

Appendix B. Calibration Data Sheets & Probe Calibration Verification (KDB #450824)

E-Field Probe 3020
Dipole Antenna D835V2 481
Dipole Antenna D1900V2 5d038

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client **KTL (Dymstec)**

Certificate No: **ES3-3020_Jul08**

CALIBRATION CERTIFICATE

Object	ES3DV2 - SN:3020		
Calibration procedure(s)	QA CAL-01.v6 and QA CAL-23.v3 Calibration procedure for dosimetric E-field probes		
Calibration date:	July 21, 2008		
Condition of the calibrated item	In Tolerance		
<p>This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.</p> <p>All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.</p> <p>Calibration Equipment used (M&TE critical for calibration)</p>			
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MY41495277	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MY41498087	1-Apr-08 (No. 217-00788)	Apr-09
Reference 3 dB Attenuator	SN: S5054 (3c)	1-Jul-08 (No. 217-00865)	Jul-09
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-08 (No. 217-00787)	Apr-09
Reference 30 dB Attenuator	SN: S5129 (30b)	1-Jul-08 (No. 217-00866)	Jul-09
Reference Probe ES3DV2	SN: 3013	2-Jan-08 (No. ES3-3013_Jan08)	Jan-09
DAE4	SN: 660	3-Sep-07 (No. DAE4-660_Sep07)	Sep-08
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-07)	In house check: Oct-08
Calibrated by:	Name Katja Pokovic	Function Technical Manager	Signature
Approved by:	Niels Kuster	Quality Manager	
Issued: July 21, 2008			
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.			

Calibration Laboratory of

Schmid & Partner

Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
NORM x,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORM x,y,z
DCP	diode compression point
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- $NORMx,y,z$: Assessed for E-field polarization $\vartheta = 0$ ($f < 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). $NORMx,y,z$ are only intermediate values, i.e., the uncertainties of $NORMx,y,z$ does not effect the E^2 -field uncertainty inside TSL (see below *ConvF*).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- $DCPx,y,z$: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORMx,y,z * ConvF$ whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ES3DV2

SN:3020

Manufactured:	December 5, 2002
Last calibrated:	July 18, 2007
Recalibrated:	July 21, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ES3DV2 SN:3020

Sensitivity in Free Space ^A			Diode Compression ^B	
NormX	1.10 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$	DCP X	95 mV
NormY	0.99 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$	DCP Y	95 mV
NormZ	1.03 \pm 10.1%	$\mu\text{V}/(\text{V}/\text{m})^2$	DCP Z	95 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz Typical SAR gradient: 5 % per mm

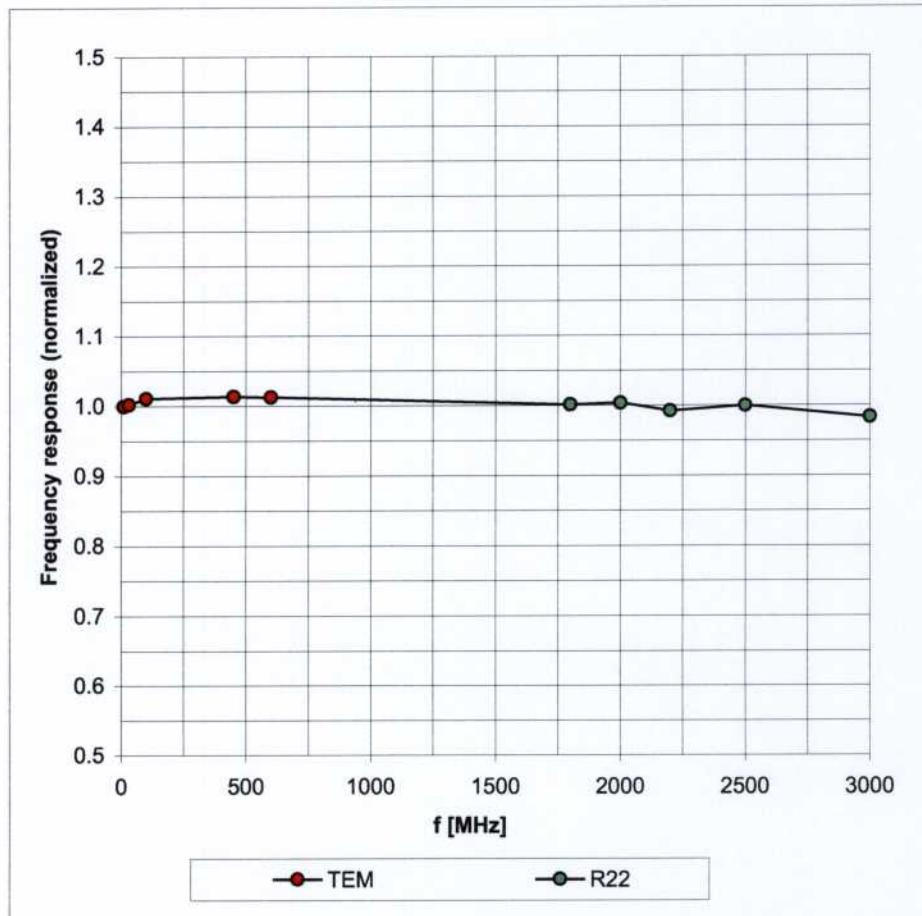
Sensor Center to Phantom Surface Distance	3.0 mm	4.0 mm
SAR _{be} [%] Without Correction Algorithm	7.1	4.3
SAR _{be} [%] With Correction Algorithm	0.8	0.5

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Center to Phantom Surface Distance	3.0 mm	4.0 mm
SAR _{be} [%] Without Correction Algorithm	6.8	4.1
SAR _{be} [%] With Correction Algorithm	0.8	0.6

