

FCC RF Test Report

APPLICANT : Commtiva Technology Limited
EQUIPMENT : GSM/WCDMA Single SIM
BRAND NAME : SHARP
MODEL NAME : SH837Wi
MARKETING NAME : SH837Wi
FCC ID : X7H-SH837WI
STANDARD : FCC Part 15 Subpart C §15.247
CLASSIFICATION : (DSS) Spread Spectrum Transmitter

The product was received on Nov. 09, 2012 and completely tested on Nov. 21, 2012. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and shown the compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Jones Tsai / Manager

SPORTON INTERNATIONAL INC.
No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

TABLE OF CONTENTS

REVISION HISTORY.....	3
SUMMARY OF TEST RESULT	4
1 GENERAL DESCRIPTION.....	5
1.1 Applicant	5
1.2 Manufacturer.....	5
1.3 Feature of Equipment Under Test	5
1.4 Testing Site.....	6
1.5 Applied Standards	6
1.6 Ancillary Equipment List	6
2 TEST CONFIGURATION OF EQUIPMENT UNDER TEST.....	7
2.1 RF Output Power	7
2.2 Test Mode.....	8
2.3 Connection Diagram of Test System.....	9
2.4 RF Utility	9
3 TEST RESULT	10
3.1 Number of Channel Measurement	10
3.2 Hopping Channel Separation Measurement	13
3.3 Dwell Time Measurement.....	23
3.4 20dB Bandwidth Measurement	25
3.5 Peak Output Power Measurement	35
3.6 Conducted Band Edges Measurement	45
3.7 Conducted Spurious Emission Measurement	50
3.8 Radiated Band Edges and Spurious Emission Measurement	57
3.9 AC Conducted Emission Measurement.....	67
3.10 Antenna Requirements	71
4 LIST OF MEASURING EQUIPMENT.....	72
5 UNCERTAINTY OF EVALUATION.....	73
APPENDIX A. PHOTOGRAPHS OF EUT	
APPENDIX B. SETUP PHOTOGRAPHS	

REVISION HISTORY

SUMMARY OF TEST RESULT

Report Section	FCC Rule	IC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(1)	A8.4(2)	Number of Channels	$\geq 15\text{Chs}$	Pass	-
3.2	15.247(a)(1)	A8.1(b)	Hopping Channel Separation	$\geq 2/3 \text{ of } 20\text{dB BW}$	Pass	-
3.3	15.247(a)(1)	A8.1(d)	Dwell Time of Each Channel	$\leq 0.4\text{sec in } 31.6\text{sec period}$	Pass	-
3.4	15.247(a)(1)	A8.1(a)	20dB Bandwidth	NA	Pass	-
3.5	15.247(b)(1)	A8.1(b)	Peak Output Power	$\leq 1 \text{ w for } 1\text{Mbps}$ $\leq 125 \text{ Mw for } 2, 3\text{Mbps}$	Pass	-
3.6	15.247(d)	A8.5	Conducted Band Edges	$\leq 20\text{dBc}$	Pass	-
0	15.247(d)	A8.5	Conducted Spurious Emission	$\leq 20\text{dBc}$	Pass	-
0	15.247(d)	A8.5	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 9.87 dB at 2483.500 MHz
3.9	15.207	Gen 7.2.4	AC Conducted Emission	15.207(a)	Pass	Under limit 14.00 dB at 0.558 MHz
3.10	15.203 & 15.247(b)	A8.4	Antenna Requirement	N/A	Pass	-

1 General Description

1.1 Applicant

Commtiva Technology Limited

4F., No. 32, Zhongcheng Rd., Tucheng District, New Taipei City 236, Taiwan

1.2 Manufacturer

Chi Mei Communication Systems, Inc.

No. 4, Minsheng St., Tucheng Dist., New Taipei City 236, Taiwan (R.O.C.)

1.3 Feature of Equipment Under Test

Product Feature	
Equipment	GSM/WCDMA Single SIM
Brand Name	SHARP
Model Name	SH837Wi
Marketing Name	SH837Wi
FCC ID	X7H-SH837WI
EUT supports Radios application	GSM/EGPRS/WCDMA/HSPA WLAN 11bgn / Bluetooth
HW Version	PR3
SW Version	V 0.041
EUT Stage	Production Unit

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

Product Specification subjective to this standard	
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz
Number of Channels	79
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78
Maximum Output Power to Antenna	Bluetooth (1Mbps) : 8.81 dBm (0.0076 W) Bluetooth EDR (2Mbps) : 8.79 dBm (0.0076 W) Bluetooth EDR (3Mbps) : 9.29 dBm (0.0085 W)
Antenna Type	PIFA Antenna type with gain 0.81 dBi
Type of Modulation	Bluetooth (1Mbps) : GFSK Bluetooth 2.0 EDR (2Mbps) : $\pi/4$ -DQPSK Bluetooth 2.0 EDR (3Mbps) : 8-DPSK

1.4 Testing Site

Test Site	SPORTON INTERNATIONAL INC.			
Test Site Location	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. TEL: +886-3-3273456 / FAX: +886-3-3284978			
Test Site No.	Sporton Site No.		FCC/IC Registration No.	
	TH02-HY	CO05-HY	03CH07-HY	722060/4086B-1

1.5 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC Public Notice DA 00-705
- ANSI C63.4-2003 and ANSI C63.10-2009
- IC RSS-210 Issue 8
- IC RSS-Gen Issue 3

Remark:

1. All test items were verified and recorded according to the standards and without any deviation during the test.
2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

1.6 Ancillary Equipment List

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	R&S	CMU 200	N/A	N/A	Unshielded, 1.8 m
2.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m
3.	WLAN AP	D-Link	DIR-628	KA2DIR628A2	N/A	Unshielded, 1.8 m
4.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
5.	Notebook	DELL	Latitude E6320	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m

2 Test Configuration of Equipment Under Test

2.1 RF Output Power

Preliminary tests were performed in different data rate and recorded the RF output power in the following table:

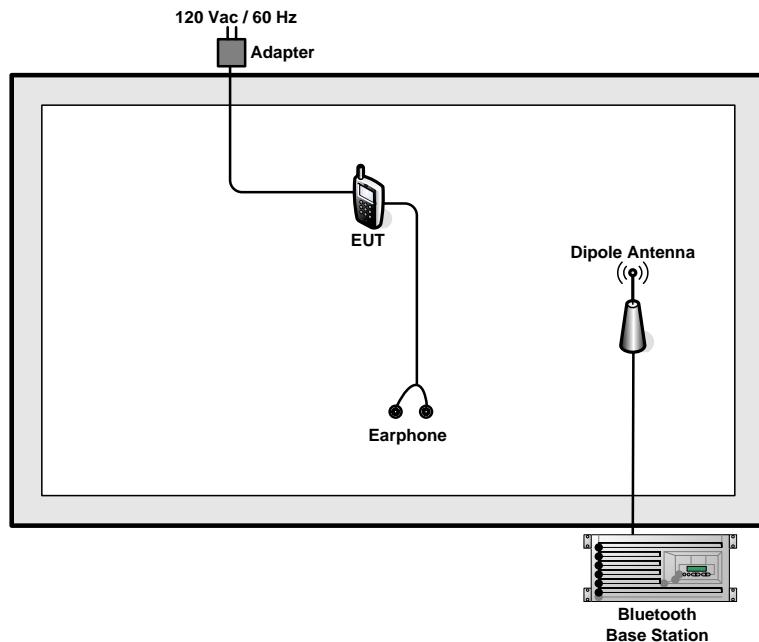
Channel	Frequency	Bluetooth RF Output Power		
		Data Rate / Modulation		
		GFSK	$\pi/4$ -DQPSK	8-DPSK
Ch00	2402MHz	7.16 dBm	7.08 dBm	7.78 dBm
Ch39	2441MHz	8.81 dBm	8.79 dBm	9.29 dBm
Ch78	2480MHz	5.05 dBm	5.02 dBm	5.70 dBm

Remark:

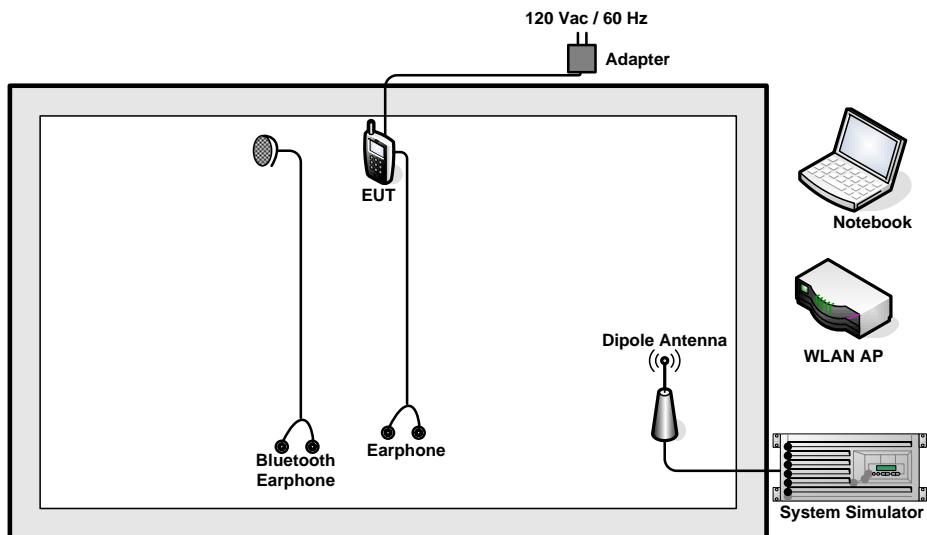
1. All the test data for each data rate were verified, but only the worst case was reported.
2. The data rate was set in 3Mbps for all the test items due to the highest RF output power.
3. The EUT is programmed to transmit signals continuously for all testing.

2.2 Test Mode

The EUT has been associated with peripherals pursuant to ANSI C63.4-2003 and ANSI C63.10-2009 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 KHz to 30 MHz), radiation (9 KHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).


Pre-scanned tests, X, Y, Z in three orthogonal panels, were conducted to determine the final configuration from all possible combinations.

The following tables are showing the test modes as the worst cases (X plane) and recorded in this report.


Test Cases				
Test Item	Data Rate / Modulation			
	Bluetooth 1Mbps GFSK	Bluetooth EDR 2Mbps $\pi/4$ -DQPSK	Bluetooth EDR 3Mbps 8-DPSK	
Conducted TCs	Mode 1: CH00_2402 MHz Mode 2: CH39_2441 MHz Mode 3: CH78_2480 MHz	Mode 4: CH00_2402 MHz Mode 5: CH39_2441 MHz Mode 6: CH78_2480 MHz	Mode 7: CH00_2402 MHz Mode 8: CH39_2441 MHz Mode 9: CH78_2480 MHz	
Radiated TCs	Pretest	Pretest	Pretest	Mode 1: CH00_2402 MHz Mode 2: CH39_2441 MHz Mode 3: CH78_2480 MHz
AC Conducted Emission	Mode 1 :GSM850 Idle + Bluetooth Link + WLAN Link + Camera + Earphone + Battery + USB Cable (Charging from Adapter)			
Remark: For radiated TCs, the data rate was set in 3Mbps due to the highest RF output power; only the data of these modes was reported.				

2.3 Connection Diagram of Test System

<Bluetooth Tx Mode>

<AC Conducted Emission Mode>

2.4 RF Utility

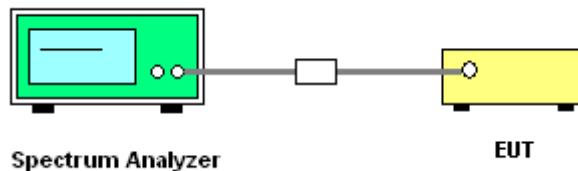
For Bluetooth function, programmed RF utility, "BT TEST MODE" was installed in EUT which was programmed in order to make the EUT into the engineering modes to contact with Bluetooth base station for continuous transmitting and receiving signals.

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

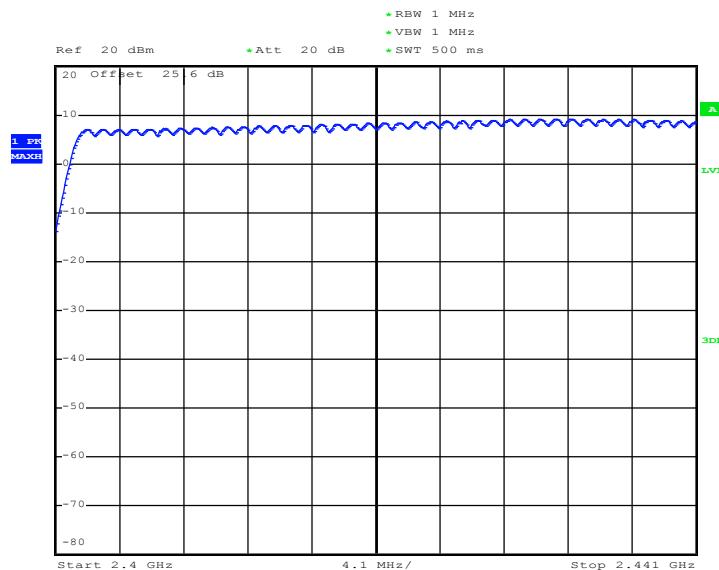

3.1.2 Measuring Instruments

See list of measuring instruments of this test report.

