

FCC 47 CFR PART 15 SUBPART C

TEST REPORT

For

Radio Frequency Transmitter

Model: GCA-8007

Trade Name: DaNau

Issued to

**DaNau International Inc.
6F-2, No.31, LANE 169, KANGNING ST.,
HSICHIH CITY, Taiwan**

Issued by

**Compliance Certification Services Inc.
No. 81-1, Lane 210, Pa-De 2nd Rd., Luchu Hsiang,
Taoyuan Shien, (338) Taiwan, R.O.C.**

TEL: 886-3-324-0332
FAX: 886-3-324-5235
<http://www.ccsrf.com>
service@ccsrf.com

Testing Laboratory
0363

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, A2LA, NIST or any government agencies. The test results in the report only apply to the tested sample.

Compliance Certification Services Inc.

Report No: T100226102-RP1

FCC ID: X7KGCADA80078017T

Date of Issue: March 9, 2010

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	March 9, 2010	Initial Issue	ALL	Kosame Lin

TABLE OF CONTENTS

1 TEST RESULT CERTIFICATION	4
2 EUT DESCRIPTION	5
3 TEST METHODOLOGY	6
3.1. EUT CONFIGURATION	6
3.2. EUT EXERCISE	6
3.3. GENERAL TEST PROCEDURES	6
3.4. FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	7
3.5. DESCRIPTION OF TEST MODES	7
4 INSTRUMENT CALIBRATION.....	8
4.1. MEASURING INSTRUMENT CALIBRATION	8
4.2. MEASUREMENT EQUIPMENT USED.....	8
4.3. MEASUREMENT UNCERTAINTY	8
5 FACILITIES AND ACCREDITATIONS.....	9
5.1 FACILTIES.....	9
5.2 EQUIPMENT	9
5.3 TABLE OF ACCREDITATIONS AND LISTINGS.....	10
6 SETUP OF EQUIPMENT UNDER TEST.....	11
6.1. SETUP CONFIGURATION OF EUT	11
6.2. SUPPORT EQUIPMENT	11
7 FCC PART 15.231 REQUIREMENTS	12
7.1. 20DB BANDWIDTH	12
7.2. LIMIT OF TRANSMISSION TIME	14
7.3. DUTY CYCLE	16
7.4. SPURIOUS EMISSIONS	18
7.5. POWERLINE CONDUCTED EMISSIONS	24
APPENDIX I PHOTOGRAPHS OF TEST SETUP.....	25

1 TEST RESULT CERTIFICATION

DaNau International Inc.

Applicant: 6F-2, No.31, LANE 169, KANGNING ST., HSICHIH CITY, Taiwan

DaNau International Inc.

Manufacturer: 6F-2, No.31, LANE 169, KANGNING ST., HSICHIH CITY, Taiwan

Equipment Under Test: Radio Frequency Transmitter

Trade Name: DaNau

Model: GCA-8007

Date of Test: March 2 ~ 6, 2010

APPLICABLE STANDARDS

STANDARD	TEST RESULT
FCC 47 CFR Part 15 Subpart C	No non-compliance noted

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4: 2003 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.231(a).

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

Ethan Huang
Section Manager

Reviewed by:

Stan Lin
Supervisor

2 EUT DESCRIPTION

Product	Radio Frequency Transmitter
Trade Name	DaNau
Model Number	GCA-8007
EUT Power Rating	3VDC from Battery
Frequency Range	433.858MHz
Output Power	62.91dBuV/m
Modulation Technique	FSK Modulation
Antenna Designation	PCB Antenna

Remark:

1. The sample selected for test was production product and was provided by manufacturer.
2. This submittal(s) (test report) is intended for FCC ID: **X7KGCADA80078017T** filing to comply with Section 15.207, 15.209 and 15.231(a) of the FCC Part 15, Subpart C Rules.

3 TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 (2003) and FCC CFR 47 Part 2, 15.207, 15.209 and 15.231(a).

3.1. EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2. EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

3.3. GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4 (2003) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4 (2003).

3.4. FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	(²)
13.36 - 13.41	322 - 335.4		

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

3.5. DESCRIPTION OF TEST MODES

The EUT(model: GCA-8007) had been tested under engineering test mode condition and the EUT staying in continuous transmitting mode.