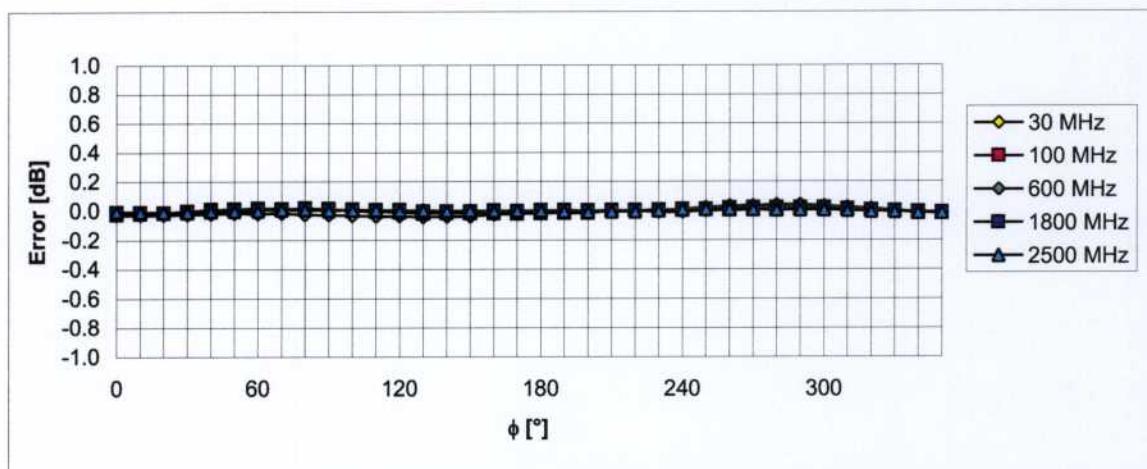
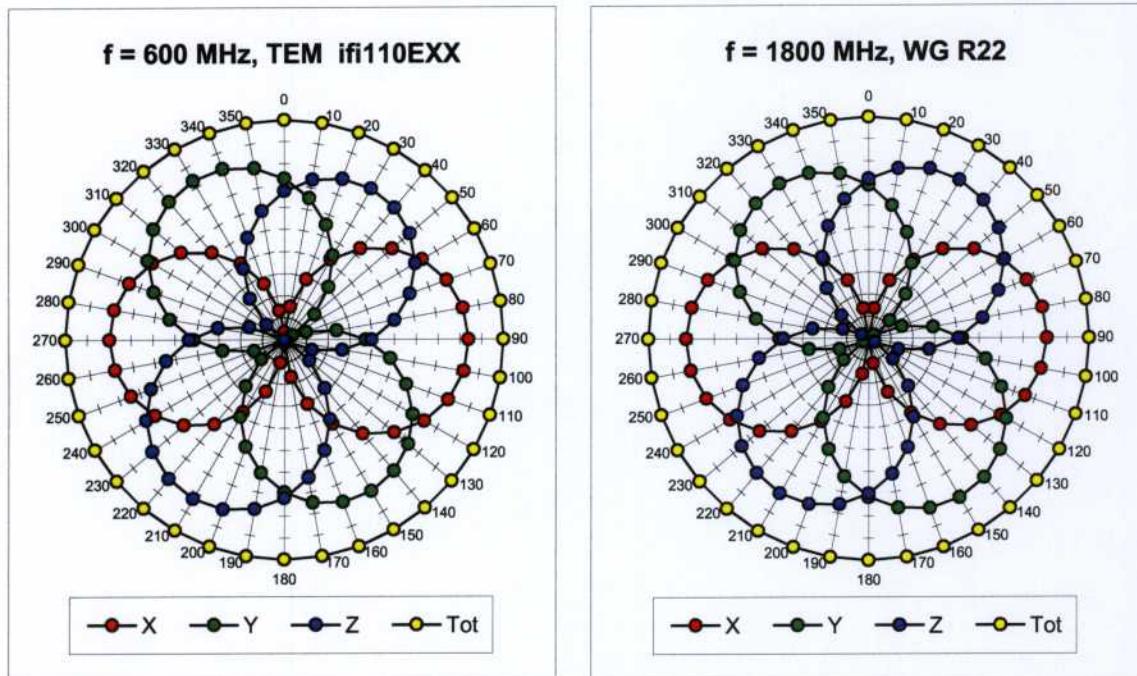
Sensor Offset