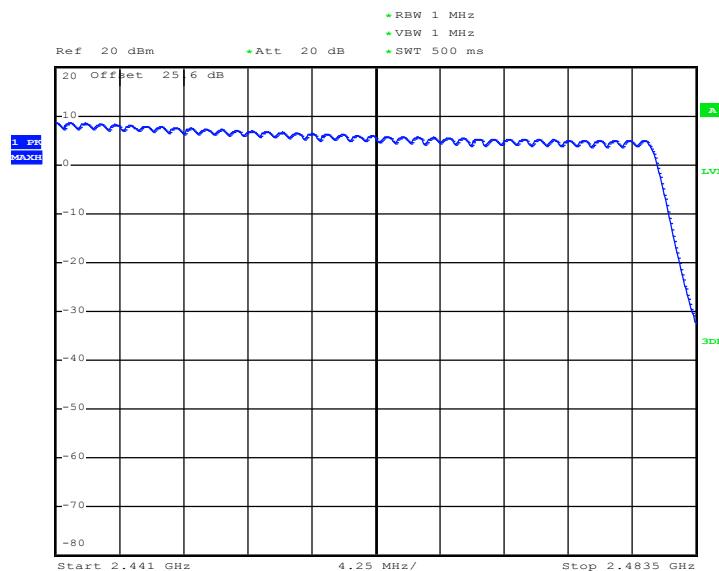
3.1.3 Test Procedure

1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines.
2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Enable the EUT hopping function.
5. Use the following spectrum analyzer settings: Span = the frequency band of operation; RBW \geq 1% of the span; VBW \geq RBW; Sweep = auto; Detector function = peak; Trace = max hold.
6. The number of hopping frequency used is defined as the number of total channel.
7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup



3.1.5 Test Result of Number of Hopping Frequency


Test Mode :	3Mbps	Temperature :	24~26°C
Test Engineer :	Reece Li	Relative Humidity :	50~53%
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail
79	≥ 20	> 15	Pass

Number of Hopping Channel Plot on Channel 00 - 78

Date: 15.NOV.2012 23:07:09

Date: 15.NOV.2012 23:12:09

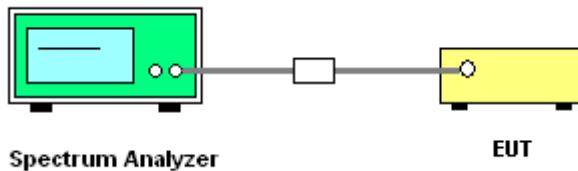
Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 KHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

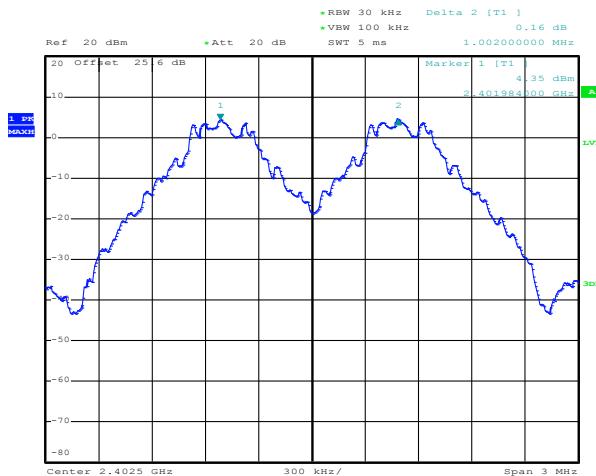

3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

3.2.3 Test Procedures

1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines.
2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Enable the EUT hopping function.
5. Use the following spectrum analyzer settings:
Span = wide enough to capture the peaks of two adjacent channels; RBW \geq 1% of the span;
VBW \geq RBW; Sweep = auto; Detector function = peak; Trace = max hold.
6. Measure and record the results in the test report.

3.2.4 Test Setup

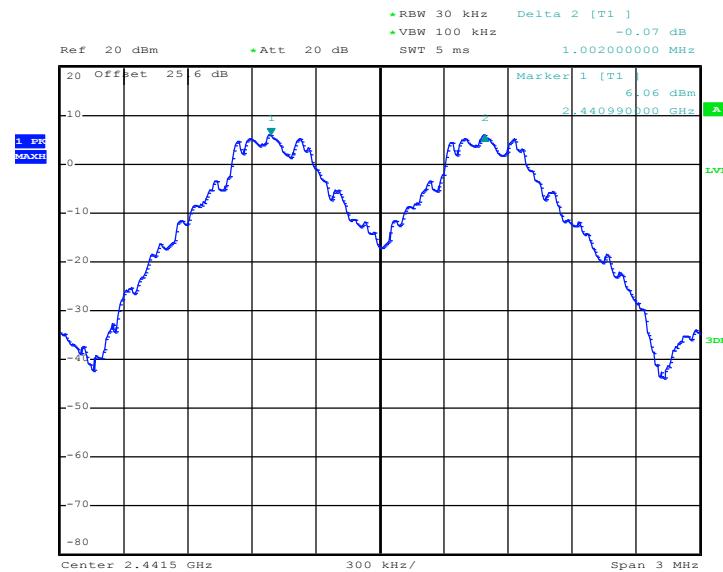


3.2.5 Test Result of Hopping Channel Separation

Test Mode :	1Mbps	Temperature :	24~26°C
Test Engineer :	Reece Li	Relative Humidity :	50~53%

Channel	Frequency (MHz)	Frequency Separation (MHz)	(2/3 of 20dB BW) Limits (MHz)	Pass/Fail
00	2402	1.002	0.6027	Pass
39	2441	1.002	0.6027	Pass
78	2480	1.002	0.6027	Pass

Channel Separation Plot on Channel 00 - 01

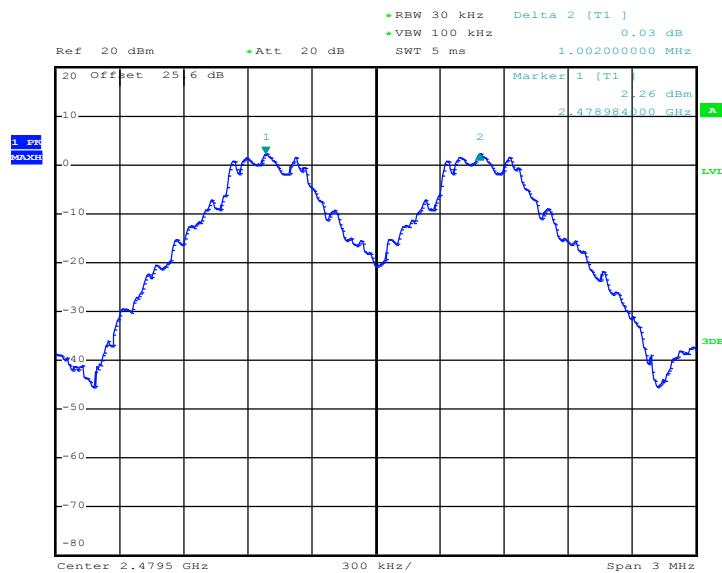

Date: 15.NOV.2012 22:24:19

Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

Example: the Hopping Channel Separation test item, the peak point of fundamental signal is 4.35dBm, has added (offset) with the total loss = attenuator factor + cable loss = 25.6dB, where, cable loss = 15.6dB and 10dB attenuator, and then the Hopping Channel Separation is measured and compliance with the limit line. Hereafter, each plot of spectrum analyzer has been added the total loss respectively and to demonstrate in compliance with the limit line.

Channel Separation Plot on Channel 39 - 40


Date: 15.NOV.2012 22:28:25

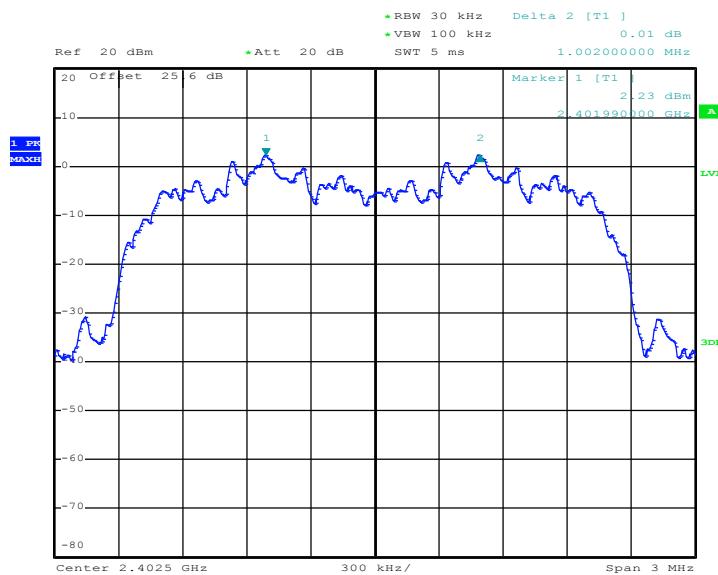
Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

Channel Separation Plot on Channel 77 - 78

Date: 15.NOV.2012 22:32:25

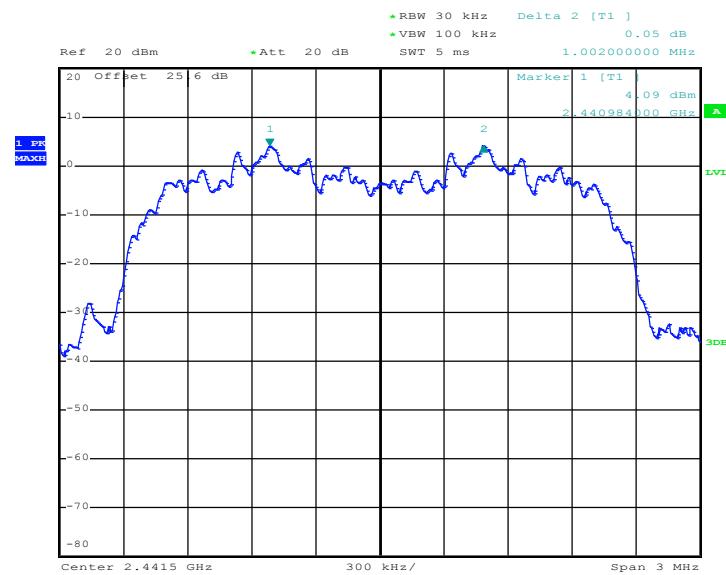
Note:


The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

Test Mode :	2Mbps	Temperature :	24~26°C
Test Engineer :	Reece Li	Relative Humidity :	50~53%

Channel	Frequency (MHz)	Frequency Separation (MHz)	(2/3 of 20dB BW) Limits (MHz)	Pass/Fail
00	2402	1.002	0.8800	Pass
39	2441	1.002	0.8960	Pass
78	2480	1.002	0.8840	Pass

Channel Separation Plot on Channel 00 - 01

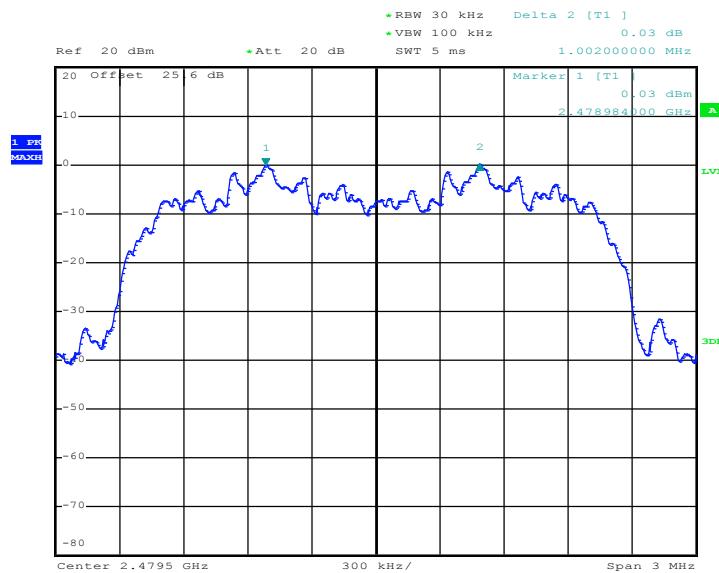


Date: 15.NOV.2012 22:43:54

Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

Channel Separation Plot on Channel 39 - 40



Date: 15.NOV.2012 22:39:47

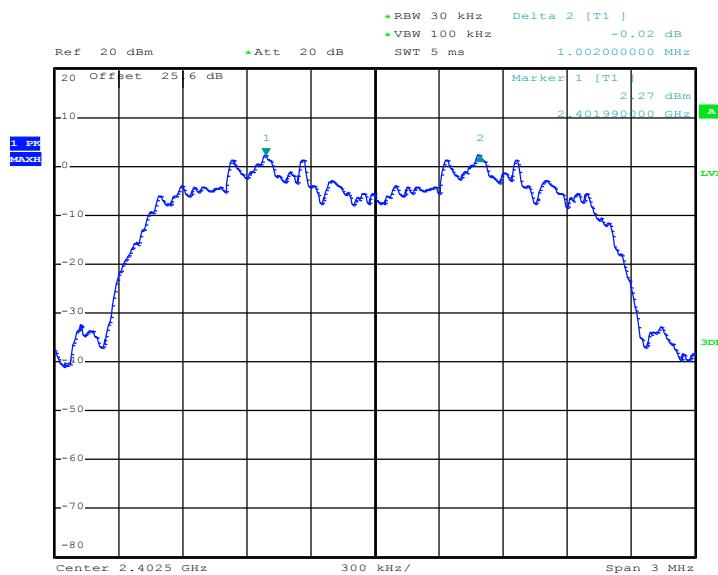
Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

