ENGINEERING TEST REPORT

xL LCD Keypad/Suite Security 4 Zone Keypad Model(s): XLK1 and XLC1 FCC ID: X78XLK1

Applicant:

Guardall, A Division of CSG Security Corp.

5201 Explorer Drive Mississauga, Ontario Canada L4W 4H1

In Accordance With
Federal Communications Commission (FCC)
Part 15, Subpart C, Section 15.209

UltraTech's File No.: CHB-135F15C209

This Test report is Issued under the Authority of Tri M. Luu, BASc Vice President of Engineering

UltraTech Group of Labs

Date: September 10, 2010

Report Prepared by: Dan Huynh

Tested by: Hung Trinh and Satish Patel

Issued Date: September 10, 2010 Test Dates: March 9, 11 & 12, 2010

- The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.
- This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4
Tel.: (905) 829-1570 Fax.: (905) 829-8050
Website: www.ultratech-labs.com, Email: vic@ultratech-labs.com, <a hr

FCC

91038

1309

46390-2049

NvLap Lab Code 200093-0

SL2-IN-E-1119R

TABLE OF CONTENTS

FXHIBII	1. INTRODUCTION	
1.1. 1.2. 1.3.	SCOPERELATED SUBMITTAL(S)/GRANT(S)NORMATIVE REFERENCES	
EXHIBIT	2. PERFORMANCE ASSESSMENT	2
2.1. 2.2. 2.3. 2.4. 2.5. 2.6.	CLIENT INFORMATION	
EXHIBIT	3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	6
3.1. 3.2.	CLIMATE TEST CONDITIONSOPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS	
EXHIBIT	4. SUMMARY OF TEST RESULTS	7
4.1. 4.2. 4.3.	LOCATION OF TESTS	7
EXHIBIT	5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS	8
5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7.	TEST PROCEDURES MEASUREMENT UNCERTAINTIES MEASUREMENT EQUIPMENT USED ANTENNA REQUIREMENTS [47 CFR § 15.203] POWERLINE CONDUCTED EMISSION [47 CFR 15.207(a)] TRANSMITTER RADIATED EMISSIONS [47 CFR §§ 15.209 & 15.205] 20 dB BANDWIDTH [47 CFR 15.209 (a)]	
EXHIBIT	6. TEST EQUIPMENT LIST	20
EXHIBIT	7. MEASUREMENT UNCERTAINTY	21
7.1.	LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY	
7.2.	RADIATED EMISSION MEASUREMENT UNCERTAINTY	

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	FCC Part 15, Subpart C
Title:	Code of Federal Regulations (CFR), Title 47, Telecommunication - Part 15
Purpose of Test:	To gain FCC Equipment Certification for part 15C devices.
Test Procedures:	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
Environmental Classification:	Commercial, industrial or business environment

1.2. RELATED SUBMITTAL(S)/GRANT(S)

None.

1.3. NORMATIVE REFERENCES

Publication	Year	Title
FCC 47 CFR 15	2009	Code of Federal Regulations – Telecommunication
ANSI C63.10	2009	American National Standard for Testing Unlicensed Wireless Devices
ANSI C63.4	2003	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 KHz to 40 GHz
CISPR 22 EN 55022	2008-09, Edition 6.0 2006	Information Technology Equipment - Radio Disturbance Characteristics - Limits and Methods of Measurement
CISPR 16-1-1 +A1 +A2	2006 2006 2007	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus
CISPR 16-1-2 +A1 +A2	2003 2004 2006	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-2: Conducted disturbances

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. CLIENT INFORMATION

	APPLICANT
Name:	Guardall, A Division of CSG Security Corp.
Address:	5201 Explorer Drive Mississauga, Ontario Canada L4W 4H1
Contact Person:	George Grzeslo Phone #: 905-629-2600 x 3624 Fax #: 905-629-4970 Email Address: george.grzeslo@guardall.com

