

FCC CERTIFICATION
On Behalf of
Dongguan City Kingyou Electronics Co., Ltd.

FM Transmitter
Model No.: KY-A 012, KY-A 013

FCC ID: X9WKY-AFM

Prepared for : Dongguan City Kingyou Electronics Co., Ltd.
Address : No. 27, Sanjiang Industrial Park, Hengli Town, Dongguan,
Guangdong, China

Prepared by : Accurate Technology Co., Ltd.
Address : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.
Science & Industry Park, Nanshan, Shenzhen, Guangdong
P.R. China

Tel: (0755) 26503290
Fax: (0755) 26503396

Report Number : ATE20100356
Date of Test : March 11, 2010
Date of Report : April 6, 2010

TABLE OF CONTENTS

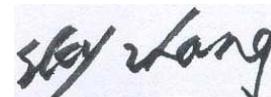
Description	Page
Test Report Certification	
1. GENERAL INFORMATION	4
1.1. Description of Device (EUT).....	4
1.2. Description of Test Facility	4
1.3. Measurement Uncertainty.....	5
2. MEASURING DEVICE AND TEST EQUIPMENT	6
3. SUMMARY OF TEST RESULTS.....	7
4. HARMONICS AND SPURIOUS RADIATED EMISSION FOR FCC PART 15 SECTION 15.239(C)	8
4.1. Block Diagram of Test Setup.....	8
4.2. The Emission Limit for section 15.239(c)	9
4.3. Configuration of EUT on Measurement	9
4.4. Operating Condition of EUT	10
4.5. Test Procedure	10
4.6. The Field Strength of Radiation Emission Measurement Results	11
5. FUNDAMENTAL RADIATED EMISSION FOR FCC PART 15 SECTION 15.239(B)	14
5.1. Block Diagram of Test Setup.....	14
5.2. The Emission Limit For Section 15.239(b)	14
5.3. EUT Configuration on Measurement	15
5.4. Operating Condition of EUT	15
5.5. Test Procedure	15
5.6. The Emission Measurement Result	16
6. OCCUPIED BANDWIDTH FOR FCC PART 15 SECTION 15.239(A).....	19
6.1. The Requirement For Section 15.239(a).....	19
6.2. EUT Configuration on Measurement	19
6.3. Operating Condition of EUT	19
6.4. Test Procedure	19
6.5. Test Result	20
7. TUNING RANGE	21
7.1. The Requirement For Section 15.239	21
7.2. EUT Configuration on Measurement	21
7.3. Operating Condition of EUT	21
7.4. Test Procedure	21
7.5. Test Result	22

APPENDIX I (TEST CURVES) (9 pages)

Test Report Certification

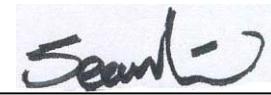
Applicant : Dongguan City Kingyou Electronics Co., Ltd.
 Manufacturer : Dongguan City Kingyou Electronics Co., Ltd.
 EUT Description : FM Transmitter
 (A) MODEL NO.: KY-A 012, KY-A 013
 (B) SERIAL NO.: N/A
 (C) POWER SUPPLY: DC 12V

Measurement Procedure Used:


FCC Rules and Regulations Part 15 Subpart C Section 15.239
ANSI 63.4: 2003

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.239 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.


Date of Test : March 11, 2010

Prepared by :

(Engineer)

Approved & Authorized Signer :

(Manager)

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT : FM Transmitter
 Model Number : KY-A 012, KY-A 013
 (Note: These samples are identical except the color of appearance is different.
 Therefore only model KY-A 012 is tested.)
 Power Supply : DC 12V
 Operate Frequency : 88.1-107.9MHz (step 0.1MHz)
 Applicant : Dongguan City Kingyou Electronics Co., Ltd.
 Address : No. 27, Sanjiang Industrial Park, Hengli Town, Dongguan,
 Guangdong, China
 Manufacturer : Dongguan City Kingyou Electronics Co., Ltd.
 Address : No. 27, Sanjiang Industrial Park, Hengli Town, Dongguan,
 Guangdong, China
 Date of sample received : March 1, 2010
 Date of Test : March 11, 2010

1.2. Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen
 Listed by FCC
 The Registration Number is 752051
 Listed by Industry Canada
 The Registration Number is 5077A-2
 Accredited by China National Accreditation Committee
 for Laboratories
 The Certificate Registration Number is L3193
 Name of Firm : ACCURATE TECHNOLOGY CO. LTD
 Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.
 Science & Industry Park, Nanshan, Shenzhen, Guangdong
 P.R. China

1.3.Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty (9kHz-30MHz) = 3.08dB, k=2

Radiated emission expanded uncertainty (30MHz-1000MHz) = 4.42dB, k=2

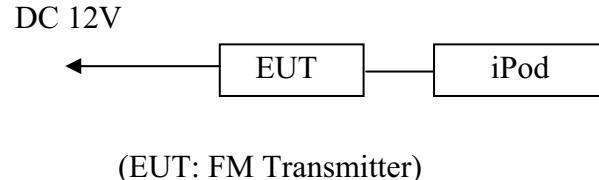
Radiated emission expanded uncertainty (Above 1GHz) = 4.06dB, k=2

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Type	S/N	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 9, 2011
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 9, 2011
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 9, 2011
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 9, 2011
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 9, 2011
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 9, 2011
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 9, 2011
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 9, 2011
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 9, 2011
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 9, 2011

3. SUMMARY OF TEST RESULTS


FCC Rules	Description of Test	Result
Section 15.207	Conducted Emission	N/A
Section 15.239(c) Section 15.209	Harmonics and Spurious Radiated Emission	Compliant
Section 15.239(b)	Fundamental Radiated Emission	Compliant
Section 15.239(a)	Occupied Bandwidth	Compliant
Section 15.239	Tuning Range	Compliant

Remark: "N/A" means "Not applicable".

4. HARMONICS AND SPURIOUS RADIATED EMISSION FOR FCC PART 15 SECTION 15.239(C)

4.1. Block Diagram of Test Setup

4.1.1. Block diagram of connection between the EUT and simulators

4.1.2. Semi-Anechoic Chamber Test Setup Diagram

(EUT: FM Transmitter)

4.2.The Emission Limit for section 15.239(c)

4.2.1. The field strength of any emissions radiated on any frequency outside of the specified 200 kHz band shall not exceed the general radiated emission limits in Section 15.209.

Radiation Emission Measurement Limits According to Section 15.209

Frequency (MHz)	Limit,		
	Field Strength of Quasi-peak Value (microvolts/m)	Field Strength of Quasi-peak Value (dB μ V/m)	The final measurement in band 9-90kHz, 110-490kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.
30 - 88	100	40	
88 - 216	150	43.5	
216 - 960	200	46	
Above 960	500	54	

4.3.Configuration of EUT on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

4.3.1.FM Transmitter (EUT)

Model Number : KY-A 012
 Serial Number : N/A
 Manufacturer : Dongguan City Kingyou Electronics Co., Ltd.