Channel Separation Plot on Channel 77 - 78

Date: 15.NOV.2012 22:36:25

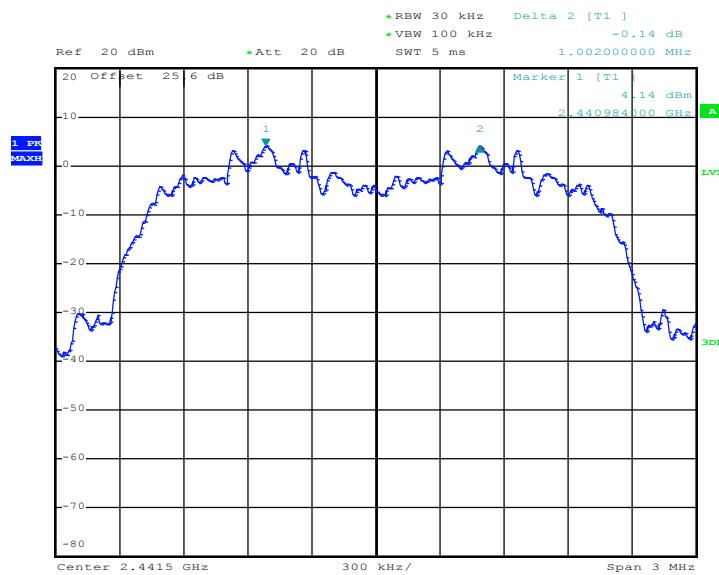
Note:


The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

Test Mode :	3Mbps	Temperature :	24~26°C
Test Engineer :	Reece Li	Relative Humidity :	50~53%

Channel	Frequency (MHz)	Frequency Separation (MHz)	(2/3 of 20dB BW) Limits (MHz)	Pass/Fail
00	2402	1.002	0.8560	Pass
39	2441	1.002	0.8720	Pass
78	2480	1.002	0.8560	Pass

Channel Separation Plot on Channel 00 - 01

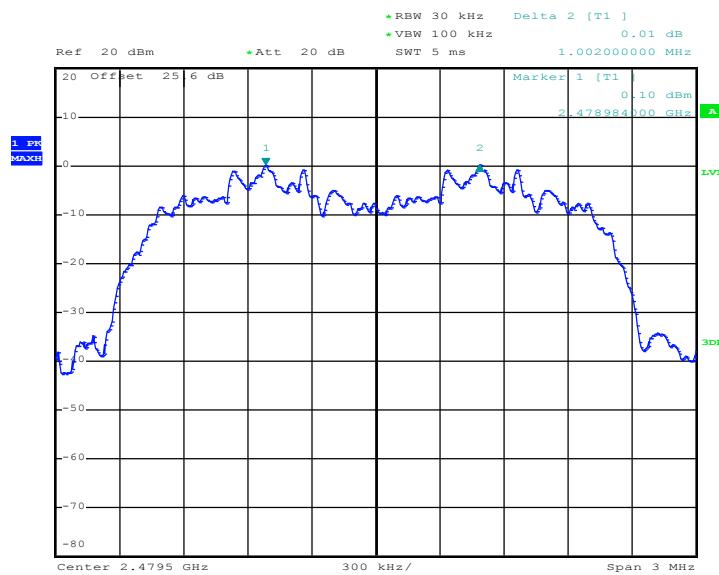


Date: 15.NOV.2012 22:48:12

Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

Channel Separation Plot on Channel 39 - 40



Date: 15.NOV.2012 22:51:30

Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

Channel Separation Plot on Channel 77 - 78

Date: 15.NOV.2012 22:55:09

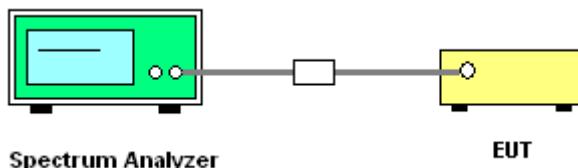
Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

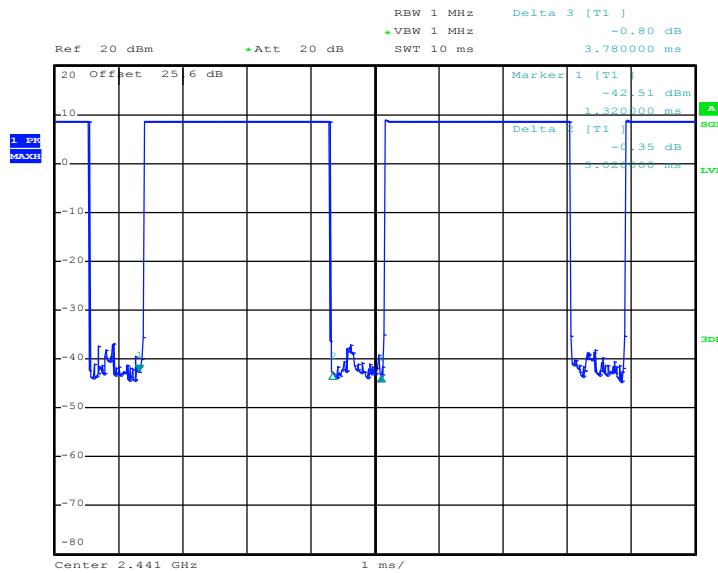

3.3.2 Measuring Instruments

See list of measuring instruments of this test report.

3.3.3 Test Procedures

1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines.
2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Enable the EUT hopping function.
5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW \geq RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
6. Measure and record the results in the test report.

3.3.4 Test Setup


3.3.1 Test Result of Dwell Time

Test Mode :	DH5		Temperature :	24~26°C		
Test Engineer :	Reece Li		Relative Humidity :	50~53%		
Mode	Hopping Channel Number	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail
Normal	79	106.67	3.02	0.32	0.4	Pass
AFH	20	53.34	3.02	0.16	0.4	Pass

Remark:

1. In normal mode, hopping rate is 1600hops/s with 6 slots in 79 hopping channels.
With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s),
Hops Over Occupancy Time comes to (1600 / 6 / 79) x (0.4 x 79) = 106.67 hops.
2. In AFH mode, hopping rate is 800hops/s with 6 slots in 20 hopping channels.
With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s),
Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.34 hops.
3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

Package Transfer Time Plot

Date: 15.NOV.2012 22:13:06

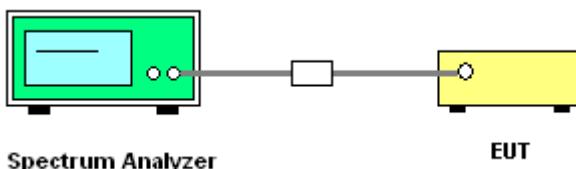
Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

3.4 20dB Bandwidth Measurement

3.4.1 Limit of 20dB Bandwidth

Reporting only

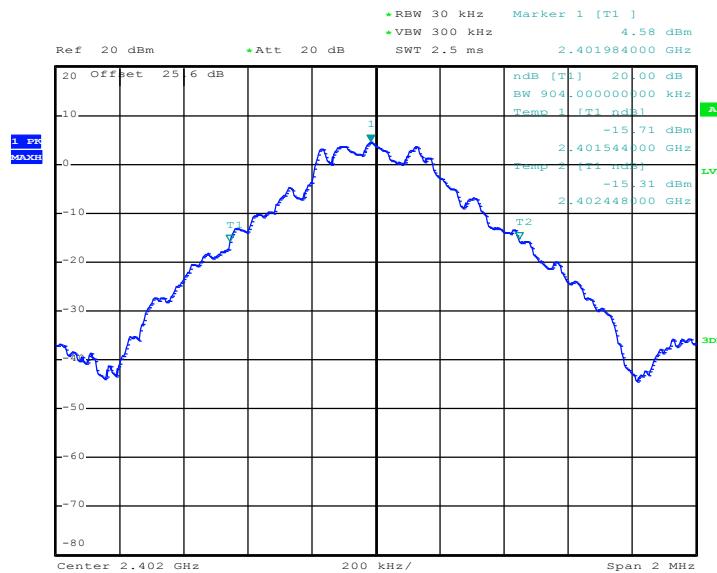

3.4.2 Measuring Instruments

See list of measuring instruments of this test report.

3.4.3 Test Procedures

1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines.
2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel;
RBW \geq 1% of the 20 dB bandwidth; VBW \geq RBW; Sweep = auto; Detector function = peak;
Trace = max hold.
5. Measure and record the results in the test report.

3.4.4 Test Setup

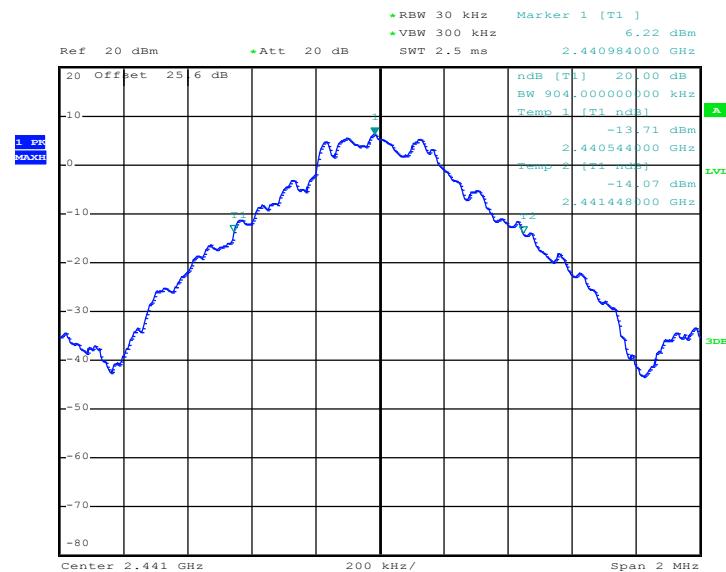


3.4.5 Test Result of 20dB Bandwidth

Test Mode :	1Mbps	Temperature :	24~26°C
Test Engineer :	Reece Li	Relative Humidity :	50~53%

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
00	2402	0.904
39	2441	0.904
78	2480	0.904

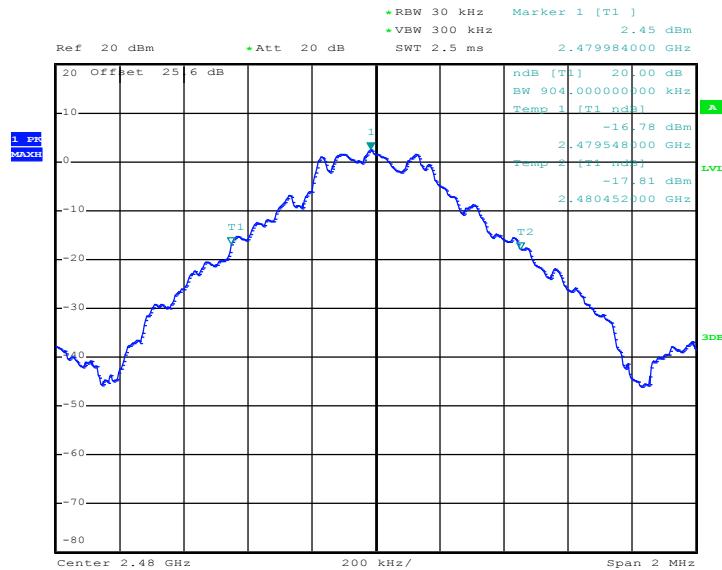
20 dB Bandwidth Plot on Channel 00


Date: 15.NOV.2012 22:19:14

Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

20 dB Bandwidth Plot on Channel 39


Date: 15.NOV.2012 22:25:02

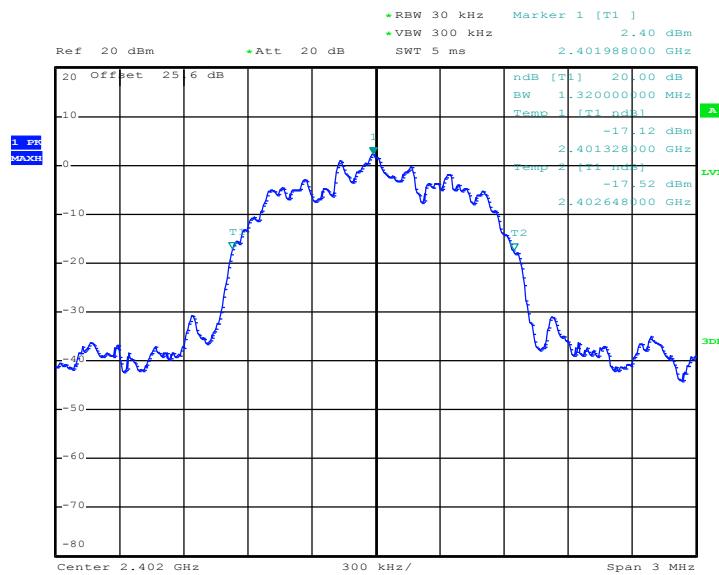
Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

20 dB Bandwidth Plot on Channel 78

Date: 15.NOV.2012 22:29:02

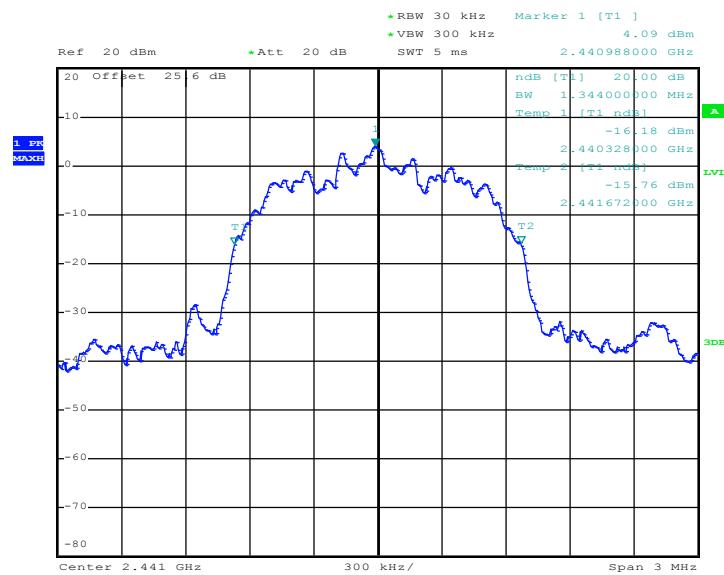
Note:


