

RF Exposure / MPE Calculation

No.	:	12069761H-A
Applicant	:	Komatsu Ltd.
Type of Equipment	:	KOMTRAX terminal
Model No.	:	KDTG105
FCC ID	:	X4QKDTG105

Komatsu Ltd. declares that Model: KDTG105 complies with FCC radiation exposure requirement specified in the FCC Rule 2.1091 (for mobile).

RF Exposure Calculations:

The following information provides the minimum separation distance for the highest gain antenna provided with the “KDTG105“ as calculated from (B) Limits for General Population / Uncontrolled Exposure of TABLE 1- LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE) of §1.1310 Radiofrequency radiation exposure limits.

[WLAN (2.4 GHz) part]

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1mW/cm² uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

P = 17.30 mW (Maximum average output power)

Time average was used for the above value in consideration of 6-minutes time-averaging
 Burst power average was used for the above value in consideration of worst condition.

G = 2.559 Numerical Antenna gain; equal to 4.08dBi

r = 20 cm (Separation distance)

Power Density Result $S = 0.00881 \text{ mW/cm}^2$

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN
Telephone : +81 596 24 8999
Facsimile : +81 596 24 8124

KDTG105 contains certified cellular module (FCC ID: QIPALAS3K-US *1)).

The WLAN(2.4 GHz) module and the cellular module both transmit simultaneously in their respective bands. Compliance for simultaneous transmission are shown by the following calculations.

*1) FCC ID: QIPALAS6A-US was changed ID to FCC ID: QIPALAS3K-US.

Therefore, the output power value listed in this declaration adopted from the value of RF Exposure Calculation Report (FCC ID: QIPALAS6A-US).

Reference:

[GSM850]

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1mW/cm² uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

P = 1119.44 mW (Maximum average output power)

Time average was used for the above value in consideration of 6-minutes time-averaging

Burst power average was used for the above value in consideration of worst condition.

G = 0.640 Numerical Antenna gain; equal to -1.94 dBi

r = 20 cm (Separation distance)

Power Density Result S = 0.14247 mW/cm²

Reference:

[GSM1900]

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1mW/cm² uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

P = 561.05 mW (Maximum average output power)

Time average was used for the above value in consideration of 6-minutes time-averaging

Burst power average was used for the above value in consideration of worst condition.

G = 1.663 Numerical Antenna gain; equal to 2.21 dBi

r = 20 cm (Separation distance)

Power Density Result S = 0.18567 mW/cm²

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

Reference:**[WCDMA Band 2]**

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1mW/cm^2 uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

P = 281.84 mW (Maximum average output power)

- Time average was used for the above value in consideration of 6-minutes time-averaging
- Burst power average was used for the above value in consideration of worst condition.

G = 1.663 Numerical Antenna gain; equal to 2.21 dBi

r = 20 cm (Separation distance)

Power Density Result $S = 0.09327 \text{ mW/cm}^2$

Reference:**[WCDMA Band 4]**

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1mW/cm^2 uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

P = 281.84 mW (Maximum average output power)

- Time average was used for the above value in consideration of 6-minutes time-averaging
- Burst power average was used for the above value in consideration of worst condition.

G = 1.503 Numerical Antenna gain; equal to 1.77 dBi

r = 20 cm (Separation distance)

Power Density Result $S = 0.08428 \text{ mW/cm}^2$

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

Reference:**[WCDMA Band 5]**

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1mW/cm² uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

P = 281.84 mW (Maximum average output power)

- Time average was used for the above value in consideration of 6-minutes time-averaging
- Burst power average was used for the above value in consideration of worst condition.

G = 0.640 Numerical Antenna gain; equal to -1.94 dBi

r = 20 cm (Separation distance)

Power Density Result $S = 0.03587 \text{ mW/cm}^2$

Reference:**[LTE Band 2]**

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1mW/cm² uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

P = 223.87 mW (Maximum average output power)

- Time average was used for the above value in consideration of 6-minutes time-averaging
- Burst power average was used for the above value in consideration of worst condition.

