

FCC RF EXPOSURE REPORT

FCC ID: X4YNBL301P

Project No. : 2103C089
Equipment : NebulaN301 Wireless-N Router
Brand Name : NEXXT
Test Model : NCR-N301
Series Model : N/A
Applicant : NEXXT SOLUTIONS
Address : 3505 N.W 107TH AVE. MIAMI, FL 33178
Manufacturer : NEXXT SOLUTIONS
Address : 3505 N.W 107TH AVE. MIAMI, FL 33178
Date of Receipt : Mar. 09, 2021
Date of Test : Mar. 09, 2021 ~ Mar. 19, 2021
Issued Date : Mar. 31, 2021
Report Version : R00
Test Sample : Engineering Sample No.: DG2021030894
Standard(s) : FCC Guidelines for Human Exposure IEEE C95.1 & FCC Part 2.1091
FCC Title 47 Part 2.1091, OET Bulletin 65 Supplement C

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Prepared by : Chella Zheng

Approved by : Ethan Ma

Certificate #5123.02

Add: No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China.

Tel: +86-769-8318-3000

Web: www.newbtl.com

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue	Mar. 31, 2021

1. TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No.3,Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China.

BTL's Test Firm Registration Number for FCC: 357015

BTL's Designation Number for FCC: CN1240

2. MPE CALCULATION METHOD

Calculation Method of RF Safety Distance:

$$S = \frac{PG}{4\pi r^2} = \frac{EIRP}{4\pi r^2}$$

where:

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Table for Filed Antenna:

For 2.4GHz:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	N/A	N/A	Dipole	N/A	4.65
2	N/A	N/A	Dipole	N/A	4.65

Note:

- 1) The antenna gain is provided by the manufacturer.
- 2) This EUT supports CDD, and all antennas have the same gain, Directional gain = G_{ANT} +Array Gain.

For power measurements, Array Gain=0dB ($N_{ANT} \leq 4$), so the Directional gain=4.65.

For power spectral density measurements, $N_{ANT}=2$, $N_{SS} = 1$.

So the Directional gain= G_{ANT} +Array Gain= $G_{ANT}+10\log(N_{ANT}/N_{SS})$ dBi=4.65+10log(2/1)dBi=7.66.

Then, the power spectral density limit is $8-(7.66-6)=6.34$

Table for Antenna Configuration:

Operating Mode / TX Mode	1TX	2TX
IEEE 802.11b	V (Ant. 1)	-
IEEE 802.11g	V (Ant. 1)	-
IEEE 802.11n(HT20)	-	V (Ant. 1 + Ant. 2)
IEEE 802.11n(HT40)	-	V (Ant. 1 + Ant. 2)

3. TEST RESULTS

For 2.4GHz:

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
4.65	2.9174	28.58	721.1075	0.41875	1	Complies

End of Test Report