The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

Test Mode :	2Mbps	Temperature :	24~26°C
Test Engineer :	Reece Li	Relative Humidity :	50~53%

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
00	2402	1.320
39	2441	1.344
78	2480	1.326

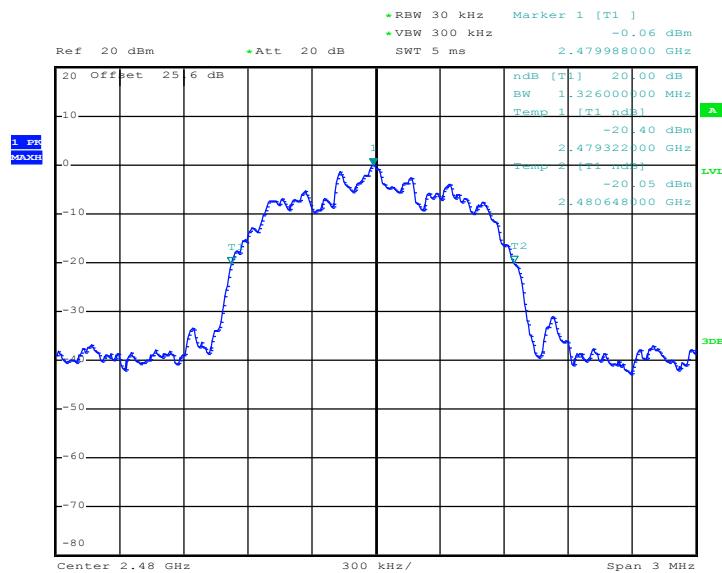
20 dB Bandwidth Plot on Channel 00


Date: 15.NOV.2012 22:40:23

Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

20 dB Bandwidth Plot on Channel 39


Date: 15.NOV.2012 22:36:59

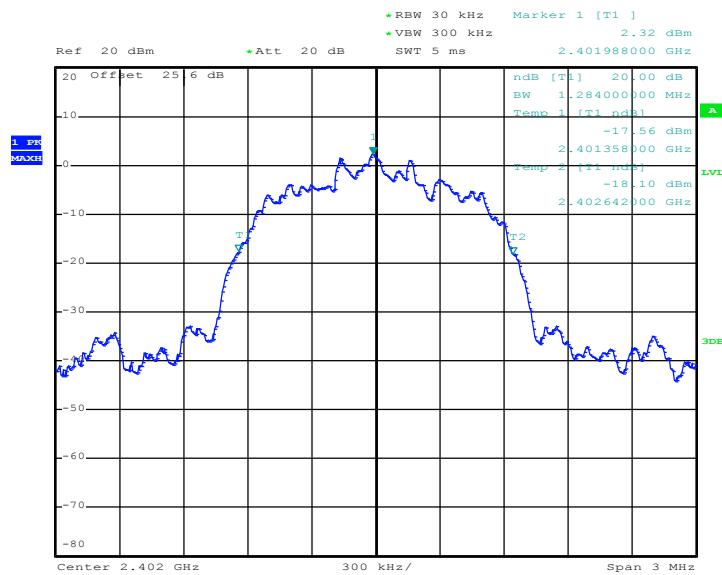
Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

20 dB Bandwidth Plot on Channel 78

Date: 15.NOV.2012 22:33:29

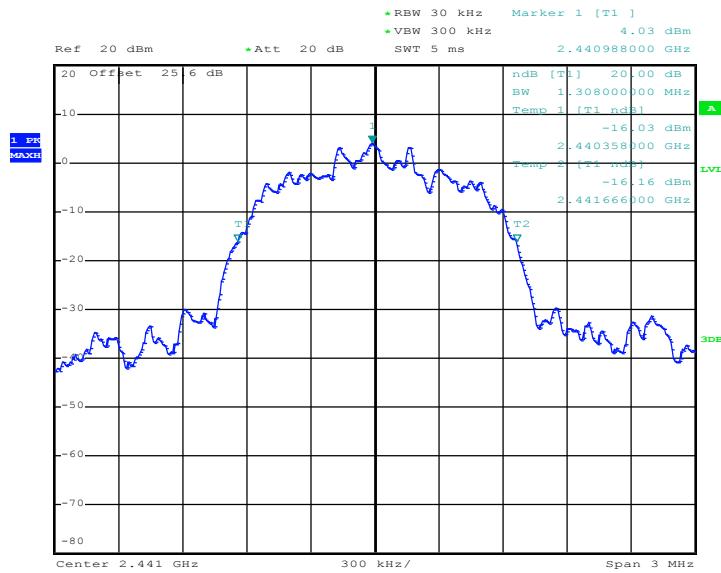
Note:


The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

Test Mode :	3Mbps	Temperature :	24~26°C
Test Engineer :	Reece Li	Relative Humidity :	50~53%

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
00	2402	1.284
39	2441	1.308
78	2480	1.284

20 dB Bandwidth Plot on Channel 00

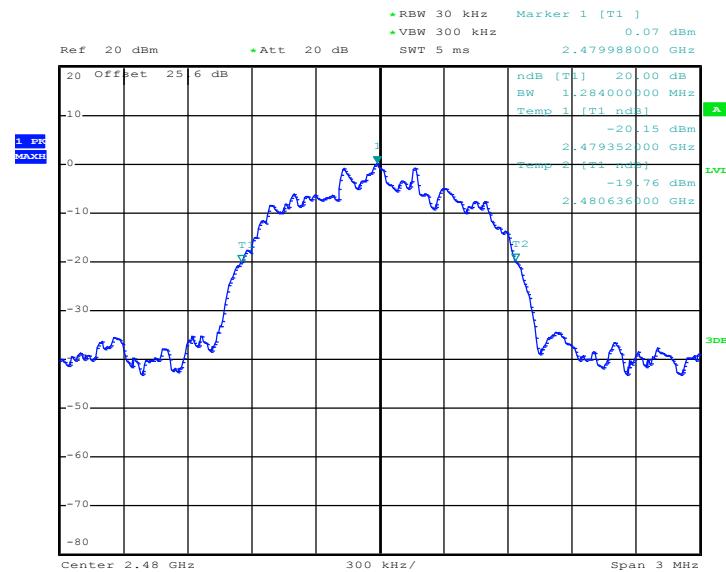


Date: 15.NOV.2012 22:44:28

Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

20 dB Bandwidth Plot on Channel 39


Date: 15.NOV.2012 22:48:47

Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

20 dB Bandwidth Plot on Channel 78

Date: 15.NOV.2012 22:52:00

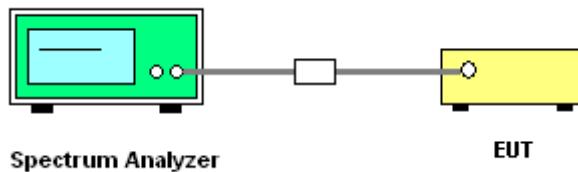
Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

3.5 Peak Output Power Measurement

3.5.1 Limit of Peak Output Power

Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps is 1watt, and for 2Mbps, and 3Mbps are 0.125 watts.

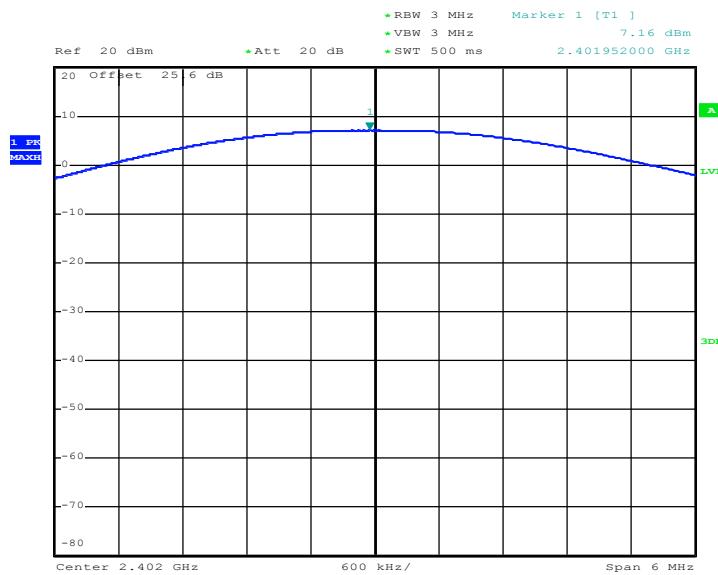

3.5.2 Measuring Instruments

See list of measuring instruments of this test report.

3.5.3 Test Procedures

1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines.
2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Measure the conducted output power with cable loss and record the results in the test report.
5. Measure and record the results in the test report.

3.5.4 Test Setup

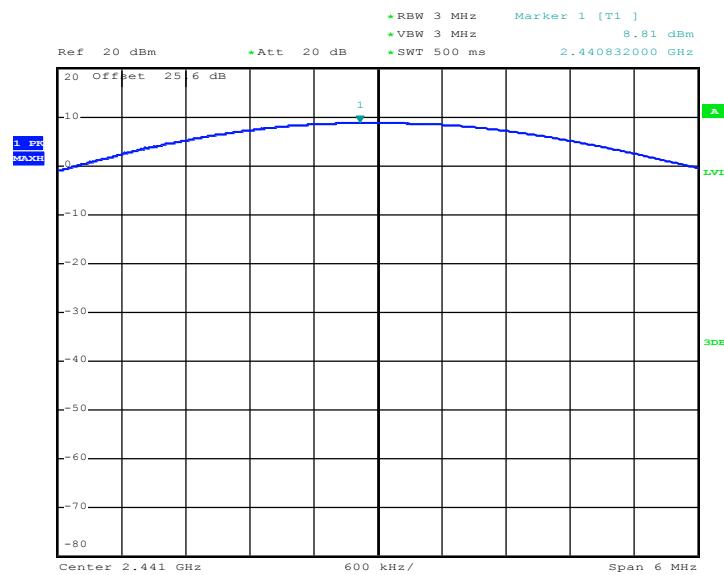


3.5.5 Test Result of Peak Output Power

Test Mode :	1Mbps	Temperature :	24~26°C
Test Engineer :	Reece Li	Relative Humidity :	50~53%

Channel	Frequency (MHz)	RF Power (dBm)		
		GFSK	Max. Limits (dBm)	Pass/Fail
		1 Mbps		
00	2402	7.16	30.00	Pass
39	2441	8.81	30.00	Pass
78	2480	5.05	30.00	Pass

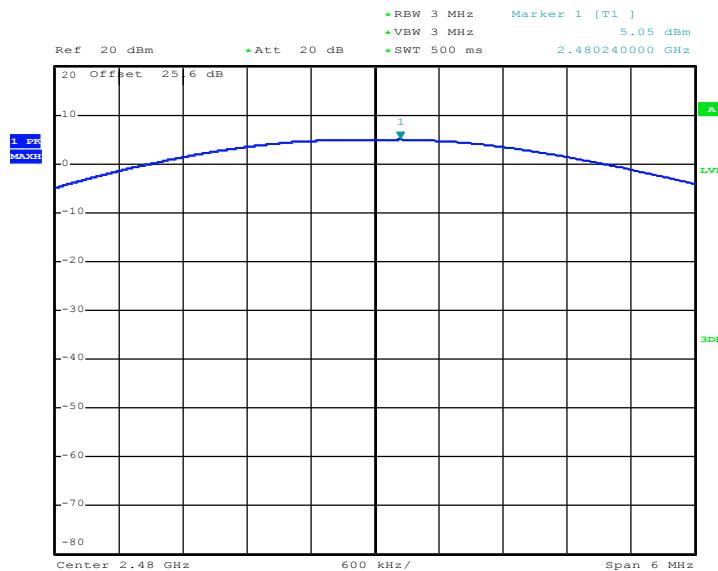
Peak Output Power Plot on Channel 00


Date: 15.NOV.2012 21:44:10

Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

Peak Output Power Plot on Channel 39


Date: 15.NOV.2012 21:59:21

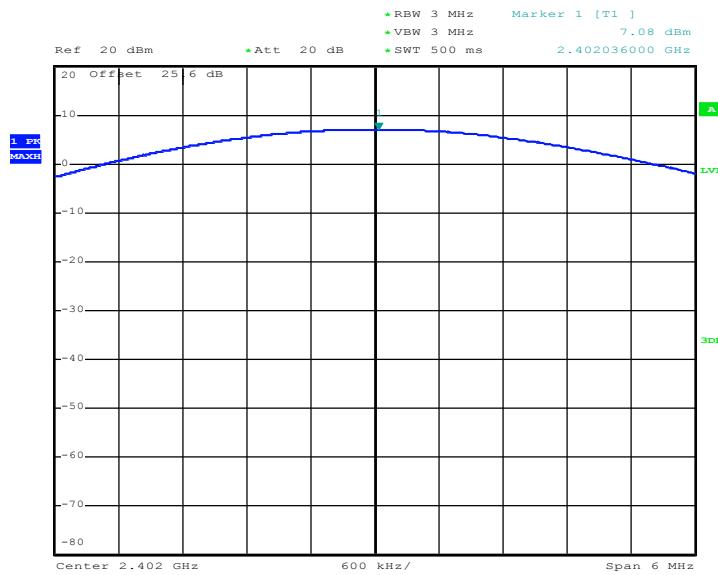
Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

