

FCC TEST REPORT
for

Seal Shield Corporation

2.4GHZ Wireless Receiver
Model No.: SSKSV099WR

Prepared for : Seal Shield Corporation
Address : 3105 Riverside Avenue Jacksonville, Florida 32205 United States

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited
Address : 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan District, Shenzhen, Guangdong, China
Tel: (86) 755-26066544
Fax: (86) 755-26014772

Report Number : R011608738I
Date of Test : Aug. 22~Sept. 01, 2016
Date of Report : Sept. 02, 2016

TABLE OF CONTENTS**Description****Page****Test Report Verification**

1. GENERAL INFORMATION	4
1.1. Description of Device (EUT).....	4
1.2. Auxiliary Equipment Used during Test.....	5
1.3. Description of Test Facility.....	6
1.4. Measurement Uncertainty.....	6
1.5. Test Summary.....	6
2. POWER LINE CONDUCTED MEASUREMENT	7
2.1. Test Equipment.....	7
2.2. Block Diagram of Test Setup.....	7
2.3. Power Line Conducted Emission Measurement Limits (FCC Part 15 Class B).....	7
2.4. Configuration of EUT on Measurement.....	7
2.5. Operating Condition of EUT.....	8
2.6. Test Procedure.....	8
2.7. Power Line Conducted Emission Measurement Results.....	8
3. RADIATED EMISSION MEASUREMENT	11
3.1. Test Equipment.....	11
3.2. Block Diagram of Test Setup.....	11
3.3. Radiated Emission Limit (Subpart B Class B).....	11
3.4. EUT Configuration on Measurement.....	12
3.5. Operating Condition of EUT.....	12
3.6. Test Procedure.....	12
3.7. Radiated Emission Measurement Results.....	12
4. PHOTOGRAPH	15
4.1. Photo of Power Line Conducted Emission Test.....	15
4.2. Photo of Radiated Emission Test.....	15
APPENDIX I (EXTERNAL PHOTOS)	16
APPENDIX II (INTERNAL PHOTOS)	19

TEST REPORT

Applicant : Seal Shield Corporation
Manufacturer : Seal Shield Corporation
EUT : 2.4GHZ Wireless Receiver
Model No. : SSKSV099WR
Serial No. : N.A.
Trade Mark :
Rating : DC 5V, 25mA

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart B 15.107, 15.109 & FCC / ANSI C63.4-2015

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited To determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart B Class B limits both radiated and conducted emissions. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited Is assumed full responsibility for the accuracy and completeness of these measurements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited

Date of Test : Aug. 22~Sept. 01, 2016

Prepared by : Baron Wen
(Engineer/ Baron Wen)

Reviewer : Dolly Mo
(Project Manager/ Dolly Mo)

Approve & Authorized Signer : Tom Chen
(Manager/ Tom Chen)

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

Description : 2.4GHZ Wireless Receiver

Model Number : SSKSV099WR

Test Power Supply : DC 5V via USB Port

Frequency : RX: 2402~2480MHz

Antenna Specification : PCB Antenna: -0.61dBi

Applicant : Seal Shield Corporation

Address : 3105 Riverside Avenue Jacksonville, Florida 32205 United States

Manufacturer : Seal Shield Corporation

Address : 3105 Riverside Avenue Jacksonville, Florida 32205 United States

Factory : Seal Shield Corporation

Address : 3105 Riverside Avenue Jacksonville, Florida 32205 United States

Date of receipt : Aug. 22, 2016

Date of Test : Aug. 22~Sept. 01, 2016

1.2. Auxiliary Equipment Used during Test

PC

: Manufacturer: DELL
M/N: Optiplex 3020 MT
S/N: CN-079V51-70163-4AD-089K-A00
Input Rating: AC 100-240V, 50-60Hz 5.4A
CE , FCC DOC, CCC

MONITOR

: Manufacturer: DELL
M/N: UZ2215Hf
S/N: CN-035VN6-72872-45A-A3AB
Input Rating: AC 100-240V, 50-60Hz, 1.5A
Output Rating: DC 19.5V, 4.62A
TUV-GS FCC CE KCC VCCI

KEYBOARD

: Manufacturer: DELL
M/N: SK-8120
S/N: CN-0DJ365-71616-49J-0MVR-A00
Input Rating: DC 5V,0.05A
CE FCC VCCI KCC TUV-GS
Cable: 1.8m, unshielded

MOUSE

: Manufacturer: DELL
M/N: MS111-T
S/N: CN-0KW2YH-71616-488-1CBJ
Input Rating: DC 5V,0.1A
Cable: 1.8m, unshielded
CE FCC VCCI KCC TUV-GS

1.3. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS - LAB Code: L3503

Shenzhen Anbotek Compliance Laboratory Limited., Laboratory has been assessed and in compliance with CNAS/CL01: 2006 accreditation criteria for testing laboratories (identical to ISO/IEC 17025:2005 General Requirements) for the Competence of Testing Laboratories.