4.4.Operating Condition of EUT

4.4.1.Setup the EUT and simulator as shown as Section 4.1.

4.4.2.Turn on the power of all equipment.

4.4.3. Let the EUT work in TX modes [Connect EUT use iPod playing typical audio signal ('Highway Blues' from sample music of windows XP) with maximum audio level] measure it. The transmit frequency are 88.1-107.9MHz. We are select 88.1M, 98.0M, 107.9MHz TX frequency to transmit.

4.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2003 on radiated emission measurement.

The bandwidth of test receiver is set at 120kHz in 30-1000MHz.

The frequency range from 30MHz to 1000MHz is checked.

The final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

4.6.The Field Strength of Radiation Emission Measurement Results PASS.

The frequency range 30MHz to 1000MHz is investigated.

Date of Test:	March 11, 2010	Temperature:	25°C
EUT:	FM Transmitter	Humidity:	50%
Model No.:	KY-A 012	Power Supply:	DC 12V
Test Mode:	TX 88.1MHz with iPod	Test Engineer:	Joe

Polarization	Frequency (MHz)	Reading(dB μ V/m) QP	Factor Corr.(dB)	Result(dB μ V/m) QP	Limits(dB μ V/m) QP	Margin(dB) QP
Horizontal	262.8220	24.26	18.64	42.90	46.00	-3.10
Horizontal	350.4310	21.39	20.81	42.20	46.00	-3.80
Horizontal	438.0380	128.82	22.88	41.70	46.00	-4.30
Vertical	175.2160	24.05	15.75	39.80	43.50	-3.70
Vertical	262.8220	23.93	18.64	42.57	46.00	-3.43
Vertical	438.0380	18.91	22.88	41.79	46.00	-4.21

Note:

1. Emissions attenuated more than 20 dB below the permissible value are not reported.
2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:
Result = Reading + Corrected Factor
Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss – Amplifier Gain
3. The spectral diagrams in appendix I display the measurement of peak values.

Date of Test:	March 11, 2010	Temperature:	25°C
EUT:	FM Transmitter	Humidity:	50%
Model No.:	KY-A 012	Power Supply:	DC 12V
Test Mode:	TX 98.0MHz with iPod	Test Engineer:	Joe

Polarization	Frequency (MHz)	Reading(dB μ V/m) QP	Factor Corr.(dB)	Result(dB μ V/m) QP	Limits(dB μ V/m) QP	Margin(dB) QP
Horizontal	195.6140	23.95	16.02	39.97	43.50	-3.53
Horizontal	293.4200	24.65	18.60	43.25	46.00	-2.75
Horizontal	489.0346	18.33	23.92	42.25	46.00	-3.75
Vertical	195.6140	24.11	16.02	40.25	43.50	-3.25
Vertical	293.4200	24.33	18.60	42.93	46.00	-3.07
Vertical	489.0346	17.86	23.92	41.78	46.00	-4.22

Note:

1. Emissions attenuated more than 20 dB below the permissible value are not reported.
2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

$$\text{Result} = \text{Reading} + \text{Corrected Factor}$$

$$\text{Where Corrected Factor} = \text{Antenna Factor} + \text{Cable Loss} + \text{High Pass Filter Loss} - \text{Amplifier Gain}$$
3. The spectral diagrams in appendix I display the measurement of peak values.

Date of Test: March 11, 2010
 EUT: FM Transmitter
 Model No.: KY-A 012
 Test Mode: TX 107.9MHz with iPod

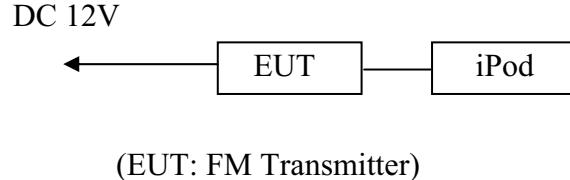
Temperature: 25°C
 Humidity: 50%
 Power Supply: DC 12V
 Test Engineer: Joe

Polarization	Frequency (MHz)	Reading(dB μ V/m) QP	Factor Corr.(dB)	Result(dB μ V/m) QP	Limits(dB μ V/m) QP	Margin(dB) QP
Horizontal	215.8160	23.09	16.56	39.65	43.50	-3.85
Horizontal	323.7230	23.31	19.50	42.81	46.00	-3.19
Horizontal	539.5380	17.08	24.94	42.02	46.00	-3.98
Vertical	215.8160	23.46	16.56	40.02	43.50	-3.48
Vertical	323.7230	23.16	19.50	42.66	46.00	-3.34
Vertical	539.5380	17.47	24.94	42.41	46.00	-3.59

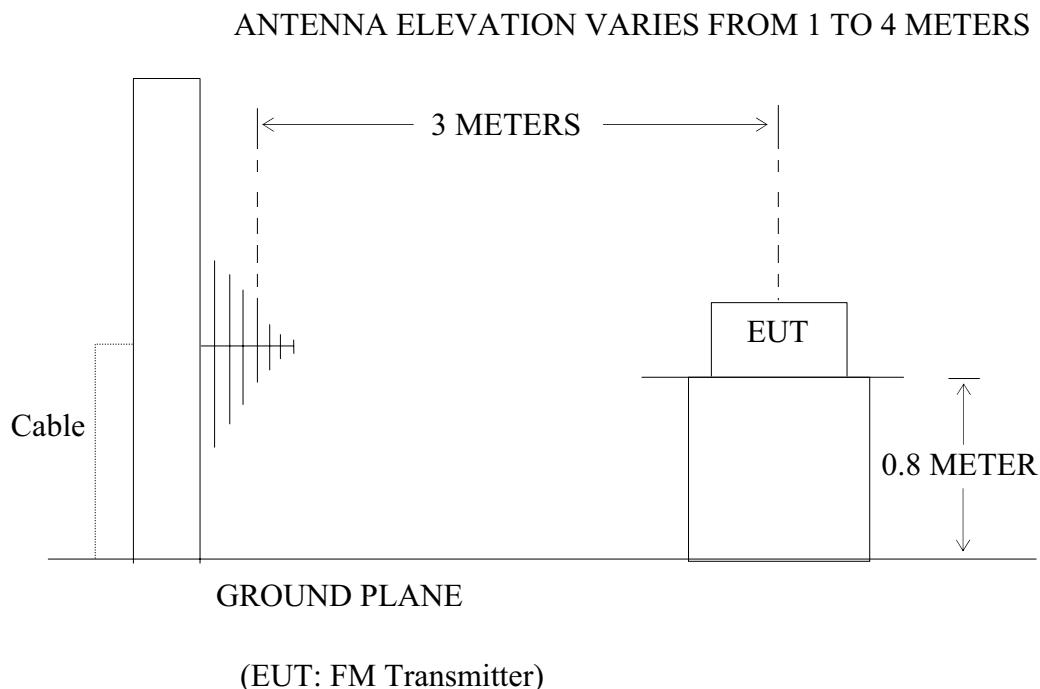
Note:

1. Emissions attenuated more than 20 dB below the permissible value are not reported.
2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

$$\text{Result} = \text{Reading} + \text{Corrected Factor}$$


$$\text{Where Corrected Factor} = \text{Antenna Factor} + \text{Cable Loss} + \text{High Pass Filter Loss} - \text{Amplifier Gain}$$
3. The spectral diagrams in appendix I display the measurement of peak values.