Peak Output Power Plot on Channel 78

Date: 15.NOV.2012 21:59:52

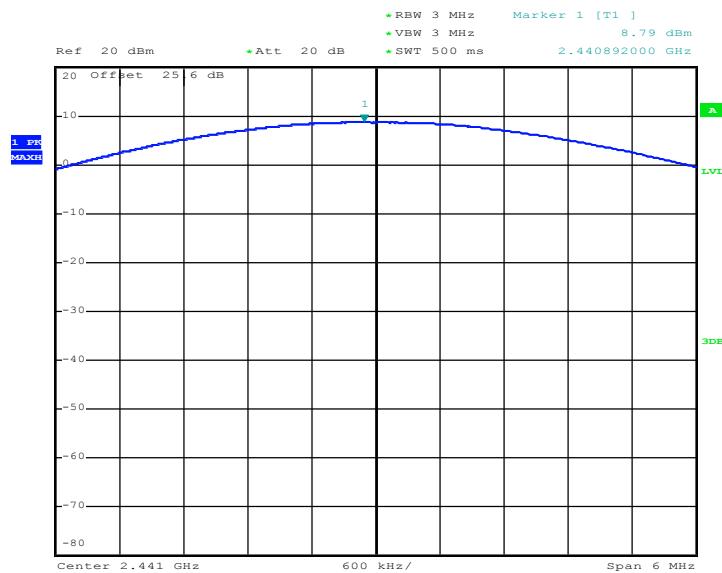
Note:


The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

Test Mode :	2Mbps	Temperature :	24~26°C
Test Engineer :	Reece Li	Relative Humidity :	50~53%

Channel	Frequency (MHz)	RF Power (dBm)		
		$\pi/4$ -DQPSK	Max. Limits (dBm)	Pass/Fail
		2 Mbps		
00	2402	7.08	20.97	Pass
39	2441	8.79	20.97	Pass
78	2480	5.02	20.97	Pass

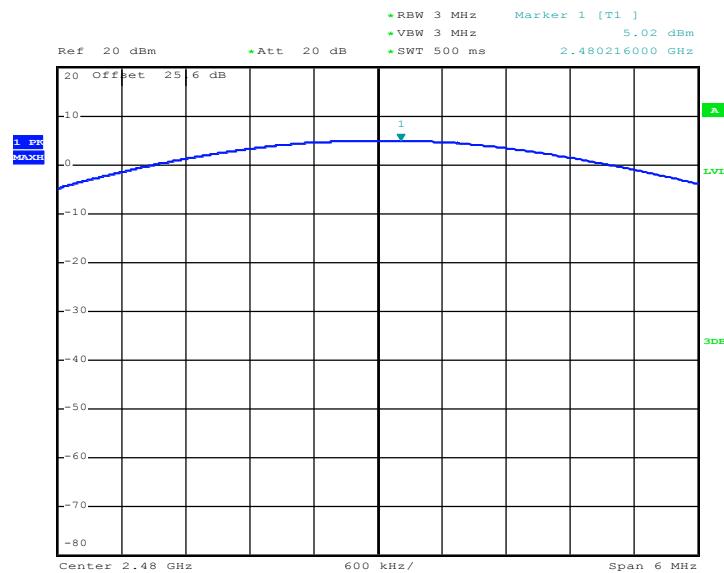
Peak Output Power Plot on Channel 00


Date: 15.NOV.2012 21:45:11

Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

Peak Output Power Plot on Channel 39


Date: 15.NOV.2012 22:04:20

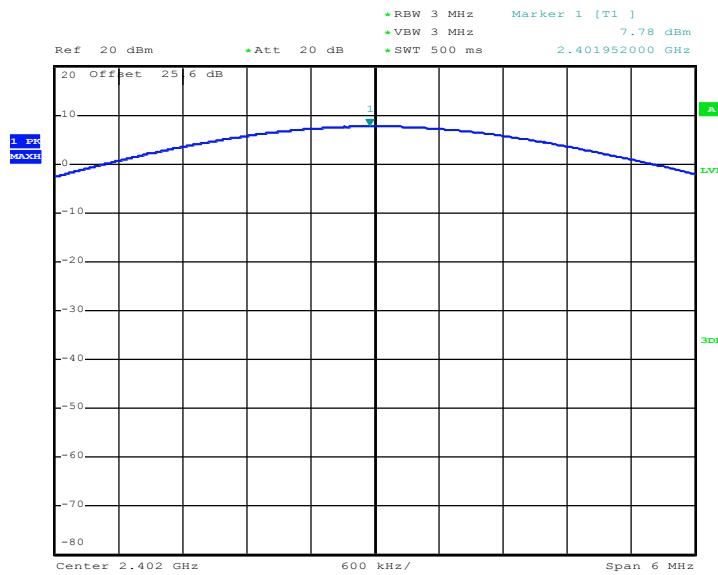
Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

Peak Output Power Plot on Channel 78

Date: 15.NOV.2012 22:01:10

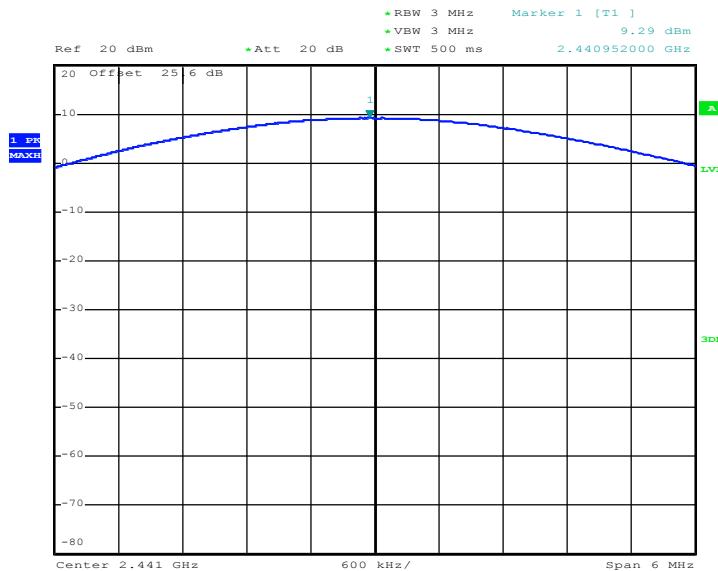
Note:


The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

Test Mode :	3Mbps	Temperature :	24~26°C
Test Engineer :	Reece Li	Relative Humidity :	50~53%

Channel	Frequency (MHz)	RF Power (dBm)		
		8-DPSK	Max. Limits (dBm)	Pass/Fail
		3 Mbps		
00	2402	7.78	20.97	Pass
39	2441	9.29	20.97	Pass
78	2480	5.70	20.97	Pass

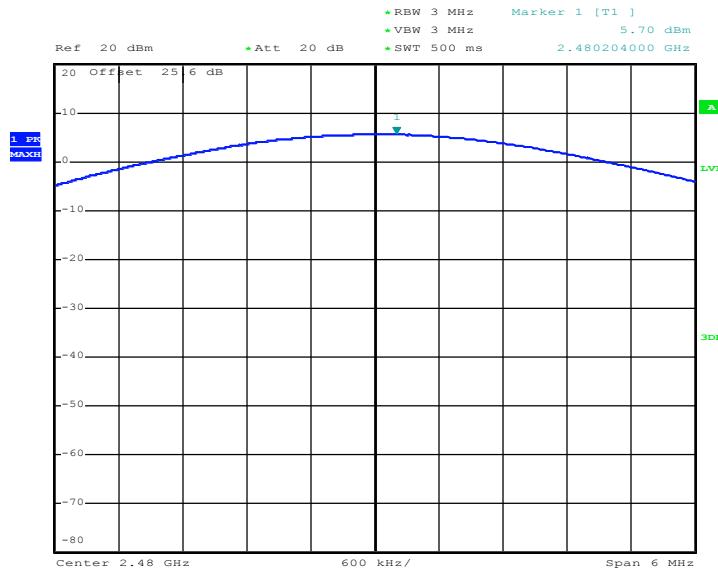
Peak Output Power Plot on Channel 00


Date: 15.NOV.2012 21:46:15

Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

Peak Output Power Plot on Channel 39


Date: 15.NOV.2012 21:56:53

Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

Peak Output Power Plot on Channel 78

Date: 15.NOV.2012 22:02:34

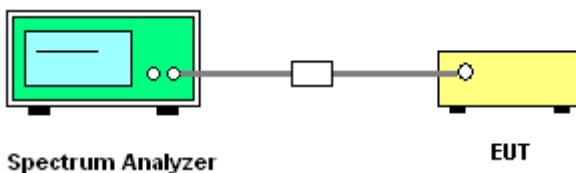
Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

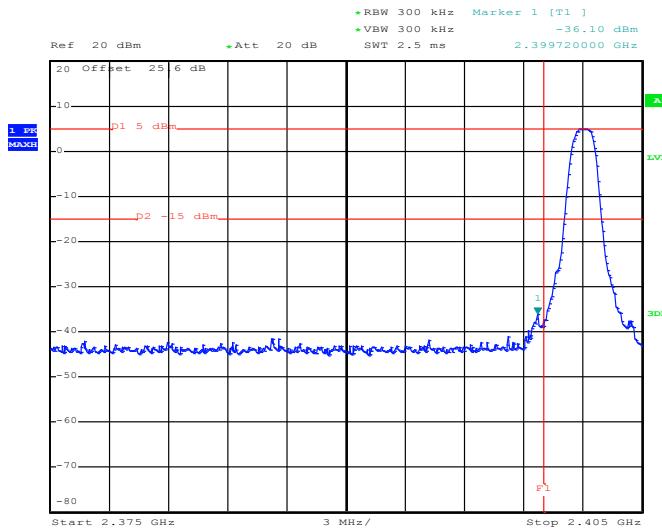
In any 100 KHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.6.2 Measuring Instruments

See list of measuring instruments of this test report.

3.6.3 Test Procedures

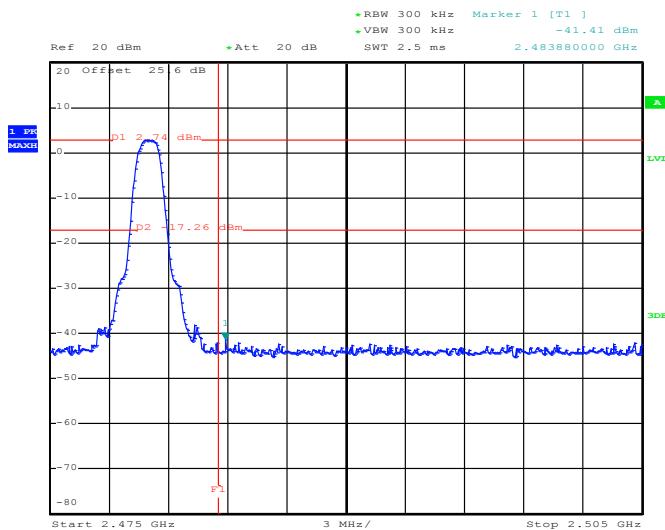
1. The testing follows the guidelines in Band-edge Compliance of RF Conducted Emissions of FCC Public Notice DA 00-705 Measurement Guidelines.
2. Set to the maximum power setting and enable the EUT transmit continuously.
3. Set RBW = 300KHz ($\geq 1\%$ span=30MHz), VBW = 300KHz (\geq RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 300KHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
4. Enable hopping function of the EUT and then repeat step 2. and 3.
5. Measure and record the results in the test report.


3.6.4 Test Setup

3.6.5 Test Result of Conducted Band Edges

Test Mode :	3Mbps	Temperature :	24~26°C
Test Channel :	00 and 78	Relative Humidity :	50~53%
		Test Engineer :	Reece Li

Low Band Edge Plot on Channel 00



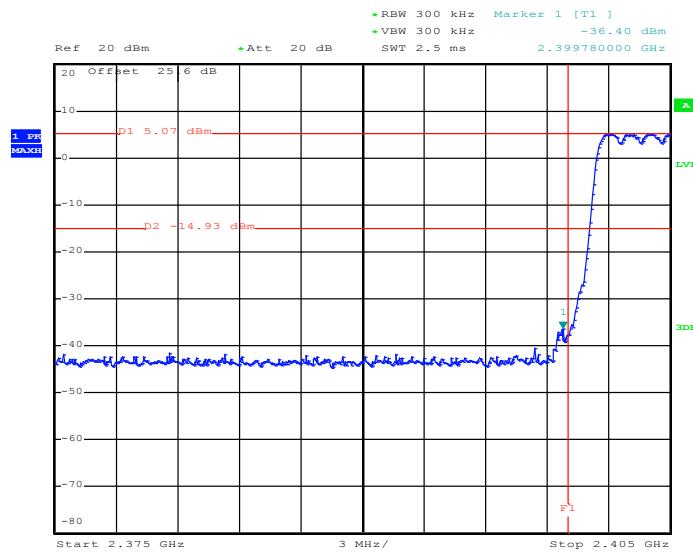
Date: 15.NOV.2012 22:44:50

Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

High Band Edge Plot on Channel 78

Date: 15.NOV.2012 22:52:24

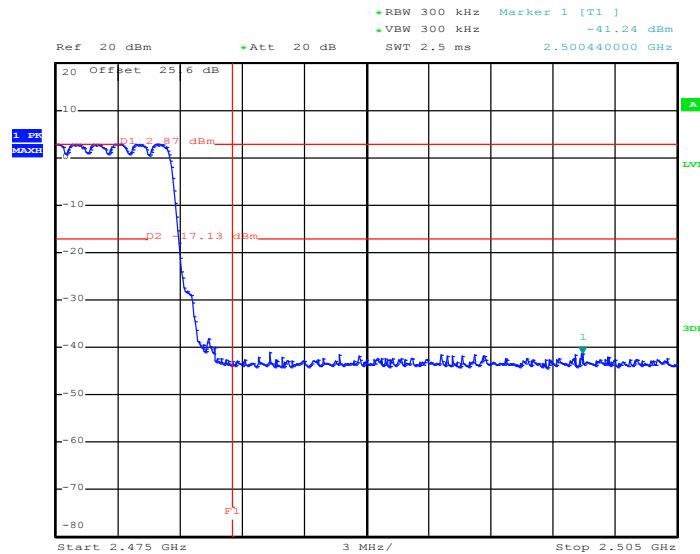

Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

3.6.6 Test Result of Conducted Hopping Mode Band Edges

Test Mode :	3Mbps	Temperature :	24~26°C
Test Engineer :	Reece Li	Relative Humidity :	50~53%