The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (Y axis) and the worst case was recorded.

4 INSTRUMENT CALIBRATION

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

4.2. MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Remark: Each piece of equipment is scheduled for calibration once a year.

Conducted Emission Test Site				
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilnet	E4446A	MY48250064	10/28/2010
Spectrum Analyzer	R&S	FSEB	825829/011	10/29/2010
USB Power Sensor	BOONTON	52012	2061194	06/08/2010

3M Chamber Test Site				
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSEB	825829/011	10/29/2010
Pre-Amplifier	HP	8447D	2944A06530	12/31/2010
Pre-Amplifier	HP	8449B	3008A01738	04/17/2010
EMI Test Receiver	SCHAFFNER	SCR 3501	436	01/21/2011
Loop Antenna	EMCO	6502	2356	05/28/2010
Bilog Antenna	SCHWAZBECK	VULB9160	3084	09/08/2010
Horn Antenna	EMCO	3115	00022250	05/08/2010
Turn Table	CCS	CC-T-1F	N/A	N.C.R
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R
Controller	CCS	CC-C-1F	N/A	N.C.R
Test S/W	LabVIEW 6.1 (Wugu Chamber EMI Teat V1_4.5.3)			

4.3. MEASUREMENT UNCERTAINTY

Parameter	Uncertainty
Powerline Conducted Emission	±1.7983
3M Semi Anechoic Chamber / 30MHz ~ 1GHz	±3.8856
3M Semi Anechoic Chamber / Above 1GHz	±3.8721

Remark: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No.199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C.

Tel: 886-2-2217-0894 / Fax: 886-2-2217-1029

No.11, Wugong 6th Rd., Wugu Industrial Park, Taipei Hsien 248, Taiwan

Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045

No. 81-1, Lane 210, Pa-De 2nd Rd., Luchu Hsiang, Taoyuan Shien, (338) Taiwan,

R.O.C. Tel: 886-3-324-0332 / Fax: 886-3-324-5235

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2003) and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	A2LA	CFR 47, FCC Part15/18, CISPR 22, EN 55022, ICES-003, AS/NZS CISPR 22, VCCI V-3, EN 55011, CISPR 11, IEC/EN 61000-4-2/3/4/5/6/8/11, EN 61000-6-1/2/3/4, EN 55024, CISPR 24, AS/NZS CISPR 24, AS/NZS 61000.6.2, EN 55014-1/-2, ETSI EN 300 386 v1.3.2/v1.3.3, IEC/EN 61000-3-2, AS/NZS 61000.3.2, IEC/EN 61000-3-3, AS/NZS 61000.3.3	 ACCREDITED No. 0824-01
USA	FCC MRA	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	TW1026
Japan	VCCI	3/10 meter Open Area Test Sites and conducted test sites to perform radiated/conducted measurements	VCCI R-2882/2541/2798/725/1868 C-402/747/912 T-321/325
Taiwan	TAF	EN 55014-1, CISPR 14, CNS 13781-1, EN 55013, CISPR 13, CNS 13439, EN 55011, CISPR 11, CNS 13803, PLMN09, IS2045-0, LP0002 FCC Part 27/90, Part 15B/C/D/E, RSS-192/193/210/310 ETSI EN 300 328/ 300 220-1/ 300 220-2/ 301 893/ 301 489-01/ 301 489-03/ 301 489-07 / 301 489-17/ 300 440-1/ 300 440-2 AS/NZS 4268, AS/NZS 4771 CISPR 22, EN 55022, CNS 13438, AS/NZS CISPR 22, VCCI, IEC/EN 61000-4-2/3/4/5/6/8/11, CNS 14676-2/3/4/5/6/8, CNS 14934-2/3, CNS 13783-1, CNS 13439, CNS 13803	 Testing Laboratory 0363
Taiwan	BSMI	CNS 13438, CNS 13783-1, CNS 13439, CNS 14115	SL2-IS-E-0014 / IN-E-0014 /A1-E-0014 /R1-E-0014 /R2-E-0014 /L1-E-0014
Canada	Industry Canada	RSS212, Issue 1	 IC 2324C-3 IC 2324C-5

Note: No part of this report may be used to claim or imply product endorsement by A2LA, TAF or other government agency.

