

TEST REPORT

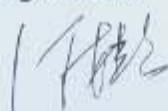
REPORT NUMBER: I09GE4049-FCC-SAR

ON

Type of Equipment: Mobile Phone
Type of Designation: Sonim XP3.20-E Quest / Land Rover S1-E by Sonim
Type number: P22C001AA
Manufacturer: SONIM TECHNOLOGIES INC.

ACCORDING TO

FCC Part 2.1093: Radiofrequency radiation exposure evaluation: portable devices, e-CFR March 23, 2006


FCC OET Bulletin 65 Supplement C (Edition 01-01): Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions

IEEE Std 1528™-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques

China Telecommunication Technology Labs.

Month date, year
Mar 18, 2009

Signature

He Guili
Director

FCC ID:
Report Date:

WYPP22C001AA
2009-03-18

Test Firm Name:
Registration Number:

China Telecommunication Technology Labs
840587

Statement

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported tests were carried out on a sample equipment to demonstrate limited compliance with FCC CFR 47 Part 2.1093. The sample tested was found to comply with the requirements defined in the applied rules.

Table of Contents

1. General Information	4
1.1 NOTES	4
1.2 TESTERS	5
1.3 TESTING LABORATORY INFORMATION	6
1.4 DETAILS OF APPLICANT OR MANUFACTURER	7
2 Test Item.....	8
2.1 GENERAL INFORMATION	8
2.2 OUTLINE OF EUT	8
2.3 MODIFICATIONS INCORPORATED IN EUT	8
2.4 EQUIPMENT CONFIGURATION.....	8
2.5 OTHER INFORMATION	9
2.6 EUT PHOTOGRAPHS	9
3 Measurement Systems.....	10
3.1 SAR MEASUREMENT SYSTEMS SETUP	10
3.2 E-FIELD PROBE	11
3.3 PHANTOM	13
3.4 DEVICE HOLDER	13
4 Test Results.....	14
4.1 OPERATIONAL CONDITION.....	14
4.2 TEST EQUIPMENT USED.....	14
4.3 APPLICABLE LIMIT REGULATIONS.....	15
4.4 TEST RESULTS	15
4.5 TEST SETUP AND PROCEDURES	15
4.6 TEST ENVIRONMENT AND LIQUID PARAMETERS.....	16
4.7 SYSTEM VALIDATION CHECK	16
4.8 MAXIMUM OUTPUT POWER MEASUREMENT	17
4.9 TEST DATA	18
4.10 MEASUREMENT UNCERTAINTY.....	21
ANNEX A Photographs	22
ANNEX B Graphical Results.....	26
Annex C System Performance Check Graphical Results	30
ANNEX D Probes Calibration Certificates	34
ANNEX E Deviations from Prescribed Test Methods	44

1. General Information

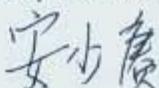
1.1 Notes

All reported tests were carried out on a sample equipment to demonstrate limited compliance with the requirements of FCC CFR 47 Part 2.1093.

The test results of this test report relate exclusively to the item(s) tested as specified in section 2.

The following deviations from, additions to, or exclusions from the test specifications have been made. See Annex D.

China Telecommunication Technology Labs.(CTTL) authorizes the applicant or manufacturer (see section 1.4) to reproduce this report provided, and the test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTTL Mr. He Guili.


Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. CTTL accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

1.2 Testers

Name: An Shaogeng

Position: Engineer

Department: Department of EMC test

Signature:

Editor of this test report:

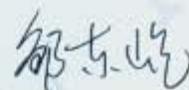
Name: Li Guoqing

Position: Engineer

Department: Department of EMC test

Date: 2009-03-18

Signature:


Technical responsibility for testing:

Name: Zou Dongyi

Position: Manager

Department: Department of EMC test

Date: 2009-03-18

Signature:

1.3 Testing Laboratory information

1.3.1 Location

Name: China Telecommunication Technology Labs.
Address: No. 11, Yue Tan Nan Jie, Xi Cheng District,
BEIJING
P. R. CHINA, 100083
Tel: +86 10 68094053
Fax: +86 10 68011404
Email: emc@chinattl.com

1.3.2 Details of accreditation status

Accredited by: China National Accreditation Service for Conformity
Assessment (CNAS)
Registration number: CNAS Registration No. CNAS L0570
Standard: ISO/IEC 17025:2005

1.3.3 Test location, where different from section 1.3.1

Name: -----
Street: -----
City: -----
Country: -----
Telephone: -----
Fax: -----
Postcode: -----

1.4 Details of applicant or manufacturer

1.4.1 Applicant

Name: SONIM TECHNOLOGIES INC.
Address: 1875 S.GRANT STREET
SAN MATEO, CA 94402, USA
Country: USA
Telephone: +1 650 704 4926
Fax: +1 650 378 8109
Contact: JASEN KOLEV
Telephone: +1 650 704 4926
Email: jasen@sonimtech.com

1.4.2 Manufacturer (if different from applicant in section 1.4.1)

Name: SONIM TECHNOLOGIES INC.
Address: 1875 S.GRANT STREET
SAN MATEO, CA 94402, USA

1.4.3 Manufactory (if different from applicant in section 1.4.1)

Name: Flextonics Industrial (Zhuhai)
Address: Xin Qing Science & Technology Industrial Park, Jing An
Town, DouMen, ZhuHai City, GuangDong, P.R. China,
Zip Code: 519180

2 Test Item

2.1 General Information

Manufacturer: SONIM TECHNOLOGIES INC.
 Name: Mobile Phone
 Model Number: Sonim XP3.20-E Quest / Land Rover S1-E by Sonim
 Type Number: P22C001AA
 Serial Number: --
 Production Status: Product
 Receipt date of test item: 2008-12-19

2.2 Outline of EUT

EUT is a mobile phone supporting PCS 1900.