Hopping Mode Low Band Edge Plot



Date: 16.NOV.2012 00:22:01

Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

Hopping Mode High Band Edge Plot

Date: 16.NOV.2012 00:23:29

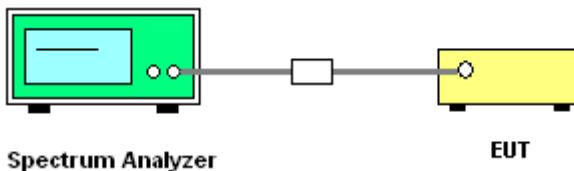
Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 KHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

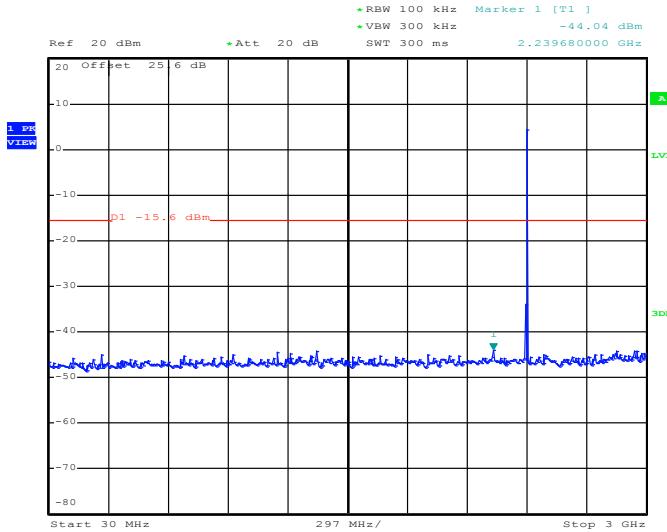

3.7.2 Measuring Instruments

See list of measuring instruments of this test report.

3.7.3 Test Procedure

1. The testing follows the guidelines in Spurious RF Conducted Emissions of FCC Public Notice DA 00-705 Measurement Guidelines
2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Set RBW = 100 KHz, VBW = 300KHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 KHz RBW.
5. Measure and record the results in the test report.

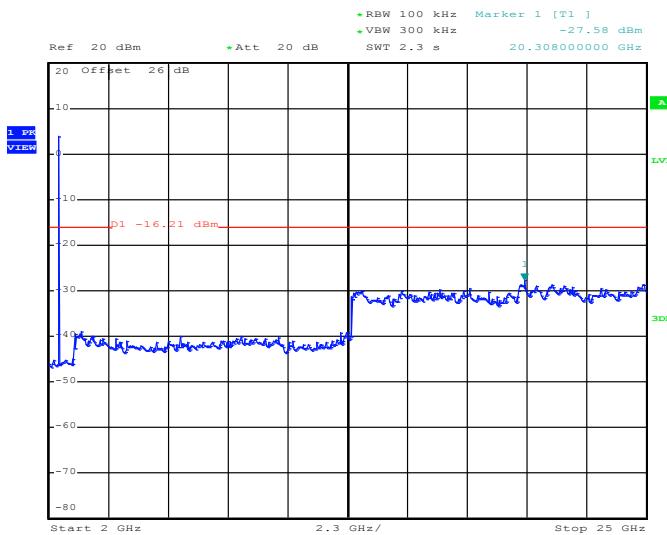
3.7.4 Test Setup



3.7.5 Test Result

Test Mode :	3Mbps	Temperature :	24~26°C
Test Channel :	00	Relative Humidity :	50~53%
		Test Engineer :	Reece Li

Conducted Spurious Emission Plot between 30MHz ~ 3 GHz

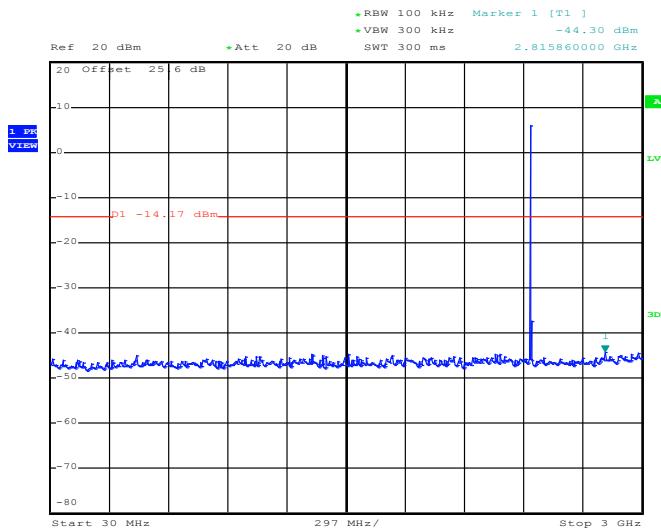


Date: 15.NOV.2012 22:46:12

Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

Conducted Spurious Emission Plot between 2 GHz ~ 25 GHz

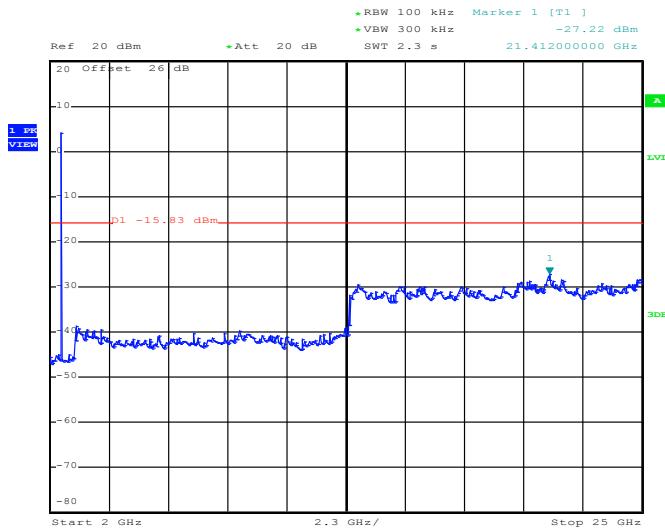


Date: 15.NOV.2012 22:46:37

Note:

The total loss is 26dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

Test Mode :	3Mbps	Temperature :	24~26°C
Test Channel :	39	Relative Humidity :	50~53%
		Test Engineer :	Reece Li

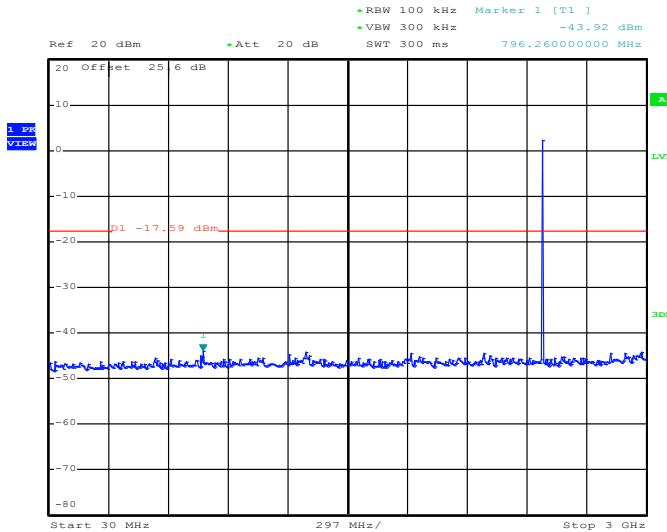

Conducted Spurious Emission Plot between 30MHz ~ 3 GHz

Date: 15.NOV.2012 22:50:15

Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

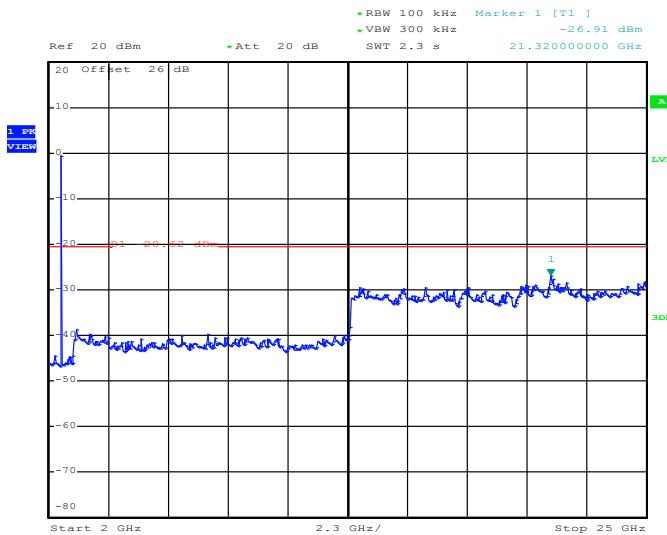
Conducted Spurious Emission Plot between 2 GHz ~ 25 GHz


Date: 15.NOV.2012 22:50:36

Note:

The total loss is 26dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

Test Mode :	3Mbps	Temperature :	24~26°C
Test Channel :	78	Relative Humidity :	50~53%
		Test Engineer :	Reece Li


Conducted Spurious Emission Plot between 30MHz ~ 3 GHz

Date: 15.NOV.2012 22:53:33

Note:

The total loss is 25.6dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

Conducted Spurious Emission Plot between 2 GHz ~ 25 GHz

Date: 15.NOV.2012 22:53:54

Note:

The total loss is 26dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

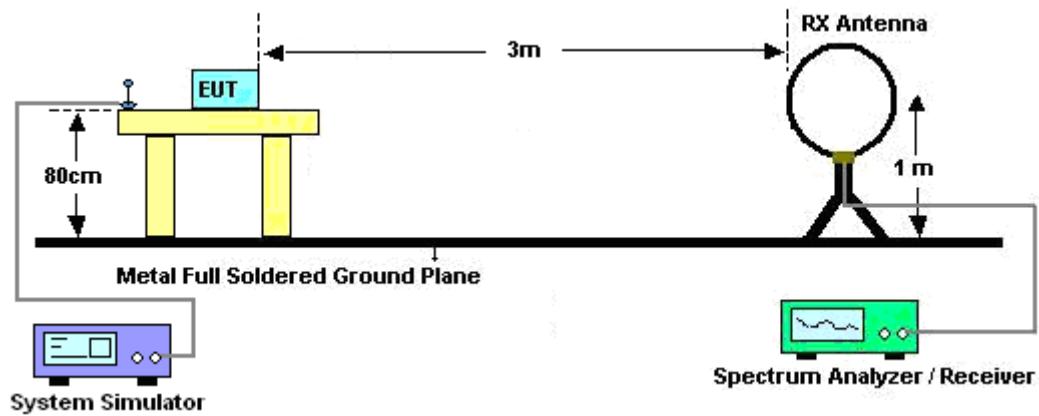
In any 100 KHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 – 0.490	2400/F(KHz)	300
0.490 – 1.705	24000/F(KHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

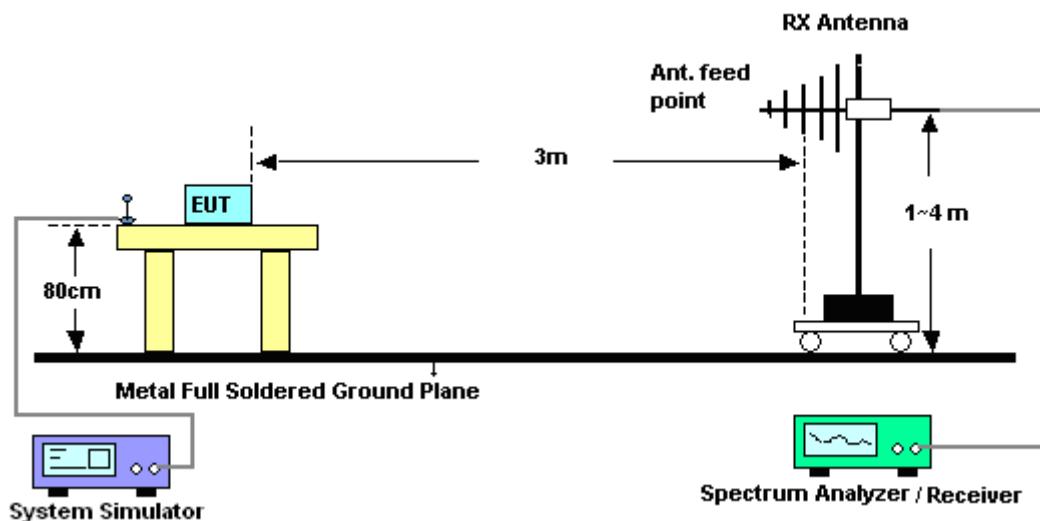
3.8.2 Measuring Instruments

See list of measuring instruments of this test report.