	MANUFACTURER
Name:	Guardall, A Division of CSG Security Corp.
Address:	5201 Explorer Drive Mississauga, Ontario Canada L4W 4H1
Contact Person:	George Grzeslo Phone #: 905-629-2600 x 3624 Fax #: 905-629-4970 Email Address: george.grzeslo@guardall.com

2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name:	Guardall	
Product Name:	xL LCD Keypad/Suite Security 4 Zone Keypad	
Model Name or Number:	XLK1 and XLC1	
Serial Number:	Test sample	
Type of Equipment:	Low Power Transceiver	
Input Power Supply Type:	12VDC to 13.8 VDC	
Primary User Functions of EUT:	Present RFID card into field to allow reader to read card information. Use keypad to operate and interact with intrusion security system.	

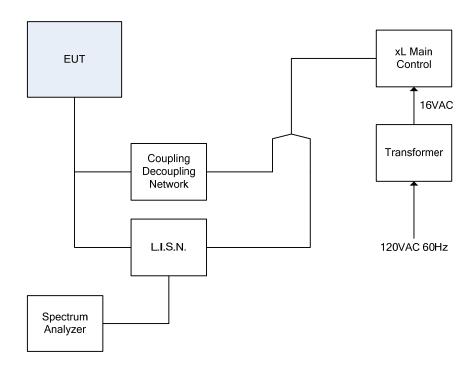
2.3. EUT'S TECHNICAL SPECIFICATIONS

TRANSMITTER		
Equipment Type:	Mobile	
Intended Operating Environment:	Commercial, light industry & heavy industry	
Power Supply Requirement:	12 VDC to 13.8 VDC	
RF Output Power Rating:	52.80 dBμV/m peak at 10m distance	
Operating Frequency Range:	124 to 126 kHz	
Duty Cycle:	100%	
20 dB Bandwidth:	0.950 kHz	
Modulation Type:	ASK	
Oscillator Frequencies:	119 - 135 kHz	
Antenna Connector Type:	Integral custom wound wire loop	

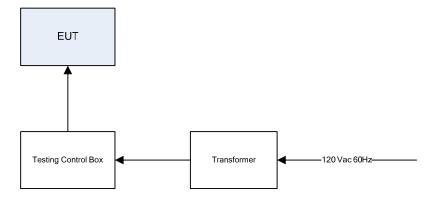
2.4. LIST OF EUT'S PORTS

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Cable Type (Shielded/Non-shielded)
1	Power and communication and one output	1	Screw terminal block	User supplied, typically communication is 4 conductor non-shielded
2	Input points x 4	1	Screw terminal block	User supplied non- shielded

2.5. ANCILLARY EQUIPMENT


The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

Ancillary Equipment # 1	
Description:	xL Main Control
Brand Name:	Guardall
Model Name or Number:	650-3600
Serial Number:	03756
Cable Length & Type:	> 3 m, Shielded
Connected to EUT's Port:	N/A


Ancillary Equipment # 2	
Description:	120 VAC to 16 VAC 60 Hz transformer
Brand Name:	Guardall
Model Name or Number:	FTC3716
Serial Number:	N/A
Cable Length & Type:	> 3 m, Shielded
Connected to EUT's Port:	N/A

2.6. TEST SETUP BLOCK DIAGRAM

2.6.1. Power Line Conducted Emission Test Setup

2.6.2. Radiated Emission Test Setup

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21°C
Humidity:	51%
Pressure:	102 kPa
Power input source:	13.8 VDC

3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

Operating Modes:	The EUT was configured for continuous transmission for the duration of testing.
Special Test Software:	N/A
Special Hardware Used:	N/A
Transmitter Test Antenna:	The EUT was tested with the antenna fitted in a manner typical of normal intended use as integral antenna equipment.

