.62                                     | 16.11        | 24              | 24      | Pass           |
| IEEE 802.11ac-<br>VHT80 | 106 (5530)            | 15.82                                     | 18.46        | 24              | 24      | Pass           |

#### Remark:

1. Maximum conducted output power = Conducted output power + Duty Cycle Factor



Frequency band 5725-5850 MHz

| Mode                | Channel/        | Maximum conducted output power (dBm) |              | Limit | Pass / |
|---------------------|-----------------|--------------------------------------|--------------|-------|--------|
|                     | Frequency (MHz) | Meas Power                           | Corr'd Power | (dBm) | Fail   |
|                     | 149 (5745)      | 15.38                                | 16.13        | 30    | Pass   |
| IEEE 802.11a        | 157 (5785)      | 15.25                                | 16.00        | 30    | Pass   |
|                     | 165 (5825)      | 15.31                                | 16.06        | 30    | Pass   |
|                     | 149 (5745)      | 15.32                                | 16.17        | 30    | Pass   |
| IEEE 802.11n-HT20   | 157 (5785)      | 15.21                                | 16.06        | 30    | Pass   |
|                     | 165 (5825)      | 15.28                                | 16.13        | 30    | Pass   |
| IEEE 802.11n-HT40   | 151 (5755)      | 15.33                                | 16.81        | 30    | Pass   |
| IEEE 002.1111-1140  | 159 (5795)      | 15.29                                | 16.77        | 30    | Pass   |
|                     | 149 (5745)      | 15.08                                | 15.87        | 30    | Pass   |
| IEEE 802.11ac-VHT20 | 157 (5785)      | 15.00                                | 15.79        | 30    | Pass   |
|                     | 165 (5825)      | 15.13                                | 15.92        | 30    | Pass   |
| IEEE 802.11ac-VHT40 | 151 (5755)      | 15.01                                | 16.50        | 30    | Pass   |
|                     | 159 (5795)      | 15.09                                | 16.58        | 30    | Pass   |
| IEEE 802.11ac-VHT80 | 155 (5775)      | 15.21                                | 17.85        | 30    | Pass   |

## Remark:

1. Maximum conducted output power = Conducted output power + Duty Cycle Factor



Page 48 of 119 Report No.: 190518039RFC-4

## 5.6 PEAK POWER SPECTRAL DENSITY

**Test Requirement:** FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3) RSS-247 Issue 2 Section 6.2.1.1/6.2.2.1/6.2.3.1/6.2.4.1

**Test Method:** KDB 789033 D02 v02r01 Section F **Limits:** FCC 47 CFR Part 15 Subpart E

1. For the band 5.15-5.25 GHz.

- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 2. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 3. For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.



Page 49 of 119 Report No.: 190518039RFC-4

Limits: RSS-247 Issue 2

## 1. Frequency band 5150-5250 MHz

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log<sub>10</sub>B, dBm, whichever is less. Devices shall implement transmitter power control (TPC) in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

For other devices, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log<sub>10</sub>B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

### 2. Frequency band 5250-5350 MHz

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or  $1.76 + 10 \log_{10}B$ , dBm, whichever is less. Devices shall implement TPC in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

Devices, other than devices installed in vehicles, shall comply with the following:

- a) The maximum conducted output power shall not exceed 250 mW or 11 + 10 log<sub>10</sub>B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band;
- b) The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log<sub>10</sub>B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

#### **Additional requirements**

In addition to the above requirements, devices shall comply with the following, where applicable:

a) Outdoor fixed devices with a maximum e.i.r.p. greater than 200 mW shall comply with the following e.i.r.p. at different elevations, where θ is the angle above the local horizontal plane (of the Earth) as shown below:

> i. -13 dBW/MHz for  $0^{\circ} \le \theta < 8^{\circ}$ ii. -13 - 0.716 (0-8) dBW/MHz for  $8^{\circ} \le \theta < 40^{\circ}$ iii. -35.9 - 1.22 (0-40) dBW/MHz for  $40^{\circ} \le \theta \le 45^{\circ}$ iv. -42 dBW/MHz for  $\theta > 45^{\circ}$

The measurement procedure defined in Annex A of this document shall be used to verify the compliance to the e.i.r.p. at different elevations.