FCC-Registration No.: 752021

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 752021, July 06, 2016

IC-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited., EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada. The acceptance letter from the IC is maintained in our files. Registration 8058A, June 13, 2016

Test Location

All Emissions tests were performed

Shenzhen Anbotek Compliance Laboratory Limited. at 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan District, Shenzhen, Guangdong, China

1.4. Measurement Uncertainty

Radiation Uncertainty : $Ur = 4.1\text{dB}$ (Horizontal)
 $Ur = 4.3\text{dB}$ (Vertical)

Conduction Uncertainty : $Uc = 3.4\text{dB}$

1.5. Test Summary

For the EUT described above. The standards used were FCC Part 15 Subpart B for Emissions.

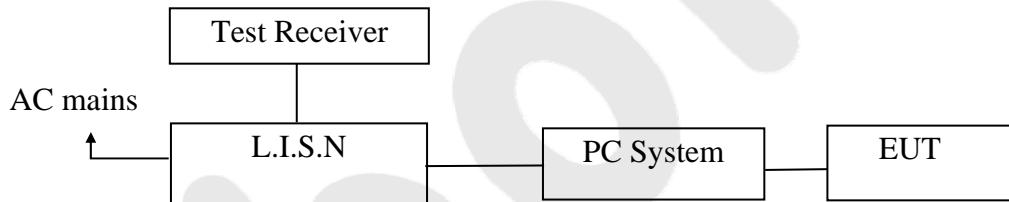
Table 1 : Tests Carried Out Under FCC Part 15 Subpart B

Standard	Test Items	Status
FCC Part 15 Subpart B	Power Line Conducted Emission Test (150KHz To 30MHz)	✓
FCC Part 15 Subpart B	Radiated Emission Test (30MHz To 1000MHz)	✓

✓ Indicates that the test is applicable

✗ Indicates that the test is not applicable

2. POWER LINE CONDUCTED MEASUREMENT


2.1. Test Equipment

The following test equipments are used during the power line conducted measurement:

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Two-Line V-network	Rohde & Schwarz	ENV216	100055	Apr. 16, 2016	1 Year
2.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Apr. 16, 2016	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Apr. 16, 2016	1 Year

2.2. Block Diagram of Test Setup

2.2.1. Block diagram of connection between the EUT and simulators

2.3. Power Line Conducted Emission Measurement Limits (FCC Part 15

Class B)

Frequency MHz	Limits dB(μV)	
	Quasi-peak Level	Average Level
0.15 ~ 0.50	66 ~ 56*	56 ~ 46*
0.50 ~ 5.00	56	46
5.00 ~ 30.00	60	50

Notes: 1. *Decreasing linearly with logarithm of frequency.
2. The lower limit shall apply at the transition frequencies.

2.4. Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

2.5. Operating Condition of EUT

2.5.1. Setup the EUT and simulator as shown as Section 2.2.

2.5.2. Turn on the power of all equipment.

2.5.3. Let the EUT work in test mode (ON) and measure it.

2.6. Test Procedure

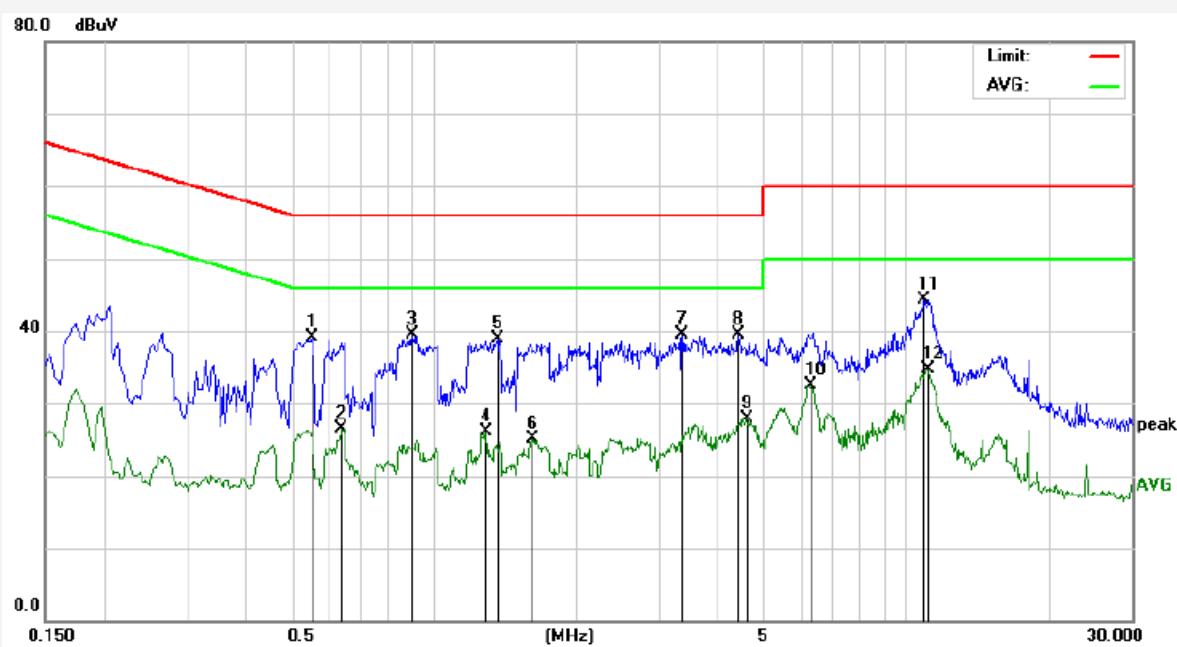
The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.4-2015 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9KHz.