Transmitter Test Signals	
Frequency Band(s):	124 to 126 kHz
Test Frequency(ies):	124 kHz and 126 kHz
RF Power Output:	52.80 dBμV/m peak at 10m distance
Normal Test Modulation:	ASK
Modulating Signal Source:	Internal

SUMMARY OF TEST RESULTS

LCD Keypad/Suite Security 4 Zone Keypad, Model(s): XLK1 and XLC1 FCC ID: X78XLK1

4.1. LOCATION OF TESTS

EXHIBIT 4.

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Power Line Conducted Emissions were performed in UltraTech's shielded room, 24'(L) by 16'(W) by 8'(H).
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 91038) and Industry Canada office (Industry Canada File No.: 2049A-3). Expiry Date: 2011-05-01.

4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC Section(s)	Test Requirements	Compliance (Yes/No)
15.203	Antenna Requirement	Yes
15.207(a)	Power Line Conducted Emissions	Yes
15.209(a)	20 dB Bandwidth	Yes
15.209	Transmitter Radiated Emissions - Fundamental, Harmonic and Spurious Emissions	Yes

4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None.

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

EXHIBIT 5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

5.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in ANSI C63.4 and Ultratech's test procedures ULTR-P001-2004.

5.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement. Please refer to Exhibit 7 for Measurement Uncertainties.

5.3. MEASUREMENT EQUIPMENT USED

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4 and CISPR 16-1-1.

5.4. ANTENNA REQUIREMENTS [47 CFR § 15.203]

5.4.1. Requirements

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Notes: This requirement does not apply to carrier current devices operated under the provisions of @ 15.211, 15.213, 15.217, 17.219 or 15.221.

5.4.2. Engineering Analysis

The antenna is an integral part of the EUT; it is soldered onto the radio printed circuit board and located inside the enclosure.

xL LCD Keypad/Suite Security 4 Zone Keypad, Model(s): XLK1 and XLC1 FCC ID: X78XLK1

5.5. POWERLINE CONDUCTED EMISSION [47 CFR 15.207(a)]

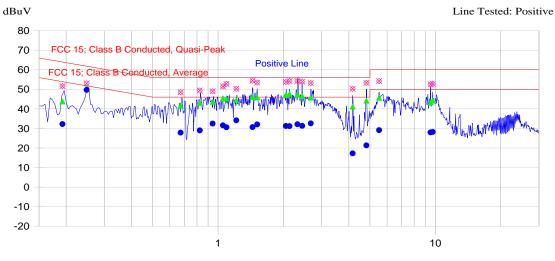
5.5.1. Limit(s)

The equipment shall meet the limits of the following table:

Frequency of emission	Conducted Limits (dBμV)			
(MHz)	Quasi-peak	Average		
0.15–0.5 0.5–5 5-30	66 to 56* 56	56 to 46* 46 50		

^{*}Decreases linearly with the logarithm of the frequency

5.5.2. Method of Measurements


Refer to ANSI C63.4.

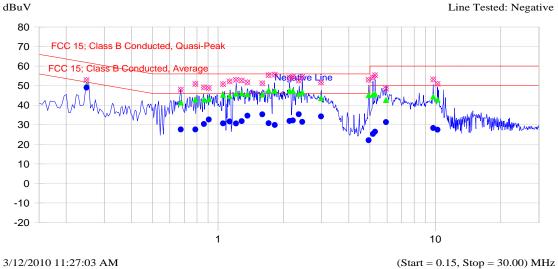
5.5.3. Test Data

5.5.3.1. Test Configuration 1: xL LCD Keypad (Model XLK1)

Plot 5.5.3.1.1. Power Line Conducted Emission Line Voltage: 13.8 VDC Line Tested: Positive

