

SAR Test Report

Report No.: AGC00454180501FH01

FCC ID : X8F-SX500

APPLICATION PURPOSE : Original Equipment

PRODUCT DESIGNATION: SkyCaddie SX500

BRAND NAME : SkyCaddie

MODEL NAME : SX500

CLIENT: SkyHawke Technologies, LLC

DATE OF ISSUE: Aug. 31,2018

IEEE Std. 1528:2013

STANDARD(S) : FCC 47CFR § 2.1093

IEEE/ANSI C95.1:2005

REPORT VERSION : V1.2

Attestation of Global Compliance (Shenzhen) Co., Ltd.

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Attestation of Global Compliance

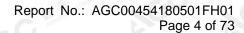
Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4,Chaxi Sanwei Technical Industrial Park,Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Page 2 of 73

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	arce 1 milestation of Co.	Aug. 08,2018	Invalid	Initial Release
V1.1	V1.1 1 st		Invalid	Deleted hot spot mode and KDB 941228
V1.2	2 nd	Aug. 31,2018	Valid	Added the test of body(with 0 mm separation)

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cett.com.



Page 3 of 73

	Test Report Certification
Applicant Name	SkyHawke Technologies, LLC
Applicant Address	274 Commerce Park Drive, Ridgeland, MS 39157 USA
Manufacturer Name	SkyHawke Technologies, LLC
Manufacturer Address	274 Commerce Park Drive, Ridgeland, MS 39157 USA
Product Designation	SkyCaddie SX500
Brand Name	SkyCaddie
Model Name	SX500
Different Description	N/A MARINE CONTRACTOR OF THE PARTY OF THE PA
EUT Voltage	DC3.8V by battery
Applicable Standard	IEEE Std. 1528:2013 FCC 47CFR § 2.1093 IEEE/ANSI C95.1:2005
Test Date	Aug. 03,2018 to Aug. 30,2018
	Attestation of Global Compliance(Shenzhen) Co., Ltd.
Performed Location	2 F, Building 2, No.1-No.4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang Street, Bao'an District, Shenzhen, China
Report Template	AGCRT-US-2.4G/SAR (2018-01-01)

Food Thou Aug. 30,2018 Eric Zhou(Zhou Yongkang) Angola li Checked By Angela Li(Li Jiao) Aug. 31,2018 Forest cei Authorized By Forrest Lei(Lei Yonggang) Aug. 31,2018 **Authorized Officer**

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by CC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gent.com.

TABLE OF CONTENTS

1. SUMMARY OF MAXIMUM SAR VALUE	
2. GENERAL INFORMATION	
2.1. EUT DESCRIPTION	6
3. SAR MEASUREMENT SYSTEM	7
3.1. THE SATIMO SYSTEM USED FOR PERFORMING COMPLIANCE TESTS CONSISTS OF FOLLOWING ITEMS 3.2. COMOSAR E-FIELD PROBE 3.3. ROBOT 3.4. VIDEO POSITIONING SYSTEM 3.5. DEVICE HOLDER 3.6. SAM TWIN PHANTOM	9 9 10
4. SAR MEASUREMENT PROCEDURE	
4.1. SPECIFIC ABSORPTION RATE (SAR) 4.2. SAR MEASUREMENT PROCEDURE 4.3. RF EXPOSURE CONDITIONS	12 14
5. TISSUE SIMULATING LIQUID	
5.1. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID	16 17
6. SAR SYSTEM CHECK PROCEDURE	
6.1. SAR System Check Procedures	19
7. EUT TEST POSITION	20
7.1. DEFINE TWO IMAGINARY LINES ON THE HANDSET. 7.2. CHEEK POSITION	21 21 22
8. SAR EXPOSURE LIMITS	23
9. TEST FACILITY	
10. TEST EQUIPMENT LIST	
11. MEASUREMENT UNCERTAINTY	26
12. CONDUCTED POWER MEASUREMENT	32
13. TEST RESULTS	33
13.1. SAR TEST RESULTS SUMMARY	33
APPENDIX A. SAR SYSTEM CHECK DATA	36
APPENDIX B. SAR MEASUREMENT DATA	
APPENDIX C. TEST SETUP PHOTOGRAPHS	66
ADDENDIV D. CALIDDATION DATA	72

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 5 of 73

1. SUMMARY OF MAXIMUM SAR VALUE

The maximum results of Specific Absorption Rate (SAR) found during testing for EUT are as follows:

	ŀ			
Frequency Band	Head	Body-worn (with 10 mm separation)	Body-worn (with 0 mm separation)	SAR Test Limit (W/Kg)
802.11b	0.337	0.109	0.691	1.6
SAR Test Result	- ml	The PASS	The Clopal Court	Attestation Attestation

This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/Kg) specified in IEEE Std. 1528:2013; FCC 47CFR § 2.1093; IEEE/ANSI C95.1:2005 and the following specific FCC Test Procedures:

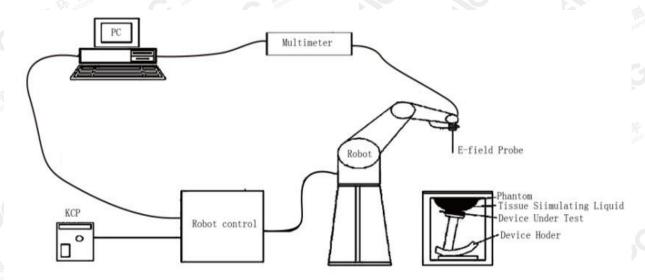
- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 648474 D04 Handset SAR v01r03
- KDB 865664 D01 SAR Measurement 100MHz to 6GHz v01r04
- KDB 248227 D01 802 11 Wi-Fi SAR v02r02

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 6 of 73

2. GENERAL INFORMATION

Z. I. EUT Description	
General Information	
Product Designation	SkyCaddie SX500
Test Model	SX500
Hardware Version	E523-MB-P3.0
Software Version	SX500_V1_00_14
Device Category	Portable
RF Exposure Environment	Uncontrolled
Antenna Type	Internal
Bluetooth	
Bluetooth Version	□V2.0 □V2.1 □V2.1+EDR □V3.0 □V3.0+HS □V4.0 □V4.1
Operation Frequency	2402~2480MHz
Type of modulation	⊠GFSK ⊠∏/4-DQPSK ⊠8-DPSK
Max. Peak Power	2.573dBm
Antenna Gain	1.0dBi
WIFI	GC GC
WIFI Specification	☐802.11a ☐802.11b ☐802.11g ☐802.11n(20) ☐802.11n(40)
Operation Frequency	2412~2462MHz
Avg. Burst Power	IEEE 802.11b:14.65dBm, IEEE 802.11g:12.59dBm; IEEE 802.11n(20):12.20dBm, IEEE 802.11n(40):11.67dBm
Antenna Gain	1.0dBi
Accessories	
Battery	Brand name: N/A Model No.: 776065PV Voltage and Capacitance: 3.8V & 4700mAh
Adapter	Brand name: Tianyin Model No. : TPA-46050200UU Input: AC 100-240V, 50/60Hz, 0.3A Output: DC 5V, 2A
Earphone	Brand name: N/A Model No. : N/A
Note: The sample used for tes	
Product	Type Description unit Description Des


The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cett.com.

Page 7 of 73

3. SAR MEASUREMENT SYSTEM

3.1. The SATIMO system used for performing compliance tests consists of following items

The COMOSAR system for performing compliance tests consists of the following items:

- The PC. It controls most of the bench devices and stores measurement data. A computer running WinXP and the Opensar software.
- The E-Field probe. The probe is a 3-axis system made of 3 distinct dipoles. Each dipole returns a voltage in function of the ambient electric field.
- The Keithley multimeter measures each probe dipole voltages.
- The SAM phantom simulates a human head. The measurement of the electric field is made inside the phantom.
- The liquids simulate the dielectric properties of the human head tissues.
- The network emulator controls the mobile phone under test.
- The validation dipoles are used to measure a reference SAR. They are used to periodically check the bench to make sure that there is no drift of the system characteristics over time.
- •The phantom, the device holder and other accessories according to the targeted measurement.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 8 of 73

3.2. COMOSAR E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SATIMO. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. SATIMO conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528 and relevant KDB files.) The calibration data are in Appendix D.

Isotropic E-Field Probe Specification

Model	SSE2
Manufacture	MVG
Identification No.	SN 08/16 EPGO282
Frequency	0.7GHz-6GHz Linearity:±0.06dB(700MHz-6GHz)
Dynamic Range	0.01W/Kg-100W/Kg Linearity:±0.06dB
Dimensions	Overall length:330mm Length of individual dipoles:2mm Maximum external diameter:8mm Probe Tip external diameter:2.5mm Distance between dipoles/ probe extremity:1mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

Model	SSE5		
Manufacturer	MVG		
Identification No.	SN 22/12 EP159	111	The Complies
Frequency	0.4GHz-3GHz Linearity:±0.09dB(300MHz-3GHz)	52554	7
Dynamic Range	0.01W/Kg-100W/Kg Linearity:±0.11dB		
Dimensions	Overall length:330mm Length of individual dipoles:4.5mm Maximum external diameter:8mm Probe Tip external diameter:5mm Distance between dipoles/ probe extremity:2.7mm		
Application	High precision dosimetric measurements in any expo (e.g., very strong gradient fields). Only probe which e compliance testing for frequencies up to 3 GHz with 30%.	enables	

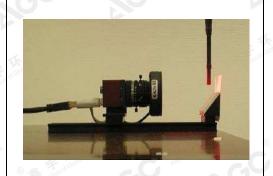
The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Report No.: AGC00454180501FH01 Page 9 of 73

3.3. Robot

The COMOSAR system uses the KUKA robot from SATIMO SA (France). For the 6-axis controller COMOSAR system, the KUKA robot controller version from SATIMO is used.

The XL robot series have many features that are important for our application:


- ☐ High precision (repeatability 0.02 mm)
- ☐ High reliability (industrial design)
- ☐ Jerk-free straight movements
- □ Low ELF interference (the closed metallic construction shields against motor control fields)
- □ 6-axis controller

3.4. Video Positioning System

The video positioning system is used in OpenSAR to check the probe. Which is composed of a camera, LED, mirror and mechanical parts. The camera is piloted by the main computer with firewire link. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago. gent.com.

Page 10 of 73


3.5. Device Holder

The COMOSAR device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The COMOSAR device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity

 $\epsilon r=3$ and loss tangent $\delta=0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

3.6. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- □ Left head
- □ Right head
- ☐ Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a trp://www.ago.go.tt.com.

Page 11 of 73

4. SAR MEASUREMENT PROCEDURE

4.1. Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and occupational/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element(dv) of given mass density (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of Watts per kilogram (W/Kg) SAR can be obtained using either of the following equations:

$$SAR = \frac{\sigma E^2}{\rho}$$

$$SAR = c_h \frac{dT}{dt}\Big|_{t=0}$$

Where

SAR is the specific absorption rate in watts per kilogram;

E is the r.m.s. value of the electric field strength in the tissue in volts per meter;

σ is the conductivity of the tissue in siemens per metre;

ρ is the density of the tissue in kilograms per cubic metre;

ch is the heat capacity of the tissue in joules per kilogram and Kelvin;

 $\frac{dT}{dt} \mid t = 0$ is the initial time derivative of temperature in the tissue in kelvins per second

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.