5. FUNDAMENTAL RADIATED EMISSION FOR FCC PART 15


SECTION 15.239(B)

5.1. Block Diagram of Test Setup

5.1.1. Block diagram of connection between the EUT and simulators

5.1.2. Semi-Anechoic Chamber Test Setup Diagram

5.2. The Emission Limit For Section 15.239(b)

5.2.1. The field strength of any emission within the permitted 200kHz band shall not exceed 250microvolts/meter at 3 meters. The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in section 15.35 for limiting peak emissions apply.

5.3.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.3.1.FM Transmitter (EUT)

Model Number : KY-A 012
 Serial Number : N/A
 Manufacturer : Dongguan City Kingyou Electronics Co., Ltd.

5.4.Operating Condition of EUT

5.4.1.Setup the EUT and simulator as shown as Section 5.1.

5.4.2.Turn on the power of all equipment.

5.4.3. Let the EUT work in TX modes [Connect EUT use iPod playing typical audio signal ('Highway Blues' from sample music of windows XP) with maximum audio level] measure it. The transmit frequency are 88.1-107.9MHz. We are select 88.1M, 98.0M, 107.9MHz TX frequency to transmit.

5.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2003 on radiated emission measurement.

The bandwidth of test receiver is set at 120kHz.

5.6.The Emission Measurement Result

PASS.

Date of Test:	March 11, 2010	Temperature:	25°C
EUT:	FM Transmitter	Humidity:	50%
Model No.:	KY-A 012	Power Supply:	DC 12V
Test Mode:	TX 88.1MHz with iPod	Test Engineer:	Joe

Fundamental Radiated Emissions

Frequency (MHz)	Reading(dB μ V/m)		Factor (dB) Corr.	Result(dB μ V/m)		Limit(dB μ V/m)		Margin (dB)		Polarization
	AV	PEAK		AV	PEAK	AV	PEAK	AV	PEAK	
88.1080	30.28	32.04	13.75	44.03	45.79	48	68	-3.97	-22.21	Horizontal
88.1080	30.06	31.80	13.73	43.79	45.53	48	68	-4.21	-22.47	Vertical

Note:

1. Measurement was performed with modulated signal with average detector and peak detector.
2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

$$\text{Result} = \text{Reading} + \text{Corrected Factor}$$

$$\text{Where Corrected Factor} = \text{Antenna Factor} + \text{Cable Loss} + \text{High Pass Filter Loss} - \text{Amplifier Gain}$$
3. The spectral diagrams in appendix I display the measurement of peak values.

Date of Test: March 11, 2010
 EUT: FM Transmitter
 Model No.: KY-A 012
 Test Mode: TX 98.0MHz with iPod

Temperature: 25°C
 Humidity: 50%
 Power Supply: DC 12V
 Test Engineer: Joe

Fundamental Radiated Emissions

Frequency (MHz)	Reading(dB μ V/m)		Factor (dB) Corr.	Result(dB μ V/m)		Limit(dB μ V/m)		Margin (dB)		Polarization
	AV	PEAK		AV	PEAK	AV	PEAK	AV	PEAK	
98.0070	30.04	31.71	14.03	44.07	45.74	48	68	-3.93	-22.26	Horizontal
98.0070	30.04	31.76	13.93	43.97	45.69	48	68	-4.03	-22.31	Vertical

Note:

1. Measurement was performed with modulated signal with average detector and peak detector.
2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

$$\text{Result} = \text{Reading} + \text{Corrected Factor}$$

$$\text{Where Corrected Factor} = \text{Antenna Factor} + \text{Cable Loss} + \text{High Pass Filter Loss} - \text{Amplifier Gain}$$
3. The spectral diagrams in appendix I display the measurement of peak values.

Date of Test: March 11, 2010
 EUT: FM Transmitter
 Model No.: KY-A 012
 Test Mode: TX 107.9MHz with iPod

Temperature: 25°C
 Humidity: 50%
 Power Supply: DC 12V
 Test Engineer: Joe

Fundamental Radiated Emissions

Frequency (MHz)	Reading(dB μ V/m)		Factor (dB) Corr.	Result(dB μ V/m)		Limit(dB μ V/m)		Margin (dB)		Polarization
	AV	PEAK		AV	PEAK	AV	PEAK	AV	PEAK	
107.9080	30.25	31.97	13.77	44.02	45.74	48	68	-3.98	-22.26	Horizontal
107.9080	30.09	31.80	14.19	44.28	45.99	48	68	-3.72	-22.01	Vertical

Note:

1. Measurement was performed with modulated signal with average detector and peak detector.
2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

$$\text{Result} = \text{Reading} + \text{Corrected Factor}$$

$$\text{Where Corrected Factor} = \text{Antenna Factor} + \text{Cable Loss} + \text{High Pass Filter Loss} - \text{Amplifier Gain}$$
3. The spectral diagrams in appendix I display the measurement of peak values.

6. OCCUPIED BANDWIDTH FOR FCC PART 15 SECTION

15.239(A)

6.1. The Requirement For Section 15.239(a)

6.1.1. Emission from the device shall be confined within a band 200kHz wide centered on the operating frequency. The 200kHz band shall lie wholly within the frequency range of 88-108MHz.

6.2. EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.2.1. FM Transmitter (EUT)

Model Number : KY-A 012
 Serial Number : N/A
 Manufacturer : Dongguan City Kingyou Electronics Co., Ltd.

6.3. Operating Condition of EUT

6.3.1. Setup the EUT and simulator as shown as Section 5.1.

6.3.2. Turn on the power of all equipment.

6.3.3. Let the EUT work in TX modes [Connect EUT use iPod playing typical audio signal ('Highway Blues' from sample music of windows XP) with maximum audio level] measure it. The transmit frequency are 88.1-107.9MHz. We are select 88.1M, 98.0M, 107.9MHz TX frequency to transmit.

6.4. Test Procedure

6.4.1. The EUT was placed on a turn table which is 0.8m above ground plane.

6.4.2. Set EUT as normal operation. Playing typical audio signal (the volume control was set to maximum.)

6.4.3. Set EMI test receiver Center Frequency = fundamental frequency, RBW= 3kHz, VBW= 10kHz, Span=500kHz.

6.4.4. Set EMI test receiver Max hold. Mark peak, -26dB.

6.5. Test Result

The EUT does meet the FCC requirement.