Current Graph

3/12/2010 11:12:09 AM

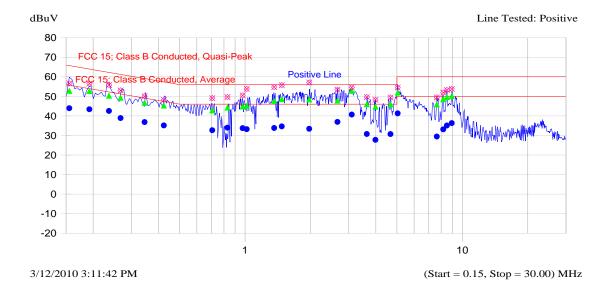

(Start = 0.15, Stop = 30.00) MHz

Frequency MHz	Peak dBuV	QP dBuV	Delta QP-QP Limit dB	Avg dBuV	Delta Avg-Avg Limit dB	Trace Name
0.192	51.6	43.8	-20.9	32.2	-22.5	Positive Line
0.249	53.0	50.9	-12.2	49.7	-3.4	Positive Line
0.673	48.5	41.8	-14.2	27.8	-18.2	Positive Line
0.824	49.4	43.1	-12.9	29.0	-17.0	Positive Line
0.945	49.0	43.6	-12.4	32.5	-13.5	Positive Line
1.054	51.5	45.3	-10.7	31.6	-14.4	Positive Line
1.094	52.8	45.3	-10.7	30.6	-15.4	Positive Line
1.214	50.3	44.4	-11.6	34.1	-11.9	Positive Line
1.441	54.4	46.1	-9.9	30.7	-15.3	Positive Line
1.515	53.4	45.9	-10.1	32.1	-13.9	Positive Line
2.053	53.7	47.1	-8.9	31.2	-14.8	Positive Line
2.133	54.2	47.7	-8.3	31.1	-14.9	Positive Line
2.321	54.2	47.4	-8.6	32.1	-13.9	Positive Line
2.441	53.9	46.6	-9.4	31.3	-14.7	Positive Line
2.673	53.2	45.7	-10.3	32.6	-13.4	Positive Line
4.167	50.3	41.2	-14.8	17.2	-28.8	Positive Line
4.817	53.3	44.2	-11.8	21.3	-24.7	Positive Line
5.509	54.2	45.7	-14.3	29.1	-20.9	Positive Line
9.506	52.6	43.3	-16.7	28.0	-22.0	Positive Line
9.735	52.8	44.4	-15.6	28.2	-21.8	Positive Line