Page 12 of 73

4.2. SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface is 2.7mm This distance cannot be smaller than the distance os sensor calibration points to probe tip as `defined in the probe properties,

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in SATIMO software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in db) is specified in the standards for compliance testing. For example, a 2db range is required in IEEE Standard 1528, whereby 3db is a requirement when compliance is assessed in accordance with the ARIB standard (Japan) If one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximum are detected, the number of Zoom Scan has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100MHz to 6GHz

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	≤2 GHz: ≤15 mm 2 – 3 GHz: ≤12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of measurement plane orientation the measurement resolution in x or y dimension of the test dimeasurement point on the test.	on, is smaller than the above, must be ≤ the corresponding levice with at least one

Step 3: Zoom Scan

Zoom Scan are used to assess the peak spatial SAR value within a cubic average volume containing 1g abd 10g of simulated tissue. The Zoom Scan measures points(refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1g and 10g and displays these values next to the job's label.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 13 of 73

Zoom Scan Parameters extracted from KDB865664 d01 SAR Measurement 100MHz to 6GHz

			CONTRACTOR		
Maximum zoom scan	spatial reso	lution: Δx_{Zoom} , Δy_{Zoom}	\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	3 – 4 GHz: ≤ 5 mm [*] 4 – 6 GHz: ≤ 4 mm [*]	
Maximum zoom scan spatial resolution, normal to phantom surface	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm	
	1 st two po	\(\Delta z_{Zoom}(1):\) between 1st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$		
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power Drift Measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the same settings. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago-gent.com.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Page 14 of 73

4.3. RF Exposure Conditions

Test Configuration and setting:

The EUT is a model of GSM Portable Mobile Station (MS). It supports BT, WIFI.

For WLAN testing, the EUT is configured with the WLAN continuous TX tool through engineering command.

Antenna Location: (the back view)

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.gott.com.

Page 15 of 73

For WLAN mode:

Test Configurations	Antenna to edges/surface	SAR required	Note
Head	O # 47	(Global C	
Left Touch	Attestation	Yes	
Left Tilt	100	Yes	
Right Touch		Yes	The state of the s
Right Tilt	-1111	Yes	The state of the s
Body	The mulance	(B) Attestation of	
Back	<25mm	Yes	0 - 6 - 5
Front	<25mm	Yes	A THE STATE OF
Hotspot			The State of the S
Back	<25mm	Yes	The state of the s
Front	<25mm	Yes	-C - CO-
Edge 1 (Top)	6mm	Yes	
Edge 2 (Right)	60mm	No	to the second of
Edge 3 (Bottom)	133mm	No	E TO SE
Edge 4 (Left)	8mm	Yes	# \$\frac{1}{2} \text{min} = \frac{1}{2} \text{min}

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 16 of 73

5. TISSUE SIMULATING LIQUID

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15cm For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in 5.2

5.1. The composition of the tissue simulating liquid

	Ingredient (% Weight) Frequency (MHz)	Water	Nacl	Polysorbate 20	DGBE	1,2 Propanediol	Triton X-100
Ī	2450 Head	71.88	0.16	0.0	7.99	0.0	19.97
Ī	2450 Body	70	15 100	0.0	9	0.0	20

5.2. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in IEEE 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in IEEE 1528.

Target Frequency	h	ead	ŀ	oody
(MHz)	εr	σ (S/m)	εr	σ (S/m)
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	1.01	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73

($\epsilon r = relative permittivity$, $\sigma = conductivity and <math>\rho = 1000 \text{ kg/m}$ 3)

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a trp://www.ago.go.tt.com.

Page 17 of 73

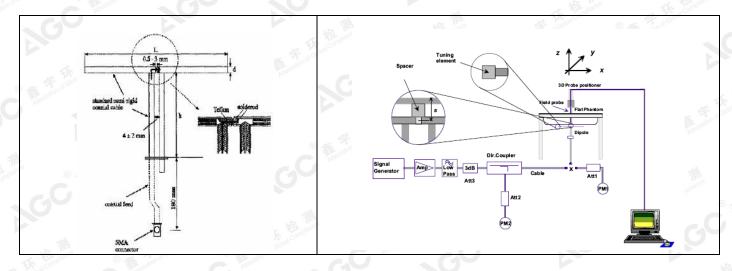
5.3. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using SATIMO Dielectric Probe Kit and R&S Network Analyzer ZVL6.

		Tissue Stimulant M	easurement for 2450MHz		
	Fr.	Dielectric Pa	rameters (±5%)	Tissue	Artestation C
	(MHz)	εr39.2(37.24-41.16)	δ[s/m]1.80(1.71-1.89)	Temp [°C]	Test time
Head	2412	40.01	1.75	- Till	ΣÍN
	2437	39.43	1.78	24.2	Aug 02 2019
	2450	38.81	1.82	21.3	Aug. 03,2018
	2462	38.19	1.84		O
® 5	Fr. ®	Dielectric Pa	rameters (±5%)	Tissue	
	(MHz)	εr52.7(50.065-55.335)	δ[s/m]1.95(1.8525-2.0475)	Temp [oC]	Test time
Body	2412	54.06	1.88	® A sallon	(B1000)
	2437	53.47	1.90	04 F	Aug 02 2010
	(MHz)	52.94	1.92	21.5	Aug. 03,2018
	2462	52.25	1.95	WE THIS	KE Jimes
c.C	Fr.	Dielectric Pa	rameters (±5%)	Tissue	Tologal Contraction
	(MHz)	εr52.7(50.065-55.335)	δ[s/m]1.95(1.8525-2.0475)	Temp [oC]	Test time
Body	2412	54.03	1.88		Į.
The ston of Global C.	2437	53.71	1.90	24 5	Aug 20 2019
	2450	53.25	1.92	21.5	Aug. 30,2018
	2462	52.84	1.93	® # Honor	obe 8 Milestation

The results spowth this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a state of the sample (s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a state of the sample (s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a state of the sample (s) are retained for 30 days only. The document is issued by AGC, this document is issued by AGC.

Page 18 of 73

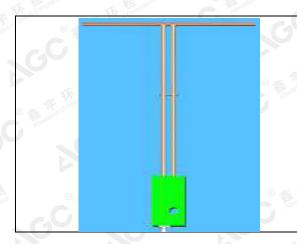

6. SAR SYSTEM CHECK PROCEDURE

6.1. SAR System Check Procedures

SAR system check is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

Each SATIMO system is equipped with one or more system check kits. These units, together with the predefined measurement procedures within the SATIMO software, enable the user to conduct the system check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system check setup is shown as below.



The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 19 of 73

6.2. SAR System Check 6.2.1. Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of IEEE. the table below provides details for the mechanical and electrical Specifications for the dipoles.

	Frequency	L (mm)	h (mm)	d (mm)
J	2450MHz	51.5	30.4	3.6

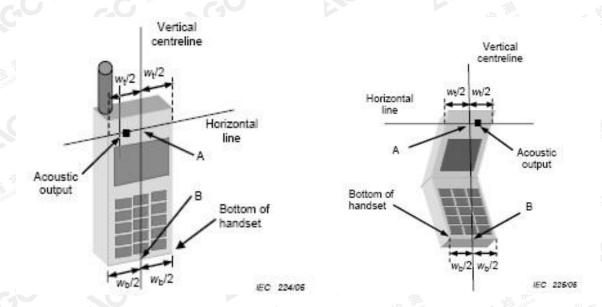
6.2.2. System Check Result

ormance	Check a	t 2450MHz for He	ead					
it: SN 29	/15DIP 20	450-393						
	9				Tissue Temp.	Test time		
1g	10g	. 1g	10g	1g	10g	[°C]	Allestan	
54.53	24.30	49.077-59.983	21.87-26.730	51.62	23.22	21.3	Aug. 03,2018	
ormance	Check a	2450MHz for Bo	ody					
	•			-611		Tissue Temp.	Test time	
1g 10g 1g 10g 1g 10g		10g	[°Cj	Attestan				
49.92	23.16	44.928-54.912	20.844-25.476	47.92	21.07	21.5	Aug. 03,2018	
49.92	23.16	44.928-54.912	20.844-25.476	53.50	23.00	21.5	Aug. 30,2018	
	it: SN 29/ Tar Value(1g 54.53 ormance Tar Value(1g 49.92	it: SN 29/15DIP 20 Target Value(W/Kg) 1g 10g 54.53 24.30 ormance Check at Target Value(W/Kg) 1g 10g 49.92 23.16	it: SN 29/15DIP 2G450-393 Target Value(W/Kg) Reference (± 1) 1g 10g 1g 54.53 24.30 49.077-59.983 ormance Check at 2450MHz for Both Target Value(W/Kg) Reference (± 1) Value(W/Kg) (± 1) 1g 10g 1g 49.92 23.16 44.928-54.912	Target Value(W/Kg) Reference Result (± 10%) 1g 10g 1g 10g 54.53 24.30 49.077-59.983 21.87-26.730 ormance Check at 2450MHz for Body Target Value(W/Kg) Reference Result (± 10%) 1g 10g 1g 10g 49.92 23.16 44.928-54.912 20.844-25.476	it: SN 29/15DIP 2G450-393 Target Value(W/Kg) Reference Result (± 10%) Tender Value 1g 10g 1g 10g 1g 54.53 24.30 49.077-59.983 21.87-26.730 51.62 ormance Check at 2450MHz for Body Target Value(W/Kg) Reference Result (± 10%) Tender Value 1g 10g 1g 10g 1g 49.92 23.16 44.928-54.912 20.844-25.476 47.92	it: SN 29/15DIP 2G450-393 Target Value(W/Kg) Reference Result (± 10%) Tested Value(W/Kg) 1g 10g 1g 10g 1g 10g 54.53 24.30 49.077-59.983 21.87-26.730 51.62 23.22 ormance Check at 2450MHz for Body Target Value(W/Kg) Reference Result (± 10%) Tested Value(W/Kg) 1g 10g 1g 10g 1g 10g 49.92 23.16 44.928-54.912 20.844-25.476 47.92 21.07	it: SN 29/15DIP 2G450-393 Target Value(W/Kg) Reference Result (± 10%) Tested Value(W/Kg) Tissue Temp. [°C] 1g 10g 1g 10g 1g 10g [°C] 54.53 24.30 49.077-59.983 21.87-26.730 51.62 23.22 21.3 ormance Check at 2450MHz for Body Target Value(W/Kg) Reference Result (± 10%) Tested Value(W/Kg) Tissue Temp. [°C] 1g 10g 1g 10g 1g 10g [°C] 49.92 23.16 44.928-54.912 20.844-25.476 47.92 21.07 21.5	

Note:

(1) We use a CW signal of 18dBm for system check, and then all SAR value are normalized to 1W forward power. The result must be within ±10% of target value.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.


Report No.: AGC00454180501FH01 Page 20 of 73

7. EUT TEST POSITION

This EUT was tested in Right Cheek, Right Tilted, Left Cheek, Left Tilted, Body back, Body front and 4 edges.

7.1. Define Two Imaginary Lines on the Handset

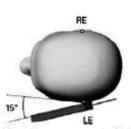
- (1)The vertical centerline passes through two points on the front side of the handset the midpoint of the width wt of the handset at the level of the acoustic output, and the midpoint of the width wb of the handset.
- (2) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (3)The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.

Page 21 of 73

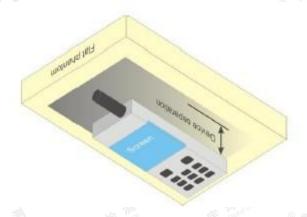
7.2. Cheek Position

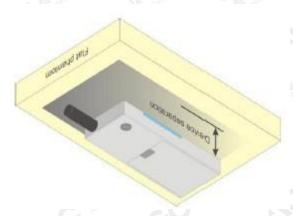
- (1) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center picec in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- (2) To move the device towards the phantom with the ear piece aligned with the the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost



7.3. Tilt Position

- (1) To position the device in the "cheek" position described above.
- (2) While maintaining the device in the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until with the ear is lost.