The frequency range from 150KHz to 30MHz is checked.

The test result are reported on Section 2.7.

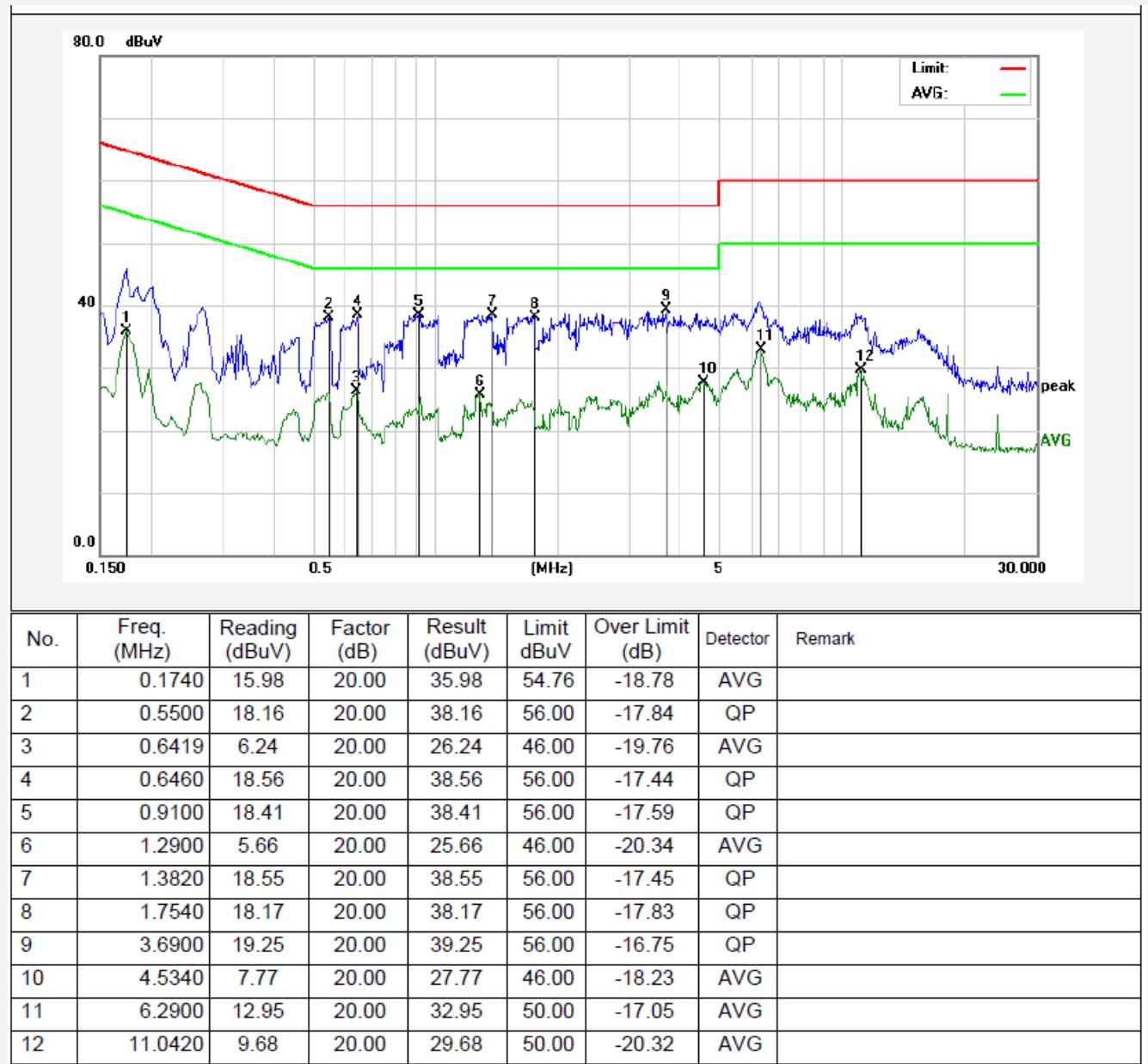
2.7. Power Line Conducted Emission Measurement Results


PASS

The frequency range from 150KHz to 30 MHz is investigated.

The test curves are shown in the following pages.