Plot 5.5.3.1.2. Power Line Conducted Emission

Line Voltage: 13.8 VDC Line Tested: Return

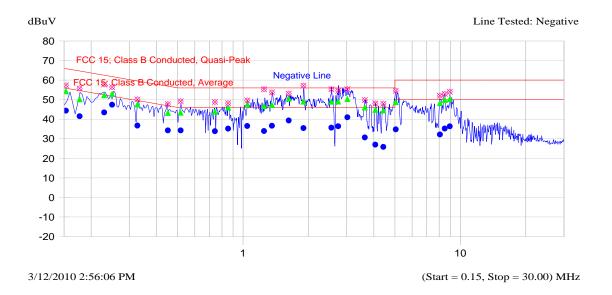
Current Graph



Frequency MHz	Peak dBuV	QP dBuV	Delta QP-QP Limit dB	Avg dBuV	Delta Avg-Avg Limit dB	Trace Name
0.248	52.8	50.2	-12.9	49.0	-4.1	Negative Line
0.674	47.9	41.3	-14.7	27.6	-18.4	Negative Line
0.787	50.8	42.9	-13.1	27.6	-18.4	Negative Line
0.861	49.1	42.8	-13.2	30.4	-15.6	Negative Line
0.907	48.8	43.0	-13.0	32.7	-13.3	Negative Line
1.055	50.7	45.3	-10.7	30.7	-15.3	Negative Line
1.131	52.2	44.7	-11.3	31.7	-14.3	Negative Line
1.209	53.0	45.9	-10.1	30.7	-15.3	Negative Line
1.284	52.6	46.0	-10.0	31.8	-14.2	Negative Line
1.366	51.6	45.5	-10.5	34.6	-11.4	Negative Line
1.599	51.2	45.5	-10.5	35.3	-10.7	Negative Line
1.710	55.3	47.6	-8.4	30.8	-15.2	Negative Line
1.824	55.6	47.4	-8.6	29.9	-16.1	Negative Line
2.134	54.0	47.4	-8.6	31.9	-14.1	Negative Line
2.210	54.6	47.2	-8.8	32.2	-13.8	Negative Line
2.355	52.5	45.7	-10.3	35.4	-10.6	Negative Line
2.440	54.4	46.6	-9.4	31.5	-14.5	Negative Line
2.978	51.7	43.7	-12.3	34.3	-11.7	Negative Line
4.935	52.9	45.2	-10.8	22.1	-23.9	Negative Line
5.163	54.1	45.5	-14.5	25.3	-24.7	Negative Line
5.279	55.4	45.8	-14.2	26.5	-23.5	Negative Line
5.930	48.5	42.7	-17.3	31.4	-18.6	Negative Line
9.775	53.1	44.4	-15.6	28.3	-21.7	Negative Line
10.232	50.9	42.8	-17.2	27.5	-22.5	Negative Line

5.5.3.2. Test Configuration 2: Suite Security 4 Zone Keypad (Model XLC1)

Plot 5.5.3.2.1. Power Line Conducted Emission Line Voltage: 13.8 VDC Line Tested: Positive


Current Graph

Frequency MHz	Peak dBuV		Delta QP-QP Limit dB	Avg dBuV	Delta Avg-Avg Limit dB	Trace Name
0.155	56.6	52.8	-13.1	43.9	-11.9	Positive Line
0.192	56.5	52.7	-12.0	43.4	-11.4	Positive Line
0.237	55.8	50.3	-13.1	42.5	-11.0	Positive Line
0.267	53.0	49.3	-13.3	38.9	-13.7	Positive Line
0.345	50.0	46.7	-13.7	36.8	-13.5	Positive Line
0.423	48.1	45.2	-12.9	35.1	-13.1	Positive Line
0.707	49.1	42.8	-13.2	32.6	-13.4	Positive Line
0.831	49.6	44.3	-11.7	34.0	-12.0	Positive Line
0.975	50.5	44.8	-11.2	33.7	-12.3	Positive Line
1.019	53.7	45.2	-10.8	33.2	-12.8	Positive Line
1.362	54.7	47.6	-8.4	33.8	-12.2	Positive Line
1.477	55.7	48.5	-7.5	34.6	-11.4	Positive Line
1.976	57.1	48.4	-7.6	33.4	-12.6	Positive Line
2.665	53.4	47.8	-8.2	36.9	-9.1	Positive Line
3.100	54.5	52.8	-3.2	40.7	-5.3	Positive Line
3.638	49.6	45.9	-10.1	30.7	-15.3	Positive Line
3.985	48.2	44.7	-11.3	27.7	-18.3	Positive Line
4.675	49.4	45.9	-10.1	30.7	-15.3	Positive Line
5.039	54.4	51.9	-8.1	41.3	-8.7	Positive Line
7.631	49.4	45.9	-14.1	29.4	-20.6	Positive Line
8.170	51.9	48.5	-11.5	33.1	-16.9	Positive Line
8.496	53.2	49.7	-10.3	35.0	-15.0	Positive Line
8.937	53.7	50.2	-9.8	36.3	-13.7	Positive Line

Plot 5.5.3.2.2. Power Line Conducted Emission Line Voltage: 13.8 VDC Line Tested: Return