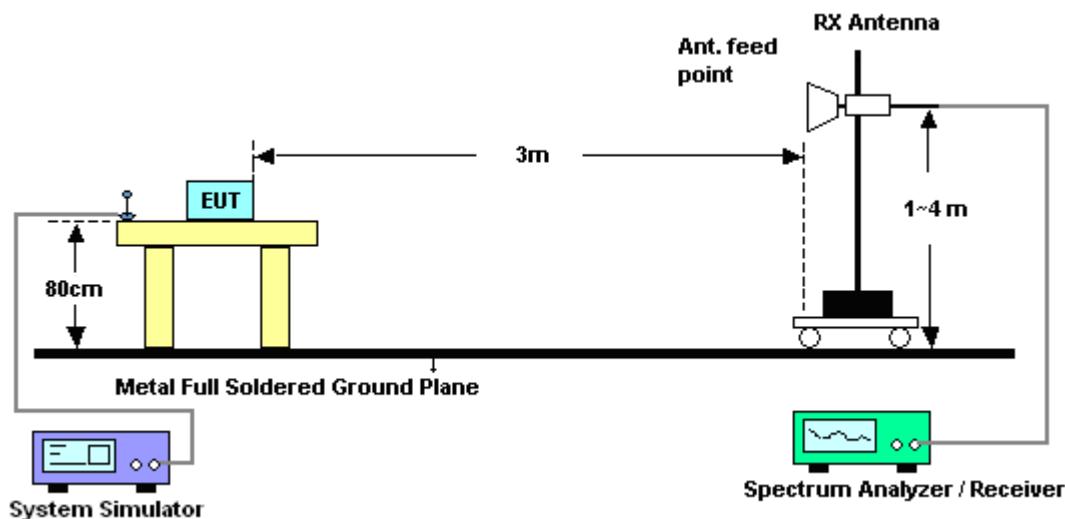
3.8.3 Test Procedures


1. The testing follows the guidelines in Spurious Radiated Emissions of FCC Public Notice DA 00-705 Measurement Guidelines and fulfills ANSI C63.4-2003 and the guidelines in ANSI C63.10-2009 test site requirement.
2. The EUT was placed on a turntable with 0.8 meter above ground.
3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
5. Set to the maximum power setting and enable the EUT transmit continuously.
6. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 KHz for $f < 1$ GHz, RBW=1MHz for $f > 1$ GHz ; VBW \geq RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c).
Duty cycle = On time/100 milliseconds
On time = $N_1 \cdot L_1 + N_2 \cdot L_2 + \dots + N_{n-1} \cdot L_{n-1} + N_n \cdot L_n$
Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.
Average Level = Peak Level + $20 \cdot \log(\text{Duty cycle})$
7. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (24.73dB) derived from $20 \log(\text{dwell time}/100\text{ms})$.

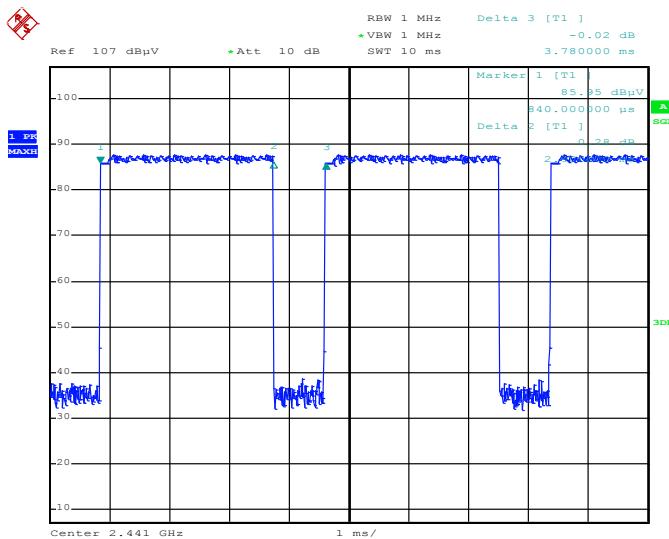

For example: Average level = 47.16dBuV/m - 24.73 (dB) = 22.43dBuV/m.

3.8.4 Test Setup


For radiated emissions below 30MHz

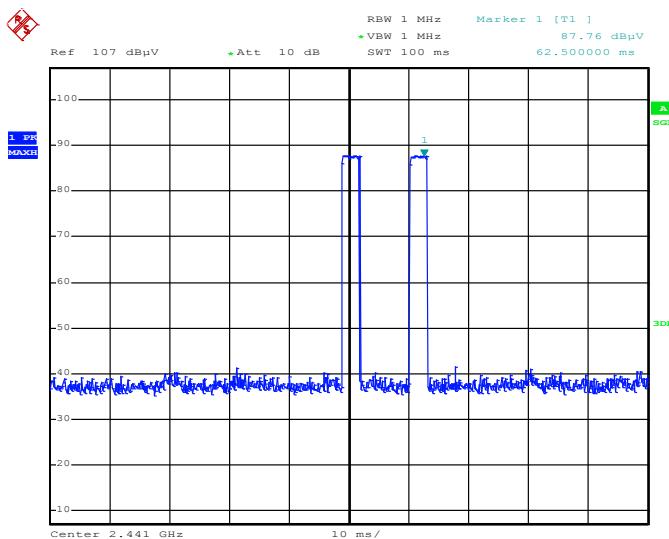
For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz



3.8.5 Test Results of Radiated Emissions (9 KHz ~ 30 MHz)

The low frequency, which started from 9 KHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.


3.8.6 Duty cycle correction factor for average measurement

3DH5 on time/100ms (One Pulse) Plot on Channel 39

Date: 21.NOV.2012 03:48:47

3DH5 on time/100ms (Count Pulses) Plot on Channel 39

Date: 21.NOV.2012 03:50:19

Note:

1. Duty cycle = on time/100 milliseconds = $2 * 2.90 / 100 = 5.80 \%$
2. Duty cycle correction factor = $20 * \log(\text{Duty cycle}) = -24.73 \text{ dB}$
3. 3DH5 has the highest duty cycle and is reported.

3.8.7 Test Result of Radiated Band Edges

Test Mode :	3Mbps			Temperature :		22~24°C		
Test Channel :	00			Relative Humidity :		52~54%		
					Test Engineer :		Marlboro Hsu	

ANTENNA POLARITY : HORIZONTAL										
Frequency (MHz)	Level (dB μ V/m)	Over Limit (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
2389.83	47.16	-26.84	74	42.79	32.3	6.03	33.96	107	268	Peak
2389.83	22.43	-31.57	54	-	-	-	-	-	-	Average

ANTENNA POLARITY : VERTICAL										
Frequency (MHz)	Level (dB μ V/m)	Over Limit (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
2321.25	45.35	-28.65	74	41.13	32.23	5.92	33.93	123	90	Peak
2321.25	20.62	-33.38	54	-	-	-	-	-	-	Average

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (24.73dB) derived from $20\log(dwell\ time/100ms)$.

For example: Average level = 47.16dB μ V/m – 24.73 (dB) = 22.43dB μ V/m.

Test Mode :	3Mbps			Temperature :		22~24°C		
Test Channel :	78			Relative Humidity :		52~54%		
					Test Engineer :		Marlboro Hsu	

ANTENNA POLARITY : HORIZONTAL										
Frequency (MHz)	Level (dB μ V/m)	Over Limit (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
2483.5	64.13	-9.87	74	59.57	32.38	6.18	34	129	75	Peak
2483.5	39.4	-14.6	54	-	-	-	-	-	-	Average

ANTENNA POLARITY : VERTICAL										
Frequency (MHz)	Level (dB μ V/m)	Over Limit (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
2483.5	57.54	-16.46	74	52.98	32.38	6.18	34	121	114	Peak
2483.5	32.81	-21.19	54	-	-	-	-	-	-	Average

3.8.8 Test Result of Radiated Emission (30 MHz ~ 10th Harmonic)

Test Mode :	3Mbps			Temperature :		22~24°C				
Test Channel :	00			Relative Humidity :		52~54%				
Test Engineer :	Marlboro Hsu			Polarization :		Horizontal				
Remark :	2402 MHz is fundamental signal which can be ignored.									

Frequency (MHz)	Level (dB μ V/m)	Over Limit (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
2402	102.22	-	-	97.85	32.3	6.03	33.96	107	268	Peak
2402	77.49	-	-	-	-	-	-	-	-	Average
4803	53.21	-20.79	74	67.59	33.98	9.11	57.47	100	0	Peak
4803	28.48	-25.52	54	-	-	-	-	-	-	Average

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (24.73dB) derived from $20\log(\text{dwell time}/100\text{ms})$.

For example: Average level = 102.22dB μ V/m – 24.73 (dB) = 77.49dB μ V/m.

Test Mode :	3Mbps			Temperature :		22~24°C				
Test Channel :	00			Relative Humidity :		52~54%				
Test Engineer :	Marlboro Hsu			Polarization :		Vertical				
Remark :	2402 MHz is fundamental signal which can be ignored.									

Frequency (MHz)	Level (dB μ V/m)	Over Limit (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
2402	97.3	-	-	92.93	32.3	6.03	33.96	123	90	Peak
2402	72.57	-	-	-	-	-	-	-	-	Average
4806	47.97	-26.03	74	62.34	33.98	9.12	57.47	100	0	Peak
4806	23.24	-30.76	54	-	-	-	-	-	-	Average

Test Mode :	3Mbps	Temperature :		22~24°C					
Test Channel :	39	Relative Humidity :		52~54%					
Test Engineer :	Marlboro Hsu	Polarization :		Horizontal					
Remark :	2441 MHz is fundamental signal which can be ignored.								

Frequency (MHz)	Level (dB μ V/m)	Over Limit (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
2441	104.68	-	-	100.2	32.35	6.11	33.98	166	75	Peak
2441	79.95	-	-	-	-	-	-	-	-	Average
4881	50.89	-23.11	74	65.28	33.95	9.14	57.48	100	0	Peak
4881	26.16	-27.84	54	-	-	-	-	-	-	Average

Test Mode :	3Mbps	Temperature :		22~24°C					
Test Channel :	39	Relative Humidity :		52~54%					
Test Engineer :	Marlboro Hsu	Polarization :		Vertical					
Remark :	2441 MHz is fundamental signal which can be ignored.								

Frequency (MHz)	Level (dB μ V/m)	Over Limit (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
2441	99.58	-	-	95.1	32.35	6.11	33.98	100	216	Peak
2441	74.85	-	-	-	-	-	-	-	-	Average
4884	44.31	-29.69	74	58.7	33.95	9.14	57.48	100	0	Peak
4884	19.58	-34.42	54	-	-	-	-	-	-	Average

Test Mode :	3Mbps	Temperature :	22~24°C
Test Channel :	78	Relative Humidity :	52~54%
Test Engineer :	Marlboro Hsu	Polarization :	Horizontal
Remark :	2480 MHz is fundamental signal which can be ignored.		

Frequency (MHz)	Level (dB μ V/m)	Over Limit (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
212.52	29.47	-14.03	43.5	49.48	9.98	1.37	31.36	-	-	Peak
258.15	31.54	-14.46	46	48.49	12.71	1.58	31.24	-	-	Peak
270.84	34.39	-11.61	46	51.17	12.89	1.64	31.31	100	187	Peak
344.1	32.31	-13.69	46	47.29	14.51	1.92	31.41	-	-	Peak
376.3	33.93	-12.07	46	47.79	15.37	2.09	31.32	-	-	Peak
480.6	32.43	-13.57	46	43.3	17.7	2.38	30.95	-	-	Peak
2480	102.26	-	-	97.7	32.38	6.18	34	129	75	Peak
2480	77.53	-	-	-	-	-	-	-	-	Average
4962	54.92	-19.08	74	69.34	33.91	9.16	57.49	100	0	Peak
4962	30.19	-23.81	54	-	-	-	-	-	-	Average

Test Mode :	3Mbps	Temperature :	22~24°C
Test Channel :	78	Relative Humidity :	52~54%
Test Engineer :	Marlboro Hsu	Polarization :	Vertical
Remark :	2480 MHz is fundamental signal which can be ignored.		

Frequency (MHz)	Level (dB μ V/m)	Over Limit (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
32.43	28.36	-11.64	40	41.83	17.84	0.56	31.87	105	225	Peak
206.58	27.55	-15.95	43.5	48.02	9.57	1.35	31.39	-	-	Peak
270.84	32.36	-13.64	46	49.14	12.89	1.64	31.31	-	-	Peak
328.7	26.34	-19.66	46	41.66	14.09	1.84	31.25	-	-	Peak
473.6	30.86	-15.14	46	41.99	17.53	2.36	31.02	-	-	Peak
632.5	26.06	-19.94	46	33.63	20.06	2.79	30.42	-	-	Peak
2480	96.44	-	-	91.88	32.38	6.18	34	121	114	Peak
2480	71.71	-	-	-	-	-	-	-	-	Average
4962	47.28	-26.72	74	61.7	33.91	9.16	57.49	100	0	Peak
4962	22.55	-31.45	54	-	-	-	-	-	-	Average