CONDUCTED EMISSION TEST DATA


Test Site: 1# Shielded Room
 Operating Condition: ON
 Test Specification: DC 5V via USB Port
 Comment: L
 Temp.:25°C Hum.:50%

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit dBuV	Over Limit (dB)	Detector	Remark
1	0.5540	19.08	20.00	39.08	56.00	-16.92	QP	
2	0.6380	6.41	20.00	26.41	46.00	-19.59	AVG	
3	0.9020	19.59	20.00	39.59	56.00	-16.41	QP	
4	1.2900	6.08	20.00	26.08	46.00	-19.92	AVG	
5	1.3660	18.86	20.00	38.86	56.00	-17.14	QP	
6	1.6260	5.12	20.00	25.12	46.00	-20.88	AVG	
7	3.3540	19.41	20.00	39.41	56.00	-16.59	QP	
8	4.4300	19.51	20.00	39.51	56.00	-16.49	QP	
9	4.5939	7.89	20.00	27.89	46.00	-18.11	AVG	
10	6.2780	12.42	20.00	32.42	50.00	-17.58	AVG	
11	10.9620	24.33	20.00	44.33	60.00	-15.67	QP	
12	11.1020	14.73	20.00	34.73	50.00	-15.27	AVG	

CONDUCTED EMISSION TEST DATA

Test Site: 1# Shielded Room
 Operating Condition: ON
 Test Specification: DC 5V via USB Port
 Comment: N
 Temp.:25°C Hum.:50%

3. RADIATED EMISSION MEASUREMENT

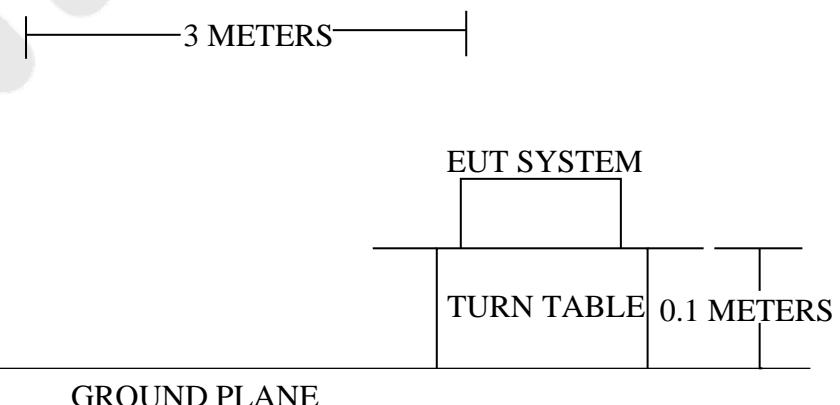
3.1. Test Equipment

The following test equipments are used during the radiated emission measurement:

3.1.1. For Anechoic Chamber

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Apr. 16, 2016	1 Year
2.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Apr. 19, 2016	1 Year
3.	Pre-amplifier	SONOMA	310N	186860	Apr. 16, 2016	1 Year

3.2. Block Diagram of Test Setup


3.2.1. Block diagram of connection between the EUT and simulators

3.2.2. Anechoic Chamber Test Setup Diagram

ANTENNA TOWER

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

3.3. Radiated Emission Limit (Subpart B Class B)

FREQUENCY MHz	DISTANCE Meters	FIELD STRENGTHS LIMIT	
		µV/m	dB(µV)/m
30~88	3	100	40.0

88~216	3	150	43.5
216~960	3	200	46.0
960~1000	3	500	54.0

Remark : (1) Emission level (dB) μ V = 20 log Emission level μ V/m
(2) The smaller limit shall apply at the cross point between two frequency bands.
(3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

3.4. EUT Configuration on Measurement

The following equipments are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

3.5. Operating Condition of EUT

3.5.1. Setup the EUT as shown in Section 3.2.

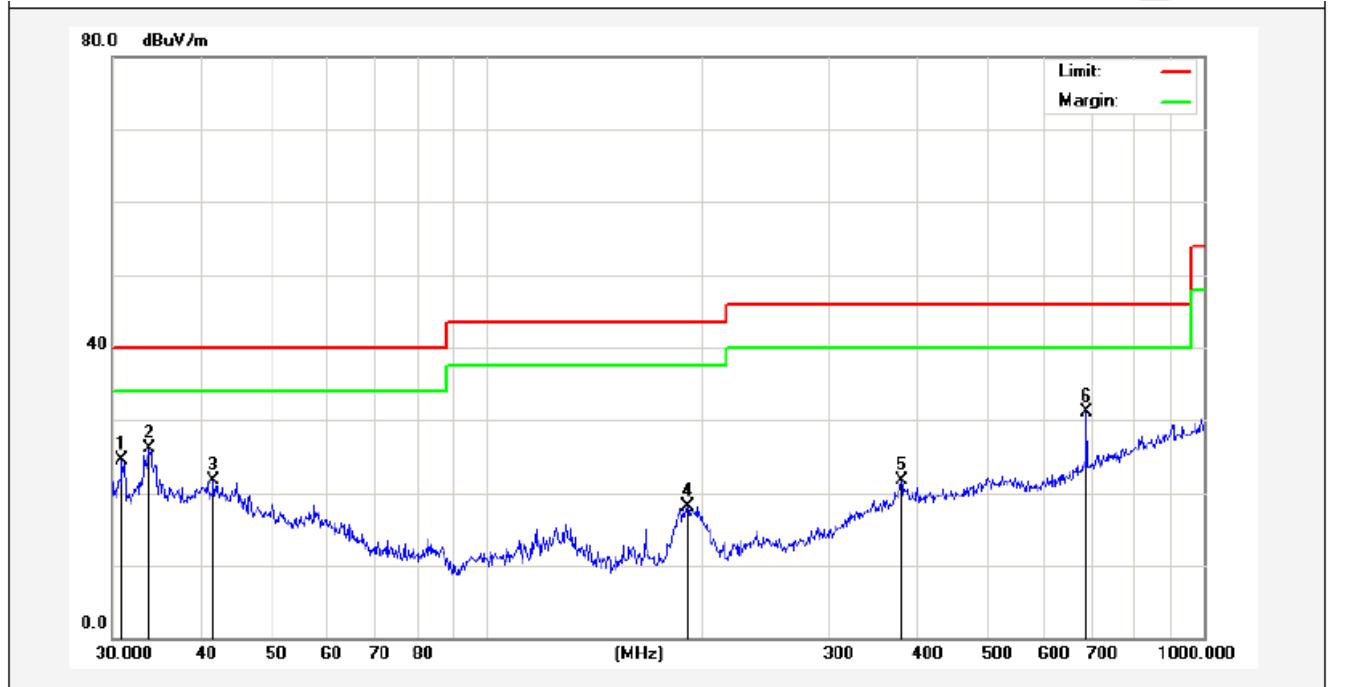
3.5.2. Let the EUT work in test mode (On) and measure it.