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.



Page 22 of 73

7.4. Body Worn Position

- (1) To position the EUT parallel to the phantom surface.
- (2) To adjust the EUT parallel to the flat phantom.
- (3) To adjust the distance between the EUT surface and the flat phantom to 10mm.

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gott.com.

Page 23 of 73

8. SAR EXPOSURE LIMITS

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure		Uncontrolled Environment Limit (W/kg)					
Spatial Peak SAR (1g cube tissue for brain or body)		1.60					
Spatial Average SAR (Whole body)		0.08					
Spatial Peak SAR (Limbs)	- TI	4.0					

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (SC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

Page 24 of 73

9. TEST FACILITY

7/10	
Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2F., Bldg.2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Bao'an District B112-B113, Shenzhen 518012
NVLAP Lab Code	600153-0
Designation Number	CN5028
Test Firm Registration Number	682566
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by National Voluntary Laboratory Accreditation program, NVLAP Code 600153-0

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cett.com.

Page 25 of 73

10. TEST EQUIPMENT LIST

Equipment description	Manufacturer/ Model	Identification No.	Current calibration date	Next calibration date	
SAR Probe	MVG	SN 08/16 EPGO282	Aug. 08,2017	Aug. 08,2018	
SAR Probe	MVG	SN 22/12 EP159	Aug. 08,2018	Aug. 07,2019	
Phantom	SATIMO	SN_4511_SAM90	Validated. No cal required.	Validated. No cal required.	
Liquid	SATIMO	The of Cloud Committee of the Committee	Validated. No cal required.	Validated. No cal required.	
Multimeter	Keithley 2000	1188656	Mar. 01,2018	Feb. 28,2019	
Dipole	SATIMO SID2450	SN29/15 DIP 2G450-393	07/05/2016	07/04/2019	
Signal Generator	Agilent-E4438C	US41461365	Mar. 01,2018	Feb. 28,2019	
Vector Analyzer	Agilent / E4440A	US41421290	Mar. 01,2018	Feb. 28,2019	
Network Analyzer	Rhode & Schwarz ZVL6	SN100132	Mar. 01,2018	Feb. 28,2019	
Attenuator	Warison /WATT-6SR1211	N/A	N/A	N/A	
Attenuator	Mini-circuits / VAT-10+	N/A	N/A	N/A	
Amplifier	EM30180	SN060552	Mar. 01,2018	Feb. 28,2019	
Directional Couple	Werlatone/ C5571-10	SN99463	June. 12,2018	June. 11,2019	
Directional Couple	Werlatone/ C6026-10	SN99482	June. 12,2018	June. 11,2019	
Power Sensor	NRP-Z21	1137.6000.02	Oct. 12,2017	Oct. 11,2018	
Power Sensor	NRP-Z23	US38261498	Mar. 01,2018	Feb. 28,2019	
Power Viewer	R&S	V2.3.1.0	N/A	N/A	

Note: Per KDB 865664 Dipole SAR Validation, AGC Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss is within 20% of calibrated measurement;
- 4. Impedance is within 5Ω of calibrated measurement.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 26 of 73

11. MEASUREMENT UNCERTAINTY

for D	ipole ave	Measu raged over		incertainty 10 gram		EPGO282			
a a	b mod	C	d	е	Of	g	h c×f/e	i	k
Uncertainty Component	Sec.	Tol (± %)	Prob. Dist.	f(d,k) Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	c×g/e 10g Ui (±%)	vi
Measurement System		(± /0)	Dist.		<u>Mil</u>	*151	(±70)	(± 70)	o Aolla
Probe calibration	E.2.1	5.831	N	1 The stand	1	1, Global Convilla	5.83	5.83	00
Axial Isotropy	E.2.2	0.695	R	√3	√0.5	√0.5	0.28	0.28	00
Hemispherical Isotropy	E.2.2	1.045	R	√ 3	√0.5	√0.5	0.43	0.43	00
Boundary effect	E.2.3	1.0	R	√3	1 , 1	1	0.58	0.58	00
Linearity	E.2.4	0.685	R	$\sqrt{3}$	E 1 Nobal Company	1 4	0.40	0.40	00
System detection limits	E.2.4	1.0	R	√3	1	1	0.58	0.58	00
Modulation response	E2.5	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Readout Electronics	E.2.6	0.021	N	1	1	1 1	0.021	0.021	00
Response Time	E.2.7	0	R	$\sqrt{3}$	1	1 bal Compillar	0	0	00
Integration Time	E.2.8	1.4	R	$\sqrt{3}$	Attestude	1	0.81	0.81	00
RF ambient conditions-Noise	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	00
RF ambient conditions-reflections	E.6.1	3.0	R	√3	1.	1	1.73	1.73	00
Probe positioner mechanical tolerance	E.6.2	1.4	R	$\sqrt{3}$	malance	1 A station of	0.81	0.81	∞
Probe positioning with respect to phantom shell	E.6.3 ®	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	00
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	1	1	1.33	1.33	00
Test sample Related	lin:		小水	mpliance	I Thoughou	bur	® # Jalion of Ch		Allestati
Test sample positioning	E.4.2	2.6	N	1 1	estation of 1	1-	2.6	2.6	00
Device holder uncertainty	E.4.1	3	N	1	1	1	3	3	. œ
Output power variation—SAR drift measurement	E.2.9	5	R	√3	1	1	2.89	2.89	00
SAR scaling	E.6.5	5	R	√3	pliance 1	I/1 al compli	2.89	2.89	00
Phantom and tissue parameters	20	FI Tompharce	® #	Sion of Global O	® 5	estation of cito	60		
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	√3	39	1	2.31	2.31	8
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1 HE	0.84	1.90	1.60	oo
Liquid conductivity measurement	E.3.3	4	N	1 %	0.78	0.71	3.12	2.84	М
Liquid permittivity measurement	E.3.3	© 5,000 dt	N	1	0.23	0.26	1.15	1.30	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	00
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	00
Combined Standard Uncertainty	2 1	unpal Combina	RSS	Dal Com	Allesta		9.79	9.59	
Expanded Uncertainty (95% Confidence interval)	Altestation of	_c C	K=2	100			19.58	19.18	- 1

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cett.com.

Report No.: AGC00454180501FH01 Page 27 of 73

System check und		11172	1 .	over 1 gra	22	3N Co	6 EPGO28	2	
a	b	C	d	f(d,k)	®f	roll g	cxf/e	c×g/e	k
Uncertainty Component	Sec.	Tol (± %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System		2.C	Hes						litte:
Probe calibration drift	E.2.1.3	0.5	N	1	1	1 -30	0.50	0.50	00
Axial Isotropy	E.2.2	0.695	R	$\sqrt{3}$	0	J. O complian	0.00	0.00	00
Hemispherical Isotropy	E.2.2 ®	1.045	R	√3	0	illon of Co	0.00	0.00	00
Boundary effect	E.2.3	1.0	R	√3	0	0	0.00	0.00	00
Linearity	E.2.4	0.685	R	√3	0	0	0.00	0.00	_00
System detection limits	E.2.4	1.0	R	√3	0	0	0.00	0.00	00
Modulation response	E2.5	3.0	R	$\sqrt{3}$	0	0	0.00	0.00	8
Readout Electronics	E.2.6	0.021	N	1 Alle	0	0	0.00	0.00	8
Response Time	E.2.7	0	R	$\sqrt{3}$	0	0	0.00	0.00	00
Integration Time	E.2.8	1.4	R	√3	0	0	0.00	0.00	00
RF ambient conditions-Noise	E.6.1	3.0	R	$\sqrt{3}$	© O	31 Clobal 0	0.00	0.00	00
RF ambient conditions-reflections	E.6.1	3.0	R	$\sqrt{3}$	0	0	0.00	0.00	oc
Probe positioner mechanical tolerance	E.6.2	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	00
Probe positioning with respect to phantom shell	E.6.3	1.4	R	$\sqrt{3}$	1 1	1,5	0.81	0.81	OC C
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	0	0	0.00	0.00	00
System check source (dipole)	60		0					TILL:	
Deviation of experimental dipoles	E.6.4	2	N	1	1 🖟	1	2	2	00
Input power and SAR drift measurement	8,6.6.4	5	R	√3	Final John Com	1	2.89	2.89	00
Dipole axis to liquid distance	8,E.6.6	2	R	$\sqrt{3}$	1	1	1.15	1.15	00
Phantom and tissue parameters				0					
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	$\sqrt{3}$	1	1点型	2.31	2.31	8
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	Follow Co	19 7	0.84	1.90	1.60	00
Liquid conductivity measurement	E.3.3	4	N	1	0.78	0.71	3.12	2.84	М
Liquid permittivity measurement	E.3.3	5	N	1	0.23	0.26	1.15	1.30	M
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	oc
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	$\sqrt{3}$	0.23	0.26	0.33	0.38	œ
Combined Standard Uncertainty		Attes	RSS			- all	5.564	5.205	
Expanded Uncertainty (95% Confidence interval)		, and	K=2	-1111		The Compliance	11.128	10.410	

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cett.com.

Report No.: AGC00454180501FH01 Page 28 of 73

System Validation u		11172		-м е	2/2	No Color	h 30	i com	
a	b	KT C	d	f(d,k)	®f	of G	cxf/e	c×g/e	k
Uncertainty Component	Sec.	Tol (±%)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System	1		lie.						UT;
Probe calibration	E.2.1	5.831	N	1	1	1 🦚	5.83	5.83	α
Axial Isotropy	E.2.2	0.695	R	$\sqrt{3}$	no 1	FI 1 Complian	0.40	0.40	ox
Hemispherical Isotropy	E.2.2 ®	1.045	R	$\sqrt{3}$	0	ilon of Cau	0.00	0.00	Ö
Boundary effect	E.2.3	1.0	R	√3	- 4	1	0.58	0.58	o
Linearity	E.2.4	0.685	R	√3	1	1	0.40	0.40	್ಷ೦೧
System detection limits	E.2.4	1.0	R	√3	T 1/2 phone	1	0.58	0.58	α
Modulation response	E2.5	3.0	R	$\sqrt{3}$	0	0	0.00	0.00	ox
Readout Electronics	E.2.6	0.021	N	(1) AUTO	1	U ₁	0.021	0.021	o
Response Time	E.2.7	0.0	R	√3	0	0	0.00	0.00	o
Integration Time	E.2.8	1.4	R	√3	0	0	0.00	0.00	O
RF ambient conditions-Noise	E.6.1	3.0	R	√3	0 1 F	of Global 1	1.73	1.73	O
RF ambient conditions-reflections	E.6.1	3.0	R	√3	C 1	1	1.73	1.73	o
Probe positioner mechanical tolerance	E.6.2	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	O
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	7 1	1,1	0.81	0.81	O
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	13	1	1.33	1.33	o
System check source (dipole)	60		O					LIJE:	
Deviation of experimental dipole from numerical dipole	E.6.4	5.0	N	1 1	1 恒	1 ance 1	5.00	5.00	0
Input power and SAR drift measurement	8,6.6.4	5.0	R	√3	Sestation of Tobal Co	1	2.89	2.89	o
Dipole axis to liquid distance	8,E.6.6	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	O
Phantom and tissue parameters							Δ	6.3	EL pliant
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4.0	R	√3	1 Marco 1	大地	2.31	2.31	α
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	Separation of 1		0.84	1.90	1.60	o
Liquid conductivity measurement	E.3.3	4.0	N	1	0.78	0.71	3.12	2.84	N
Liquid permittivity measurement	E.3.3	5.0	N	1	0.23	0.26	1.15	1.30	ľ
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	0
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	$\sqrt{3}$	0.23	0.26	0.33	0.38	0
Combined Standard Uncertainty	- 6	1	RSS			LITE:	9.718	9.517	
Expanded Uncertainty (95% Confidence interval)		lin:	K=2	THE SALE	22	The King Compliance	19.437	19.035	

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cett.com.