6 SETUP OF EQUIPMENT UNDER TEST

6.1. SETUP CONFIGURATION OF EUT

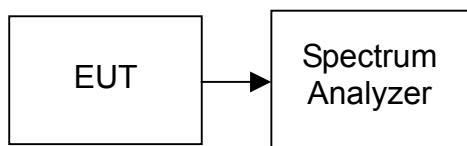
See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

6.2. SUPPORT EQUIPMENT

No.	Device Type	Brand	Model	Series No.	FCC ID	Data Cable	Power Cord
	N/A						

****No any support equipment during the test.**

Remark: Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.


7 FCC PART 15.231 REQUIREMENTS

7.1. 20dB BANDWIDTH

LIMIT

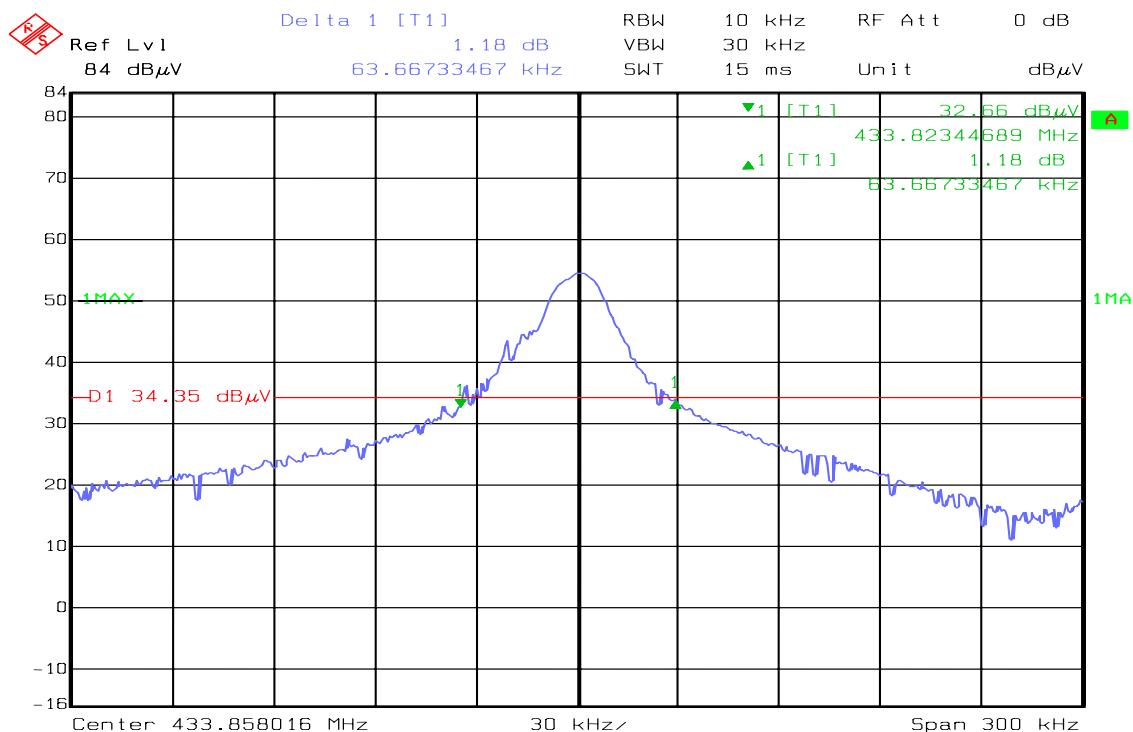
The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The spectrum analyzer center frequency is set to the transmitter frequency. The RBW is set to 10 kHz and VBW is set 30kHz.