G = 1.663 Numerical Antenna gain; equal to 2.21 dBi

r = 20 cm (Separation distance)

Power Density Result $S = 0.07408 \text{ mW/cm}^2$

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN
 Telephone : +81 596 24 8999
 Facsimile : +81 596 24 8124

Reference:**[LTE Band 4]**

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1mW/cm² uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

P = 223.87 mW (Maximum average output power)

- Time average was used for the above value in consideration of 6-minutes time-averaging
- Burst power average was used for the above value in consideration of worst condition.

G = 1.503 Numerical Antenna gain; equal to 1.77 dBi

r = 20 cm (Separation distance)

Power Density Result $S = 0.06695 \text{ mW/cm}^2$

Reference:**[LTE Band 5]**

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1mW/cm² uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

P = 223.87 mW (Maximum average output power)

- Time average was used for the above value in consideration of 6-minutes time-averaging
- Burst power average was used for the above value in consideration of worst condition.

G = 0.640 Numerical Antenna gain; equal to -1.94 dBi

r = 20 cm (Separation distance)

Power Density Result $S = 0.02849 \text{ mW/cm}^2$

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN
 Telephone : +81 596 24 8999
 Facsimile : +81 596 24 8124

Reference:**[LTE Band 12]**

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1mW/cm² uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

P = 223.87 mW (Maximum average output power)

Time average was used for the above value in consideration of 6-minutes time-averaging

Burst power average was used for the above value in consideration of worst condition.

G = 0.998 Numerical Antenna gain; equal to -0.01 dBi

r = 20 cm (Separation distance)

Power Density Result $S = 0.04444 \text{ mW/cm}^2$

Therefore, if WLAN 2.4GHz and GSM850 transmit simultaneously,

$S = 0.00881 \text{ mW/cm}^2 + 0.14247 \text{ mW/cm}^2$

$= 0.15128 \text{ mW/cm}^2$

Therefore, if WLAN 2.4GHz and GSM1900 transmit simultaneously,

$S = 0.00881 \text{ mW/cm}^2 + 0.18567 \text{ mW/cm}^2$

$= 0.19448 \text{ mW/cm}^2$

Therefore, if WLAN 2.4GHz and WCDMA Band 2 transmit simultaneously,

$S = 0.00881 \text{ mW/cm}^2 + 0.09327 \text{ mW/cm}^2$

$= 0.10208 \text{ mW/cm}^2$

Therefore, if WLAN 2.4GHz and WCDMA Band 4 transmit simultaneously,

$S = 0.00881 \text{ mW/cm}^2 + 0.08428 \text{ mW/cm}^2$

$= 0.09309 \text{ mW/cm}^2$

Therefore, if WLAN 2.4GHz and WCDMA Band 5 transmit simultaneously,

$S = 0.00881 \text{ mW/cm}^2 + 0.03587 \text{ mW/cm}^2$

$= 0.04468 \text{ mW/cm}^2$

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124

Therefore, if WLAN 2.4GHz and LTE Band 2 transmit simultaneously,
S=0.00881 mW/cm² + 0.07408 mW/cm²
=0.08289 mW/cm²

Therefore, if WLAN 2.4GHz and LTE Band 4 transmit simultaneously,
S=0.00881 mW/cm² + 0.06695 mW/cm²
=0.07576 mW/cm²

Therefore, if WLAN 2.4GHz and LTE Band 5 transmit simultaneously,
S=0.00881 mW/cm² + 0.02849 mW/cm²
=0.0373 mW/cm²

Therefore, if WLAN 2.4GHz and LTE Band 12 transmit simultaneously,
S=0.00881 mW/cm² + 0.04444 mW/cm²
=0.05325 mW/cm²

Even taking into account the tolerance, this device can be satisfied with the limits.