Probe Tip to Sensor Center 2.1 mm


The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

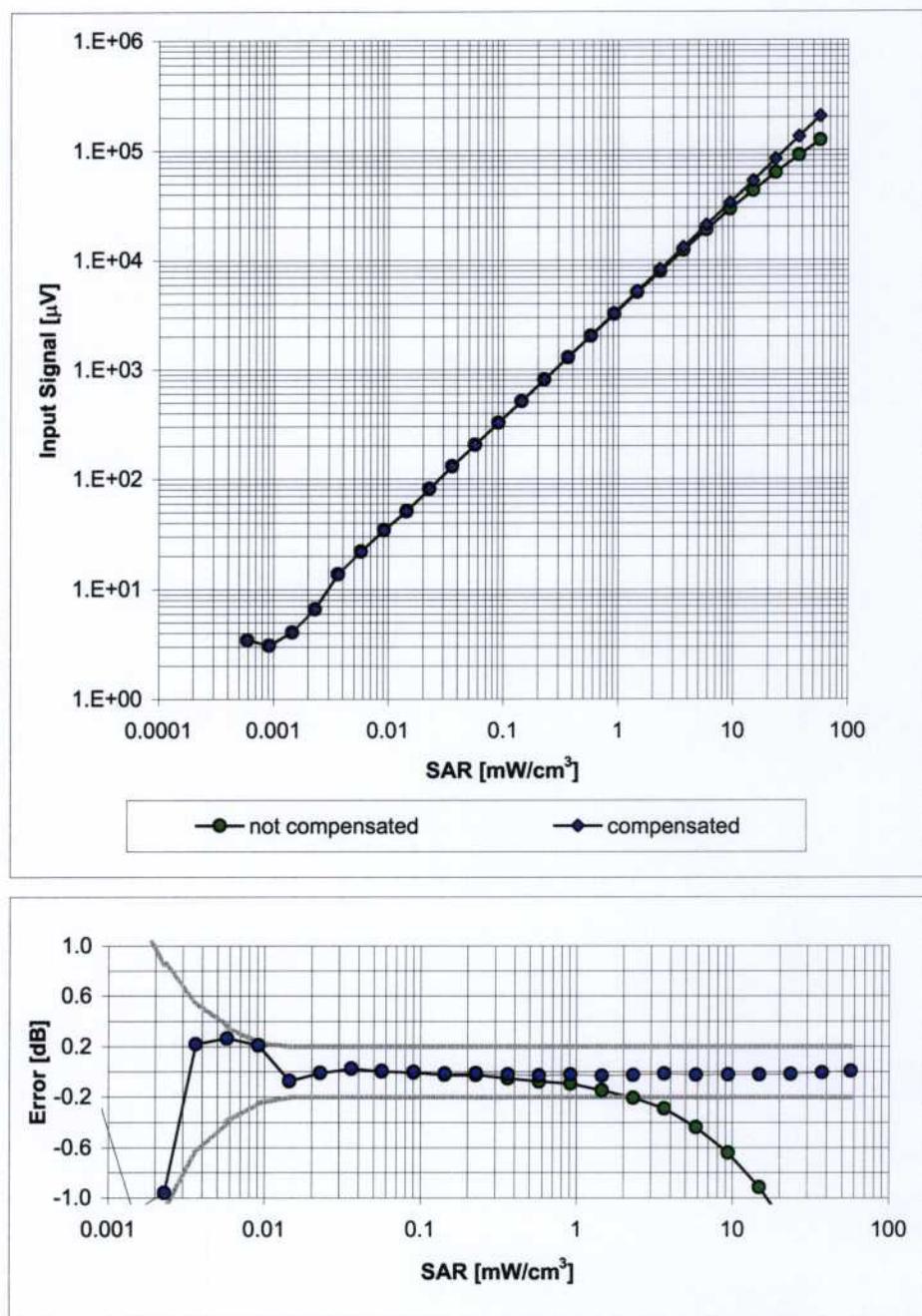
^A The uncertainties of NormX,Y,Z do not affect the E^2 -field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