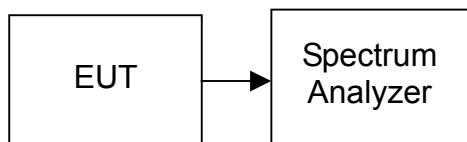
TEST RESULTS


No non-compliance noted

TEST DATA

Frequency (MHz)	20 dB Bandwidth (kHz)	Limit (MHz)	Result
433.858	63.67	1.085	PASS

Test Plot



7.2. LIMIT OF TRANSMISSION TIME

LIMIT

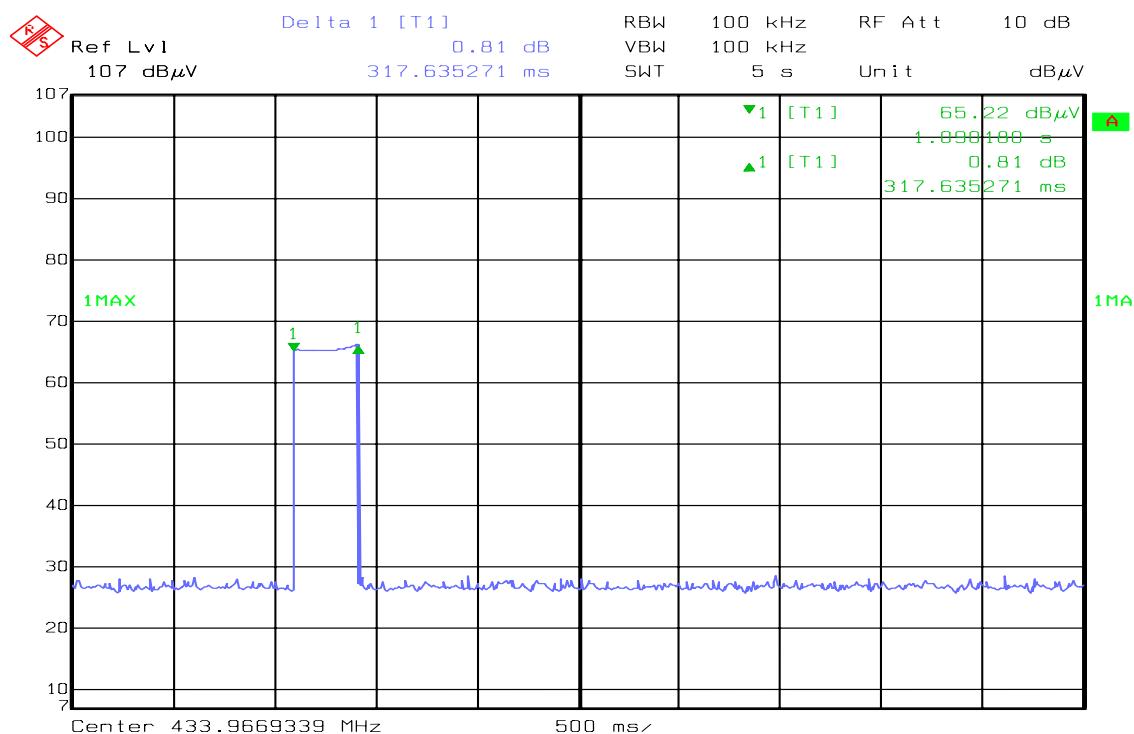
According to 15.231 (a)(1), a manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The spectrum analyzer center frequency is set to the transmitter frequency. The RBW and VBW are set to 100kHz.

TEST RESULTS

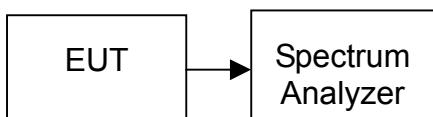

No non-compliance noted

TEST DATA

Frequency (MHz)	Transmission time (s)	Limit (Second)	Result
433.97	3.1763	5.00	PASS

Test Plot

Date: 01.MAR.2010 21:48:16



7.3. DUTY CYCLE

LIMIT

Nil (No dedicated limit specified in the Rules)