FM 88.1MHz
-26dB bandwidth = 107.0kHz

FM 98.0MHz
-26dB bandwidth = 108.0kHz

FM 107.9MHz
-26dB bandwidth = 104.0kHz

7. TUNING RANGE

7.1. The Requirement For Section 15.239

88-108MHz

7.2. EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.2.1. FM Transmitter (EUT)

Model Number	:	KY-A 012
Serial Number	:	N/A
Manufacturer	:	Dongguan City Kingyou Electronics Co., Ltd.

7.3. Operating Condition of EUT

7.3.1. Setup the EUT and simulator as shown as Section 5.1.

7.3.2. Turn on the power of all equipment.

7.3.3. Let the EUT work in TX modes [Connect EUT use iPod playing typical audio signal ('Highway Blues' from sample music of windows XP) with maximum audio level] measure it. The transmit frequency are 88.1-107.9MHz. We are select 88.1M, 98.0M, 107.9MHz TX frequency to transmit.

7.4. Test Procedure

7.4.1. The EUT was placed on a turn table which is 0.8m above ground plane.

7.4.2. Set the EUT working on the working frequency.

7.4.3. Set EMI test receiver center frequency = working frequency, RBW=3kHz, VBW= 10kHz, Span=500kHz.

7.4.4. Measuring the working frequency.

7.4.5. The working frequency should be inside 88-108MHz.

7.5. Test Result

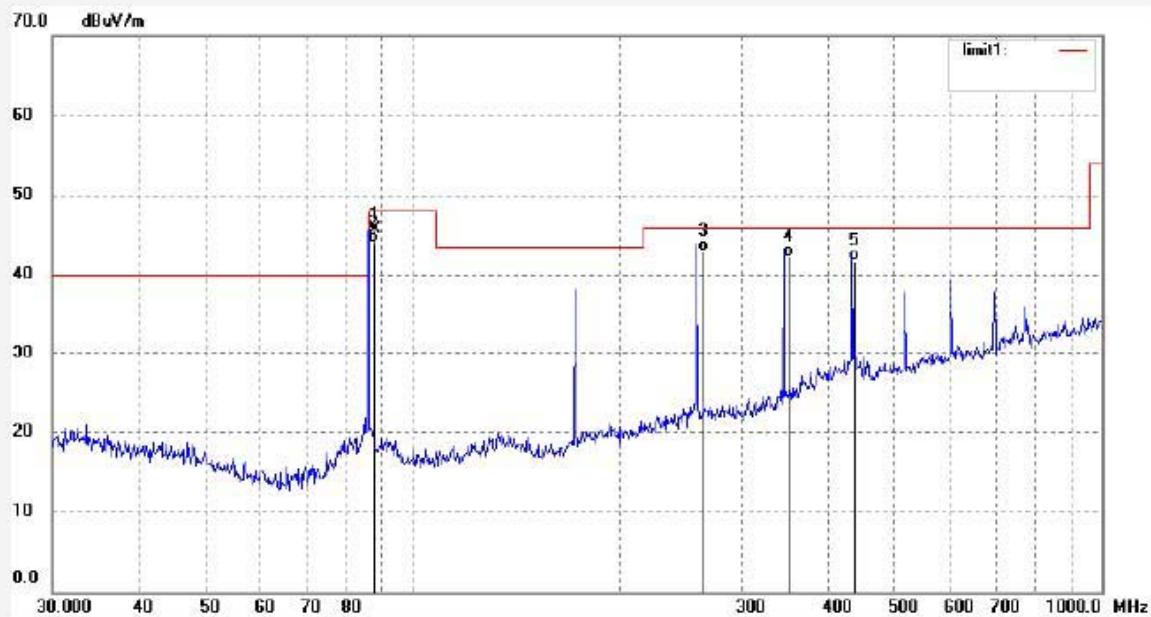
The EUT does meet the FCC requirement.

Low Frequency = 88.105MHz	EUT LED display 88.1MHz
Mid Frequency = 98.006MHz	EUT LED display 98.0MHz
High Frequency = 107.905MHz	EUT LED display 107.9MHz

The working frequency range is from 88.1 to 107.9MHz.

APPENDIX I (Test Curves)

ACCURATE TECHNOLOGY CO., LTD.


 F1,Bldg,A,Changyuan New Material Port Keyuan Rd,
 Science & Industry Park,Nanshan Shenzhen,P.R.China

 Site: 966 chamber
 Tel:+86-0755-26503290
 Fax:+86-0755-26503396

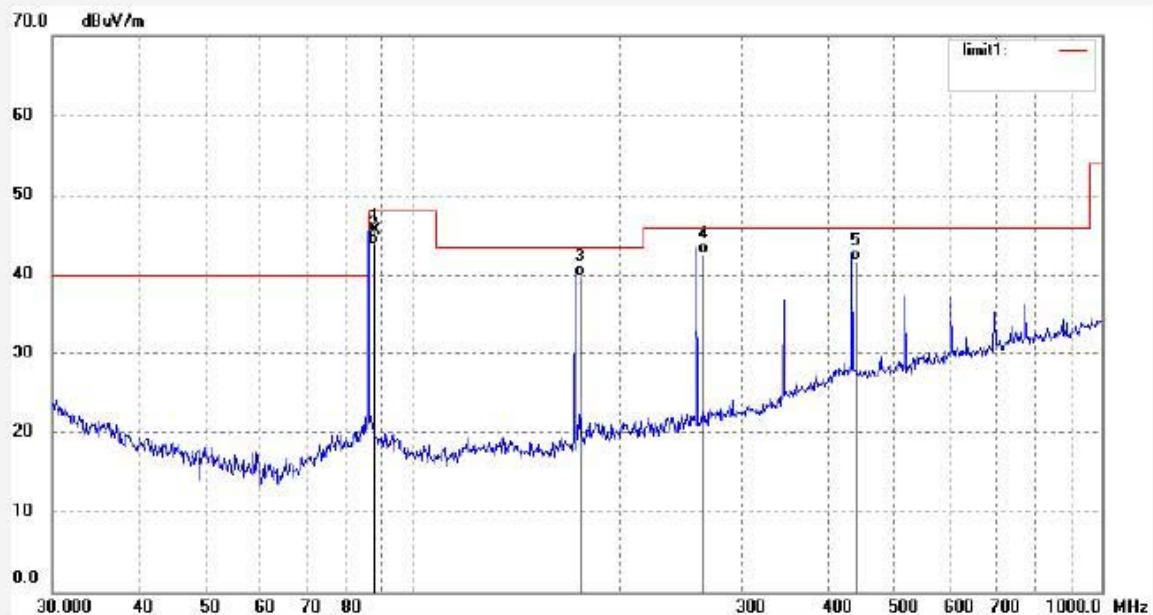
 Job No.: RTTE #4284
 Standard: FCC PART 15 (FMT)
 Test item: Radiation Test
 Temp. (C)/Hum.(%) 25 C / 50 %
 EUT: FM Transmitter
 Mode: TX 88.1MHz
 Model: KY-A 012
 Manufacturer: Kingyou

 Polarization: Horizontal
 Power Source: DC 12V
 Date: 10/03/11/
 Time: 9:41:47
 Engineer Signature: Joe
 Distance: 3m

Note: Sample No.:100411 Report No.:ATE20100356

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	88.1080	32.04	13.75	45.79	68.00	-22.21	peak			
2	88.1080	30.28	13.75	44.03	48.00	-3.97	AVG			
3	262.8220	24.26	18.64	42.90	46.00	-3.10	QP			
4	350.4310	21.39	20.81	42.20	46.00	-3.80	QP			
5	438.0380	18.82	22.88	41.70	46.00	-4.30	QP			

ACCURATE TECHNOLOGY CO., LTD.