2.3 Modifications Incorporated in EUT

The EUT has not been modified from what is described by the brand name and unique type identification stated above.

2.4 Equipment Configuration

Equipment configuration list:

Item	Generic Description	Manufacturer	Type	Serial No.	Remarks
A	handset	SONIM TECHNOLOGIES INC.	Sonim XP3.20-E Quest / Land Rover S1-E by Sonim	--	None
B	adapter	SONIM TECHNOLOGIES INC.	DSA-0051-05C FEU 51055F	--	None
C	battery	SONIM TECHNOLOGIES INC.	XP3.20-00011 00	--	None
D	Earphone	SONIM TECHNOLOGIES INC.	ME-848B14	--	None

Cables:

Item	Cable Type	Manufacturer	Length	Shield	Quantity	Remarks
1	DC cable on Adapter	Unknown	1.0m	No	1	None

2.5 Other Information

Version of hardware and software:

HW Version: A

SW Version: 05.0.0-18.2-1

Adaptor information:

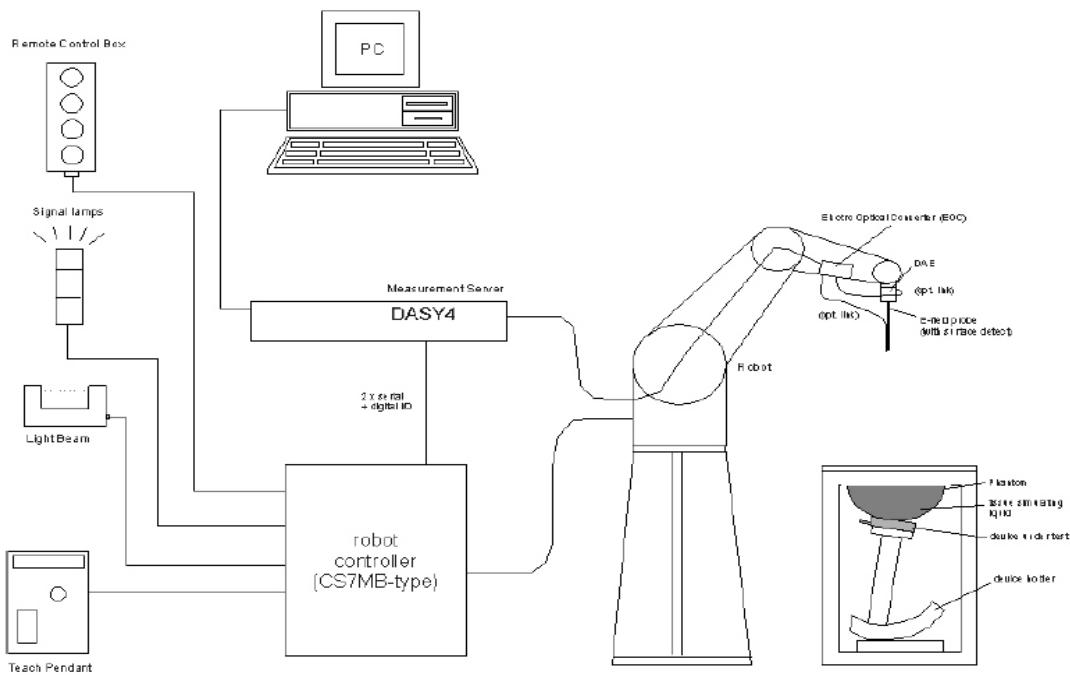
Input: 100-240VAC 50 – 60Hz

Output: 5.0V 650mA

Battery information: 3.7VDC 1850mAh

2.6 EUT Photographs

Face view


Back view

3 Measurement Systems

3.1 SAR Measurement Systems Setup

All measurements were performed using the automated near-field scanning system, DASY5, from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision industrial robot which positions the probes with a positional repeatability of better than 0.02mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines (length =300mm) to the data acquisition unit.

A cell controller system containing the power supply, robot controller, teach pendant (Joystick) and remote control, is used to drive the robot motors. The PC consists of the Micron Pentium III 800 MHz computer with Windows 2000 system and SAR Measurement Software DASY5, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc., which is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical signal to digital electric signal of the DAE and transfers data to the PC plug-in card.

Demonstration of measurement system setup

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built-in VME-bus computer.

3.2 E-field Probe

3.2.1 E-field Probe Description

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the standard procedure with an accuracy of better than $\pm 10\%$. The spherical isotropy was evaluated and found to be better than $\pm 0.25\text{dB}$.