Current Graph

Frequency MHz	Peak dBuV	QP dBuV	Delta QP-QP Limit dB	Avg dBuV	Delta Avg-Avg Limit dB	Trace Name
0.153	57.3	54.3	-11.6	44.4	-11.5	Negative Line
0.177	55.8	50.2	-15.0	41.5	-13.7	Negative Line
0.230	57.7	52.3	-11.4	43.5	-10.2	Negative Line
0.250	56.4	53.0	-10.1	47.4	-5.7	Negative Line
0.326	50.1	47.5	-13.4	36.7	-14.1	Negative Line
0.451	47.7	43.2	-14.1	34.3	-13.1	Negative Line
0.517	49.1	43.3	-12.7	34.2	-11.8	Negative Line
0.743	48.8	43.8	-12.2	33.9	-12.1	Negative Line
0.853	48.2	45.9	-10.1	35.1	-10.9	Negative Line
1.046	49.6	47.6	-8.4	36.5	-9.5	Negative Line
1.249	55.3	46.7	-9.3	34.0	-12.0	Negative Line
1.359	53.7	47.3	-8.7	36.6	-9.4	Negative Line
1.624	53.1	50.4	-5.6	39.4	-6.6	Negative Line
1.899	57.1	49.0	-7.0	35.5	-10.5	Negative Line
2.551	55.3	48.9	-7.1	35.6	-10.4	Negative Line
2.742	54.5	49.0	-7.0	36.4	-9.6	Negative Line
3.021	55.3	50.3	-5.7	41.0	-5.0	Negative Line
3.638	49.8	46.0	-10.0	30.7	-15.3	Negative Line
4.061	48.0	44.8	-11.2	27.0	-19.0	Negative Line
4.425	47.9	44.5	-11.5	25.8	-20.2	Negative Line
5.049	54.5	48.8	-11.2	34.8	-15.2	Negative Line
8.055	51.9	48.2	-11.8	32.2	-17.8	Negative Line
8.478	52.9	49.9	-10.1	35.2	-14.8	Negative Line
8.937	54.0	50.3	-9.7	36.4	-13.6	Negative Line

5.6. TRANSMITTER RADIATED EMISSIONS [47 CFR §§ 15.209 & 15.205]

5.6.1. Limit(s)

§ 15.209:

(a) The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

47 CFR 15.209(a) General Field Strength Limits

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 – 88	100 **	3
88 – 216	150 **	3
216 – 960	200 **	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

- (b) In the emission table above, the tighter limit applies at the band edges.
- (c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other Sections within this Part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.
- (d) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- (e) The provisions in Sections 15.31, 15.33, and 15.35 for measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this Part.
- (f) In accordance with Section 15.33(a), in some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation of a digital device. If measurements above the tenth harmonic are so required, the radiated emissions above the tenth harmonic shall comply with the general radiated emission limits applicable to the incorporated digital device, as shown in Section 15.109 and as based on the frequency of the emission being measured, or, except for emissions contained in the restricted frequency bands shown in Section 15.205, the limit on spurious emissions specified for the intentional radiator, whichever is the higher limit. Emissions which must be measured above the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator and which fall within the restricted bands shall comply with the general radiated emission limits in Section 15.109 that are applicable to the incorporated digital device.

(g) Perimeter protection systems may operate in the 54-72 MHz and 76-88 MHz bands under the provisions of this section. The use of such perimeter protection systems is limited to industrial, business and commercial applications.

5.6.2. Method of Measurements

Ultratech Test Procedures, File # ULTR P001-2004 and ANSI C63.4 for measurement methods.

5.6.3. Test Data

Remarks:

- The measuring receiver shall be tuned over the frequency range 10 kHz to 30 MHz.
- All spurious emissions that are in excess of 20 dB below the specified limit shall be recorded.
- Extrapolation factor of 40dB/decade shall be used for frequencies below 30 MHz.
- EUT was placed in three different orthogonal positions to obtain maximum field strength level.