 F1,Bldg,A,Changyuan New Material Port Keyuan Rd,
 Science & Industry Park,Nanshan Shenzhen,P.R.China

 Site: 966 chamber
 Tel:+86-0755-26503290
 Fax:+86-0755-26503396

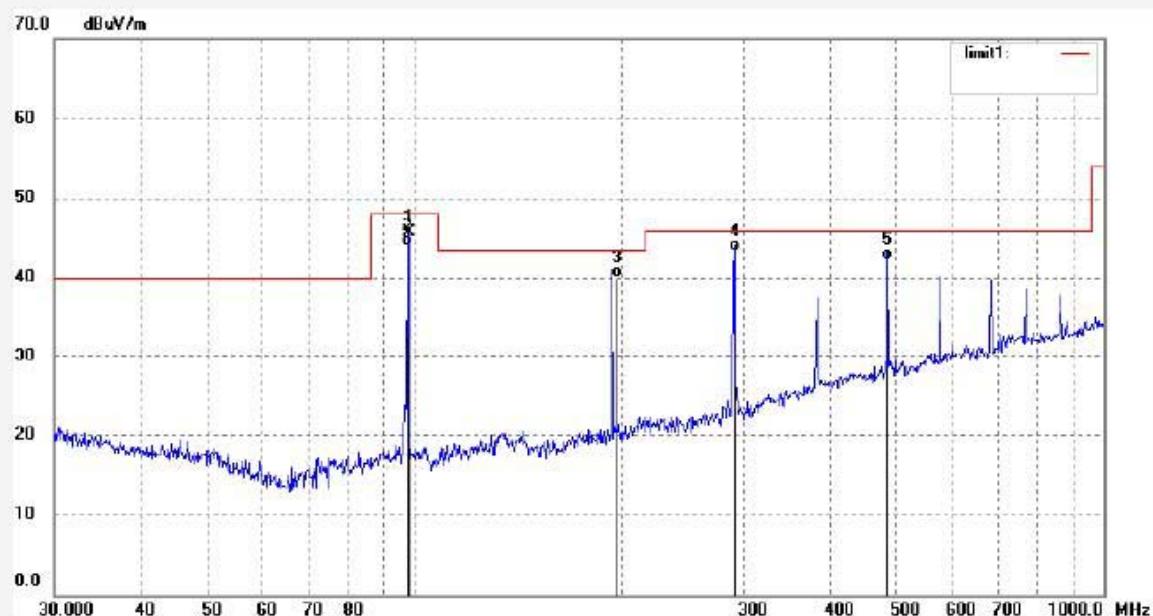
 Job No.: RTTE #4283
 Standard: FCC PART 15 (FMT)
 Test item: Radiation Test
 Temp. (C)/Hum.(%) 25 C / 50 %
 EUT: FM Transmitter
 Mode: TX 88.1MHz
 Model: KY-A 012
 Manufacturer: Kingyou

 Polarization: Vertical
 Power Source: DC 12V
 Date: 10/03/11/
 Time: 9/40/09
 Engineer Signature: Joe
 Distance: 3m

Note: Sample No.:100411 Report No.:ATE20100356

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	88.1080	31.80	13.73	45.53	68.00	-22.47	peak			
2	88.1080	30.06	13.73	43.79	48.00	-4.21	AVG			
3	175.2160	24.05	15.75	39.80	43.50	-3.70	QP			
4	262.8220	23.93	18.64	42.57	46.00	-3.43	QP			
5	438.0380	18.91	22.88	41.79	46.00	-4.21	QP			

ACCURATE TECHNOLOGY CO., LTD.


 F1,Bldg,A,Changyuan New Material Port Keyuan Rd,
 Science & Industry Park,Nanshan Shenzhen,P.R.China

 Site: 966 chamber
 Tel:+86-0755-26503290
 Fax:+86-0755-26503396

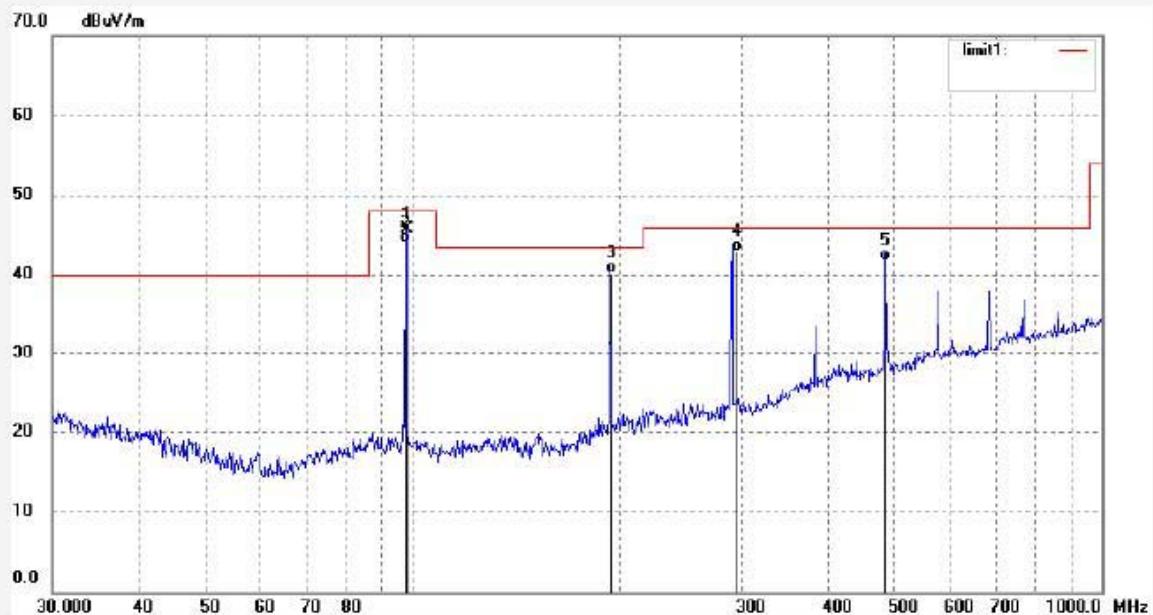
 Job No.: RTTE #4285
 Standard: FCC PART 15 (FMT)
 Test item: Radiation Test
 Temp. (C)/Hum.(%) 25 C / 50 %
 EUT: FM Transmitter
 Mode: TX 98.0MHz
 Model: KY-A 012
 Manufacturer: Kingyou

 Polarization: Horizontal
 Power Source: DC 12V
 Date: 10/03/11/
 Time: 9:44:41
 Engineer Signature: Joe
 Distance: 3m

Note: Sample No.:100411 Report No.:ATE20100356

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	98.0070	31.71	14.03	45.74	68.00	-22.26	peak			
2	98.0070	30.04	14.03	44.07	48.00	-3.93	AVG			
3	195.6140	23.95	16.02	39.97	43.50	-3.53	QP			
4	293.4200	24.65	18.60	43.25	46.00	-2.75	QP			
5	489.0346	18.33	23.92	42.25	46.00	-3.75	QP			

ACCURATE TECHNOLOGY CO., LTD.