Items	Specification
Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection System Built-in shielding against static charges PEEK enclosure material(resistant to organic solvents, e.g., glycol)
Calibration	In air from 10 MHz to 2.5 GHz In brain and muscle simulating tissue at

	frequencies of 450MHz, 900MHz and 1.8GHz (accuracy \pm 8%) Calibration for other liquids and frequencies upon request
Frequency	10 MHz to $>$ 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz)
Directivity	\pm 0.2 dB in brain tissue (rotation around probe axis) \pm 0.4 dB in brain tissue (rotation normal probe axis)
Dynamic Range	5u W/g to $>$ 100mW/g; Linearity: \pm 0.2dB
Surface Detection	\pm 0.2 mm repeatability in air and clear liquids over diffuse reflecting surface
Dimensions	Overall length: 330mm Tip length: 16mm Body diameter: 12mm Tip diameter: 6.8mm Distance from probe tip to dipole centers: 2.7mm
Application	General dosimetry up to 3GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms

3.2.2 E-field Probe Calibration

The Annex C is the copy of the calibration certificate of the used probes.

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The free-space E-field measured in the medium correlates to temperature increase in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where: Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle),

ΔT = Temperature increase due to RF exposure.

Or

$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where:

σ = Simulated tissue conductivity,

ρ = Tissue density (kg/m³).

3.3 Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Specifications:

Shell Thickness: 2±0.1mm

Filling Volume: Approx. 20 liters

Dimensions: 810 x 1000 x 500 mm (H x L x W)

Liquid depth when testing: at least 150 mm

3.4 Device Holder

In combination with the Generic Twin Phantom V3.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeat ably positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom etc).

4 Test Results

4.1 Operational Condition

Specifications FCC OET 65C (01-01), IEEE Std 1528™-2003

Date of Tests 2009-03-05/06

Operation Mode TX at the highest output peak power level

Method of measurement: FCC OET 65C (01-01), IEEE Std 1528™-2003

4.2 Test Equipment Used

TYPE	ITEM	S/N	CALIBRATION DATE	DUE DATE
CMU200	Wireless Communication Test Set	109172	2008-04-08	2009-04-07
ES3DV3	probe	3158	2008-04-07	2009-04-06
DAE	DAE4	797	2008-02-19	2009-08-18
D835V2	dipole	473	2008-12-12	2009-12-11
D1900V2	dipole	5d024	2008-12-13	2009-12-12
NRVD	Power Meter	83584310014	2008-12-13	2009-12-12
SME03	Signal Generator	100029	2008-12-26	2009-12-25
NRV-Z4	Power Sensor	100381	2008-09-27	2009-09-26
NRV-Z2	Power Sensor	100211	2008-09-27	2009-09-26
8491B	Attenuator	MY39262528	NA	NA
8491B	Attenuator	MY39262663	NA	NA
8491B	Attenuator	MY39262640	NA	NA
8491B	Attenuator	MY39262638	NA	NA
778D	Dual directional coupler	20040	NA	NA
E3640A	DC Power Supply	MY40008487	2008-08-13	2009-08-13
85070E	Probe kit	MY44300214	N.A.	N.A.
E5071B	Network Analyzer	MY42404001	2008-06-18	2009-06-17

4.3 Applicable Limit Regulations

Item	Limit Level
Local Specific Absorption Rate (SAR) (1g)	1.6W/kg

4.4 Test Results

The EUT complies.

Note:

All measurements are traceable to national standards.

4.5 Test Setup and Procedures

The test setup is showed as picture 1 in the annex A.

The evaluation was performed according to the following procedure:

Step 1: The SAR value at a fixed location above the ear point was measured and was used as a reference value for assessing the power drift.

Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 10 mm x 10 mm. Based on these data, the area of the maximum absorption was determined by interpolation.

Step 3: Around this point, a volume of 30 mm x 30 mm x 25 mm was assessed by measuring 7 x 7 x 6 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

a. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on the least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

b. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot"-condition (in x ~ y and z-directions). The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.

c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation should be repeated.

4.6 Test Environment and Liquid Parameters

4.6.1 Test Environment

Date:	Liquid Temperature (°C)	Ambient Temperature (°C)	Ambient Humidity (%)
	20~24	20~25	30~70
2009-03-05	21.7	22	43
2009-03-06	21.6	22	43

4.6.2 Liquid Parameters

Date: 2009-03-05

Frequency	Tissue Type	Type	Dielectric Parameters	
			permittivity	conductivity
1900 MHz	Head	Target	40	1.4
		±5% window	38.0~42.0	1.33~1.47
		Measured	38.4	1.46

Date: 2009-03-06

Frequency	Tissue Type	Type	Dielectric Parameters	
			permittivity	conductivity
1900 MHz	Body	Target	53.3	1.52
		±5% window	50.64~55.97	1.44~1.60
		Measured	52.4	1.5

4.7 System Validation Check

Validation Method:

The setup of system validation check or performance check is demonstrated as figure 5. The amplifier, low pass filter and attenuators are optional. The dipole shall be positioned and centered below the phantom, paralleling to the longest side of the phantom. A low loss and low dielectric constant spacer on the dipole may be used to guarantee the correct distance between the dipole top surface and the phantom bottom surface.

The separation d , which is defined as the distance from the liquid bottom surface to the dipole's central axis at location of the feed-point, should be as following: for 835 MHz dipole, $d = 15$ mm, and for 1900 MHz dipole, $d = 10$ mm, and this can be obtained using two different size spacer. The dipole arms shall be parallel to the flat phantom surface.