- b) Devices, other than outdoor fixed devices, having an e.i.r.p. greater than 200 mW shall comply with either i. or ii. below:
  - iii. devices shall comply with the e.i.r.p. elevation mask in 6.2.2.3(a); or
  - iv. devices shall implement a method to permanently reduce their e.i.r.p. via a firmwarefeature in the event that the Department requires it. The test report must demonstratehow the device's power table can be updated to meet this firmware requirement. Themanufacturer shall provide this firmware to update all systems automatically incompliance with the directions received from the Department.

## 3. Frequency bands 5470-5600 MHz and 5650-5725 MHz

The maximum conducted output power shall not exceed 250 mW or 11 + 10 log<sub>10</sub>B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.

The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log<sub>10</sub>B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

#### 4. Frequency band 5725-5850 MHz

The maximum conducted output power shall not exceed 1 W. The output power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the output power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any

Page 50 of 119 Report No.: 190518039RFC-4

corresponding reduction in transmitter conducted power. Fixed point-to-point operations exclude the use of point-to-multipoint<sup>3</sup> systems, omnidirectional applications and multiple collocated transmitters transmitting the same information.

#### **Test Procedure:**

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer.

Spectrum analyzer according to the following Settings:

#### 1. For U-NII-1, U-NII-2A, U-NII-2C band:

Using method SA-2

- a) Set span to encompass the entire emission bandwidth (EBW) of the signal.
- b) Set RBW = 1 MHz, Set VBW ≥ 3 RBW, Detector = RMS
- c) Sweep time = auto, trigger set to "free run".
- d) Trace average at least 100 traces in power averaging mode.
- e) Record the max value and add 10 log (1/duty cycle)

### 2. For U-NII-3 band:

- a) Set span to encompass the entire emission bandwidth (EBW) of the signal.
- b) Set RBW = 500 kHz, Set VBW ≥ 3 RBW, Detector = RMS
- c) Use the peak marker function to determine the maximum power level in any 500 kHz band segment within the fundamental EBW.
- d) Sweep time = auto, trigger set to "free run".
- e) Trace average at least 100 traces in power averaging mode.
- f) Record the max value and add 10 log (1/duty cycle)

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

**Test Setup:** Refer to section 4.5.3 for details. **Instruments Used:** Refer to section 3 for details

**Test Mode:** Transmitter mode

Test Results: Pass

**Test Data:** 

## Directional gain and the maximum output power limit.

## RSS-247 Issue 2:

| 1100 E+7 1350C E. |                     |                                    |
|-------------------|---------------------|------------------------------------|
| Frequency Band    | Antenna Gain (dBi)) | PSD Limits (dBm/MHz or dBm/500kHz) |
| U-NII-1           | -4.04               | 10.00                              |
| U-NII-2A          | -3.89               | 11.00                              |
| U-NII-2C          | -3.77               | 11.00                              |
| U-NII-3           | -4.09               | 30.00                              |

#### FCC 47 CFR Part 15 Subpart E:

| Frequency Band | Antenna Gain (dBi)) | PSD Limits (dBm/MHz or dBm/500kHz) |
|----------------|---------------------|------------------------------------|
| U-NII-1        | -4.04               | 11.00                              |
| U-NII-2A       | -3.89               | 11.00                              |
| U-NII-2C       | -3.77               | 11.00                              |
| U-NII-3        | -4.09               | 30.00                              |

Page 51 of 119 Report No.: 190518039RFC-4

# Frequency band 5150-5250 MHz RSS-247 Issue 2

| Mode                 | Channel/ Frequency<br>(MHz) | e.i.r.p. spectral<br>density (dBm/MHz) | Limit<br>(dBm/MHz) | Pass /<br>Fail |
|----------------------|-----------------------------|----------------------------------------|--------------------|----------------|
|                      | 36 (5180)                   | -0.01                                  | 10                 | Pass           |
| IEEE 802.11a         | 44 (5220)                   | 0.02                                   | 10                 | Pass           |
|                      | 48 (5240)                   | 0.04                                   | 10                 | Pass           |
|                      | 36 (5180)                   | -0.52                                  | 10                 | Pass           |
| IEEE 802.11n-HT20    | 44 (5220)                   | -1.43                                  | 10                 | Pass           |
|                      | 48 (5240)                   | -1.61                                  | 10                 | Pass           |
| IEEE 000 44 × 11740  | 38 (5190)                   | -1.00                                  | 10                 | Pass           |
| IEEE 802.11n-HT40    | 46 (5230)                   | -1.45                                  | 10                 | Pass           |
|                      | 36 (5180)                   | -1.58                                  | 10                 | Pass           |
| IEEE 802.11ac-VHT20  | 44 (5220)                   | -1.43                                  | 10                 | Pass           |
|                      | 48 (5240)                   | -1.59                                  | 10                 | Pass           |
| JEEE 000 4400 VIJT40 | 38 (5190)                   | -1.14                                  | 10                 | Pass           |
| IEEE 802.11ac-VHT40  | 46 (5230)                   | -1.44                                  | 10                 | Pass           |
| IEEE 802.11ac-VHT80  | 42 (5210)                   | -11.05                                 | 10                 | Pass           |