3.6. Test Procedure

EUT and its simulators are placed on a turn table, which is 0.8 meter high above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on a antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (Trilog Broadband Antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4-2015 on radiated emission measurement.

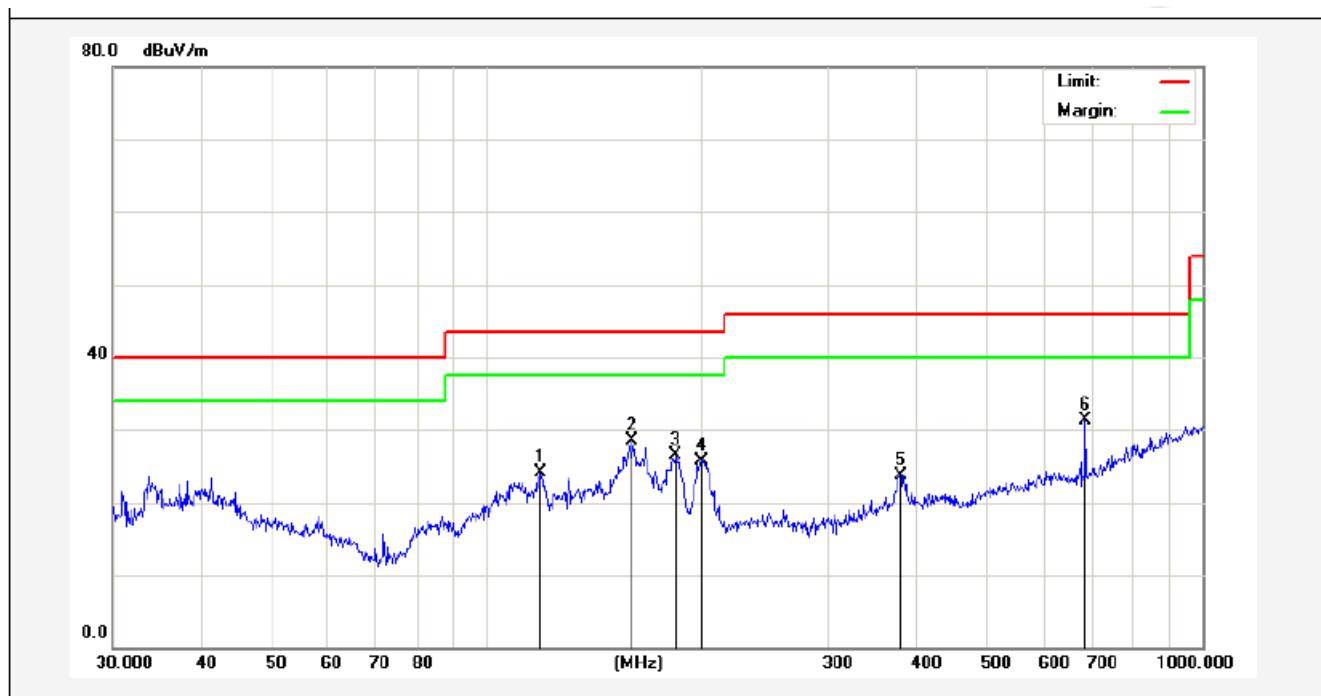
The bandwidth of the EMI test receiver (ESCI) is set at 120kHz.

The frequency range from 30MHz to 1000MHz is checked.


The test mode (ON) is tested in chamber and all the test results are listed in Section 3.7.

3.7. Radiated Emission Measurement Results

PASS.


The test curves are shown in the following pages.