First the power meter PM1 is connected to the cable and it measures the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the (Att1) value) and the power meter PM2 is read at that level. Then after connecting the cable to the dipole, the signal generator is readjusted for the same reading at the power meter PM2.

The system validation check procedures are the same as all measurement procedures used for compliance tests. A complete 1 g averaged SAR measurement is performed using the flat part of the phantom. The reference dipole input power is adjusted to produce a 1 g averaged SAR value falling in the range of 0.4 – 10 mW/g. The 1 g averaged SAR is measured at 835 MHz and 1900 MHz using corresponding dipole respectively. Then the results are normalized to 1 W forward input power and compared with the reference SAR values.

Figure 5 Illustration of system validation test setup

Validation Results

Date:	Frequency (MHz)	Tissue Type	Input Power	Targeted (SAR1g)	Measured (SAR1g)	Deviation (%)
2009-03-05	1900	Head	250	9.99	9.72	-2.7%
2009-03-06	1900	Body	250	9.32	10.2	9.44%

4.8 Maximum Output Power Measurement

According to FCC OET 65c, maximum output power shall be measured before and

after each SAR test. The test setup and method are described as following.

Test setup

The output power measurement test setup is demonstrated as figure 6.

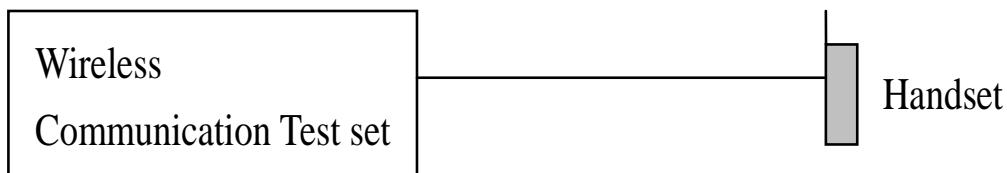


Figure 6 Demonstration of power measurement

The power control level settings and measurement value are as following table.

mode	PCL setting	Permissible max.values	Channel[low]	Channel[mid]	Channel[high]
PCS 1900	0	30dBm	28.2dBm	28.9dBm	28.6dBm
			1850.2 MHz	1880.0 MHz	1909.8 MHz

4.9 Test Data

4.9.1 Test Specifications

(a) Duty Factor and Crest Factor

For GSM mode, the duty factor is 1:8.3, and for GPRS and EGPRS they are 1:4.15 (multi time class 10).

(b) Test configurations pictures:

Configurations	pictures no. in Annex A
Head Right touch position:	2
Head Right tilt position:	3
Head Left touch position:	4
Head Left tilt position:	5
Body SAR Back to the phantom:	6
Body SAR Front to the phantom:	7
Body SAR Back to the phantom with earphone:	8

(c) Test description for body-worn mode

The distance between the handset and the bottom of the flat section is 15 mm.

(d) Liquid recipe

INGREDIENTS	TISSUE TYPE			
	835MHz Head	835MHz body	1900MHz Head	1900MHz body
Water	40.29	50.75	55.24	70.17
DGBE	0	0	44.45	29.44
Sugar	57.90	48.21	0	0
Salt	1.38	0.94	0.31	0.39
Cellulose	0.24	0.00	0	0
Preventol	0.18	0.10	0	0

(e) General Test procedure for body-worn mode

Step 1: GSM850 band, test the middle channel of each of the front side and back side mode with the 15 mm distance between the handset and the bottom of the phantom, including slip open and close. Find out the worst case.

Step 2: For the worst case of step 1, test the low and high channel.

Step 3: Find out the worst case of step 1 and 2, and for this case, test the mode with Bluetooth on, and then with earphone using voice traffic mode.

Step 4: Repeat all the above steps for PCS 1900 band and other bands.