Page 29 of 73

Measurement un	certainty	for Dipole	averaged	l over 1 gi	ram / 10 gra	mSN 22	/12 EP159	- A(1)	
a	b	C	d	e f(d,k)	of A	n of Global g	h cxf/e	c×g/e	k
Uncertainty Component	Sec.	Tol (± %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System	J Paris	2.G	THES						III;
Probe calibration	E.2.1	5.831	N	1	1	1 🛒	5.83	5.83	8
Axial Isotropy	E.2.2	0.579	R	$\sqrt{3}$	√0.5	√0.5	0.24	0.24	00
Hemispherical Isotropy	E.2.2	0.813	R ®	$\sqrt{3}$	√0.5	√0.5	0.33	0.33	00
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	œ
Linearity	E.2.4	1.26	R	$\sqrt{3}$	1 -111	1	0.73	0.73	œ
System detection limits	E.2.4	1.0	R	$\sqrt{3}$	15K a compliance	1 %	0.58	0.58	00
Modulation response	E2.5	3.0	R	$\sqrt{3}$	1	1 Altestation	1.73	1.73	oo
Readout Electronics	E.2.6	0.021	N	1	1	1	0.021	0.021	œ
Response Time	E.2.7	0	R	$\sqrt{3}$	1	1 . 1	0	0	œ
Integration Time	E.2.8	1.4	R	$\sqrt{3}$	1 %	1 compliance	0.81	0.81	00
RF ambient conditions-Noise	E.6.1	3.0	R	√3	1 Mestation	1	1.73	1.73	00
RF ambient conditions-reflections	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	00
Probe positioner mechanical tolerance	E.6.2	1.4	R	√3	1	1	0.81	0.81	œ
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 St. Station of Control	0.81	0.81	oo
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	1 6	1	1.33	1.33	00
Test sample Related				-mil		lig	16	#31 phiance	
Test sample positioning	E.4.2	2.6	N	npliance 1	1 Million	1	2.6	2.6	8
Device holder uncertainty	E.4.1	3	N	184	estation of 1	1	3	3	00
Output power variation—SAR drift measurement	E.2.9	5	R	√3	1	1	2.89	2.89	00
SAR scaling	E.6.5	5	R	√3	1	1 -	2.89	2.89	ompliano •
Phantom and tissue parameters		lin:		~ 梅	apliance .	The Kill Compile	B. B	Station of Glo	
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R _{o A}	√3	1 %	Jalion of Glob	2.31	2.31	00
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	3 1	0.84	1.90	1.60	00
Liquid conductivity measurement	E.3.3	4	N	1	0.78	0.71	3.12	2.84	M
Liquid permittivity measurement	E.3.3	5	N°	1 4	0.23	0.26	1.15	1.30	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.02	oc
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	oc
Combined Standard Uncertainty		Milit	RSS	1	i a	The Compilar	9.807	9.608	. (
Expanded Uncertainty (95% Confidence interval)	J. V	Compliance	K=2	291 Combinance	Rifestation Albertain	are.	19.614	19.216	

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 30 of 73

System check u		-1111		d over 1 g	20	30 pal Co	/12 EP159	, Co,,,,	- 49
a	b	C	d	f(d,k)	®f	of g	cxf/e	c×g/e	k
Uncertainty Component	Sec.	Tol (± %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System			Mea.						:1111
Probe calibration drift	E.2.1.3	0.5	N	1	1	1 👊	0.50	0.50	00
Axial Isotropy	E.2.2	0.579	R	$\sqrt{3}$	0	T O complian	0.00	0.00	o
Hemispherical Isotropy	E.2.2	0.813	R	$\sqrt{3}$	0	lion of Co	0.00	0.00	oc
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	0	0	0.00	0.00	00
Linearity	E.2.4	1.26	R	$\sqrt{3}$	0	0	0.00	0.00	o
System detection limits	E.2.4	1.0	R	√3	O omotion	0	0.00	0.00	oc
Modulation response	E2.5	3.0 🖘	R	√3	0	0	0.00	0.00	00
Readout Electronics	E.2.6	0.021	N	4	0	0	0.00	0.00	00
Response Time	E.2.7	0	R	$\sqrt{3}$	0	0	0.00	0.00	00
Integration Time	E.2.8	1.4	R	√3	0	1 O	0.00	0.00	OC
RF ambient conditions-Noise	E.6.1	3.0	R	√3	0	0	0.00	0.00	00
RF ambient conditions-reflections	E.6.1	3.0	R	√3	0	0	0.00	0.00	o
Probe positioner mechanical tolerance	E.6.2	1.4	R	√3	1	1	0.81	0.81	oc
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	Topland 1	® #1 Finds	0.81	0.81	oc
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	0	0	0.00	0.00	00
System check source (dipole)	0			-11		lin;	16	Wil plance	
Deviation of experimental dipoles	E.6.4	2	N	npliance 1	The Man	ance 1	2	2 6	00
Input power and SAR drift measurement	8,6.6.4	50	R	$\sqrt{3}$	estation of 1	1.0	2.89	2.89	oc
Dipole axis to liquid distance	8,E.6.6	2	R	$\sqrt{3}$	1	1	1.15	1.15	o
Phantom and tissue parameters					etill	- 1	<u>M</u>	五 天 1	Combliano
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	√3	Marco 1	F Clobal Compli	2.31	2.31	o
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	testation of Cito		0.84	1.90	1.60	ox
Liquid conductivity measurement	E.3.3	4	N	1	0.78	0.71	3.12	2.84	N
Liquid permittivity measurement	E.3.3	5	N	1	0.23	0.26	1.15	1.30	N
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.02	ox
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	X
Combined Standard Uncertainty			RSS			松 测	5.564	5.205	
Expanded Uncertainty (95% Confidence interval)		#151 mmo	K=2	KE TUDION CO	® # #	Lot Clopal Cour	11.128	10.410	

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cett.com.

Page 31 of 73

System Validation	uncertain	ty for Dipo	le averaç	ged over 1	gram / 10	gramSN	22/12 EP15	59	
a	b	C	d	e f(d,k)	of,	g	h cxf/e	i cxg/e	k
Uncertainty Component	Sec.	Tol (±%)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System		2.G							Mig:
Probe calibration	E.2.1	5.831	N	1	1	1 -11	5.83	5.83	oc
Axial Isotropy	E.2.2	0.579	R	√3	ni ance 1	The Tompilar	0.33	0.33	o
Hemispherical Isotropy	E.2.2	0.813	R	√3	0	strillon of O	0.00	0.00	00
Boundary effect	E.2.3	1.0	R	√3	1	1	0.58	0.58	00
Linearity	E.2.4	1.26	R	$\sqrt{3}$	1	1	0.73	0.73	00
System detection limits	E.2.4	1.0	R	√3	The 1 complete	1 #	0.58	0.58	oc
Modulation response	E2.5	3.0	R	√3	on of Garage	O in state	0.00	0.00	00
Readout Electronics	E.2.6	0.021	N	9	1.0	1	0.021	0.021	00
Response Time	E.2.7	0.0	R	√3	0	0	0.00	0.00	00
Integration Time	E.2.8	1.4	R	√3	0	0	0.00	0.00	oc
RF ambient conditions-Noise	E.6.1	3.0	R	√3	1 Hestoli	1_(1.73	1.73	oc
RF ambient conditions-reflections	E.6.1	3.0	R	√3	1	10	1.73	1.73	o
Probe positioner mechanical tolerance	E.6.2	1.4	R	√3	1	1	0.81	0.81	ox
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	Cimpliance 1	® Mestation of	0.81	0.81	ox
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	10	1	1.33	1.33	o
System check source (dipole)				and the same		in:	1	Wil There	
Deviation of experimental dipole from numerical dipole	E.6.4	5.0	N	npliance 1	11 NO.	nc ance 1	5.00	5.00	ox
Input power and SAR drift measurement	8,6.6.4	5.0	R	√3	A Les anon U	- B	2.89	2.89	o
Dipole axis to liquid distance	8,E.6.6	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	00
Phantom and tissue parameters					:[[]]	12. F	III)	THE TANK	Cowbii
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4.0	R	√3	Inpliance 1	From Cirl M. Compil	2.31	2.31	00
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	GG **	0.84	1.90	1.60	α
Liquid conductivity measurement	E.3.3	4.0	N	1	0.78	0.71	3.12	2.84	N
Liquid permittivity measurement	E.3.3	5.0	N	1	0.23	0.26	1.15	1.30	N
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.02	o
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	α
Combined Standard Uncertainty			RSS	- di		Kingliance	9.735	9.534	
Expanded Uncertainty (95% Confidence interval)		KE Julianes	K=2	Compliance	® 7	of Global	19.470	19.069	

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cett.com.

Page 32 of 73

12. CONDUCTED POWER MEASUREMENT

WIF

Mode	Data Rate (Mbps)	Channel	Frequency(MHz)	Avg. Burst Power(dBm)
Modal Compi		01	2412	10.60
802.11b	1 0	06	2437	14.65
		11	2462	14.14
	:10	3/h 01 _ 5/h	2412	6.26
802.11g	6	06	2437	12.59
	ing of Clobal C	11	2462	11.93
Alle Attes		01	2412	6.17
802.11n(20)	6.5	06	2437	12.20
	The same of the sa	√ 11 °	2462	11.92
802.11n(40)	(Clopal Con.	03	2422	10.13
	13.5	06	2437	11.33
		09	2452	11.67

Bluetooth_EDR

Modulation	Channel	Frequency(MHz)	Peak Power (dBm)	
Affectation	0	2402	-2.364	
GFSK	39	2441	2.573	
	78	2480	0.913	
K Manufance	承	2402	-3.096	
π /4-DQPSK	39	2441	1.706	
	78	2480	-0.028	
	0	2402	-3.251	
8-DPSK	39	2441	1.518	
	78	2480	-0.261	

Bluetooth_BLE

Modulation	Channel	Frequency(MHz)	Peak Power (dBm)	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2402	-8.009	
GFSK	19 🚛 🔭	2440	-3.976	
	39	2480	-6.188	

The results showed the sample (s) tested unless otherwise stated and the sample (s) are retained for 30 days only. The document is issued by (SC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago-gent.com.