Job No.:	AT011608695E	Polarization:	Horizontal
Standard:	(RE)FCC PART15 B _3m	Power Source:	DC 5V via USB Port
Test item:	Radiation Test	Temp.(°C)/Hum.(%RH):	24.3(°C)/55%RH
Mode:	On	Distance:	3m

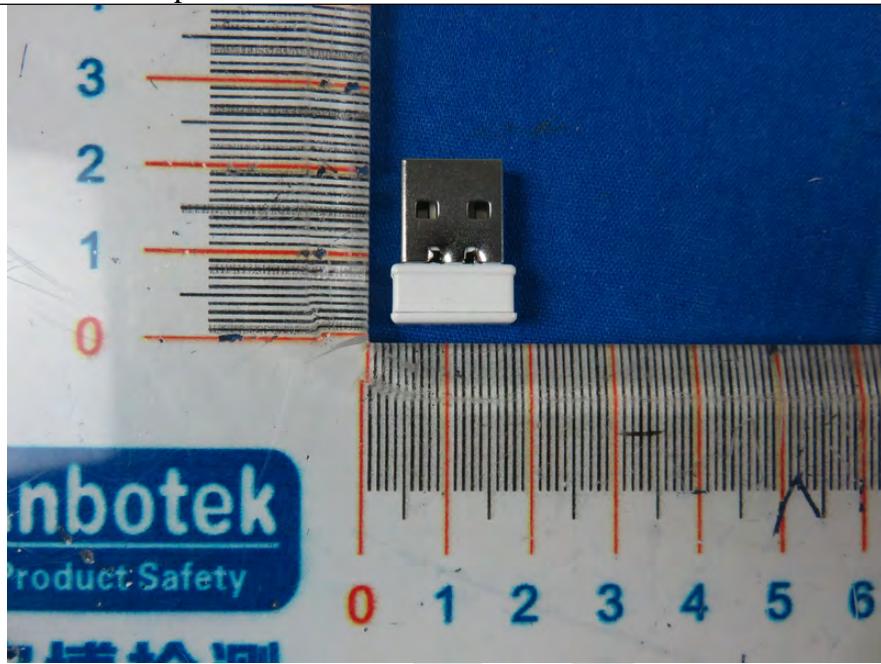
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV)	Over Limit (dB)	Detector	Height (cm)	degree (deg)	Remark
1	30.9619	40.89	-16.44	24.45	40.00	-15.55	peak			
2	33.7986	41.00	-14.92	26.08	40.00	-13.92	peak			
3	41.5670	32.65	-10.99	21.66	40.00	-18.34	peak			
4	190.4050	39.05	-20.92	18.13	43.50	-25.37	peak			
5	378.5843	35.09	-13.30	21.79	46.00	-24.21	peak			
6	687.1507	39.95	-8.83	31.12	46.00	-14.88	peak			

Job No.:	AT011608695E	Polarization:	Vertical
Standard:	(RE)FCC PART15 B _3m	Power Source:	DC 5V via USB Port
Test item:	Radiation Test	Temp.(°C)/Hum.(%RH):	24.3(°C)/55%RH
Mode:	On	Distance:	3m

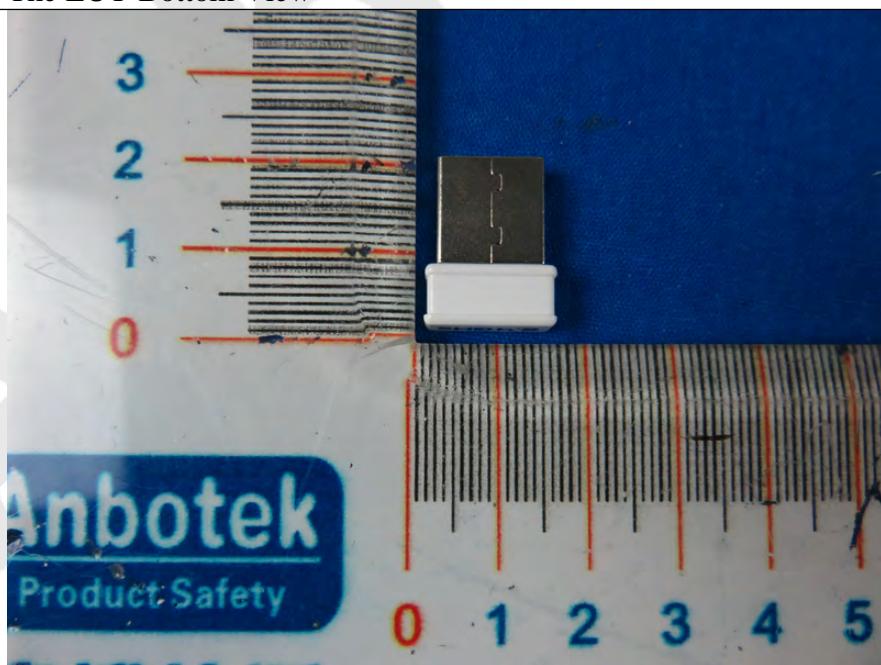
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV)	Over Limit (dB)	Detector	Height (cm)	degree (deg)	Remark
1	118.6014	40.36	-16.23	24.13	43.50	-19.37	peak			
2	159.7844	46.31	-17.88	28.43	43.50	-15.07	peak			
3	183.8440	43.02	-16.49	26.53	43.50	-16.97	peak			
4	199.9856	41.58	-15.87	25.71	43.50	-17.79	peak			
5	378.5843	35.98	-12.30	23.68	46.00	-22.32	peak			
6	687.1507	39.91	-8.58	31.33	46.00	-14.67	peak			

4. PHOTOGRAPH

4.1. Photo of Power Line Conducted Emission Test



4.2. Photo of Radiated Emission Test



APPENDIX I (EXTERNAL PHOTOS)