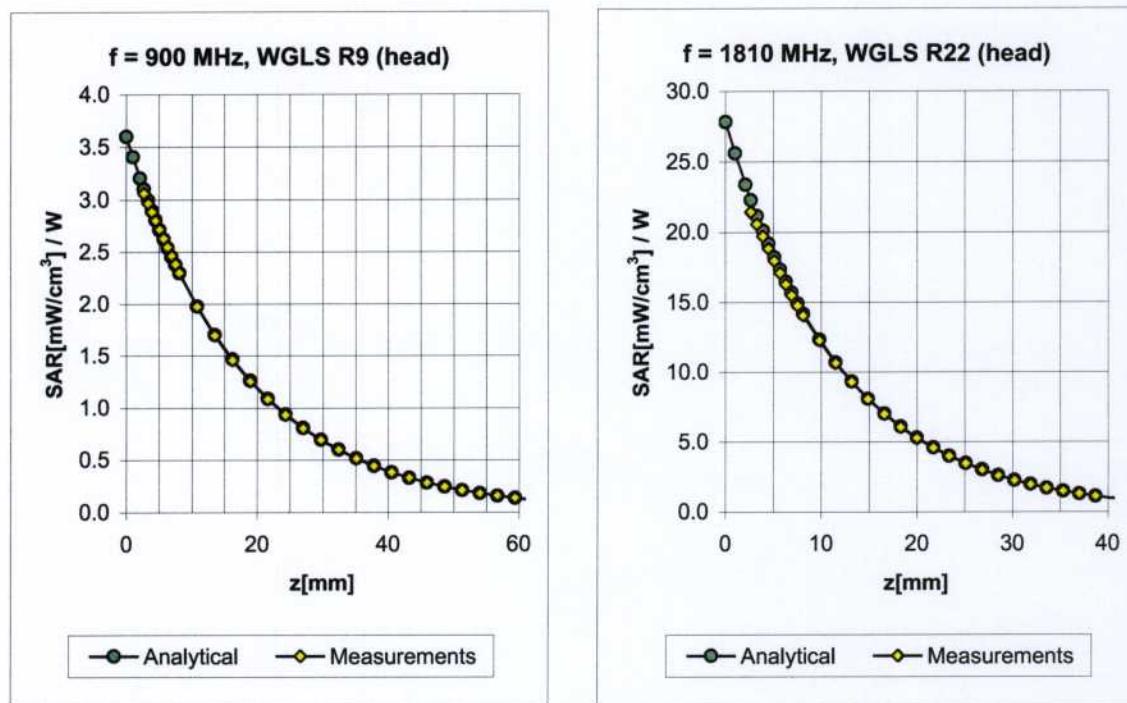


Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^\circ$

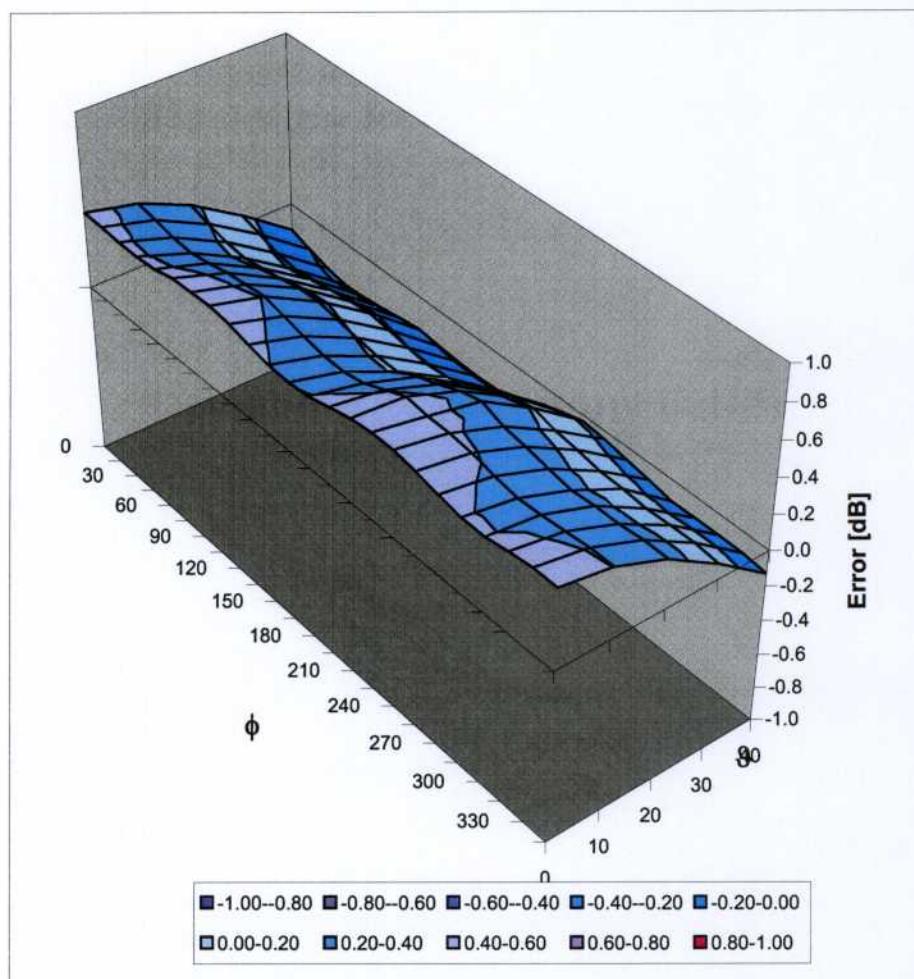
Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)


Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.52	1.43	6.12	± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.48	1.48	5.03	± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.51	1.38	4.77	± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.52	1.31	4.33	± 11.0% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.54	1.37	6.21	± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.38	1.84	4.58	± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.45	1.42	3.82	± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ, θ), $f = 900$ MHz

Uncertainty of Spherical Isotropy Assessment: $\pm 2.6\%$ (k=2)

SAR Probe Calibration Verification(KDB #450824)

The SAR Measurements By the E-field Probe ES3DV2-SN:3020 exceed 50 % of ± 50 MHz > 300 MHz.
According to SAR Probe Calibration of KDB #450824 additional steps are required like below.

The following procedures are recommended for measurements at 150 MHz ~ 3 GHz to minimize probe calibration and tissue dielectric parameter discrepancies. In general, SAR measurements below 300 MHz should be within ± 50 MHz of the probe calibration frequency. At 300 MHz to 3 GHz, measurements should be within ± 100 MHz of the probe calibration frequency.

Measurements exceeding 50% of these intervals, ± 25 MHz < 300 MHz and ± 50 MHz > 300 MHz should follow these additional steps. (1) When the actual tissue dielectric parameters used for probe calibration are available, the differences for ϵ_r and σ between probe calibration and routine measurements should each be $\leq \pm 5\%$ while also satisfying the required $\pm 5\%$ tolerances in target dielectric parameters. (2) **When nominal tissue dielectric parameters are specified in the probe calibration data, the tissue dielectric parameters measured for routine measurements should be less than the target ϵ_r and higher than the target σ values to minimize SAR underestimations. Otherwise, a thorough analysis of the effective frequency interval supported by the probe calibration and dielectric medium should be included in the SAR report to substantiate the test results.**

Alternatively, the measured 1-g SAR may be compensated with respect to $+5\%$ tolerances in ϵ_r and -5% tolerances in σ , computed according to valid SAR sensitivity data, to reduce SAR underestimation and maintain conservativeness.

The probe calibration was performed at nominal tissue dielectric parameters. The following parameters are declared in the probe calibration certificate on page 8:

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
900	$\pm 50 / \pm 100$	Head	$41.5 \pm 5\%$	$0.97 \pm 5\%$	0.52	1.43	6.12	$\pm 11.0\%$ (k=2)
1810	$\pm 50 / \pm 100$	Head	$40.0 \pm 5\%$	$1.40 \pm 5\%$	0.48	1.48	5.03	$\pm 11.0\%$ (k=2)
1950	$\pm 50 / \pm 100$	Head	$40.0 \pm 5\%$	$1.40 \pm 5\%$	0.51	1.38	4.77	$\pm 11.0\%$ (k=2)
2450	$\pm 50 / \pm 100$	Head	$39.2 \pm 5\%$	$1.80 \pm 5\%$	0.52	1.31	4.33	$\pm 11.0\%$ (k=2)
835	$\pm 50 / \pm 100$	Body	$55.2 \pm 5\%$	$0.97 \pm 5\%$	0.54	1.37	6.21	$\pm 11.0\%$ (k=2)
1950	$\pm 50 / \pm 100$	Body	$53.3 \pm 5\%$	$1.52 \pm 5\%$	0.38	1.84	4.58	$\pm 11.0\%$ (k=2)
2450	$\pm 50 / \pm 100$	Body	$52.7 \pm 5\%$	$1.95 \pm 5\%$	0.45	1.42	3.82	$\pm 11.0\%$ (k=2)

This is the Permittivity & Conductivity ranges of The E-field Probe ES3DV2-SN:3020.

