

4 FCC §1.1307(b) (1), §2.1091 &§90.223 - RF Exposure

4.1 Applicable Standards

FCC §2.1091, (a) Requirements of this section are a consequence of Commission responsibilities under the National Environmental Policy Act to evaluate the environmental significance of its actions. See subpart I of part 1 of this chapter, in particular §1.1307(b).

According to §1.1310 and §2.1091 RF exposure is calculated.

Limits for Occupational/Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minute)
Limits for Occupational/Controlled Exposure				
0.3-3.0	614	1.63	*(100)	≤6
3.0-30	1842/f	4.89/f	*(900/f ²)	<6
30-300	61.4	0.163	1.0	<6
300-1,500			f/300	<6
1,500-100,000			5	<6

Note: f = frequency in MHz

* = Plane-wave equivalent power density

4.2 MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

4.3 Test Results

<u>Maximum average output power at antenna input terminal (dBm):</u>	<u>42.31</u>
<u>Maximum average output power at antenna input terminal (mW):</u>	<u>17021.585</u>
<u>Prediction frequency (MHz):</u>	<u>897.9875</u>
<u>Antenna Gain, maximum (dBi):</u>	<u>-0.56</u>
<u>Maximum Antenna Gain (numeric):</u>	<u>0.88</u>
<u>Prediction distance (cm):</u>	<u>20</u>
<u>Power density of prediction frequency at 20 cm (mW/cm²):</u>	<u>2.99</u>
<u>FCC MPE limit for controlled exposure at prediction frequency (mW/cm²):</u>	<u>2.99</u>

The average output power was derived from the maximum tune up power (45.32 dBm) and duty cycle (50%). The average output power = peak output power – $10 \times \log(1/\text{duty cycle})$ = $45.32 - 3.01 = 42.31$ dBm..

Note: Duty Cycle declared by customer

Results

In order to pass the controlled exposure limit of 2.99 mW/cm² with the Output Power being 45.10 dBm, 50% duty cycle, and prediction distance of 20cm, the EUT can have a maximum antenna gain of -0.56 dBi.