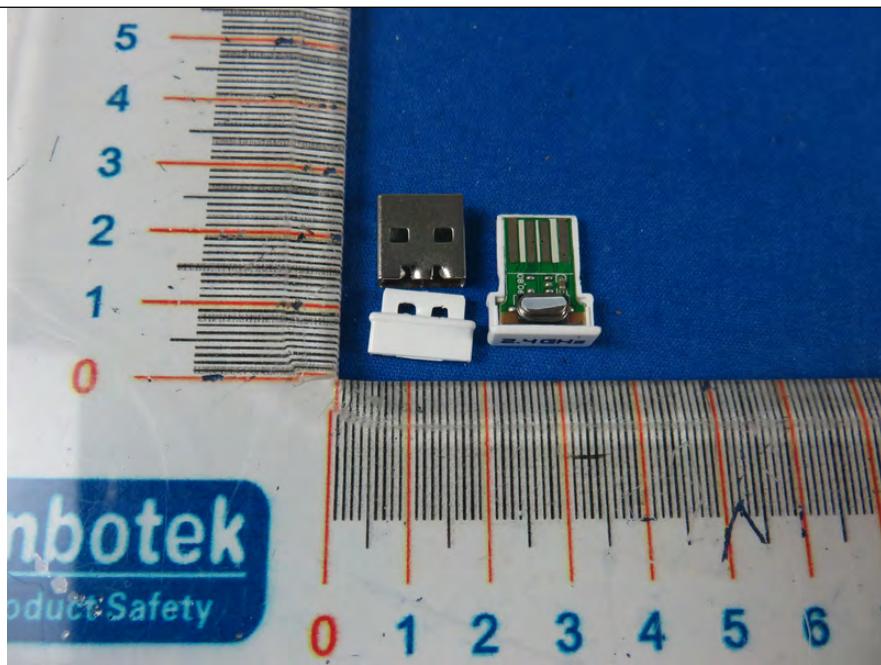
1. Figure
The EUT-Top View

2. Figure
The EUT-Bottom View

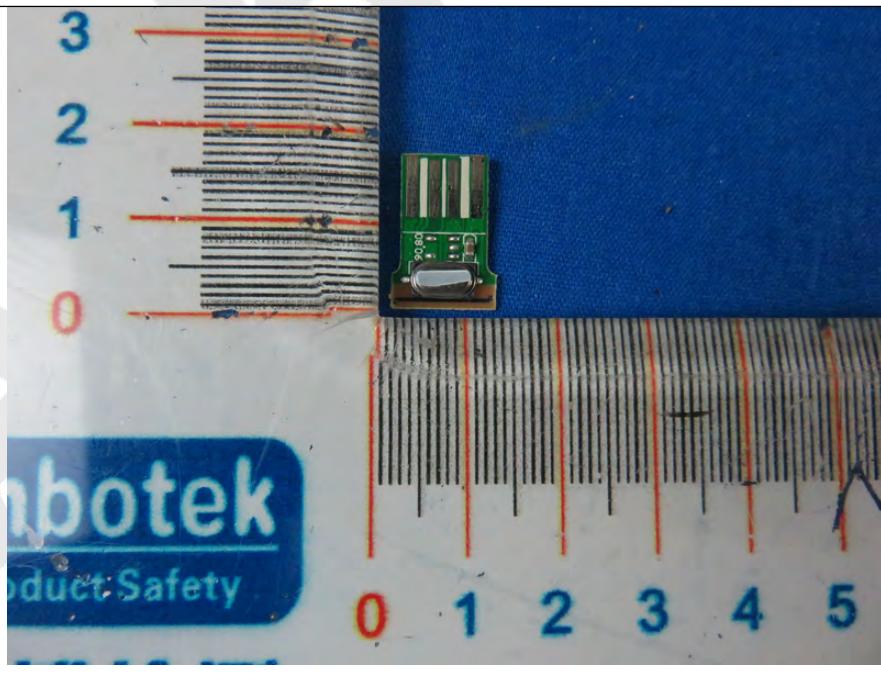
3. Figure
The EUT-Front View

4. Figure
The EUT-Back View

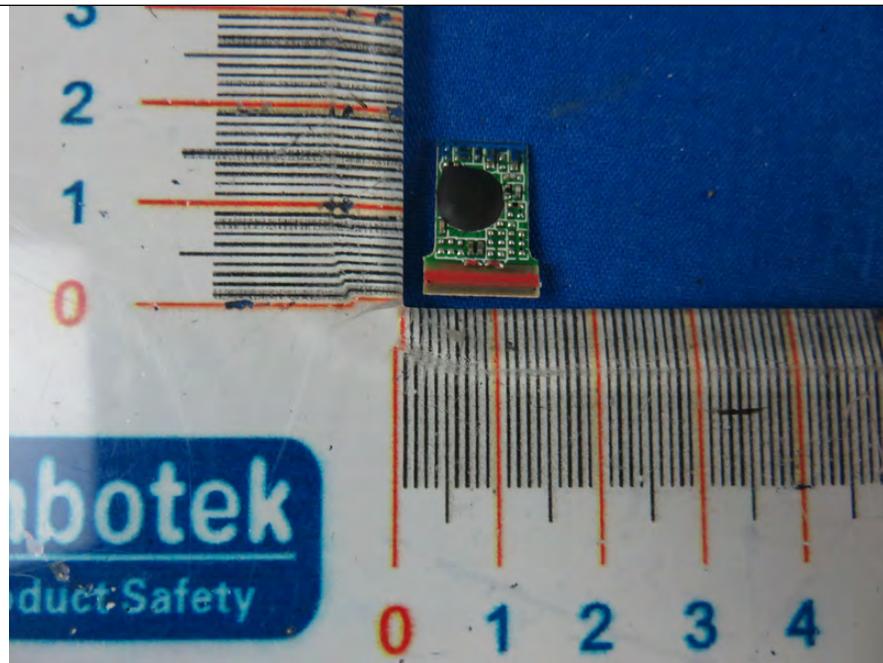
5. Figure
The EUT-Right View

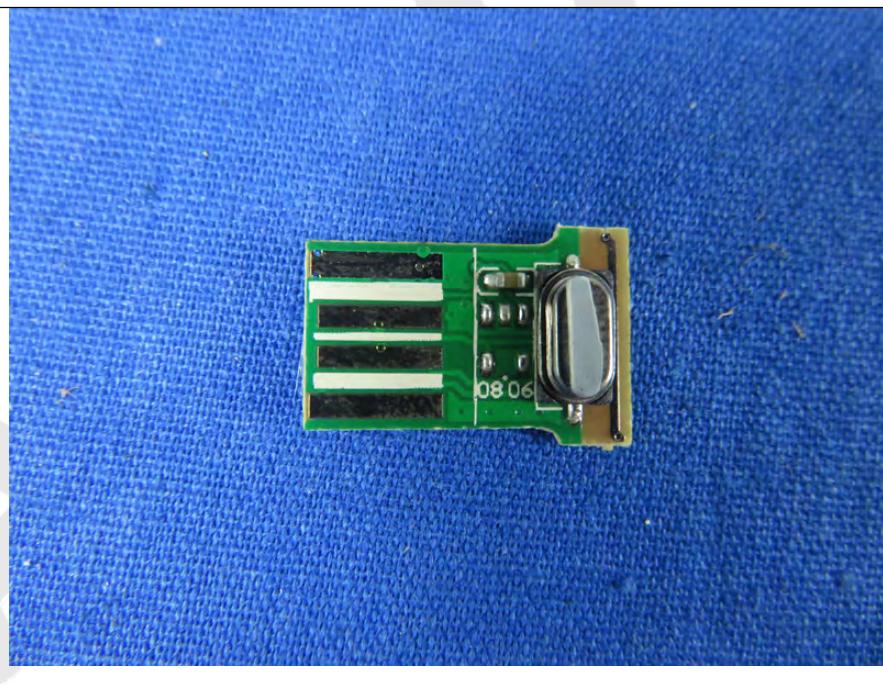