General Mechanical Surface Detection Sensitivity Conversion Factors				
New...		Delete		Properties...
Name	Freq. Range (MHz)	Conductivity Range	Permittivity Range	
1810 (Head)	1710 - 1910	1.29 - 1.47	38 - 42	
1950 (Body)	1850 - 2050	1.44 - 1.69	50.6 - 56	
1950 (Head)	1910 - 2050	1.33 - 1.55	38 - 42	
2450 (Body)	2350 - 2550	1.85 - 2.12	50.1 - 55.3	
2450 (Head)	2350 - 2550	1.71 - 1.93	37.2 - 41.2	
835 (Body)	735 - 935	0.92 - 1.1	52.4 - 58	
900 (Head)	800 - 1000	0.86 - 1.03	39.4 - 43.6	

The Frequencies of 900/1810 Head and 1950 Body exceeds the 50% of ± 50 MHz > 300 MHz so the additional steps are below:

1) 900 MHz Head

Conversion

Name:	900 (Head)			OK
	X:	Y:	Z:	Cancel
Conversion factor:	6.12	6.12	6.12	
Alpha:	0.52	0.52	0.52	
Delta:	1.43	1.43	1.43	
Frequency range:	800	to	1000	MHz
Permittivity range:	39.4	to	43.6	
Conductivity range:	0.86	to	1.03	S/m
Calibrated for:	900	MHz	Calibrated for:	41.5
Calibrated for:	0.97	S/m	Calibrated for:	

At the probe extreme frequencies the following are true: at 800 MHz the permittivity and the conductivity are 39.4 and 0.86 respectively. At 1000 MHz the permittivity and conductivity are 43.6 and 1.03 respectively. The probe was calibrated at these parameters in order to cover the frequency range 800 MHz to 1000 MHz.

The measured fluid dielectric parameters for 835 MHz head, performed during test values were all within $\pm 5\%$ of the Target values.

The tissue dielectric parameters measured for routine measurements at 835 MHz head are less than target parameter for 835 MHz ϵ_r and higher than the target parameter for 835 MHz σ .

The probe conversion factor and its frequency response, with respect to the tissue dielectric media used during the probe calibration and routine measurements was examined to determine if the effective frequency interval is adequate for the intended measurements to satisfy protocol requirements. The frequency range at which the probe was calibrated for 900MHz covered 800MHz to 1000 MHz and the dielectric parameters required for 824. to 848.8 MHz were all within the calibrated range of the probe dielectric parameters.

2) 1810 MHz Head

Conversion

Name:	1810 (Head)			OK
	X:	Y:	Z:	Cancel
Conversion factor:	5.03	5.03	5.03	
Alpha:	0.48	0.48	0.48	
Delta:	1.48	1.48	1.48	
Frequency range:	1710	to	1910	MHz
Permittivity range:	38	to	42	
Conductivity range:	1.29	to	1.47	S/m
Calibrated for:	1810	MHz	Calibrated for:	40
Calibrated for:	1.4	S/m	Calibrated for:	

At the probe extreme frequencies the following are true: at 1710 MHz the permittivity and the conductivity are 38.0 and 1.29 respectively. At 1910 MHz the permittivity and conductivity are 42.0 and 1.47 respectively. The probe was calibrated at these parameters in order to cover the frequency range 1710 MHz to 1910 MHz.

The measured fluid dielectric parameters for 1900 MHz head, performed during test values were all within $\pm 5\%$ of the Target values.

The tissue dielectric parameters measured for routine measurements at 1900 MHz head are less than target parameter for 1900 MHz ϵ_r and higher than the target parameter for 1900 MHz σ .

The probe conversion factor and its frequency response, with respect to the tissue dielectric media used during the probe calibration and routine measurements was examined to determine if the effective frequency interval is adequate for the intended measurements to satisfy protocol requirements. The frequency range at which the probe was calibrated for 1810MHz covered 1710MHz to 1910 MHz and the dielectric parameters required for 1850.2 to 1909.8 MHz were all within the calibrated range of the probe dielectric parameters.

3) 1950 MHz Body

Conversion

Name: <input type="text" value="1950 (Body)"/>			<input type="button" value="OK"/>
X:	<input type="text" value="4.58"/>	Y:	<input type="text" value="4.58"/>
Z:	<input type="text" value="4.58"/>		
Conversion factor:	<input type="text" value="4.58"/>	<input type="text" value="4.58"/>	<input type="text" value="4.58"/>
Alpha:	<input type="text" value="0.38"/>	<input type="text" value="0.38"/>	<input type="text" value="0.38"/>
Delta:	<input type="text" value="1.84"/>	<input type="text" value="1.84"/>	<input type="text" value="1.84"/>
Frequency range:	<input type="text" value="1850"/>	to <input type="text" value="2050"/>	MHz
Permittivity range:	<input type="text" value="50.6"/>	to <input type="text" value="56"/>	Calibrated for: <input type="text" value="1950"/> MHz
Conductivity range:	<input type="text" value="1.44"/>	to <input type="text" value="1.69"/>	S/m
			Calibrated for: <input type="text" value="53.3"/> S/m

At the probe extreme frequencies the following are true: at 1850 MHz the permittivity and the conductivity are 50.6 and 1.44 respectively. At 2050 MHz the permittivity and conductivity are 56.0 and 1.69 respectively. The probe was calibrated at these parameters in order to cover the frequency range 1850 MHz to 2050 MHz.

The measured fluid dielectric parameters for 1900 MHz Body, performed during test values were all within $\pm 5\%$ of the Target values.

The tissue dielectric parameters measured for routine measurements at 1900 MHz Body are less than target parameter for 1900 MHz ϵ_r and higher than the target parameter for 1900 MHz σ .

The probe conversion factor and its frequency response, with respect to the tissue dielectric media used during the probe calibration and routine measurements was examined to determine if the effective frequency interval is adequate for the intended measurements to satisfy protocol requirements. The frequency range at which the probe was calibrated for 1950MHz covered 1850MHz to 2050 MHz and the dielectric parameters required for 1850.2 to 1909.8 MHz were all within the calibrated range of the probe dielectric parameters.

The system manufacture has carried out addition steps as detailed on page 4 of KDB450824. These are detailed in the calibration certificates. The measured SAR values in the report are all below 10% of the SAR limit.

The measurement within the required frequency interval satisfy and expanded probe calibration uncertainty ($k=2$) $\leq 15\%$ for all measurement conditions. Please refer to SAR report for probe and dipole calibration certificates produce by the system manufacturer.