### Remark:

FCC 47 CFR Part 15 Subpart E

| 100 +1 01 K 1 art 13 0ar | pair =                |                                  |            |           |                |
|--------------------------|-----------------------|----------------------------------|------------|-----------|----------------|
| Mode                     | Channel/<br>Frequency | Power spectral density (dBm/MHz) |            | Limit     | Pass /<br>Fail |
|                          | (MHz)                 | Meas PSD                         | Corr'd PSD | (dBm/MHz) | Ган            |
|                          | 36 (5180)             | 3.279                            | 4.03       | 11        | Pass           |
| IEEE 802.11a             | 44 (5220)             | 3.309                            | 4.06       | 11        | Pass           |
|                          | 48 (5240)             | 3.327                            | 4.08       | 11        | Pass           |
|                          | 36 (5180)             | 2.672                            | 3.52       | 11        | Pass           |
| IEEE 802.11n-HT20        | 44 (5220)             | 1.761                            | 2.61       | 11        | Pass           |
|                          | 48 (5240)             | 1.582                            | 2.43       | 11        | Pass           |
| IEEE 000 11n HT40        | 38 (5190)             | 1.563                            | 3.04       | 11        | Pass           |
| IEEE 802.11n-HT40        | 46 (5230)             | 1.111                            | 2.59       | 11        | Pass           |
|                          | 36 (5180)             | 1.672                            | 2.46       | 11        | Pass           |
| IEEE 802.11ac-VHT20      | 44 (5220)             | 1.817                            | 2.61       | 11        | Pass           |
|                          | 48 (5240)             | 1.657                            | 2.45       | 11        | Pass           |
| JEEE 902 1100 V/HT40     | 38 (5190)             | 1.409                            | 2.90       | 11        | Pass           |
| IEEE 802.11ac-VHT40      | 46 (5230)             | 1.109                            | 2.60       | 11        | Pass           |
| IEEE 802.11ac-VHT80      | 42 (5210)             | -9.644                           | -7.00      | 11        | Pass           |

## Remark:

1. Power spectral density = Conducted power spectral density + Duty Cycle Factor

e.i.r.p. spectral density = Power spectral density + Duty Cycle Factor + Antenna Gain



Frequency band 5250-5350 MHz

| Mode                | Channel/<br>Frequency | Power spectral density (dBm/MHz) |            | Limit<br>(dBm/MHz) | Pass /<br>Fail |
|---------------------|-----------------------|----------------------------------|------------|--------------------|----------------|
|                     | (MHz)                 | Meas PSD                         | Corr'd PSD | (ubili/winz)       | Ган            |
| IEEE 802.11a        | 52 (5260)             | 2.684                            | 3.43       | 11                 | Pass           |
|                     | 60 (5300)             | 2.831                            | 3.58       | 11                 | Pass           |
|                     | 64 (5320)             | 1.433                            | 2.18       | 11                 | Pass           |
| IEEE 802.11n-HT20   | 52 (5260)             | 3.443                            | 4.29       | 11                 | Pass           |
|                     | 60 (5300)             | 3.036                            | 3.89       | 11                 | Pass           |
|                     | 64 (5320)             | 3.011                            | 3.86       | 11                 | Pass           |
| IEEE 802.11n-HT40   | 54 (5270)             | 0.564                            | 2.04       | 11                 | Pass           |
|                     | 62 (5310)             | 0.104                            | 1.58       | 11                 | Pass           |
| IEEE 802.11ac-VHT20 | 52 (5260)             | 3.212                            | 4.00       | 11                 | Pass           |
|                     | 60 (5300)             | 2.778                            | 3.57       | 11                 | Pass           |
|                     | 64 (5320)             | 3.224                            | 4.01       | 11                 | Pass           |
| IEEE 802.11ac-VHT40 | 54 (5270)             | 0.304                            | 1.79       | 11                 | Pass           |
|                     | 62 (5310)             | 0.003                            | 1.49       | 11                 | Pass           |
| IEEE 802.11ac-VHT80 | 58 (5290)             | -9.773                           | -7.13      | 11                 | Pass           |