4.9.2 Test Data for Head mode

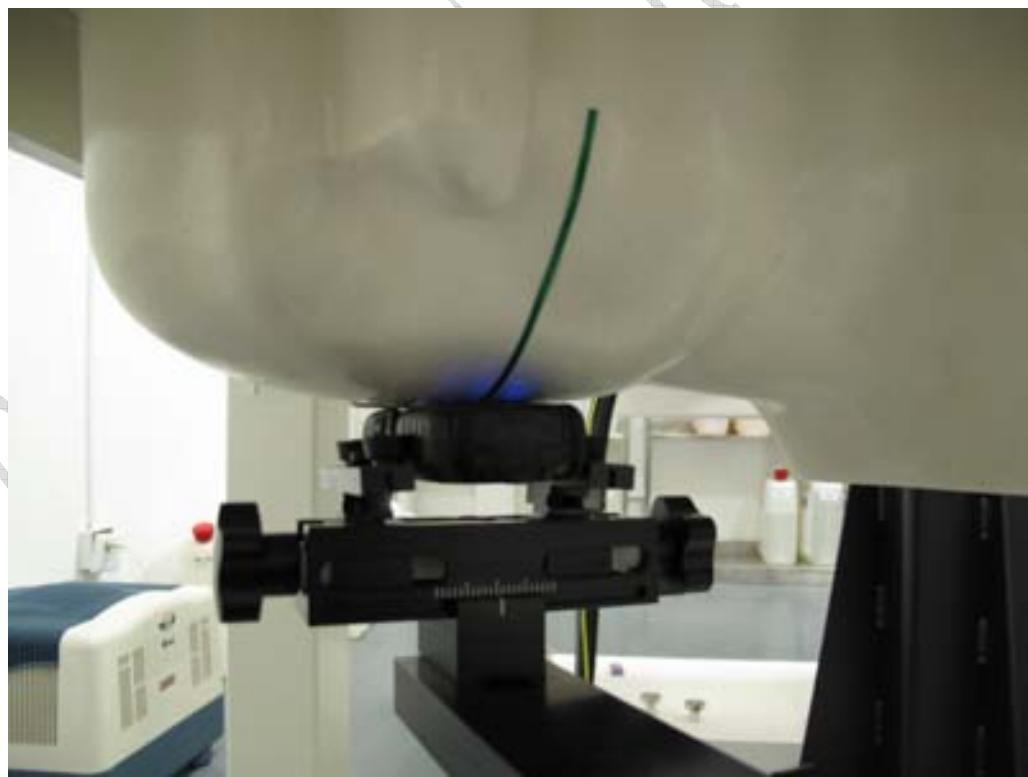
PCS1900 head

Test configuration	Test position	SAR _{1g} [W/kg] / Power Drift [dB]		
		Channel 512 [low] 1850.2 MHz	Channel 661 [Mid] 1880.0 MHz	Channel 810 [high] 1909.8 MHz
Right side of Head	Cheek	-- / --	0.165 / -0.135	-- / --
	Tilted	-- / --	0.046 / 0.124	-- / --
Left side of Head	Cheek	0.152 / -0.096	0.180 / 0.040	0.204 / -0.090
	Tilted	-- / --	0.051 / 0.088	-- / --

4.9.3 Test Data for Body-Worn mode

PCS1900 band body

Test configuration	SAR _{1g} [W/kg] / Power Drift [dB]		
	Channel 512 [low] 1850.2 MHz	Channel 661 [Mid] 1880.0 MHz	Channel 810 [high] 1909.8 MHz
Front side, GPRS	-- / --	0.246 / 0.007	-- / --
Back side, GPRS	0.275 / 0.16	0.249 / 0.007	0.232 / 0.149
Back side, EGPRS	0.156 / -0.127	-- / --	-- / --
Back side, earphone mode, GSM	0.119 / 0.083	-- / --	-- / --
Back side, handfree mode, GSM	0.153 / 0.035	-- / --	-- / --
Back side, Bluetooth mode, GSM	0.152 / 0.108	-- / --	-- / --