TEST CONFIGURATION

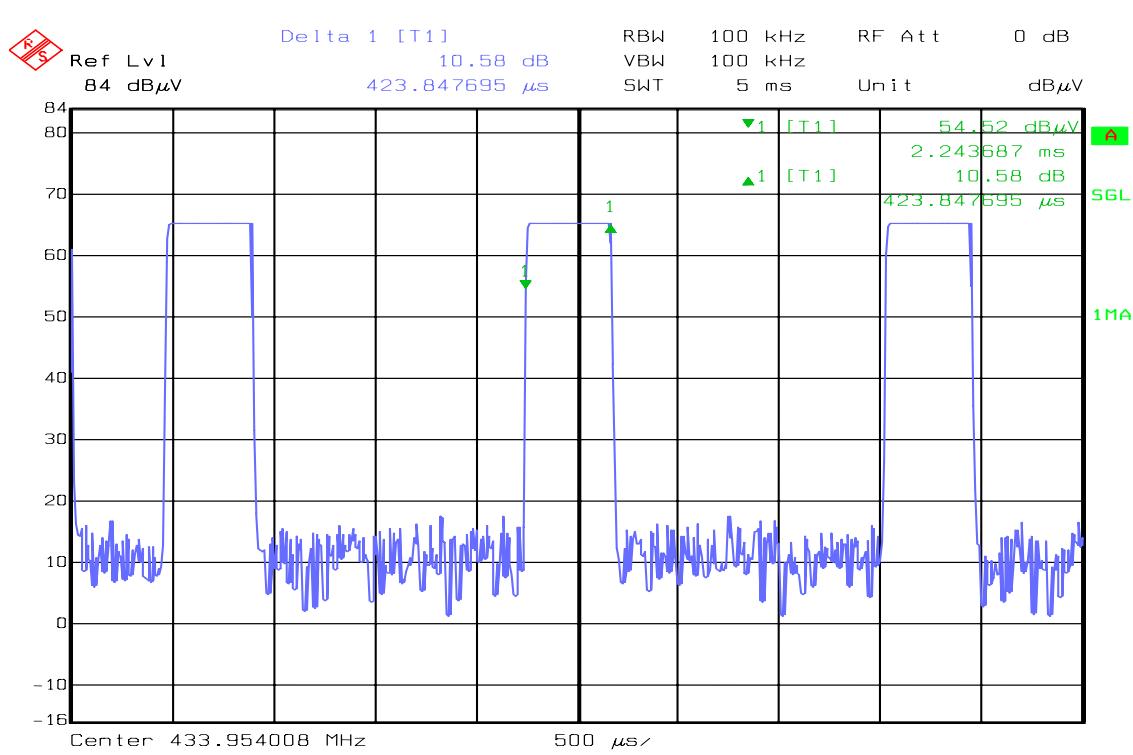
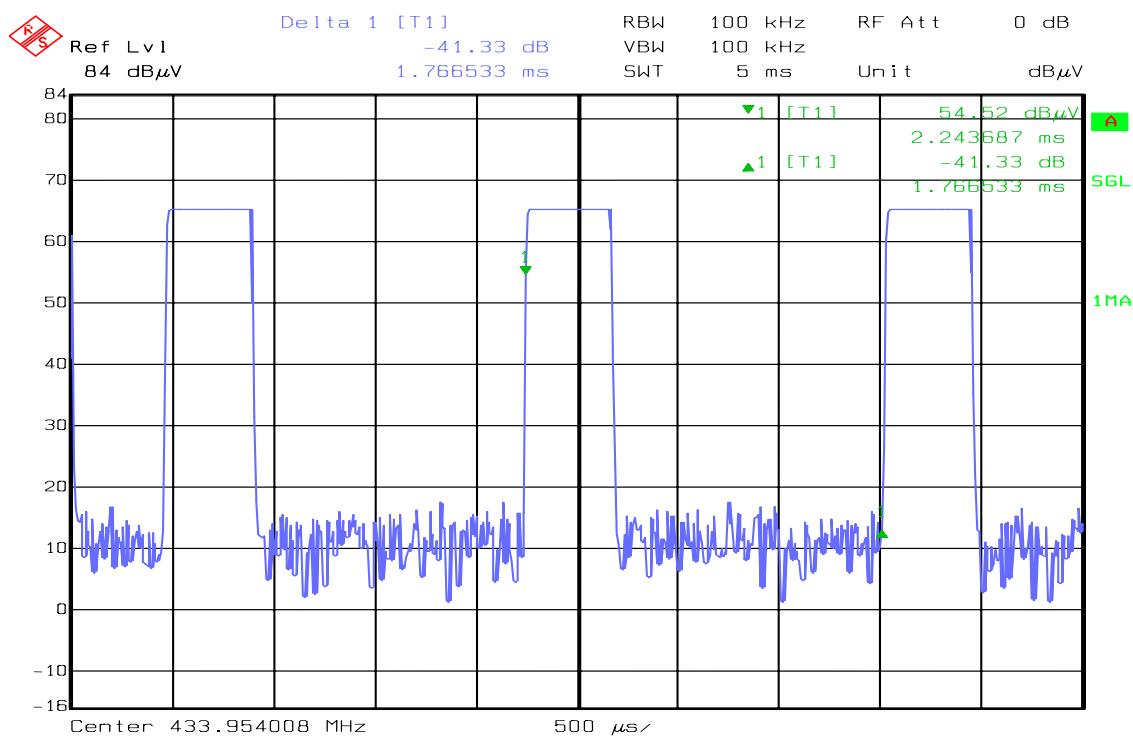
TEST PROCEDURE