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz Typical SAR gradient: 5 % per mm

Sensor Center to Phantom Surface Distance	3.0 mm	4.0 mm
SAR _{be} [%] Without Correction Algorithm	7.1	4.3
SAR _{be} [%] With Correction Algorithm	0.8	0.5

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Center to Phantom Surface Distance	3.0 mm	4.0 mm
SAR _{be} [%] Without Correction Algorithm	6.8	4.1
SAR _{be} [%] With Correction Algorithm	0.8	0.6

Sensor Offset

Probe Tip to Sensor Center **2.1 mm**

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client **KTL (Dymstec)**

Certificate No: **D835V2-481_May07**

CALIBRATION CERTIFICATE

Object **D835V2 - SN: 481**

Calibration procedure(s) **QA CAL-05.v6**
Calibration procedure for dipole validation kits

Calibration date: **May 24, 2007**

Condition of the calibrated item **In Tolerance**

This calibration certificate documents the traceability to national standards to realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	03-Oct-06 (METAS, No. 217-00608)	Oct-07
Power sensor HP 8481A	US37292783	03-Oct-06 (METAS, No. 217-00608)	Oct-07
Reference 20 dB Attenuator	SN: 5086 (20g)	10-Aug-06 (METAS, No 217-00591)	Aug-07
Reference 10 dB Attenuator	SN: 5047.2 (10r)	10-Aug-06 (METAS, No 217-00591)	Aug-07
Reference Probe ET3DV6 (HF)	SN 1507	19-Oct-06 (SPEAG, No. ET3-1507_Oct06)	Oct-07
DAE4	SN 601	30-Jan-07 (SPEAG, No. DAE4-601_Jan07)	Jan-08
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (SPEAG, in house check Oct-05)	In house check: Oct-07
RF generator Agilent E4421B	MY41000675	11-May-05 (SPEAG, in house check Nov-05)	In house check: Nov-07
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (SPEAG, in house check Oct-06)	In house check: Oct-07

Calibrated by: Name **Claudio Leubler** Function **Laboratory Technician**

Signature

Approved by: Name **Katja Pokovic** Function **Technical Manager**

Signature

Issued: May 30, 2007

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- **Measurement Conditions:** Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- **Antenna Parameters with TSL:** The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- **Feed Point Impedance and Return Loss:** These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- **Electrical Delay:** One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- **SAR measured:** SAR measured at the stated antenna input power.
- **SAR normalized:** SAR as measured, normalized to an input power of 1 W at the antenna connector.
- **SAR for nominal TSL parameters:** The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	41.6 \pm 6 %	0.90 mho/m \pm 6 %
Head TSL temperature during test	(22.0 \pm 0.2) °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.30 mW / g
SAR normalized	normalized to 1W	9.20 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	9.21 mW / g \pm 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.51 mW / g
SAR normalized	normalized to 1W	6.04 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	6.05 mW / g \pm 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.8 Ω - 3.3 $j\Omega$
Return Loss	- 27.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.394 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	April 23, 2003

DASY4 Validation Report for Head TSL

Date/Time: 24.05.2007 11:49:09

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:481

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz;

Medium parameters used: $f = 835$ MHz; $\sigma = 0.9$ mho/m; $\epsilon_r = 41.6$; $\rho = 1000$ kg/m³

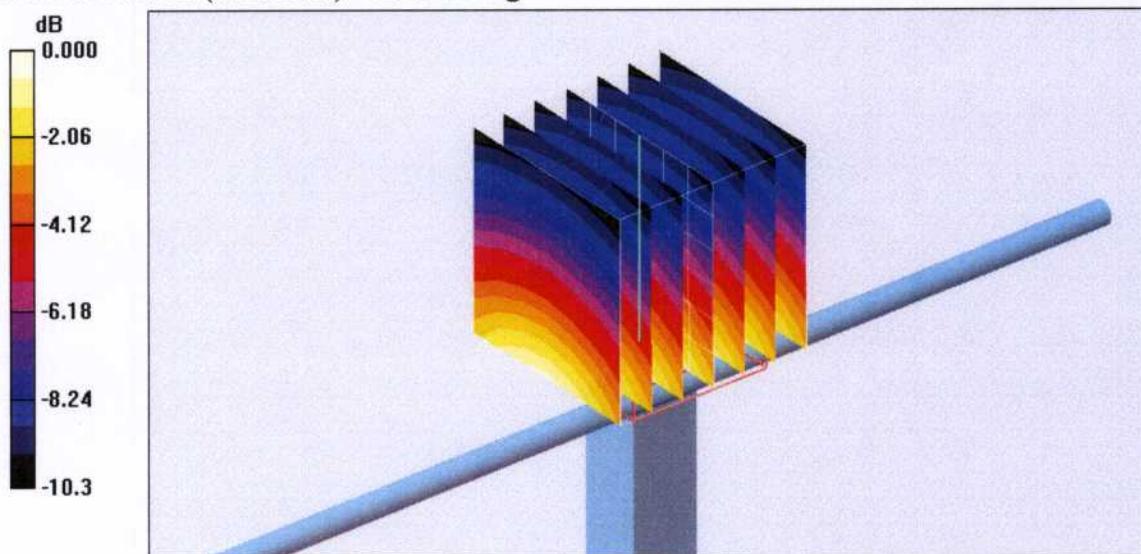
Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