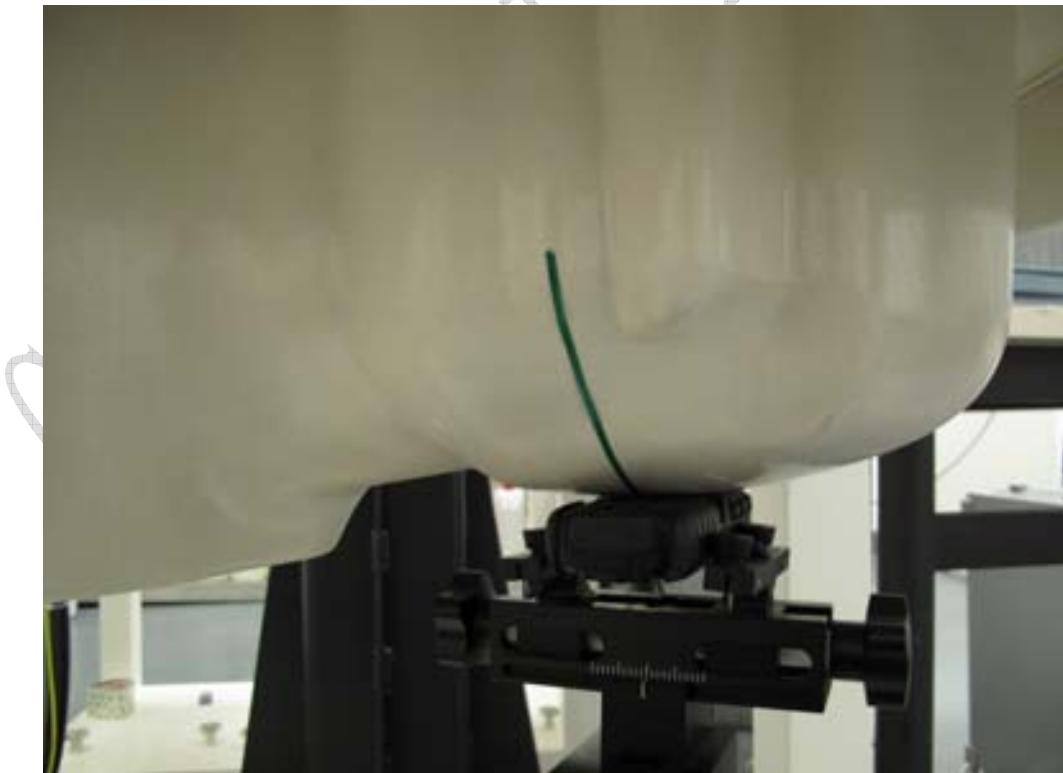

4.10 Measurement uncertainty

ERROR SOURCE	Uncertainty value (%)	Probability distribution	Divisor	c_i (1g)	Standard Uncertainty (%)
Measurement equipment					
Probe calibration	5.9	Normal	1	1	5.9
Probe axial isotropy	4.7	Rectangular	$\sqrt{3}$	0.7	1.9
Probe hemispherical isotropy	9.6	Rectangular	$\sqrt{3}$	0.7	3.9
Probe linearity	4.7	Rectangular	$\sqrt{3}$	1	2.7
Detection limits	0.25	Rectangular	$\sqrt{3}$	1	0.6
Boundary effect	0.8	Rectangular	$\sqrt{3}$	1	0.6
Measurement device	0.3	Normal	1	1	0.3
Response time	0.0	Normal	1	1	0
Noise	0.0	Normal	1	1	0
Integration time	1.7	Normal	1	1	2.6
Mechanical constraints					
Scanning system	1.5	Rectangular	$\sqrt{3}$	1	0.2
Positioning of the probe	2.9	Normal	1	1	2.9
Phantom shell	4.0	Rectangular	$\sqrt{3}$	1	2.3
Positioning of the dipole	2.0	Normal	1	1	2.0
Positioning of the phone	2.9	Normal	1	1	2.9
Device holder disturbance	3.6	Normal	1	1	3.6
Physical parameters					
Liquid conductivity (deviation from target)	5.0	Rectangular	$\sqrt{3}$	0.5	1.4
Liquid conductivity (measurement error)	4.3	Rectangular	$\sqrt{3}$	0.5	1.2
Liquid permittivity (deviation from target)	5.0	Rectangular	$\sqrt{3}$	0.5	1.4
Liquid permittivity (measurement error)	4.3	Rectangular	$\sqrt{3}$	0.5	1.2
Drifts in output power of the phone, probe, temperature and humidity	5.0	Rectangular	$\sqrt{3}$	1	2.9
Environment disturbance	3.0	Rectangular	$\sqrt{3}$	1	1.7
Post-processing					
SAR interpolation and extrapolation	0.6	Rectangular	$\sqrt{3}$	1	0.6
Maximum SAR evaluation	1.0	Rectangular	$\sqrt{3}$		0.6
Combined standard uncertainty	$u_c = \sqrt{\sum_{i=1}^m c_i^2 \cdot u_i^2} = 11.08\%$				
Expanded uncertainty (confidence interval of 95%)	Normal $u_e = 1.96u_c = 21.7\%$				

ANNEX A Photographs

Picture 1 test setup

Picture 2: Head Right touch position


FCC Part 2.1093 (2006-3-23), FCC OET 65C (01-01), IEEE Std 1528™-2003

Equipment: Sonim XP3.20-E Quest / Land Rover S1-E by Sonim

REPORT NO.: I09GE4049-FCC-SAR

Picture 3: Head Right tilt position

Picture 4: Head Left touch position

FCC Part 2.1093 (2006-3-23), FCC OET 65C (01-01), IEEE Std 1528™-2003

Equipment: Sonim XP3.20-E Quest / Land Rover S1-E by Sonim

REPORT NO.: I09GE4049-FCC-SAR

Picture 5: Head Left tilt position

Picture 6: Body SAR Back to the phantom

FCC Part 2.1093 (2006-3-23), FCC OET 65C (01-01), IEEE Std 1528™-2003

Equipment: Sonim XP3.20-E Quest / Land Rover S1-E by Sonim

REPORT NO.: I09GE4049-FCC-SAR

Picture 7: Body SAR Front to the phantom

Picture 8: Body SAR Back to the phantom with earphone

ANNEX B Graphical Results

B.1 Maximum head SAR of GSM 1900 band – High channel, Left cheek mode

Test Laboratory: CTTL

1900-head

DUT: sonim0802; Type: xp3.20; Serial: --

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3
Medium parameters used (interpolated): $f = 1909.8$ MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 40.7$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY4 Configuration:

- Probe: ES3DV3 - SN3158; ConvF(5.05, 5.05, 5.05); Calibrated: 4/7/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn797; Calibrated: 2/19/2008
- Phantom: Twin SAM; Type: SAM; Serial: TP-1472
- Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87

PCS_Touch_Left_High/Area Scan (91x51x1): Measurement grid: $dx=15$ mm, $dy=15$ mm

Info: Interpolated medium parameters used for SAR evaluation.