 F1,Bldg,A,Changyuan New Material Port Keyuan Rd,
 Science & Industry Park,Nanshan Shenzhen,P.R.China

 Site: 966 chamber
 Tel:+86-0755-26503290
 Fax:+86-0755-26503396

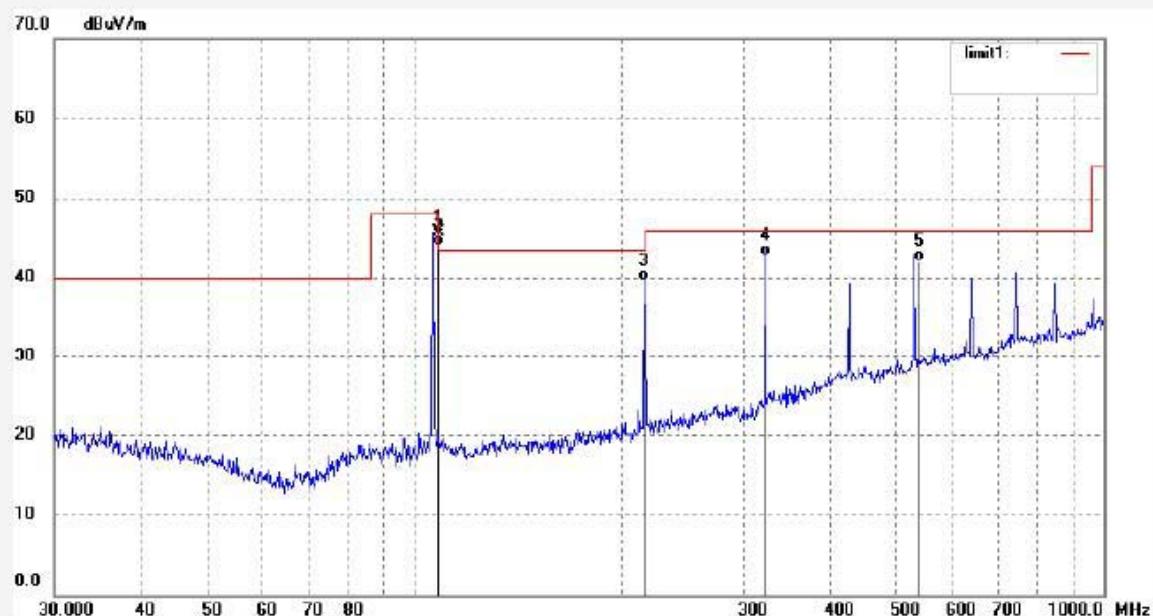
Job No.: RTTE #4286
 Standard: FCC PART 15 (FMT)
 Test item: Radiation Test
 Temp. (C)/Hum.(%) 25 C / 50 %
 EUT: FM Transmitter
 Mode: TX 98.0MHz
 Model: KY-A 012
 Manufacturer: Kingyou

Polarization: Vertical
 Power Source: DC 12V
 Date: 10/03/11/
 Time: 9:46:48
 Engineer Signature: Joe
 Distance: 3m

Note: Sample No.:100411 Report No.:ATE20100356

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	98.0070	31.76	13.93	45.69	68.00	-22.31	peak			
2	98.0070	30.04	13.93	43.97	48.00	-4.03	AVG			
3	195.6140	24.11	16.14	40.25	43.50	-3.25	QP			
4	293.4200	24.33	18.60	42.93	46.00	-3.07	QP			
5	489.0346	17.86	23.92	41.78	46.00	-4.22	QP			

ACCURATE TECHNOLOGY CO., LTD.


 F1,Bldg,A,Changyuan New Material Port Keyuan Rd,
 Science & Industry Park,Nanshan Shenzhen,P.R.China

 Site: 966 chamber
 Tel:+86-0755-26503290
 Fax:+86-0755-26503396

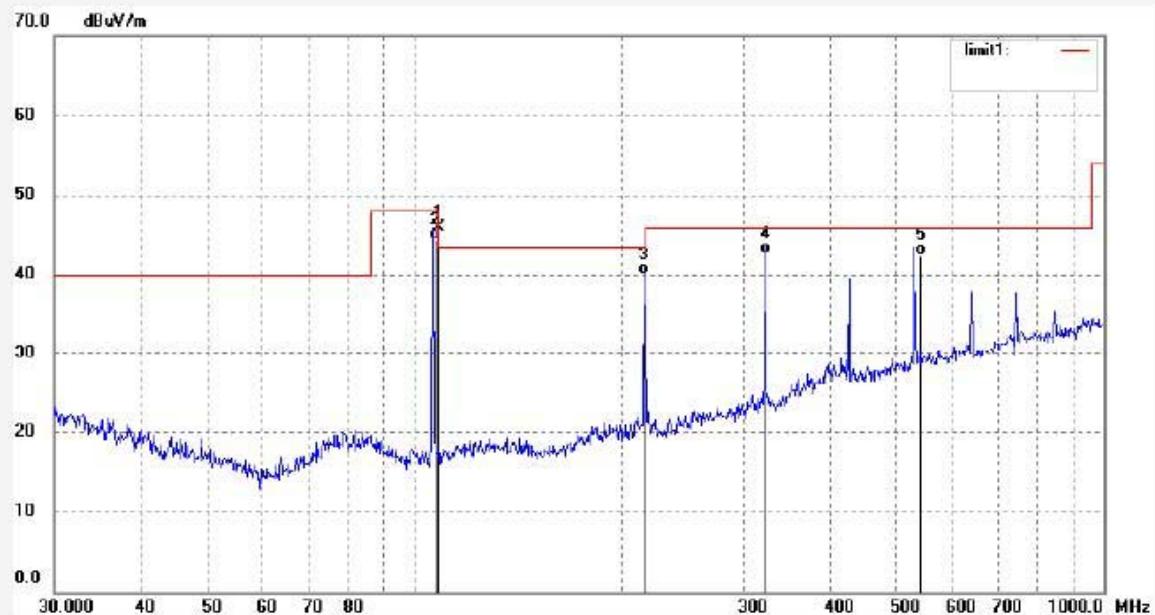
 Job No.: RTTE #4288
 Standard: FCC PART 15 (FMT)
 Test item: Radiation Test
 Temp. (C)/Hum.(%) 25 C / 50 %
 EUT: FM Transmitter
 Mode: TX 107.9MHz
 Model: KY-A 012
 Manufacturer: Kingyou