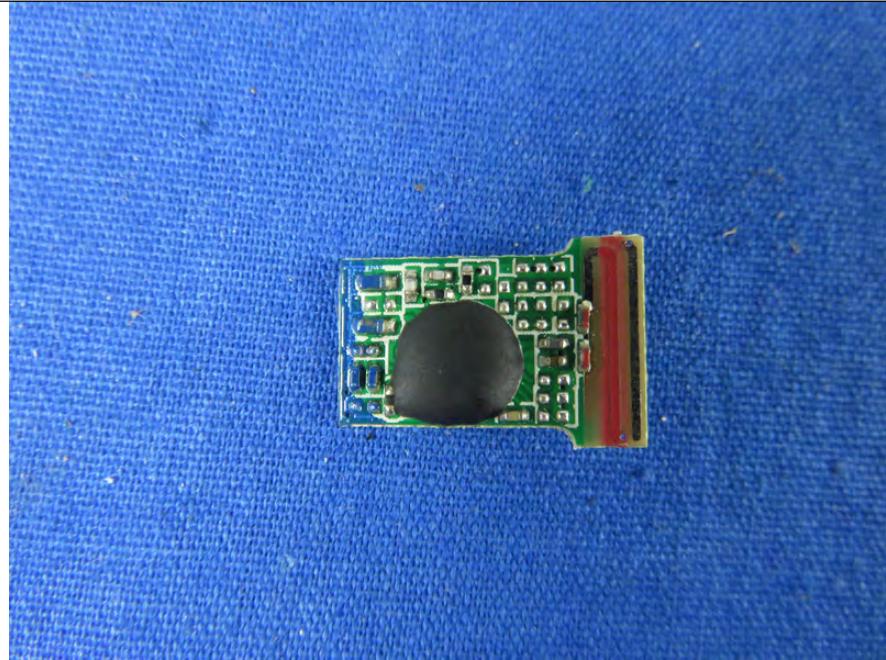
6. Figure
The EUT-Left View



APPENDIX II (INTERNAL PHOTOS)


1. Figure
The EUT-Inside View


2. Figure
PCB of the EUT-Front View


3. Figure
PCB of the EUT-Back View

4. Figure
PCB of the EUT-Front View

5. Figure
PCB of the EUT-Back View