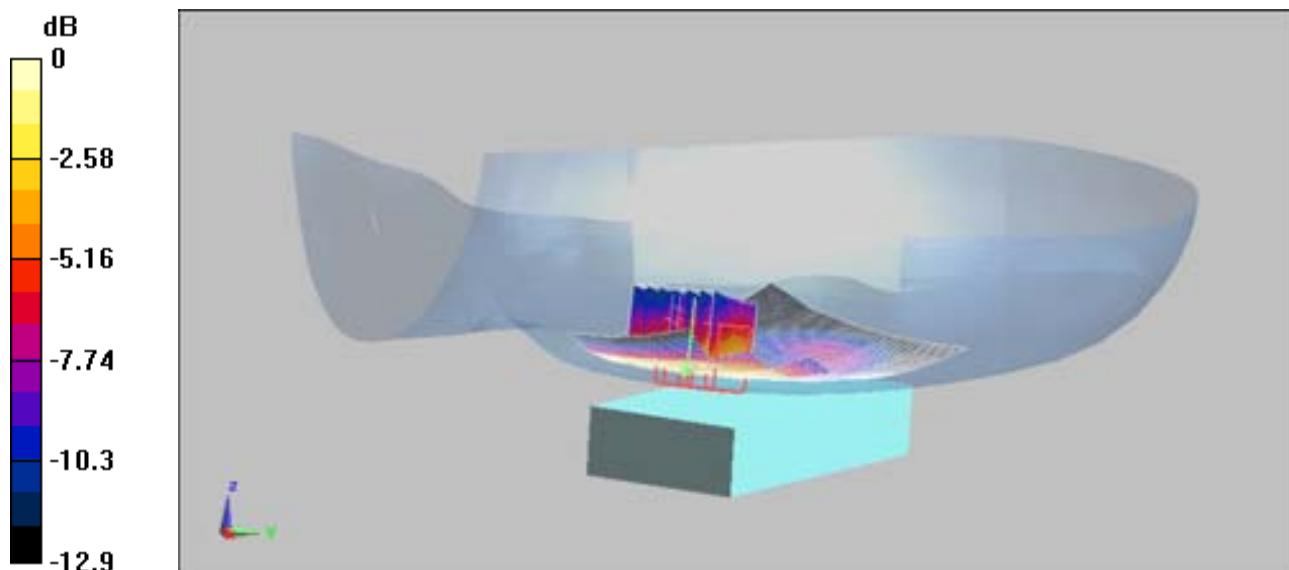
Maximum value of SAR (interpolated) = 0.241 mW/g

PCS_Touch_Left_High/Zoom Scan (7x7x6)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 5.18 V/m; Power Drift = -0.090 dB

Peak SAR (extrapolated) = 0.317 W/kg

SAR(1 g) = 0.204 mW/g; SAR(10 g) = 0.128 mW/g


Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.222 mW/g

FCC Part 2.1093 (2006-3-23), FCC OET 65C (01-01), IEEE Std 1528™-2003

Equipment: Sonim XP3.20-E Quest / Land Rover S1-E by Sonim

REPORT NO.: I09GE4049-FCC-SAR

0 dB = 0.222mW/g

CTT Test Report

B.2 Maximum body SAR of PCS 1900 band – Low channel, back side mode, GPRS

Test Laboratory: CTTL

1900-body

DUT: sonim0802; Type: xp3.20; Serial: --

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:4.15

Medium parameters used (interpolated): $f = 1850.2$ MHz; $\sigma = 1.39$ mho/m; $\epsilon_r = 53.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY4 Configuration:

- Probe: ES3DV3 - SN3158; ConvF(4.7, 4.7, 4.7); Calibrated: 4/7/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn797; Calibrated: 2/19/2008
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: xxxx
- Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87

GPRS_Back_Low/Area Scan (41x81x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

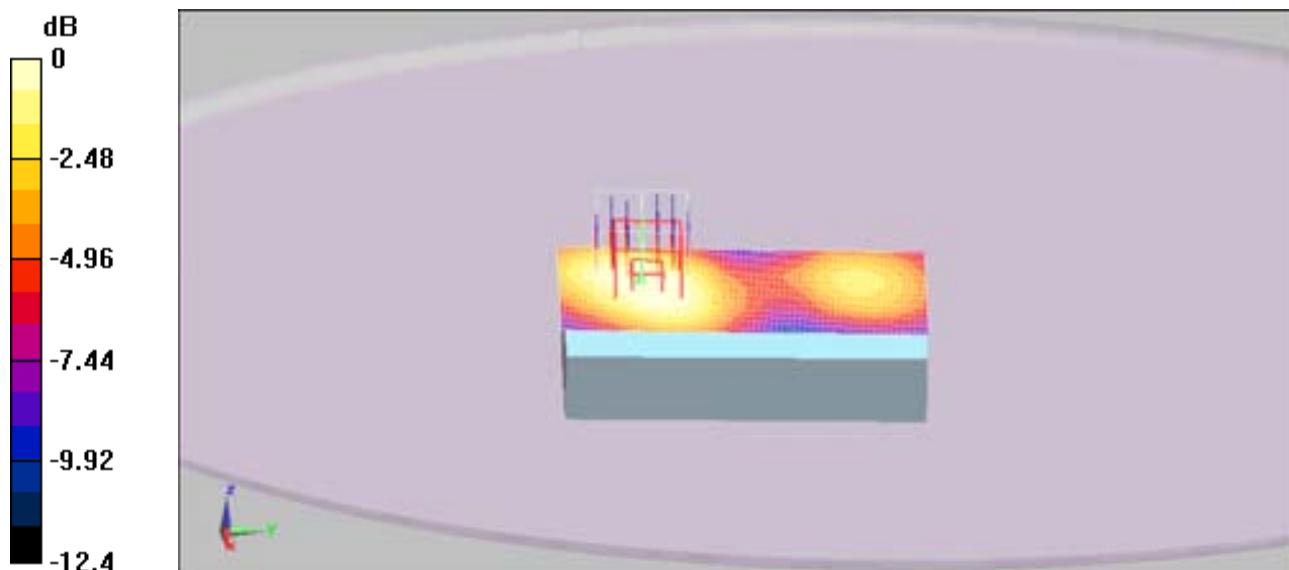
Maximum value of SAR (interpolated) = 0.303 mW/g