Page 33 of 73

13. TEST RESULTS

13.1. SAR Test Results Summary

13.1.1. Test position and configuration

Head SAR was performed with the device configured in the positions according to IEEE 1528-2013, Body-worn SAR was performed with the device 10mm from the phantom

13.1.2. Operation Mode

- Per KDB 447498 D01 v06, for each exposure position, if the highest 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional.
- 2. Per KDB 865664 D01 v01r04,for each frequency band, if the measured SAR is ≥0.8W/Kg, testing for repeated SAR measurement is required, that the highest measured SAR is only to be tested. When the SAR results are near the limit, the following procedures are required for each device to verify these types of SAR measurement related variation concerns by repeating the highest measured SAR configuration in each frequency band.
 - (1) When the original highest measured SAR is ≥0.8W/Kg, repeat that measurement once.
 - (2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is ≥1.45 W/Kg.
 - (3) Perform a third repeated measurement only if the original, first and second repeated measurement is ≥1.5 W/Kg and ratio of largest to smallest SAR for the original, first and second measurement is ≥ 1.20
- 3. Per KDB 648474 D04 v01r03,when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤1.2W/Kg, SAR testing with a headset connected is not required.
- 4. Per KDB 248227 D01v02r02,for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤1.2W/kg.
- 5. Maximum Scaling SAR in order to calculate the Maximum SAR values to test under the standard Peak Power, Calculation method is as follows:

 Maximum Scaling SAR =tested SAR (Max.) ×[maximum turn-up power (mw)/ maximum measurement output power(mw)]
- 6. Bluetooth and WIFI have same antennas, and cannot transmit simultaneously;
- According to KDB 447498 D01, annex A, SAR is not required for bluetooth because its maximum output power is less than 10 mW.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 34 of 73

13.1.3. Test Result

SAR MEASUREMENT		
Depth of Liquid (cm):>15	Relative Humidity (%): 64.9	
Product: SkvCaddie SX500		

Test Mode:802.11b

Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
Left Cheek	DTS	6	2437	-0.23	0.174	14.70	14.65	0.176	1.6
Left Tilt	DTS	6	2437	0.14	0.109	14.70	14.65	0.110	1.6
Right Cheek	DTS	6	2437	-0.25	0.333	14.70	14.65	0.337	1.6
Right Tilt	DTS	6	2437	-0.63	0.225	14.70	14.65	0.228	1.6
Body back	DTS	6	2437	-0.48	0.107	14.70	14.65	0.108	1.6
Body front	DTS	6	2437	-1.22	0.085	14.70	14.65	0.086	1.6
Edge 1 (Top)	DTS	6	2437	0.02	0.040	14.70	14.65	0.040	1.6
Edge 4(Left)	DTS	6	2437	0.12	0.108	14.70	14.65	0.109	1.6

Note:

- According to KDB 248227 D01v02r02,for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤1.2W/kg.
- All of above "DTS" means data transmitters.
- •The test separation for body is 10mm of all above table.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 35 of 73

SAR MEASUREMENT

Depth of Liquid (cm):>15 Relative Humidity (%): 53.6

Product: SkyCaddie SX500

Test Mode:802.11b

Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
Body back	DTS	6	2437	-1.23	0.565	14.70	14.65	0.572	1.6
Body front	DTS	6	2437	0.86	0.641	14.70	14.65	0.648	1.6
Edge 1 (Top)	DTS	6	2437	-1.81	0.328	14.70	14.65	0.332	1.6
Edge 4(Left)	DTS	6	2437	-1.78	0.683	14.70	14.65	0.691	1.6

[•]The test separation for body s 0mm of all above table.

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 36 of 73

APPENDIX A. SAR SYSTEM CHECK DATA

Test Laboratory: AGC Lab Date: Aug. 03,2018

System Check Head 2450 MHz

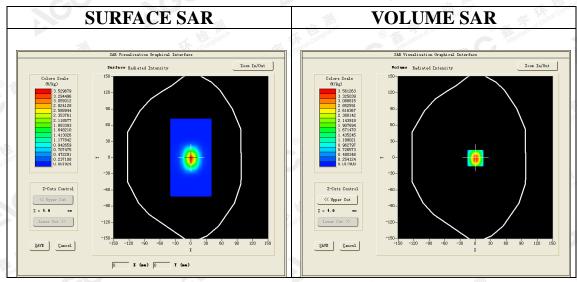
DUT: Dipole 2450 MHz Type: SID 2450

Communication System CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1; Conv.F=2.52 Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.82$ mho/m; $\epsilon r = 38.81$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$):21.9, Liquid temperature ($^{\circ}$): 21.3

SATIMO Configuration


• Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

Sensor-Surface: 4mm (Mechanical Surface Detection)

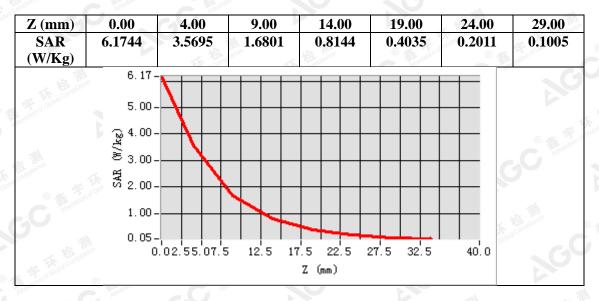
· Phantom: SAM twin phantom

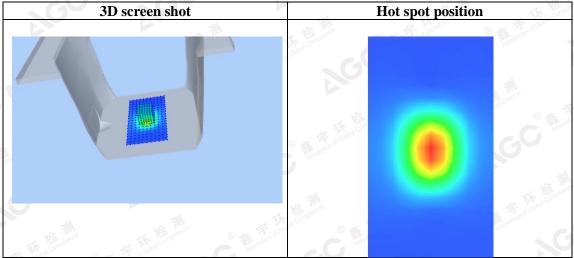
Measurement SW: OpenSAR V4_02_32

Configuration/System Check 2450MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 2450MHz Head/Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm

Maximum location: X=0.00, Y=-0.00 SAR Peak: 6.17 W/kg

SAR 10g (W/Kg)	1.465371
SAR 1g (W/Kg)	3.257154


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.


Attestation of Global Compliance

GC

Page 37 of 73

Date: Aug. 03,2018

Page 38 of 73

Test Laboratory: AGC Lab System Check Body 2450 MHz

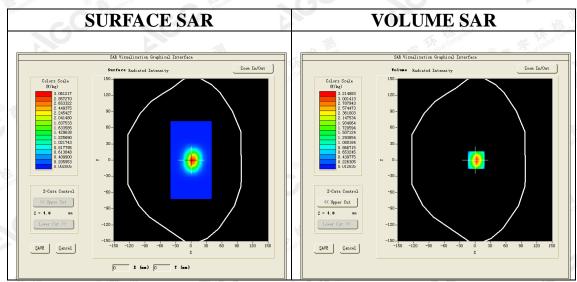
DUT: Dipole 2450 MHz Type: SID 2450

Communication System CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1; Conv.F=2.58 Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.92$ mho/m; $\epsilon r = 52.94$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$ C):21.9, Liquid temperature ($^{\circ}$ C): 21.5

SATIMO Configuration


Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

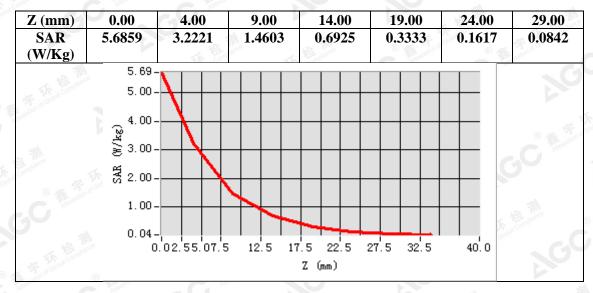
Sensor-Surface: 4mm (Mechanical Surface Detection)

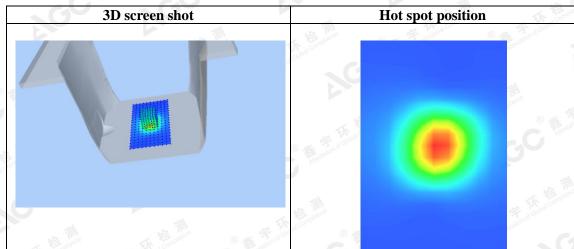
· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/System Check 2450MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 2450MHz Body/Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm

Maximum location: X=2.00, Y=0.00 SAR Peak: 5.69 W/kg


SAR 10g (W/Kg)	1.329134
SAR 1g (W/Kg)	3.023741


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Attestation of Global Compliance

Page 39 of 73

Date: Aug. 30,2018

Page 40 of 73

Test Laboratory: AGC Lab System Check Body 2450 MHz

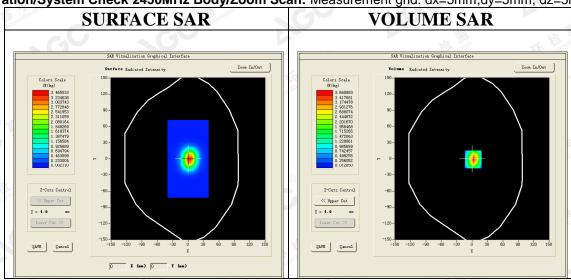
DUT: Dipole 2450 MHz Type: SID 2450

Communication System CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1; Conv.F=5.04 Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.92$ mho/m; $\epsilon r = 53.25$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):21.9, Liquid temperature (°C): 21.5

SATIMO Configuration


Probe: SSE5; Calibrated: Aug. 08,2018; Serial No.: SN 22/12 EP159

Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

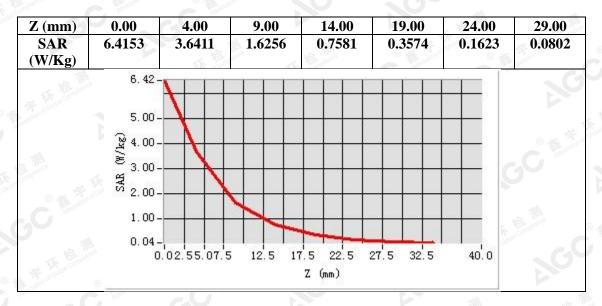
Measurement SW: OpenSAR V4_02_32

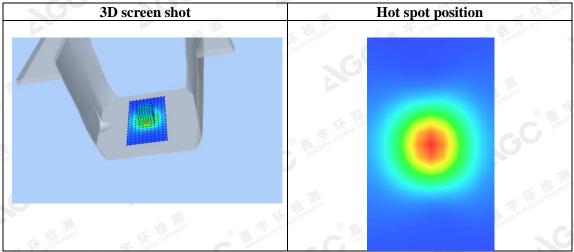
Configuration/System Check 2450MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 2450MHz Body/Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm

Maximum location: X=2.00, Y=-1.00

SAR Peak: 6.40 W/kg

SAR 10g (W/Kg)	1.451203
SAR 1g (W/Kg)	3.375541


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.