5.6.3.1. Fundamental Emissions

Remarks:

- Field strength limit of the fundamental frequency at 300m distance is calculated using 20*log(2400/F), where F is in kHz.
- For frequency band 0.009- 0.490 MHz, the measured E-Field at 10m (column 2) will be extrapolated to 300m E-Field Level (column 3) using the extrapolation factor of 40*log(10/300) = -59.1 dB

Frequency (MHz)	Peak E-Field @ 10m (dBµV/m)	Extrapolated E-Field Level @ 300m (dBµV/m)	Antenna Plane (H/V)	§ 15.209 (a) Limits @ 300m (dΒμV/m)	Margin (dB)			
	Test Configuration 1: xL LCD Keypad (Model XLK1)							
0.124	51.96	-7.14	V	25.7	-32.8			
0.124	52.80	-6.30	Н	25.7	-32.0			
	Test Configuration 2: Suite Security 4 Zone Keypad (Model XLC1)							
0.126	51.57	-7.53	V	25.6	-33.1			
0.126	52.22	-6.88	Н	25.6	-32.5			

September 10, 2010

File #: CHB-135F15C209

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

5.6.3.2. Harmonic/Spurious Emissions

Remarks:

- For frequency band 0.009- 0.490 MHz, the measured E-Field at 10m (column 2) will be extrapolated to 300m E-Field Level (column 3) using the extrapolation factor of 40*log(10/300) = -59.1 dB
- For frequency bands 0.490-1.705 MHz and 1.705-30.0 MHz, the measured E-Field at 10m (column 2) will be extrapolated to 30m E-Field Level (column 3) using the extrapolation factor of 40*log(10/30) = -19.1 dB

Frequency (MHz)	Peak E-Field @ 10m (dBµV/m)	Extrapolated E-Field Level (dBµV/m)	Antenna Plane (H/V)	§ 15.209 (a) Limits (dΒμV/m)	Margin (dB)			
	Test Configuration 1: xL LCD Keypad (Model XLK1)							
0.010 - 0.490	*	*	H/V	*	*			
0.490 - 1.705	*	*	H/V	*	*			
1.705 - 30.0	*	*	H/V	*	*			
	Test Configura	tion 2: Suite Secu	rity 4 Zone Keypa	d (Model XLC1)				
0.010 - 0.490	*	*	H/V	*	*			
0.490 - 1.705	*	*	H/V	*	*			
1.705 - 30.0	*	*	H/V	*	*			

^{*} No emissions or harmonics were detected within 20 dB of the limit.

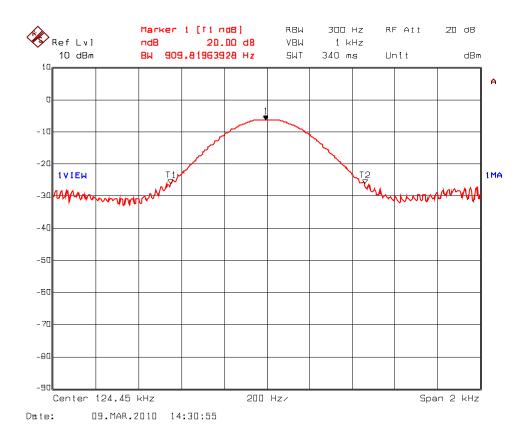
20 dB BANDWIDTH [47 CFR 15.209 (a)] 5.7.

5.7.1. Limit(s)

Emission bandwidth shall not be located in the restricted bands in 15.205 and the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz.

5.7.2. Method of Measurements

The measurements were performed in accordance with Ultratech Test Procedures, File # ULTR P001-2004 and ANSI C63.4:2003.


The transmitter output was loosely coupled to the spectrum analyzer through a receiving antenna. The bandwidth of the fundamental frequency was measured with the spectrum analyzer, with the resolution BW set to 1% to 3 % of the approximate emission width and video BW set to 3 times the resolution BW.

5.7.3. Test Data


Channel Frequency (kHz)	20 dB Bandwidth (kHz)					
Test Configuration 1: xL LCD Keypad (Model XLK1)						
124.45	0.910					
Test Configuration 2: Suite Security 4 Zone Keypad (Model XLC1)						
126.13	0.950					

See the following plot for details.