 Polarization: Horizontal
 Power Source: DC 12V
 Date: 10/03/11/
 Time: 9:51:44
 Engineer Signature: Joe
 Distance: 3m

Note: Sample No.:100411 Report No.:ATE20100356

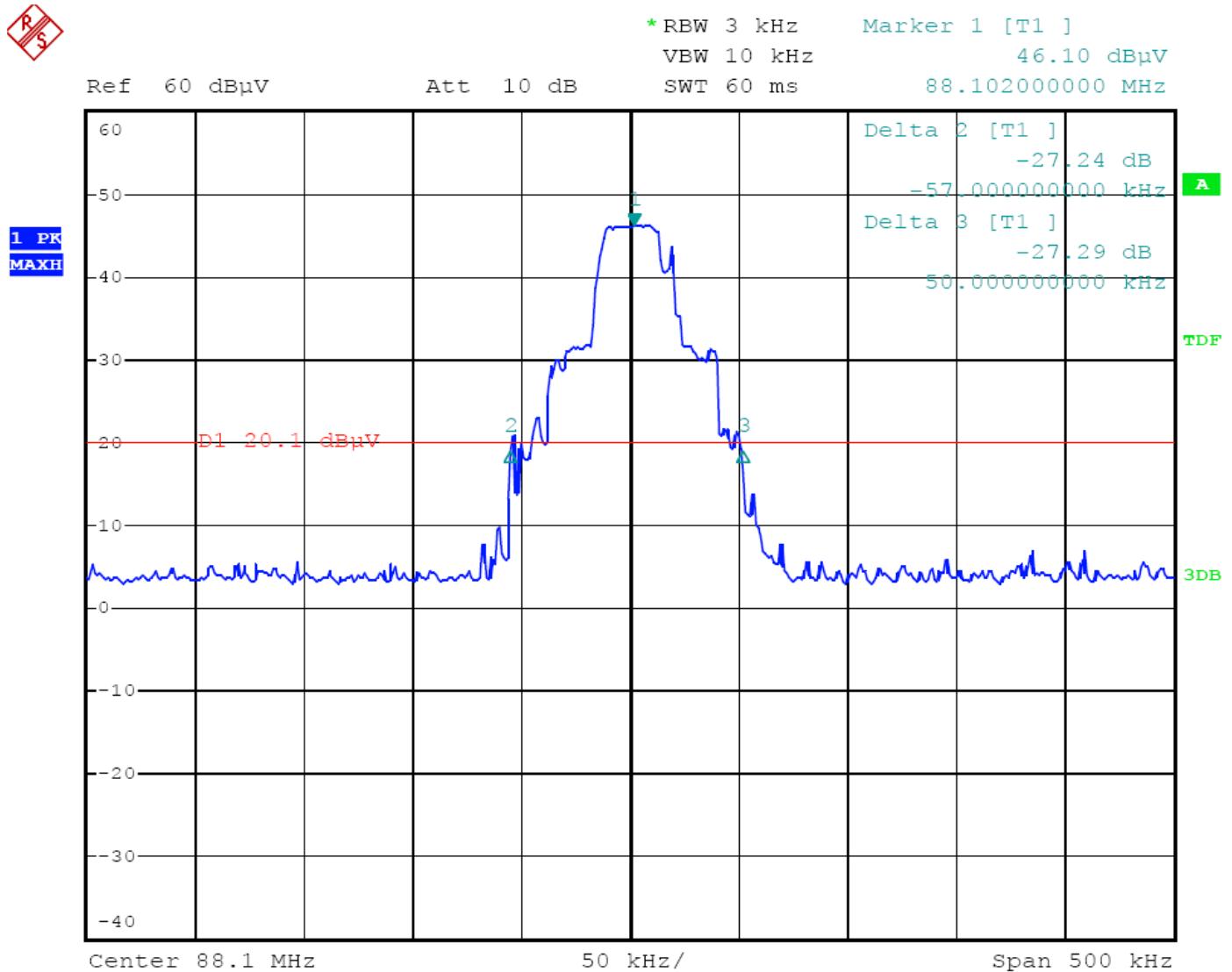
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	107.9080	31.97	13.77	45.74	68.00	-22.26	peak			
2	107.9080	30.25	13.77	44.02	48.00	-3.98	AVG			
3	215.8160	23.09	16.56	39.65	43.50	-3.85	QP			
4	323.7230	23.31	19.50	42.81	46.00	-3.19	QP			
5	539.5380	17.08	24.94	42.02	46.00	-3.98	QP			

ACCURATE TECHNOLOGY CO., LTD.