Attestation of Global Compliance

GCS

Page 41 of 73

Page 42 of 73

APPENDIX B. SAR MEASUREMENT DATA

Test Laboratory: AGC Lab Date: Aug. 03,2018

802.11b Mid-Touch-Left

DUT: SkyCaddie SX500; Type: SX500

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Conv.F=2.52;

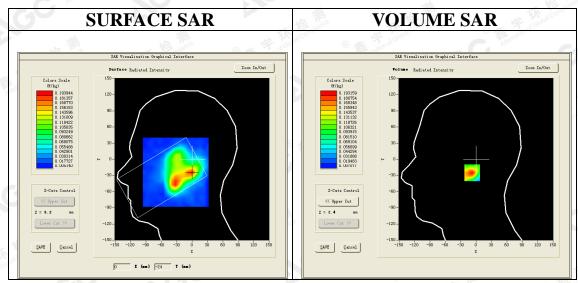
Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.78 \text{ mho/m}$; $\epsilon r = 39.43 \rho = 1000 \text{ kg/m}^3$;

Phantom section: Left Section

Ambient temperature ($^{\circ}$):21.9, Liquid temperature ($^{\circ}$): 21.3

SATIMO Configuration:

Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

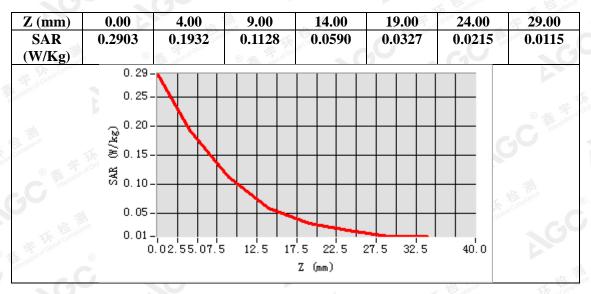

· Sensor-Surface: 4mm (Mechanical Surface Detection)

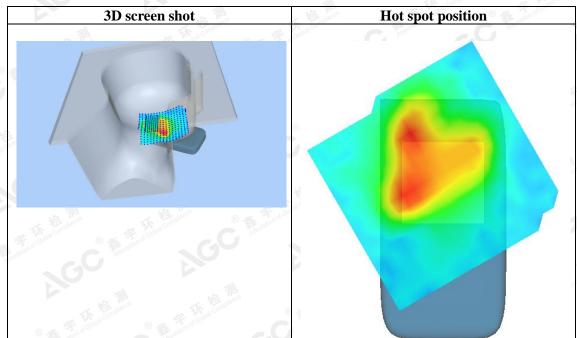
· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/802.11b Mid- Touch-Left/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/802.11b Mid- Touch-Left/Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm
Phantom	Left head
Device Position	Cheek
Band	2450MHz
Channels	Middle
Signal	Crest factor: 1.0


Maximum location: X=-1.00, Y=-25.00 SAR Peak: 0.29 W/kg


SAR 10g (W/Kg) 0.093415 SAR 1g (W/Kg) 0.173915

The results specified this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Date: Aug. 03,2018

Page 44 of 73

Test Laboratory: AGC Lab

802.11b Mid -Tilt-Left

DUT: SkyCaddie SX500; Type: SX500

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Conv.F=2.52;

Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.78$ mho/m; $\epsilon r = 39.43$; $\rho = 1000$ kg/m³

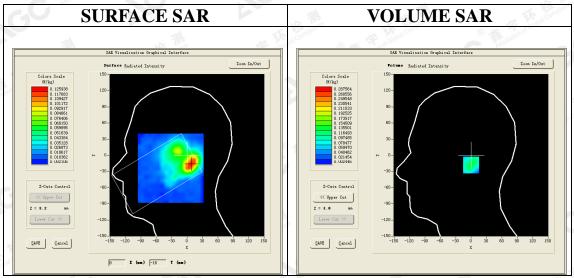
Phantom section: Left Section

Ambient temperature (°C):21.9, Liquid temperature (°C): 21.3

SATIMO Configuration:

Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

· Sensor-Surface: 4mm (Mechanical Surface Detection)


· Phantom: SAM twin phantom

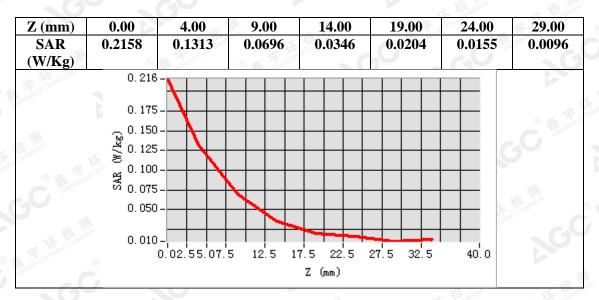
Measurement SW: OpenSAR V4_02_32

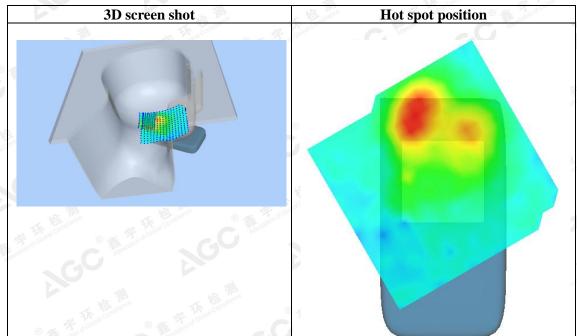
Configuration/802.11b Mid- Tilt-Left/Area Scan: Measurement grid: dx=8mm, dy=8mm

Configuration/802.11b Mid- Tilt-Left/Zoom Scan: Measurement grid: dx=5mm, dy=5mm,dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm
Phantom	Left head
Device Position	Tilt
Band	2450MHz
Channels	Middle
Signal	Crest factor: 1.0
	, 162.

Maximum location: X=6.00, Y=-18.00 SAR Peak: 0.24 W/kg


SAR 10g (W/Kg)	0.063683
SAR 1g (W/Kg)	0.109288


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Attestation of Global Compliance

Page 46 of 73

Test Laboratory: AGC Lab

Date: Aug. 03,2018

802.11b Mid- Touch-Right

DUT: SkyCaddie SX500; Type: SX500

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Conv.F=2.52;

Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.78 \text{mho/m}$; $\epsilon r = 39.43$; $\rho = 1000 \text{ kg/m}^3$;

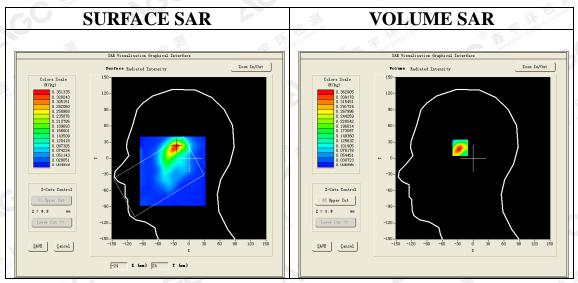
Phantom section: Right Section

Ambient temperature ($^{\circ}$ C):21.9, Liquid temperature ($^{\circ}$ C): 21.3

SATIMO Configuration:

Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

· Sensor-Surface: 4mm (Mechanical Surface Detection)

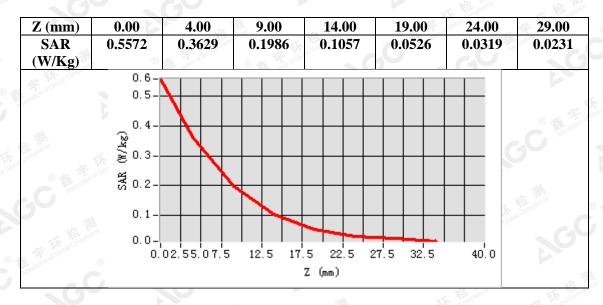

· Phantom: SAM twin phantom

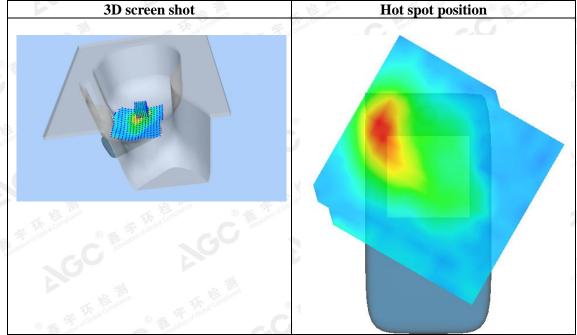
Measurement SW: OpenSAR V4_02_32

Configuration/802.11b Mid- Touch-Right /Area Scan: Measurement grid: dx=8mm, dy=8mm

Configuration/802.11b Mid- Touch-Right /Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm
Phantom	Right head
Device Position	Cheek
Band	2450MHz
Channels	Middle
Signal	Crest factor: 1.0


Maximum location: X=-25.00, Y=22.00 SAR Peak: 0.57 W/kg


SAR 10g (W/Kg)	0.165856
SAR 1g (W/Kg)	0.332975

The results specified this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true and the authenticity of the authentic

Page 48 of 73

Test Laboratory: AGC Lab Date: Aug. 03,2018

802.11b Mid-Tilt-Right

DUT: SkyCaddie SX500; Type: SX500

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Conv.F=2.52;

Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.78$ mho/m; $\epsilon r = 39.43$; $\rho = 1000$ kg/m³

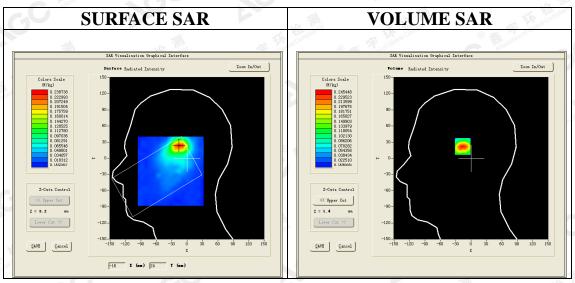
Phantom section: Right Section

Ambient temperature (°C):21.9, Liquid temperature (°C): 21.3

SATIMO Configuration:

Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

Sensor-Surface: 4mm (Mechanical Surface Detection)


· Phantom: SAM twin phantom

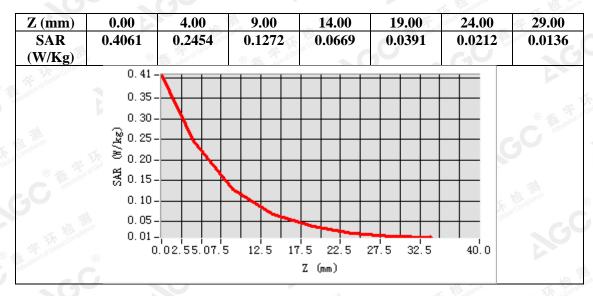
Measurement SW: OpenSAR V4_02_32

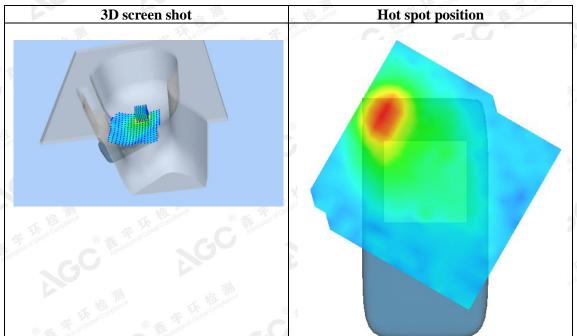
Configuration/802.11b Mid- Tilt-Right/Area Scan: Measurement grid: dx=8mm, dy=8mm

Configuration/802.11b Mid- Tilt-Right/Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm
Phantom	Right head
Device Position	Tilt
Band	2450MHz
Channels	Middle Middle
Signal	Crest factor: 1.0

Maximum location: X=-15.00, Y=24.00 SAR Peak: 0.40 W/kg


Diffe I can on o wing	
SAR 10g (W/Kg)	0.115383
SAR 1g (W/Kg)	0.224952


The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Attestation of Global Compliance

Page 50 of 73

Test Laboratory: AGC Lab Date: Aug. 03,2018

802.11b Mid-Body-Worn- Back (DTS) DUT: SkyCaddie SX500 ; Type: SX500

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Conv.F=2.58;

Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.90$ mho/m; $\epsilon r = 53.47$; $\rho = 1000$ kg/m³;

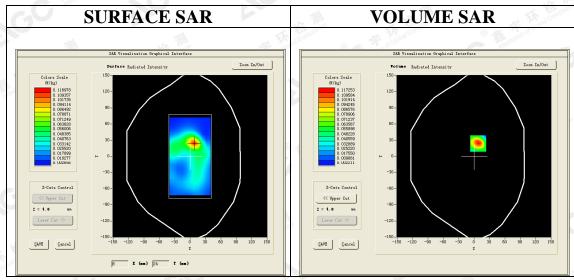
Phantom section: Flat Section

Ambient temperature (°C):21.9, Liquid temperature (°C): 21.5

SATIMO Configuration:

Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

· Sensor-Surface: 4mm (Mechanical Surface Detection)

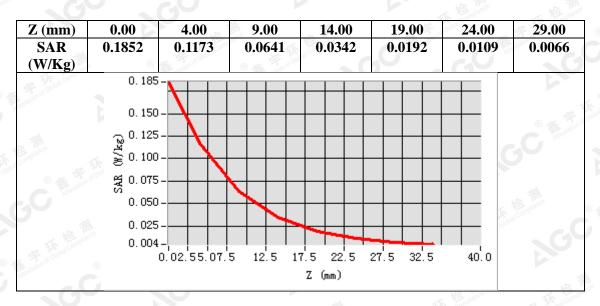

· Phantom: SAM twin phantom

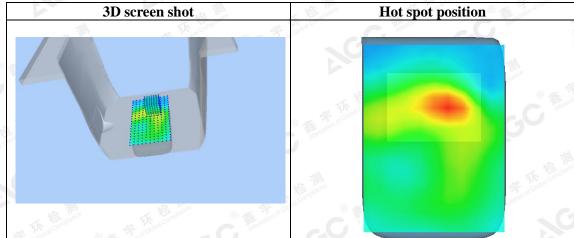
Measurement SW: OpenSAR V4_02_32

Configuration/802.11b Mid- Body- Back /Area Scan: Measurement grid: dx=8mm, dy=8mm

Configuration/802.11b Mid- Body- Back /Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm
Phantom	Validation plane
Device Position	Body Back
Band	2450MHz
Channels	Middle Middle
Signal	Crest factor: 1.0


Maximum location: X=8.00, Y=24.00 SAR Peak: 0.19 W/kg


SAR 10g (W/Kg)	0.053344
SAR 1g (W/Kg)	0.107141

The results specified this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true and the authenticity of the authentic

Date: Aug. 03,2018

Page 52 of 73

Test Laboratory: AGC Lab

802.11b Mid-Body- Worn- Front (DTS) DUT: SkyCaddie SX500 ; Type: SX500

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Conv.F=2.58;

Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.90$ mho/m; $\epsilon r = 53.47$; $\rho = 1000$ kg/m³

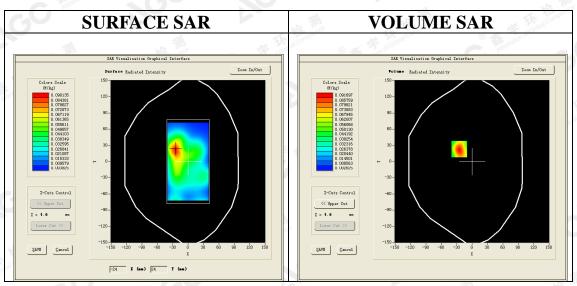
Phantom section: Flat Section

Ambient temperature (°C):21.9, Liquid temperature (°C): 21.5

SATIMO Configuration:

Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

· Sensor-Surface: 4mm (Mechanical Surface Detection)


· Phantom: SAM twin phantom

· Measurement SW: OpenSAR V4 02 32

Configuration/802.11b Mid- Body- Front /Area Scan: Measurement grid: dx=8mm, dy=8mm

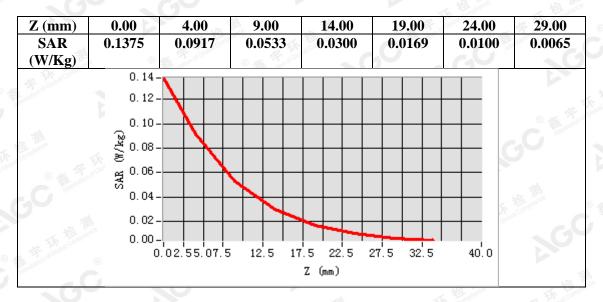
Configuration/802.11b Mid- Body- Front /Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm;

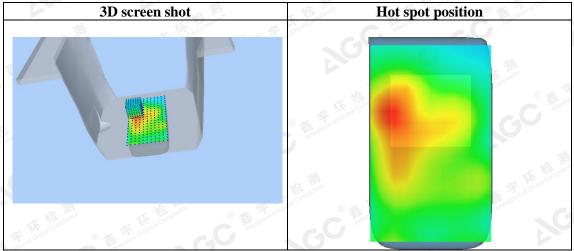
Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm
Phantom	Validation plane
Device Position	Body Front
Band	2450MHz
Channels	Middle
Signal	Crest factor: 1.0

Maximum location: X=-25.00, Y=23.00

SAR Peak: 0.14 W/kg

SAR 10g (W/Kg)	0.047319
SAR 1g (W/Kg)	0.084853


The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.


Attestation of Global Compliance

IGC 8

Page 53 of 73

Date: Aug. 03,2018

Page 54 of 73

Test Laboratory: AGC Lab 802.11b Mid- Edge1 (DTS)

DUT: SkyCaddie SX500; Type: SX500

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Conv.F=2.58;

Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.90$ mho/m; $\epsilon r = 53.47$; $\rho = 1000$ kg/m³;

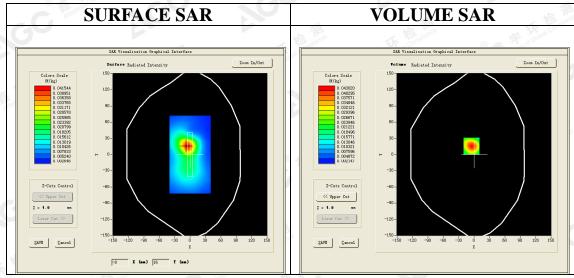
Phantom section: Flat Section

Ambient temperature (°C):21.9, Liquid temperature (°C): 21.5

SATIMO Configuration:

Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

· Sensor-Surface: 4mm (Mechanical Surface Detection)


· Phantom: SAM twin phantom

· Measurement SW: OpenSAR V4_02_32

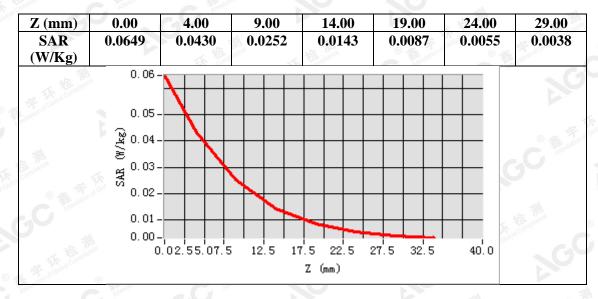
Configuration/802.11b Mid- Edge1 /Area Scan: Measurement grid: dx=8mm, dy=8mm

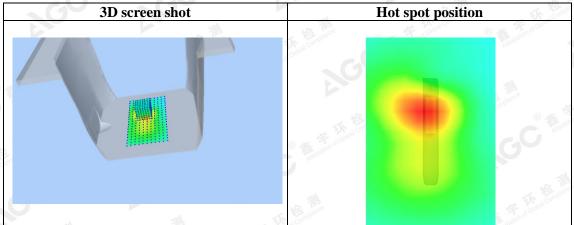
Configuration/802.11b Mid- Edge1 /Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm
Phantom	Validation plane
Device Position	Edge1
Band	2450MHz
Channels	Middle
Signal	Crest factor: 1.0

Maximum location: X=-5.00, Y=16.00

SAR Peak: 0.06 W/kg


SAR 10g (W/Kg)	0.022104
SAR 1g (W/Kg)	0.040082


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago. gent.com.

Attestation of Global Compliance

Page 55 of 73

Page 56 of 73

Test Laboratory: AGC Lab Date: Aug. 03,2018

802.11b Mid- Edge4 (DTS)

DUT: SkyCaddie SX500; Type: SX500

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Conv.F=2.58;

Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.90$ mho/m; $\epsilon r = 53.47$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Ambient temperature (°C):21.9, Liquid temperature (°C): 21.5

SATIMO Configuration:

Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

· Sensor-Surface: 4mm (Mechanical Surface Detection)

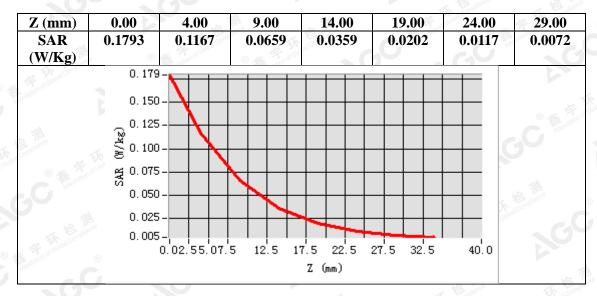

Phantom: SAM twin phantom

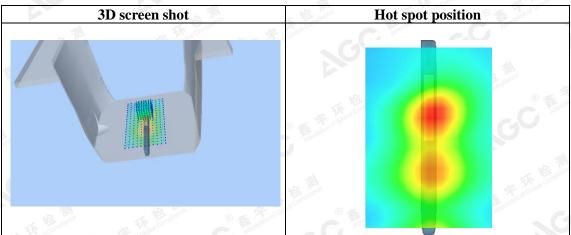
· Measurement SW: OpenSAR V4_02_32

Configuration/802.11b Mid- Edge4 / Area Scan: Measurement grid: dx=8mm, dy=8mm

Configuration/802.11b Mid- Edge4 /Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm
Phantom	Validation plane
Device Position	Edge4
Band	2450MHz
Channels	Middle
Signal	Crest factor: 1.0


Maximum location: X=2.00, Y=18.00 SAR Peak: 0.18 W/kg


SAR 10g (W/Kg)	0.055998
SAR 1g (W/Kg)	0.108074

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 57 of 73

Page 58 of 73

Test Laboratory: AGC Lab Date: Aug. 30,2018

802.11b Mid-Body-Worn- Back (DTS)
DUT: SkyCaddie SX500; Type: SX500

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Conv.F=5.04

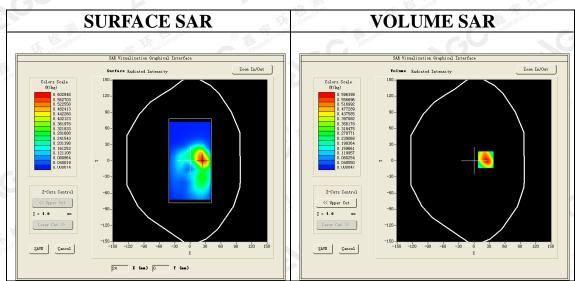
Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.90 \text{ mho/m}$; $\epsilon r = 53.71$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$):21.9, Liquid temperature ($^{\circ}$): 21.5

SATIMO Configuration:

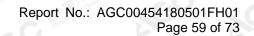
Probe: SSE5; Calibrated: Aug. 08,2018; Serial No.: SN 22/12 EP159

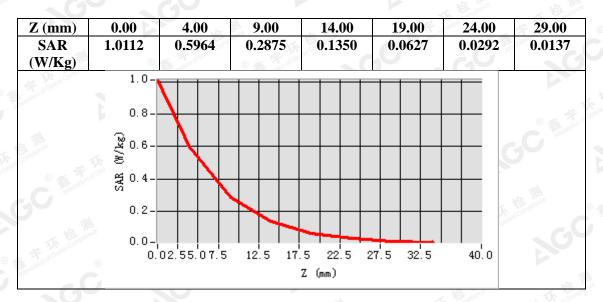

· Sensor-Surface: 4mm (Mechanical Surface Detection)