1. Place the EUT on the table and set it in transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
3. Set center frequency of spectrum analyzer = operating frequency.
4. Set the spectrum analyzer as RBW, VBW=100KHz, Span = 0Hz, Adjust Sweep = 30s.
5. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

No non-compliance noted

TEST DATA



T_p = 1.767ms

T_{on} = 0.424ms

Factor = 20 *log(T_{on} / T_p) = 20 * log(0.424/1.767) = -12.40dB

Test Plot

7.4. SPURIOUS EMISSIONS

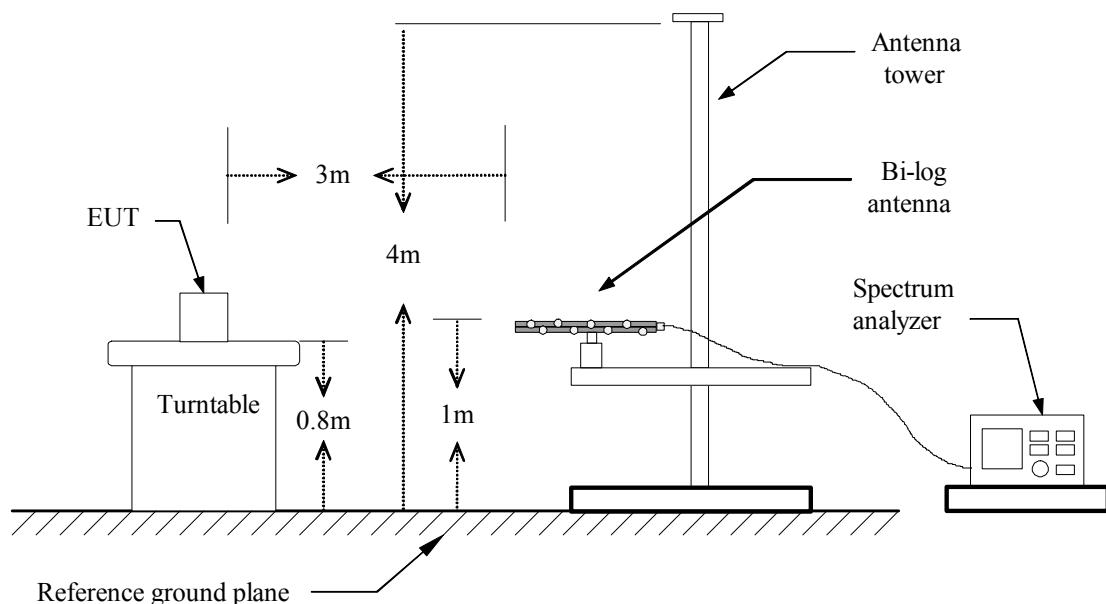
RADIATED EMISSIONS

LIMIT

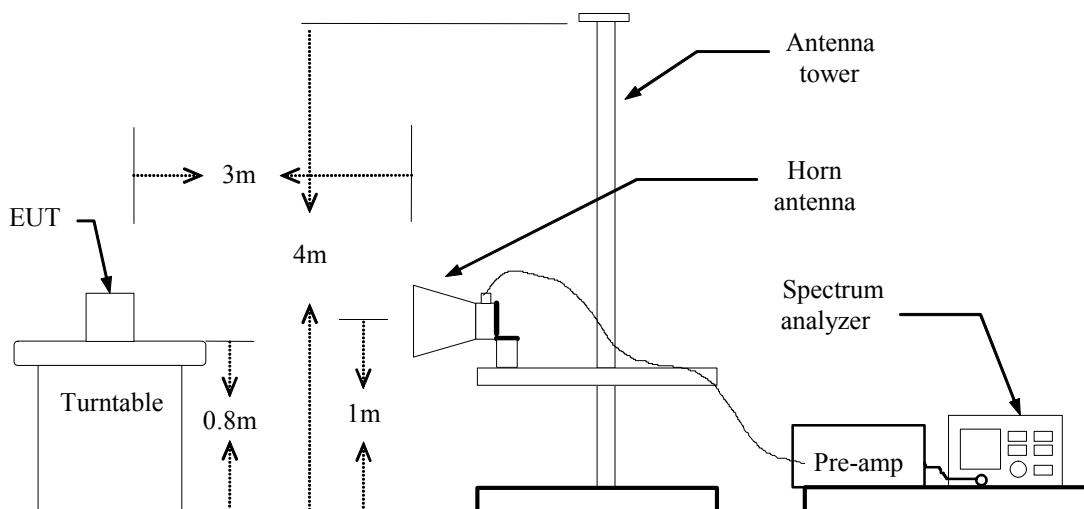
1. In the section 15.231(b): In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental (microvolts/meter)	Field Strength of Spurious Emissions (microvolts/meter)
40.66 - 40.70	2250	225
70 - 130	1250	125
130 - 174	1250 to 3750*	125 to 375*
174 - 260	3750	375
260 - 470	3750 to 12500*	375 to 1250*
Above 470	12500	1250

2. According to §15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:


Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.


3. In the emission table above, the tighter limit applies at the band edges.

TEST CONFIGURATION

Below 1 GHz

Above 1 GHz

TEST PROCEDURE

1. The EUT is placed on a turntable, which is 0.8m above ground plane.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz:

(a) PEAK: RBW=VBW=1MHz / Sweep=AUTO

(b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO

7. Repeat above procedures until the measurements for all frequencies are complete.

TEST RESULTS

No non-compliance noted.

TEST DATA

Below 1 GHz

Operation Mode: TX / Fundament **Test Date:** March 6, 2010

Temperature: 23°C **Tested by:** Stan Lin

Humidity: 53% RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant.Pol. (H/V)	Detector Mode (PK/AVG.)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit 3m (dBuV/m)	Margin (dB)
433.8550	V	AVG	60.85	-8.67	52.18	80.80	-28.62