Plot 5.7.3.1. 20 dB Bandwidth Carrier Frequency: 124.45 kHz, Bi-Phase modulation Test Configuration 1: xL LCD Keypad (Model XLK1)

Plot 5.7.3.2. 20 dB Bandwidth
Carrier Frequency: 126.13 kHz, Bi-Phase modulation
Test Configuration 2: Suite Security 4 Zone Keypad (Model XLC1)

EXHIBIT 6. TEST EQUIPMENT LIST

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range	Cal. Due Date
EMI Receiver System/ Spectrum Analyzer with built-in Amplifier	Hewlett Packard	8546A	3650A00371	9kHz - 6.5GHz	25 Jan 2011
Attenuator	Pasternack	PE7010-20		DC to 2 GHz 20dB attenuation	4 Jan 2011
L.I.S.N.	EMCO	3810/2	2209	9 kHz – 30 MHz	18 Dec 2010
Coupling Decoupling Network	Fischer Custom Communications Inc.	FCC-801-S9	24	150 kHz - 230 MHz	8 Feb 2011
RF Shielded Chamber	RF Shielding				
Loop Antenna	EMCO	6502	2611	10 kHz – 30 MHz	27 Jul 2011
Biconi-Log Antenna	Emco	3142C	00026873	26 – 3000 MHz	18 Apr 2011
Horn Antenna	Emco	3155	9911-5955	1 – 18 GHz	9 Oct 2010
RF Amplifier	Com-Power	PA-103A	161243	10 MHz – 1 GHz	2 Nov 2011
RF Amplifier	Hewlett Packard	84498	3008A00769	1 – 26.5 GHz	2 Nov 2011
Spectrum Analyzer	Rohde & Schwarz	ESU40	100037	20 Hz – 40 GHz	9 Mar 2011
Spectrum Analyzer	Rohde & Schwarz	FSEK30	100077	20 Hz – 40 GHz	14 Aug 2011
Spectrum Analyzer	Hewlett Packard	8593EM	3412A00103	9 kHz – 26.5 GHz	5 Oct 2010
Pre Amplifier	AH System	PAM-0118	225	20 MHz to 18 GHz	8 Mar 2011
Semi-Anechoic Chamber	TDK	FCC: 91038 IC: 2049A-3			1 May 2011

EXHIBIT 7. **MEASUREMENT UNCERTAINTY**

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) - Guide to the Expression of Uncertainty in Measurement.

7.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

	Radiated Emission Measurement Uncertainty @ 3m, Horizontal (30-1000 MHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{m} u_i^2(y)}$	<u>+</u> 2.15	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.30	<u>+</u> 5.2

7.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

	Radiated Emission Measurement Uncertainty @ 3m, Horizontal (30-1000 MHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 2.15	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.30	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3m, Vertical (30-1000 MHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{l=1}^{m} \sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 2.39	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (v)	<u>+</u> 4.78	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3 m, Horizontal & Vertical (1 – 18 GHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{l=1}^{m} \sum_{l=1}^{m} u_i^2(y)}$	<u>+</u> 1.87	Under consideration
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 3.75	Under consideration

	Radiated Emission Measurement Uncertainty @ 10m, Horizontal (30-1000 MHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt[M]{\sum_{i=1}^{m} \sum_{i=1}^{n} u_i^2(y)}$	<u>+</u> 2.15	<u>+</u> 2.6
U	Expanded uncertainty U: $U = 2u_0(y)$	<u>+</u> 4.30	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 10m, Vertical (30-1000 MHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt[M]{\sum_{i=1}^{m}} u_i^2(y)$	<u>+</u> 2.17	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.33	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 10m, Horizontal & Vertical (1 – 18 GHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} \sum_{i=1}^{2} u_i^2(y)}$	<u>+</u> 1.87	Under consideration
U	Expanded uncertainty U: $U = 2u_c(y)$	<u>+</u> 3.75	Under consideration