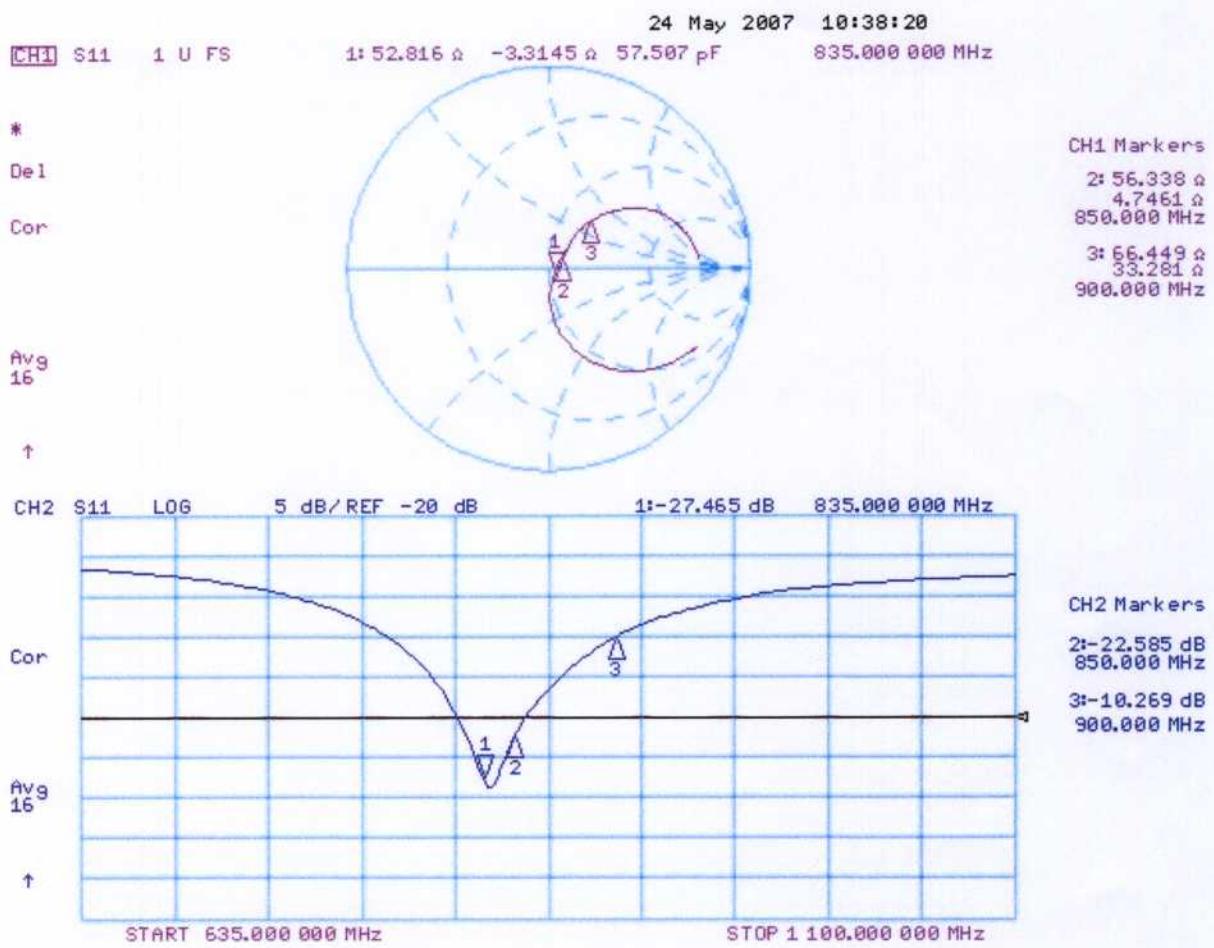
- Probe: ET3DV6 - SN1507 (HF); ConvF(6.09, 6.09, 6.09); Calibrated: 19.10.2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.01.2007
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; ;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.0 V/m; Power Drift = -0.015 dB

Peak SAR (extrapolated) = 3.30 W/kg


SAR(1 g) = 2.3 mW/g; SAR(10 g) = 1.51 mW/g

Maximum value of SAR (measured) = 2.49 mW/g

0 dB = 2.49mW/g

Impedance Measurement Plot for Head TSL

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: **SCS 108**

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Client **KTl (Dymstec)**

Certificate No: **D1900V2-5d038_Nov07**

CALIBRATION CERTIFICATE

Object **D1900V2 - SN: 5d038**

Calibration procedure(s) **QA CAL-05.v7**
 Calibration procedure for dipole validation kits

Calibration date: **November 20, 2007**

Condition of the calibrated item **In Tolerance**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	04-Oct-07 (METAS, No. 217-00736)	Oct-08
Power sensor HP 8481A	US37292783	04-Oct-07 (METAS, No. 217-00736)	Oct-08
Reference 20 dB Attenuator	SN: 5086 (20g)	07-Aug-07 (METAS, No 217-00718)	Aug-08
Reference 10 dB Attenuator	SN: 5047.2 (10r)	07-Aug-07 (METAS, No 217-00718)	Aug-08
Reference Probe ET3DV6 (HF)	SN: 1507	26-Oct-07 (SPEAG, No. ET3-1507_Oct07)	Oct-08
DAE4	SN 601	30-Jan-07 (SPEAG, No. DAE4-601_Jan07)	Jan-08
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (SPEAG, in house check Oct-07)	In house check: Oct-08
RF generator R&S SMT-06	100005	4-Aug-99 (SPEAG, in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (SPEAG, in house check Oct-07)	In house check: Oct-08

Calibrated by:	Name	Function	Signature
	Marcel Fehr	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: November 20, 2007

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TS	tissue simulating liquid
ConvF	sensitivity in TS / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TS:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TS parameters:* The measured TS parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	38.8 \pm 6 %	1.45 mho/m \pm 6 %
Head TSL temperature during test	(21.0 \pm 0.2) °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	9.84 mW / g
SAR normalized	normalized to 1W	39.4 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	38.0 mW / g \pm 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.13 mW / g
SAR normalized	normalized to 1W	20.5 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	20.1 mW / g \pm 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.3 Ω + 4.3 $j\Omega$
Return Loss	- 23.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.195 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 04, 2003