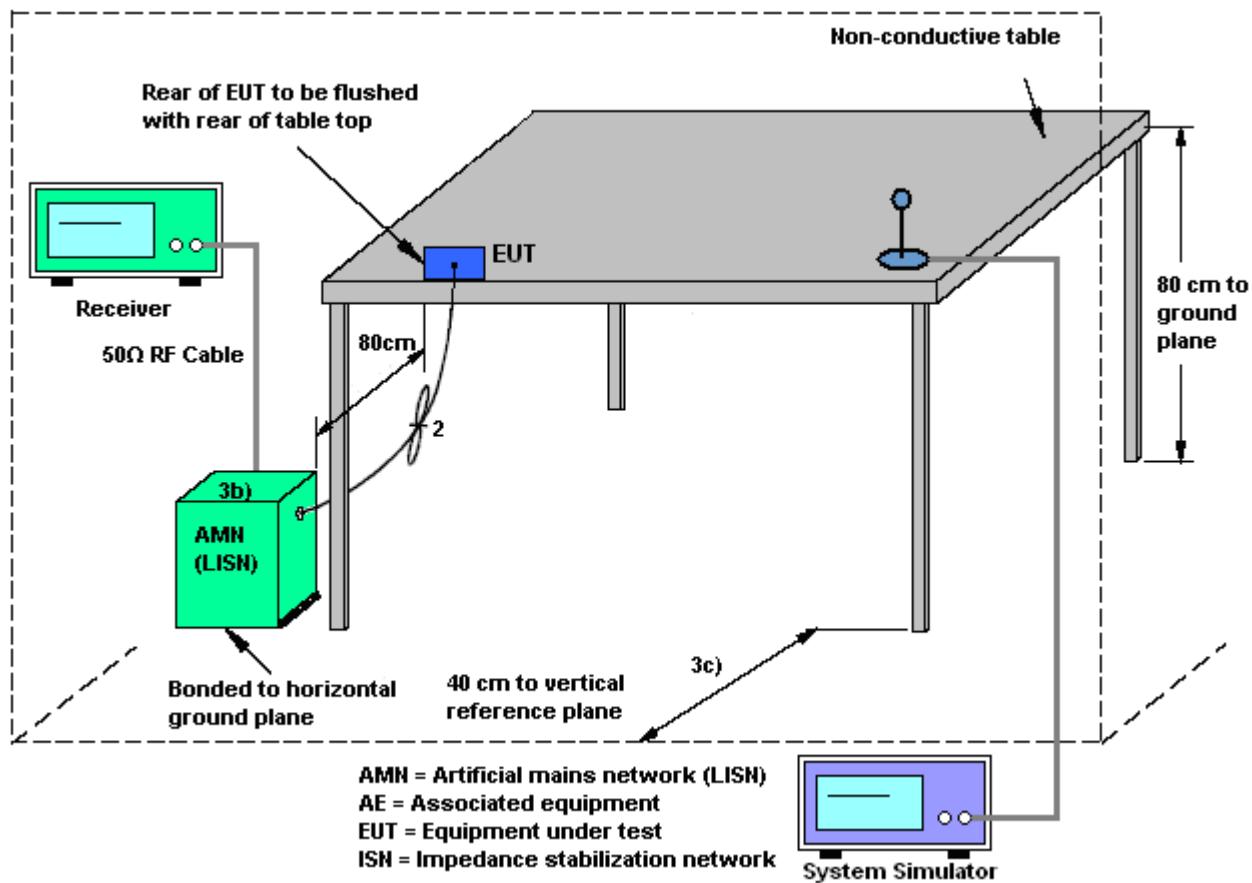
3.9 AC Conducted Emission Measurement

3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 KHz to 30 MHz shall not exceed the limits in the following table.

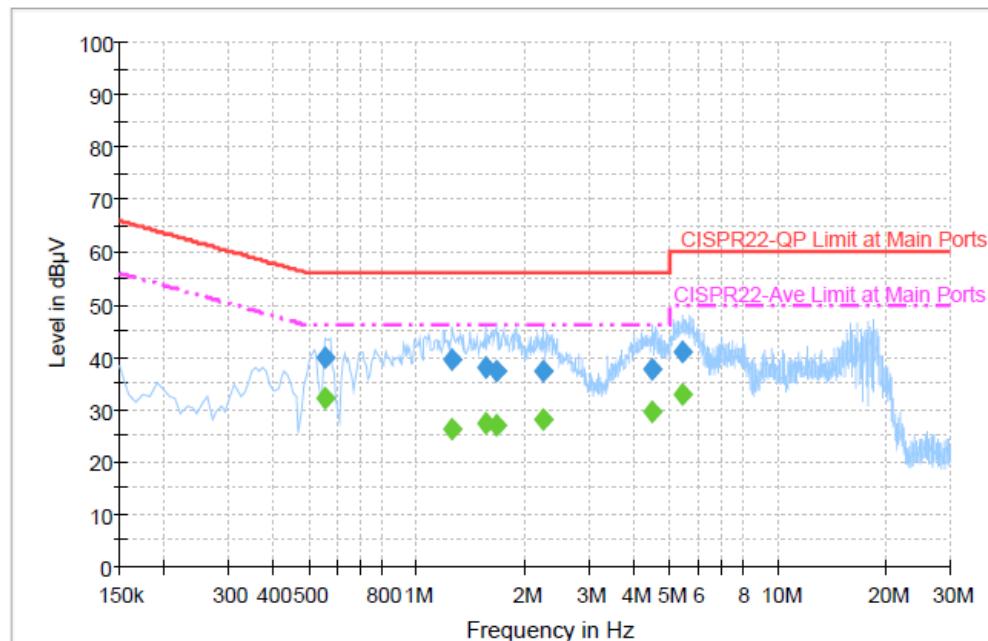
Frequency of emission (MHz)	Conducted limit (dBuV)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.


3.9.2 Measuring Instruments

See list of measuring instruments of this test report.

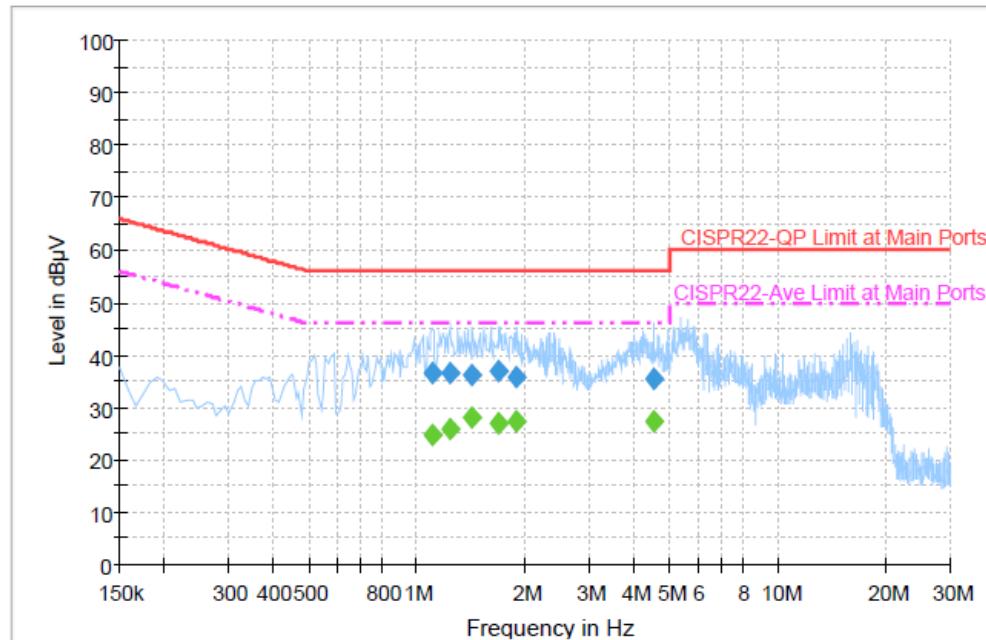
3.9.3 Test Procedures


1. The test follows the guidelines in ANSI C63.4-2003 and ANSI C63.10-2009 test site requirement.
2. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
3. Connect EUT to the power mains through a line impedance stabilization network (LISN).
4. All the support units are connecting to the other LISN.
5. The LISN provides 50 ohm coupling impedance for the measuring instrument.
6. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
7. Both sides of AC line were checked for maximum conducted interference.
8. The frequency range from 150 KHz to 30 MHz was searched.
9. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Test Mode :	Mode 1	Temperature :	20~22°C
Test Engineer :	Slash Huang	Relative Humidity :	45~47%
Test Voltage :	120Vac / 60Hz	Phase :	Line
Function Type :	GSM850 Idle + Bluetooth Link + WLAN Link + Camera + Earphone + Battery + USB Cable (Charging from Adapter)		
Remark :	All emissions not reported here are more than 10 dB below the prescribed limit.		


Final Result : Quasi-Peak

Frequency (MHz)	Quasi-Peak (dB μ V)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.558000	40.0	Off	L1	19.4	16.0	56.0
1.254000	39.4	Off	L1	19.4	16.6	56.0
1.542000	38.1	Off	L1	19.4	17.9	56.0
1.662000	37.4	Off	L1	19.4	18.6	56.0
2.230000	37.3	Off	L1	19.5	18.7	56.0
4.478000	37.8	Off	L1	19.5	18.2	56.0
5.414000	40.9	Off	L1	19.5	19.1	60.0

Final Result : Average

Frequency (MHz)	Average (dB μ V)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.558000	32.0	Off	L1	19.4	14.0	46.0
1.254000	26.1	Off	L1	19.4	19.9	46.0
1.542000	27.2	Off	L1	19.4	18.8	46.0
1.662000	27.1	Off	L1	19.4	18.9	46.0
2.230000	27.9	Off	L1	19.5	18.1	46.0
4.478000	29.4	Off	L1	19.5	16.6	46.0
5.414000	32.7	Off	L1	19.5	17.3	50.0

Test Mode :	Mode 1	Temperature :	20~22°C
Test Engineer :	Slash Huang	Relative Humidity :	45~47%
Test Voltage :	120Vac / 60Hz	Phase :	Neutral
Function Type :	GSM850 Idle + Bluetooth Link + WLAN Link + Camera + Earphone + Battery + USB Cable (Charging from Adapter)		
Remark :	All emissions not reported here are more than 10 dB below the prescribed limit.		

Final Result : Quasi-Peak

Frequency (MHz)	Quasi-Peak (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
1.102000	36.4	Off	N	19.5	19.6	56.0
1.230000	36.4	Off	N	19.5	19.6	56.0
1.422000	36.1	Off	N	19.5	19.9	56.0
1.678000	36.9	Off	N	19.5	19.1	56.0
1.886000	35.9	Off	N	19.5	20.1	56.0
4.526000	35.3	Off	N	19.5	20.7	56.0

Final Result : Average

Frequency (MHz)	Average (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
1.102000	24.6	Off	N	19.5	21.4	46.0
1.230000	25.8	Off	N	19.5	20.2	46.0
1.422000	27.9	Off	N	19.5	18.1	46.0
1.678000	26.8	Off	N	19.5	19.2	46.0
1.886000	27.4	Off	N	19.5	18.6	46.0
4.526000	27.3	Off	N	19.5	18.7	46.0

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.10.2 Antenna Connected Construction

Non-standard connector used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSP40	100055	9kHz~40GHz	Jun. 06, 2012	Nov. 15, 2012 ~ Nov. 16, 2012	Jun. 05, 2013	Conducted (TH02-HY)
Bluetooth Base Station	R&S	CBT32	100519	N/A	Jun. 05, 2012	Nov. 15, 2012 ~ Nov. 16, 2012	Jun. 04, 2013	Conducted (TH02-HY)
EMI Test Receiver	R&S	ESCI 7	100724	9kHz~7GHz	Sep. 03, 2012	Nov. 17, 2012	Sep. 02, 2013	Conduction (CO05-HY)
Two-LISN	R&S	ENV216	11-100081	9KHz ~ 30MHz	Dec. 09, 2011	Nov. 17, 2012	Dec. 08, 2012	Conduction (CO05-HY)
Two-LISN	R&S	ENV216	11-100080	9KHz ~ 30MHz	Dec. 06, 2011	Nov. 17, 2012	Dec. 05, 2012	Conduction (CO05-HY)
AC Power Source	APC	APC-1000W	N/A	N/A	N/A	Nov. 17, 2012	N/A	Conduction (CO05-HY)
System Simulator	R&S	CMU200	117995	N/A	Jul. 28, 2011	Nov. 17, 2012	Jul. 27, 2013	Conduction (CO05-HY)
Bilog Antenna	Schaffner	CBL6111C	2726	30MHz ~ 1GHz	Oct. 06, 2012	Nov. 21, 2012	Oct. 05, 2013	Radiation (03CH07-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP30	101067	9KHz ~ 30GHz	Dec. 06, 2011	Nov. 21, 2012	Dec. 05, 2012	Radiation (03CH07-HY)
Double Ridge Horn Antenna	ESCO	3117	00075962	1GHz ~ 18GHz	Aug. 22, 2012	Nov. 21, 2012	Aug. 21, 2013	Radiation (03CH07-HY)
Pre Amplifier	Agilent	8449B	3008A023 62	1GHz ~ 26.5GHz	Dec. 05, 2011	Nov. 21, 2012	Dec. 04, 2012	Radiation (03CH07-HY)
Pre Amplifier	MITEQ	AMF-7D-0010 1800-30-10P	159088	1GHz ~ 18GHz	Mar. 10, 2012	Nov. 21, 2012	Mar. 09, 2013	Radiation (03CH07-HY)
Pre Amplifier	COM-POWER	PA-103A	161241	10-1000MHz.32 dB.GAIN	Feb. 27, 2012	Nov. 21, 2012	Feb. 26, 2013	Radiation (03CH07-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI 7	100724	9kHz~7GHz	Sep. 03, 2012	Nov. 21, 2012	Sep. 02, 2013	Radiation (03CH07-HY)
SHF-EHF Horn Antenna	SCHWARZBECK	BBHA 9170 251	BBHA9170 251	15GHz ~ 40GHz	Sep. 28, 2012	Nov. 21, 2012	Sep. 27, 2013	Radiation (03CH07-HY)
Loop Antenna	R&S	HFH2-Z2	860004/00 1	9KHz ~ 30MHz	Jul. 03, 2012	Nov. 21, 2012	Jul. 02, 2014	Radiation (03CH06-HY)
Bluetooth Base Station	R&S	CBT32	100522	N/A	Feb. 09, 2012	Nov. 21, 2012	Feb. 08, 2014	Radiation (03CH06-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 KHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	2.26
--	-------------

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	2.54
--	-------------

Uncertainty of Radiated Emission Measurement (1 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	4.72
--	-------------

Appendix A. Photographs of EUT

Please refer to Sporton report number EP2N0915 as below.