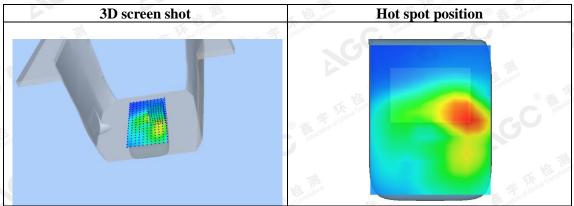
· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/802.11b Mid- Body- Back /Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/802.11b Mid- Body- Back /Zoom Scan: Measurement grid: dx=5mm, dy=5mm, dz=5mm;


Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm
Phantom	Validation plane
Device Position	Body Back
Band	2450MHz
Channels	Middle
Signal	Crest factor: 1.0


Maximum location: X=23.00, Y=2.00 SAR Peak: 1.01 W/kg


SAR 10g (W/Kg)	0.276168
SAR 1g (W/Kg)	0.565203

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 60 of 73

Test Laboratory: AGC Lab Date: Aug. 30,2018

802.11b Mid-Body-Worn- Front (DTS) DUT: SkyCaddie SX500 ; Type: SX500

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Conv.F=5.04

Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.90$ mho/m; $\epsilon r = 53.71$; $\rho = 1000$ kg/m³

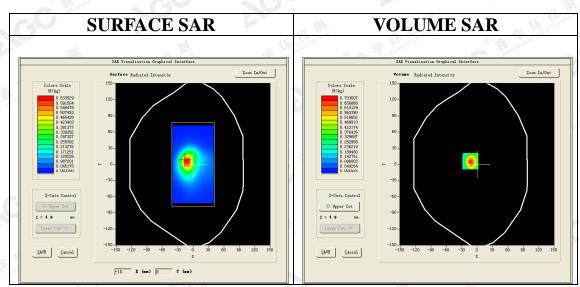
Phantom section: Flat Section

Ambient temperature (°C):21.9, Liquid temperature (°C): 21.5

SATIMO Configuration:

Probe: SSE5; Calibrated: Aug. 08,2018; Serial No.: SN 22/12 EP159

· Sensor-Surface: 4mm (Mechanical Surface Detection)

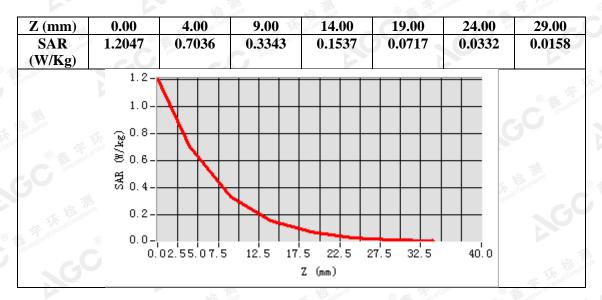

· Phantom: SAM twin phantom

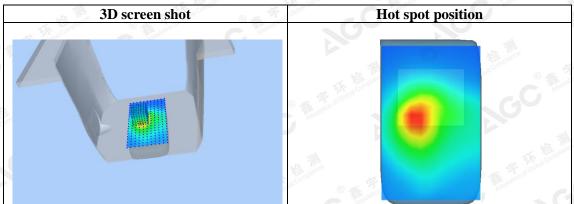
· Measurement SW: OpenSAR V4 02 32

Configuration/802.11b Mid- Body- Front /Area Scan: Measurement grid: dx=8mm, dy=8mm

Configuration/802.11b Mid- Body- Front /Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm
Phantom	Validation plane
Device Position	Body Front
Band	2450MHz
Channels	Middle
Signal	Crest factor: 1.0


Maximum location: X=-13.00, Y=6.00 SAR Peak: 1.19 W/kg


SAR 10g (W/Kg)	0.295731
SAR 1g (W/Kg)	0.641257

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago. gent.com.

Page 62 of 73

Test Laboratory: AGC Lab Date: Aug. 30,2018

802.11b Mid- Edge1 (DTS)

DUT: SkyCaddie SX500; Type: SX500

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Conv.F=5.04

Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.90 \text{ mho/m}$; $\epsilon r = 53.71$; $\rho = 1000 \text{ kg/m}^3$;

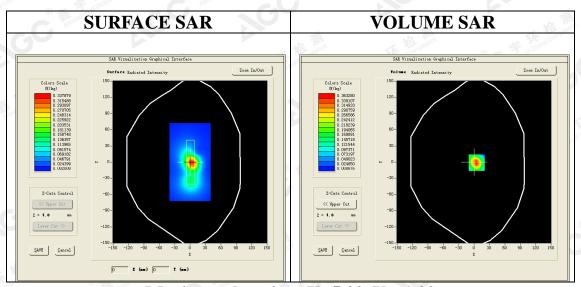
Phantom section: Flat Section

Ambient temperature (°C):21.9, Liquid temperature (°C): 21.5

SATIMO Configuration:

Probe: SSE5; Calibrated: Aug. 08,2018; Serial No.: SN 22/12 EP159

Sensor-Surface: 4mm (Mechanical Surface Detection)


· Phantom: SAM twin phantom

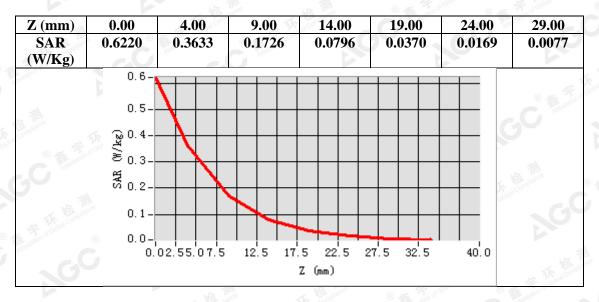
Measurement SW: OpenSAR V4_02_32

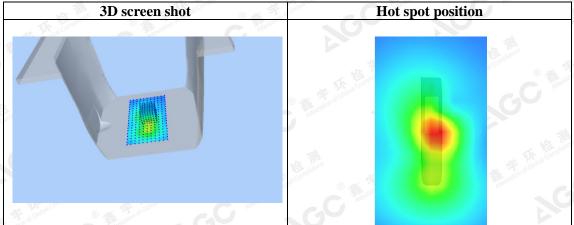
Configuration/802.11b Mid- Edge1 /Area Scan: Measurement grid: dx=8mm, dy=8mm

Configuration/802.11b Mid- Edge1 /Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm
Phantom	Validation plane
Device Position	Edge1
Band	2450MHz
Channels	Middle
Signal	Crest factor: 1.0

Maximum location: X=5.00, Y=-1.00


SAR Peak: 0.62 W/kg


81221 2 00121	7000
SAR 10g (W/Kg)	0.146369
SAR 1g (W/Kg)	0.328454

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 64 of 73

Test Laboratory: AGC Lab

802.11b Mid- Edge4 (DTS)

Date: Aug. 30,2018

DUT: SkyCaddie SX500; Type: SX500

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Conv.F=5.04

Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.90 \text{ mho/m}$; $\epsilon r = 53.71$; $\rho = 1000 \text{ kg/m}^3$;

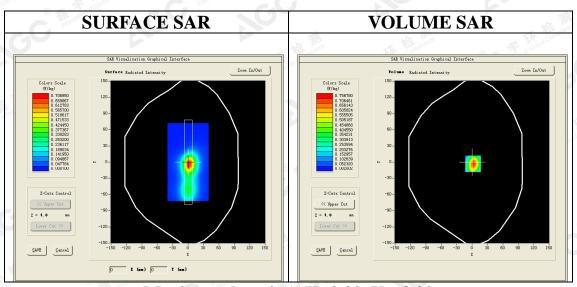
Phantom section: Flat Section

Ambient temperature (°C):21.9, Liquid temperature (°C): 21.5

SATIMO Configuration:

Probe: SSE5; Calibrated: Aug. 08,2018; Serial No.: SN 22/12 EP159

· Sensor-Surface: 4mm (Mechanical Surface Detection)


· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/802.11b Mid- Edge4 / Area Scan: Measurement grid: dx=8mm, dy=8mm

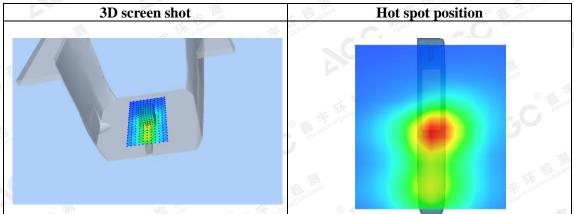
Configuration/802.11b Mid- Edge4 /Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm
Phantom	Validation plane
Device Position	Edge4
Band	2450MHz
Channels	Middle
Signal	Crest factor: 1.0

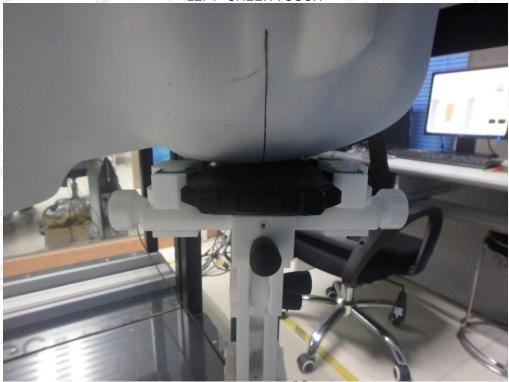
Maximum location: X=2.00, Y=-3.00

SAR Peak: 1.27 W/kg


SAR 10g (W/Kg)	0.308847
SAR 1g (W/Kg)	0.683300


The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Attestation of Global Compliance



Page 66 of 73

APPENDIX C. TEST SETUP PHOTOGRAPHS

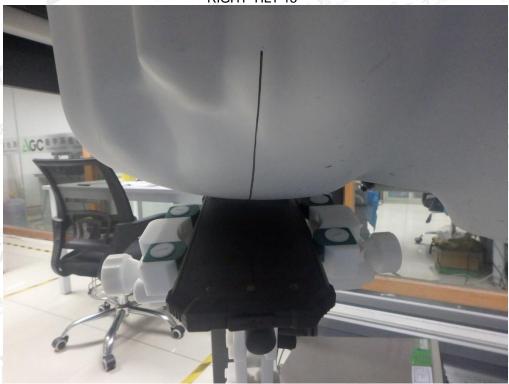
LEFT- CHEEK TOUCH

LEFT-TILT 15⁰

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F. , Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China



Page 67 of 73

Body Back 10mm

Body Front 10mm

Page 69 of 73

Edge 1(Top) 10mm

Edge 4(Left) 10mm

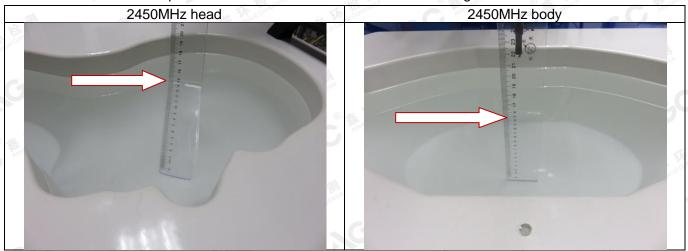
Body Back 0mm

Body Front 0mm

Edge 1(Top) 0mm

Edge 4(Left) 0mm

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gert.com. AGC 9


6 400 089 2118

Page 72 of 73

DEPTH OF THE LIQUID IN THE PHANTOM—ZOOM IN

Note: The position used in the measurement were according to IEEE 1528-2013

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.cett.com.

Attestation of Global Compliance

Page 73 of 73

APPENDIX D. CALIBRATION DATA

Refer to Attached files.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Attestation of Global Compliance