DASY4 Validation Report for Head TSL

Date/Time: 20.11.2007 13:46:09

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d038

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 38.8$; $\rho = 1000$ kg/m³

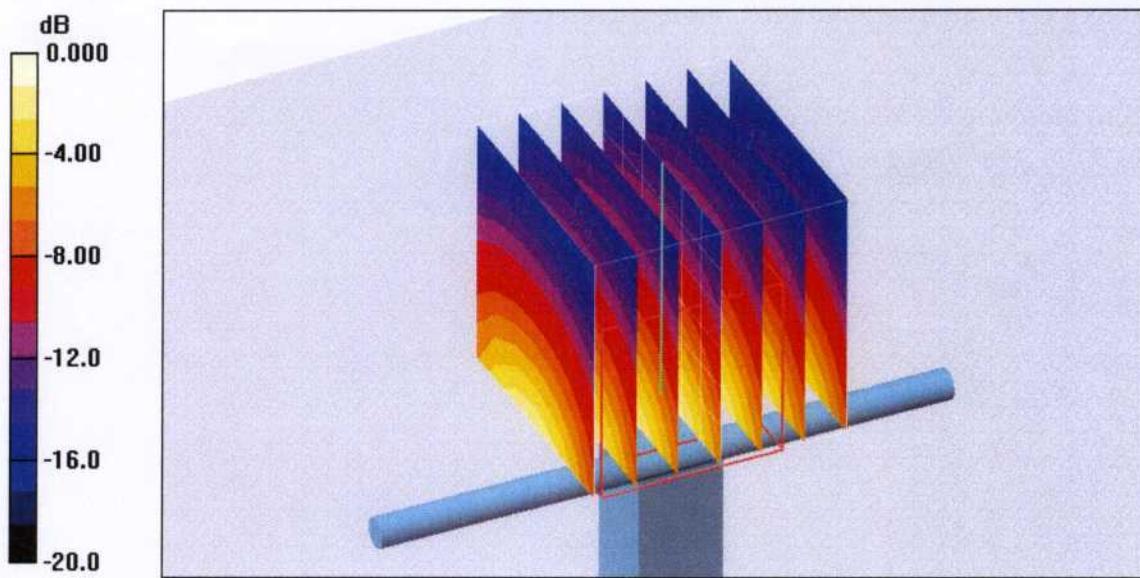
Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

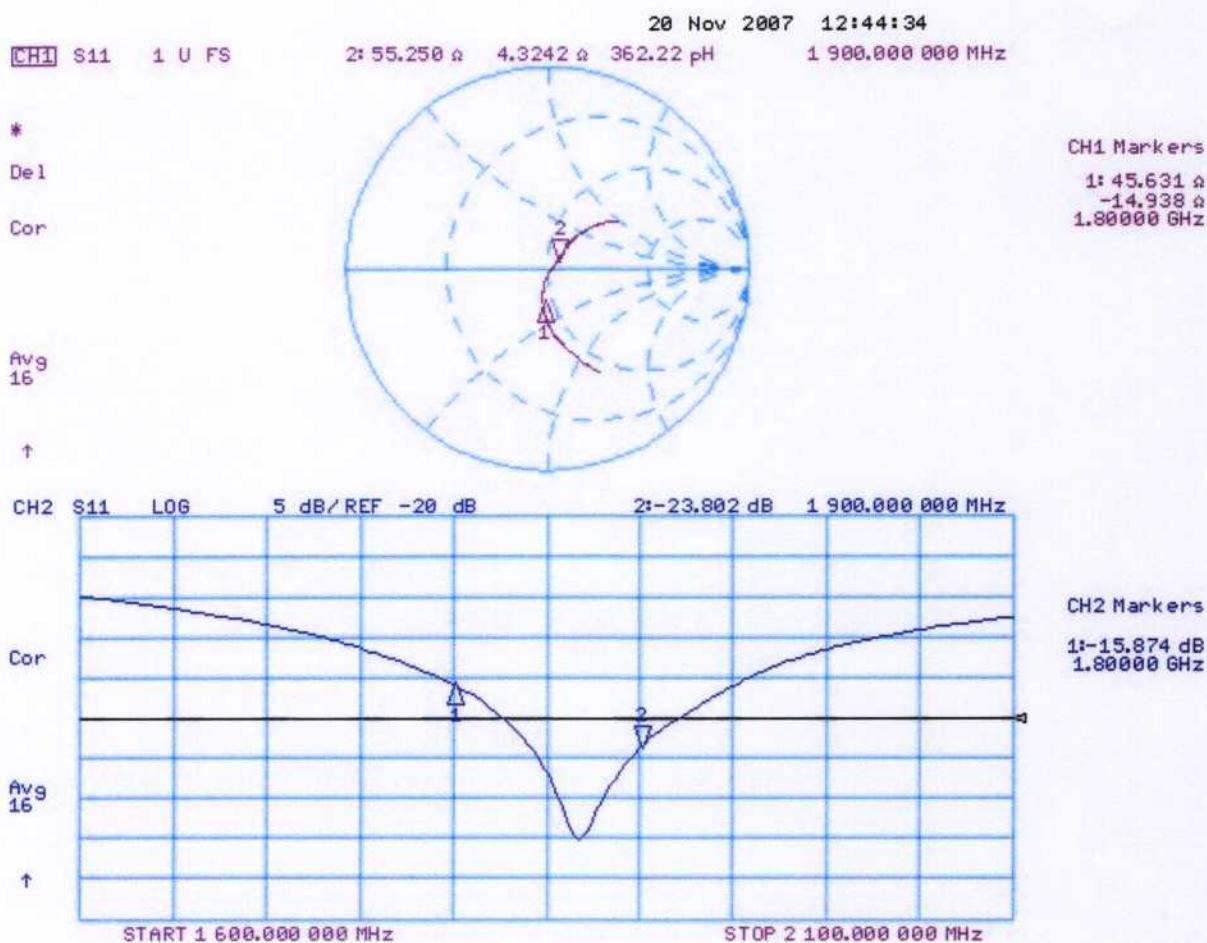
- Probe: ET3DV6 - SN1507 (HF); ConvF(4.86, 4.86, 4.86); Calibrated: 26.10.2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.01.2007
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; ;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.4 V/m; Power Drift = 0.019 dB

Peak SAR (extrapolated) = 17.4 W/kg


SAR(1 g) = 9.84 mW/g; SAR(10 g) = 5.13 mW/g

Maximum value of SAR (measured) = 11.2 mW/g

0 dB = 11.2mW/g

Impedance Measurement Plot for Head TSL