433.8475	H	AVG	71.58	-8.67	62.91	80.80	-17.89

Remark:

1. No emission found between lowest internal used / generated frequency to 30 MHz. (9kHz ~ 30MHz)
2. Measuring frequencies from 30 MHz to the 1GHz.
3. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
4. Data of measurement within this frequency range shown “ --- ” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
5. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Compliance Certification Services Inc.

Report No: T100226102-RP1

FCC ID: X7KGCADA80078017T

Date of Issue: March 9, 2010

Operation Mode: TX / Harmonics

Test Date: March 6, 2010

Temperature: 23°C

Tested by: Stan Lin

Humidity: 53% RH

Polarity: Ver. / Hor.

Frequency (MHz)	Ant.Pol. (H/V)	Detector Mode (PK/QP)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit 3m (dBuV/m)	Margin (dB)
49. 4000	V	QP	37. 75	-13. 77	23. 98	40. 00	-16. 02
165. 8000	V	QP	34. 48	-13. 41	21. 07	43. 50	-22. 43
376. 7750	V	QP	34. 64	-9. 56	25. 08	46. 00	-20. 92
585. 3250	V	QP	35. 53	-4. 64	30. 89	46. 00	-15. 11
764. 7750	V	QP	34. 74	-2. 16	32. 58	46. 00	-13. 42
900. 5750	V	QP	35. 40	0. 30	35. 70	46. 00	-10. 30
49. 4000	H	QP	34. 11	-13. 77	20. 34	40. 00	-19. 66
143. 9750	H	QP	35. 35	-12. 40	22. 95	43. 50	-20. 55
354. 9500	H	QP	34. 23	-9. 65	24. 58	46. 00	-21. 42
565. 9250	H	QP	35. 29	-5. 50	29. 79	46. 00	-16. 21
595. 0250	H	QP	34. 76	-4. 21	30. 55	46. 00	-15. 45
764. 7750	H	QP	35. 57	-2. 16	33. 41	46. 00	-12. 59
869. 0500	H	QP	37. 00	-0. 05	36. 95	46. 00	-9. 05

Remark:

1. No emission found between lowest internal used / generated frequency to 30 MHz. (9kHz ~ 30MHz)
2. Measuring frequencies from 30 MHz to the 1GHz.
3. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using QP detector mode.
4. Data of measurement within this frequency range shown “---” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
5. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Compliance Certification Services Inc.