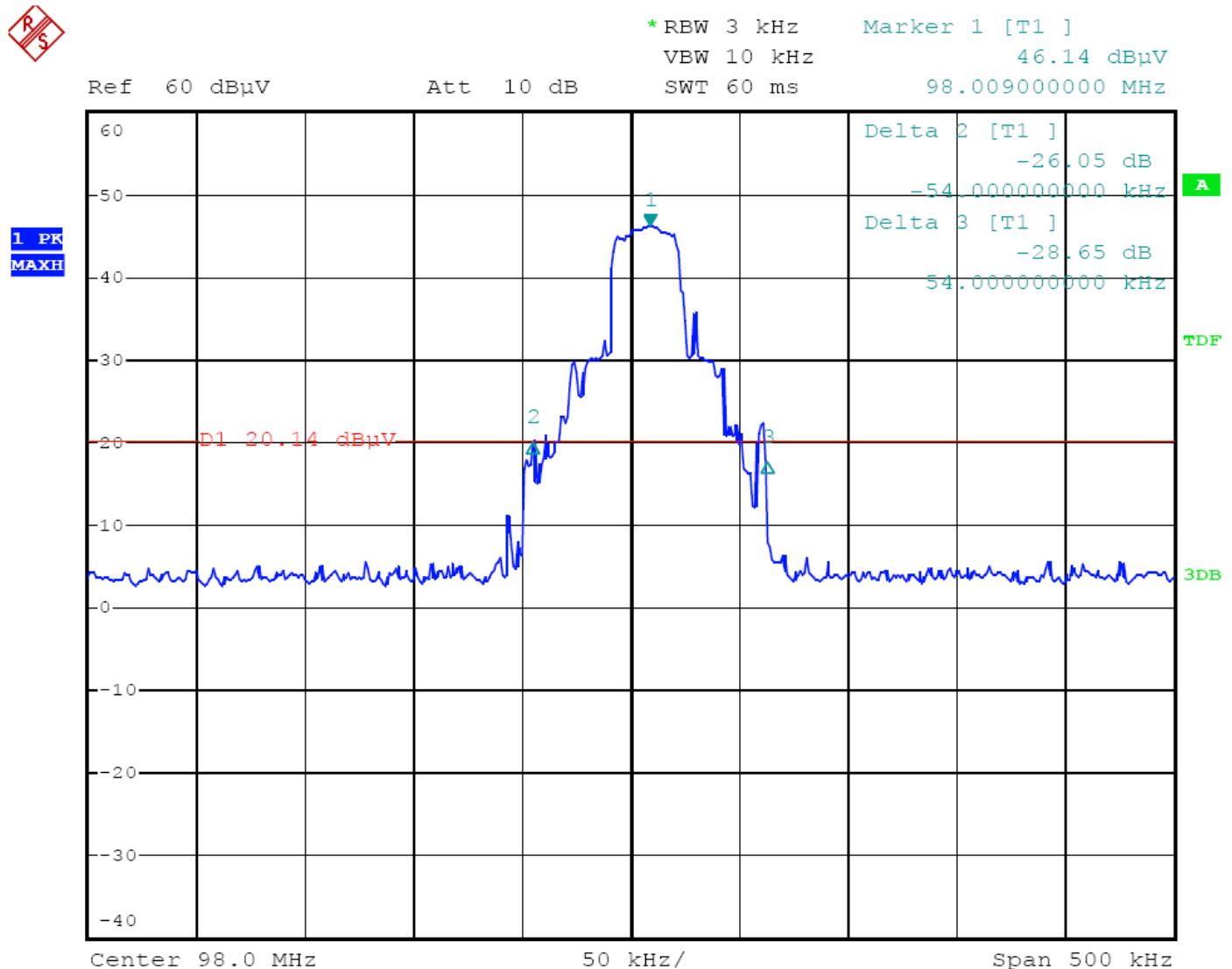

 F1,Bldg,A,Changyuan New Material Port Keyuan Rd,
 Science & Industry Park,Nanshan Shenzhen,P.R.China

 Site: 966 chamber
 Tel:+86-0755-26503290
 Fax:+86-0755-26503396

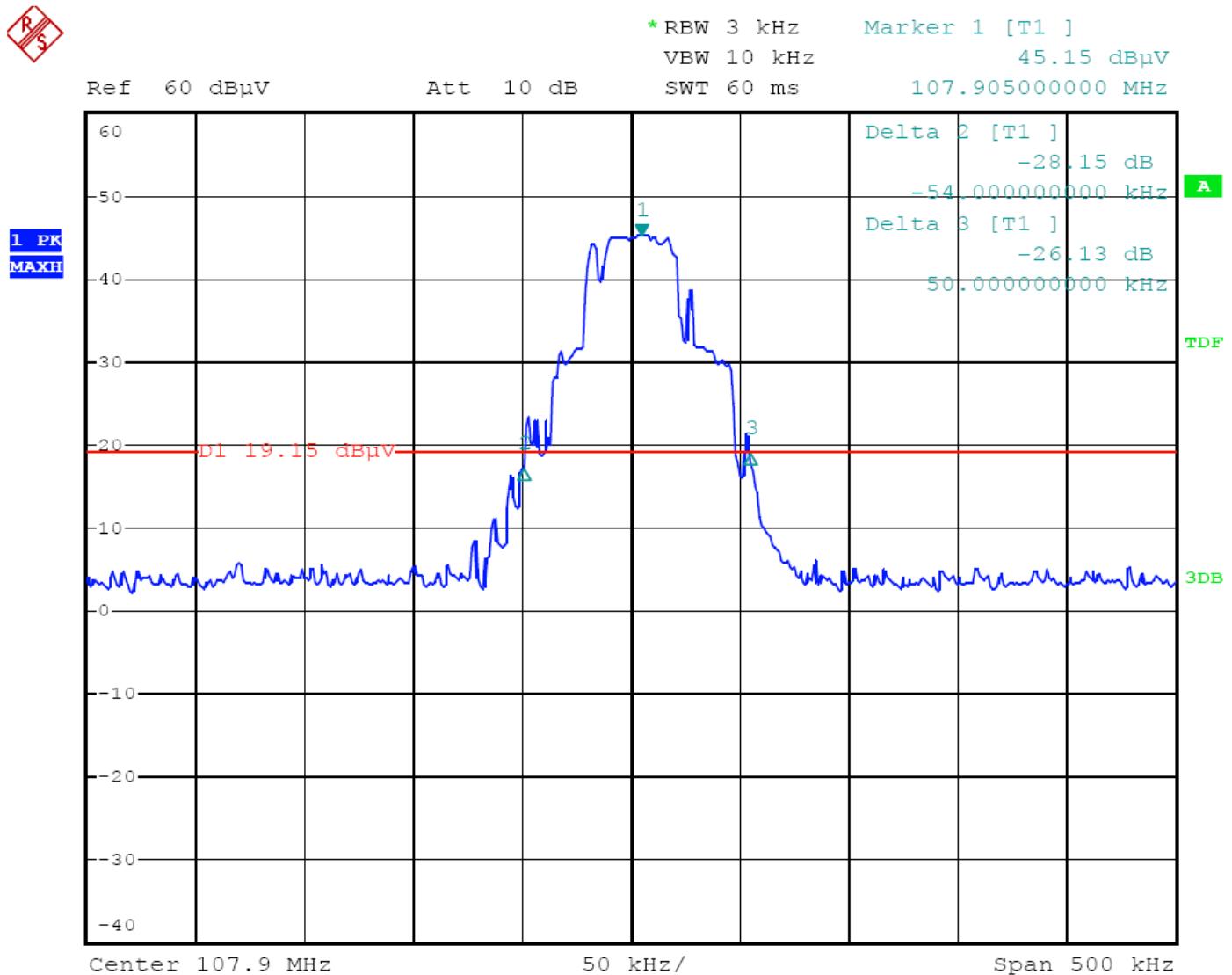
 Job No.: RTTE #4287
 Standard: FCC PART 15 (FMT)
 Test item: Radiation Test
 Temp. (C)/Hum.(%) 25 C / 50 %
 EUT: FM Transmitter
 Mode: TX 107.9MHz
 Model: KY-A 012
 Manufacturer: Kingyou


 Polarization: Vertical
 Power Source: DC 12V
 Date: 10/03/11/
 Time: 9/49/31
 Engineer Signature: Joe
 Distance: 3m

Note: Sample No.:100411 Report No.:ATE20100356



No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	107.9080	31.80	14.19	45.99	68.00	-22.01	peak			
2	107.9080	30.09	14.19	44.28	48.00	-3.72	AVG			
3	215.8160	23.46	16.56	40.02	43.50	-3.48	QP			
4	323.7230	23.16	19.50	42.66	46.00	-3.34	QP			
5	539.5380	17.47	24.94	42.41	46.00	-3.59	QP			


FM 88.1MHz

FM 98.0MHz

FM 107.9MHz