### Remark:

1. Power spectral density = Conducted power spectral density + Duty Cycle Factor

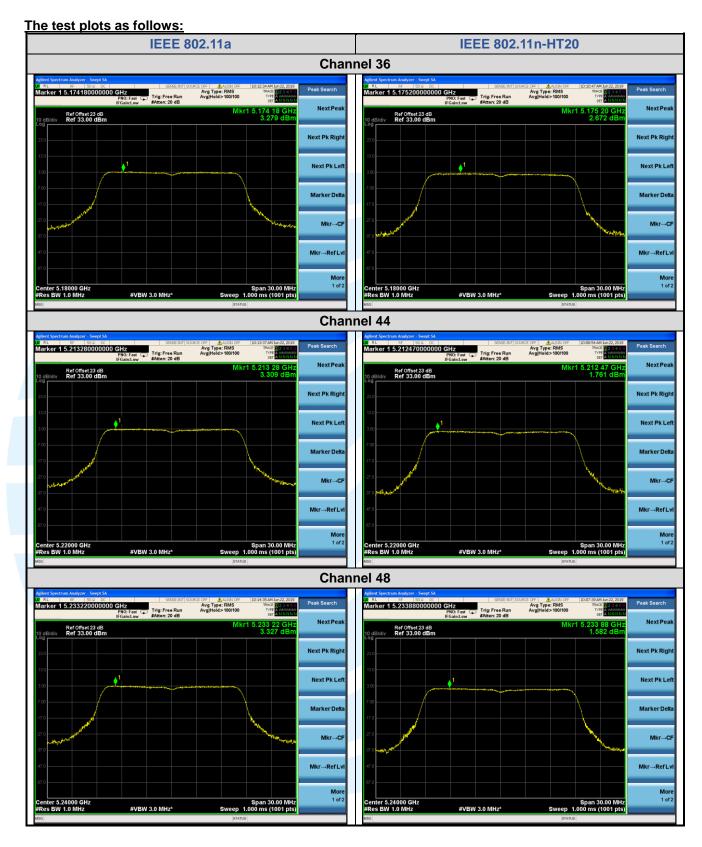
Frequency bands 5470-5725 MHz (RSS-247 Issue 2 Not including 5600-5650 MHz)

| Mode                    | Channel/<br>Frequency | Power spectral density<br>(dBm/MHz) |            | Limit     | Pass / |
|-------------------------|-----------------------|-------------------------------------|------------|-----------|--------|
|                         | (MHz)                 | Meas PSD                            | Corr'd PSD | (dBm/MHz) | Fail   |
| IEEE 802.11a            | 100 (5500)            | 0.644                               | 1.39       | 11        | Pass   |
|                         | 116 (5580)            | 1.433                               | 2.18       | 11        | Pass   |
|                         | 140 (5700)            | 0.877                               | 1.63       | 11        | Pass   |
| IEEE 802.11n-HT20       | 100 (5500)            | -0.846                              | 0.00       | 11        | Pass   |
|                         | 116 (5580)            | -0.151                              | 0.70       | 11        | Pass   |
|                         | 140 (5700)            | -0.154                              | 0.70       | 11        | Pass   |
| IEEE 802.11n-HT40       | 102 (5510)            | -6.761                              | -5.28      | 11        | Pass   |
|                         | 110 (5550)            | -6.323                              | -4.84      | 11        | Pass   |
|                         | 134 (5670)            | -6.576                              | -5.10      | 11        | Pass   |
| IEEE 802.11ac-<br>VHT20 | 100 (5500)            | -0.665                              | 0.12       | 11        | Pass   |
|                         | 116 (5580)            | -0.105                              | 0.68       | 11        | Pass   |
|                         | 140 (5700)            | 0.197                               | 0.99       | 11        | Pass   |
| IEEE 802.11ac-<br>VHT40 | 102 (5510)            | -6.909                              | -5.42      | 11        | Pass   |
|                         | 110 (5550)            | -6.296                              | -4.81      | 11        | Pass   |
|                         | 134 (5670)            | -6.608                              | -5.12      | 11        | Pass   |
| IEEE 802.11ac-<br>VHT80 | 106 (5530)            | -11.088                             | -8.45      | 11        | Pass   |