Report No: T100226102-RP1

FCC ID: X7KGCADA80078017T

Date of Issue: March 9, 2010

Above 1 GHz

Operation Mode: TX / Harmonics

Test Date:

March 2, 2010

Temperature: 23°C

Tested by:

Stan Lin

Humidity: 53% RH

Polarity:

Ver. / Hor.

Frequency (MHz)	Ant.Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1300. 000	V	69. 59	---	69. 59	61. 69	---	74. 00	---	-12. 31	Peak
1300. 000	V	58. 19	---	58. 19	50. 29	---	54. 00	---	-3. 71	AVG
1740. 000	V	58. 98	---	58. 98	53. 71	---	74. 00	---	-20. 29	Peak
1740. 000	V	50. 71	---	50. 71	45. 44	---	54. 00	---	-8. 56	AVG
2610. 000	V	51. 74	---	51. 74	50. 34	---	74. 00	---	-23. 66	Peak
3040. 000	V	60. 84	---	60. 84	61. 42	---	74. 00	---	-12. 58	Peak
3040. 000	V	50. 69	---	50. 69	51. 27	---	54. 00	---	-2. 73	AVG
3470. 000	V	60. 87	---	60. 87	62. 83	---	74. 00	---	-11. 17	Peak
3470. 000	V	50. 02	---	50. 02	51. 98	---	54. 00	---	-2. 02	AVG
3910. 000	V	48. 23	---	48. 23	52. 54	---	74. 00	---	-21. 46	Peak
3910. 000	V	39. 16	---	39. 16	43. 47	---	54. 00	---	-10. 53	AVG
4340. 000	V	46. 66	---	46. 66	52. 23	---	74. 00	---	-21. 77	Peak
4340. 000	V	35. 33	---	35. 33	40. 90	---	54. 00	---	-13. 10	AVG
1300. 000	H	63. 34	---	63. 34	63. 34	---	74. 00	---	74. 00	Peak
1300. 000	H	54. 47	---	54. 47	54. 47	---	54. 00	---	54. 00	AVG
1740. 000	H	59. 39	---	59. 39	59. 39	---	74. 00	---	74. 00	Peak
1740. 000	H	50. 96	---	50. 96	50. 96	---	54. 00	---	54. 00	AVG
2470. 000	H	50. 68	---	50. 68	50. 68	---	74. 00	---	74. 00	Peak
2610. 000	H	57. 37	---	57. 37	57. 37	---	74. 00	---	74. 00	Peak
2610. 000	H	49. 05	---	49. 05	49. 05	---	54. 00	---	54. 00	AVG
3040. 000	H	62. 50	---	62. 50	62. 50	---	74. 00	---	74. 00	Peak
3040. 000	H	51. 03	---	51. 03	51. 03	---	54. 00	---	54. 00	AVG
3470. 000	H	55. 66	---	55. 66	55. 66	---	74. 00	---	74. 00	Peak
3470. 000	H	47. 18	---	47. 18	47. 18	---	54. 00	---	54. 00	AVG
4340. 000	H	45. 37	---	45. 37	45. 37	---	74. 00	---	74. 00	Peak

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
4. Data of measurement within this frequency range shown “---” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with “N/A” remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
6. Margin (dB) = Remark result (dBuV/m) – Average limit (dBuV/m).

7.5. POWERLINE CONDUCTED EMISSIONS

LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range (MHz)	Limits (dB μ V)	
	Quasi-peak	Average
0.15 to 0.50	66 to 56*	56 to 46*
0.50 to 5	56	46
5 to 30	60	50

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

TEST CONFIGURATION

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

TEST PROCEDURE

1. The EUT was placed on a table, which is 0.8m above ground plane.
2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
3. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

TEST DATA

Not applicable (Since the EUT is powered by battery)