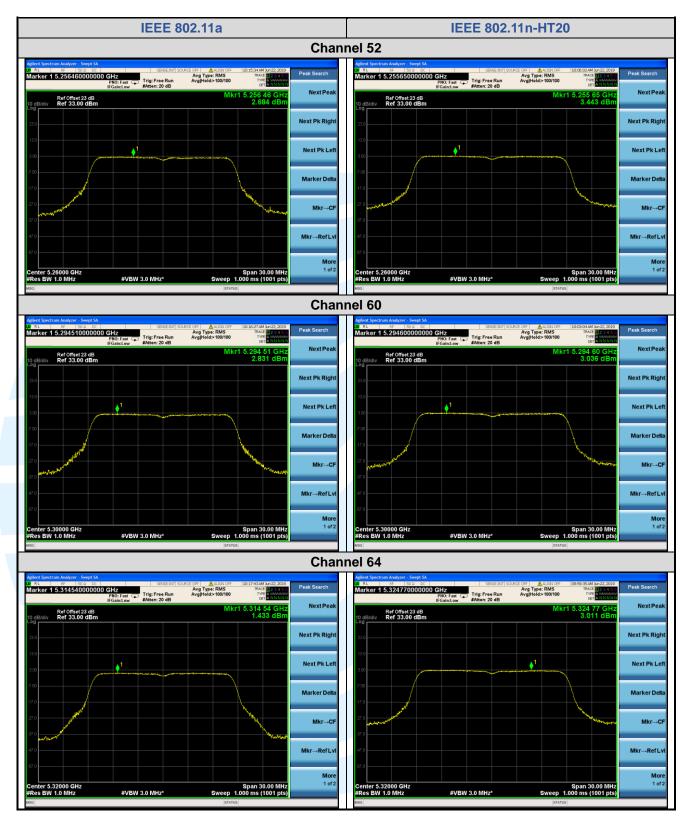
#### Remark:

1. Power spectral density = Conducted power spectral density + Duty Cycle Factor




Frequency band 5725-5850 MHz

| Mode                    | Channel/ Power specti<br>Frequency (dBm/50 |          |            | Limit        | Pass / |
|-------------------------|--------------------------------------------|----------|------------|--------------|--------|
|                         | (MHz)                                      | Meas PSD | Corr'd PSD | (dBm/500KHz) | Fail   |
| IEEE 802.11a            | 149 (5745)                                 | 7.847    | 8.60       | 30           | Pass   |
|                         | 157 (5785)                                 | 8.739    | 9.49       | 30           | Pass   |
|                         | 165 (5825)                                 | 8.209    | 8.96       | 30           | Pass   |
| IEEE 802.11n-HT20       | 149 (5745)                                 | 9.294    | 10.14      | 30           | Pass   |
|                         | 157 (5785)                                 | 9.227    | 10.08      | 30           | Pass   |
|                         | 165 (5825)                                 | 8.611    | 9.46       | 30           | Pass   |
| IEEE 802.11n-HT40       | 151 (5755)                                 | 5.627    | 7.11       | 30           | Pass   |
|                         | 159 (5795)                                 | 6.562    | 8.04       | 30           | Pass   |
| IEEE 802.11ac-<br>VHT20 | 149 (5745)                                 | 9.250    | 10.04      | 30           | Pass   |
|                         | 157 (5785)                                 | 9.153    | 9.94       | 30           | Pass   |
|                         | 165 (5825)                                 | 9.341    | 10.13      | 30           | Pass   |
| IEEE 802.11ac-<br>VHT40 | 151 (5755)                                 | 6.679    | 8.17       | 30           | Pass   |
|                         | 159 (5795)                                 | 6.771    | 8.26       | 30           | Pass   |
| IEEE 802.11ac-<br>VHT80 | 155 (5775)                                 | 5.233    | 7.87       | 30           | Pass   |


## Remark:

1. Power spectral density = Conducted power spectral density + Duty Cycle Factor