GPRS_Back_Low/Zoom Scan (7x7x6)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11 V/m; Power Drift = 0.160 dB

Peak SAR (extrapolated) = 0.448 W/kg

SAR(1 g) = 0.275 mW/g; SAR(10 g) = 0.171 mW/g


Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.295 mW/g

FCC Part 2.1093 (2006-3-23), FCC OET 65C (01-01), IEEE Std 1528™-2003

Equipment: Sonim XP3.20-E Quest / Land Rover S1-E by Sonim

REPORT NO.: 109GE4049-FCC-SAR

0 dB = 0.295mW/g

CTT Test Report

Annex C System Performance Check Graphical Results

C.1 Head 1900 band

Test Laboratory: CTTL

1900-head-cal

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:xxx

Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium parameters used (extrapolated): $f = 1800$ MHz; $\sigma = 1.25$ mho/m; $\epsilon_r = 41.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY4 Configuration:

- Probe: ES3DV3 - SN3158; ConvF(5.08, 5.08, 5.08); Calibrated: 4/7/2008
- Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn797; Calibrated: 2/19/2008
- Phantom: Twin SAM; Type: SAM; Serial: TP-1472
- Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87

d=10mm, Pin=24 dBm/Area Scan (31x81x1): Measurement grid: dx=15mm, dy=15mm

Info: Extrapolated medium parameters used for SAR evaluation.

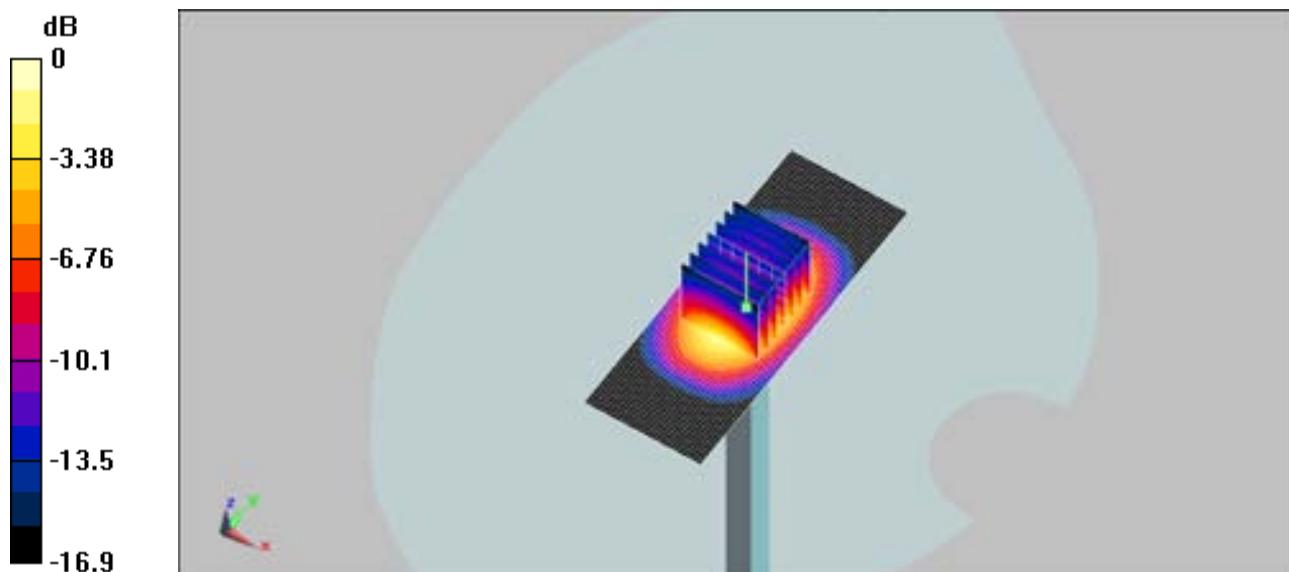
Maximum value of SAR (interpolated) = 11.2 mW/g

d=10mm, Pin=24 dBm/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.5 V/m; Power Drift = -0.149 dB

Peak SAR (extrapolated) = 16 W/kg

SAR(1 g) = 9.72 mW/g; SAR(10 g) = 4.55 mW/g


Info: Extrapolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 10.6 mW/g

FCC Part 2.1093 (2006-3-23), FCC OET 65C (01-01), IEEE Std 1528™-2003

Equipment: Sonim XP3.20-E Quest / Land Rover S1-E by Sonim

REPORT NO.: I09GE4049-FCC-SAR

0 dB = 10.6mW/g

CTT Test Report

C.2 Body 1900 band

Test Laboratory: CTTL

1900-body-cal

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:xxx

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 53.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY4 Configuration:

- Probe: ES3DV3 - SN3158; ConvF(4.7, 4.7, 4.7); Calibrated: 4/7/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn797; Calibrated: 2/19/2008
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: xxxx
- Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87

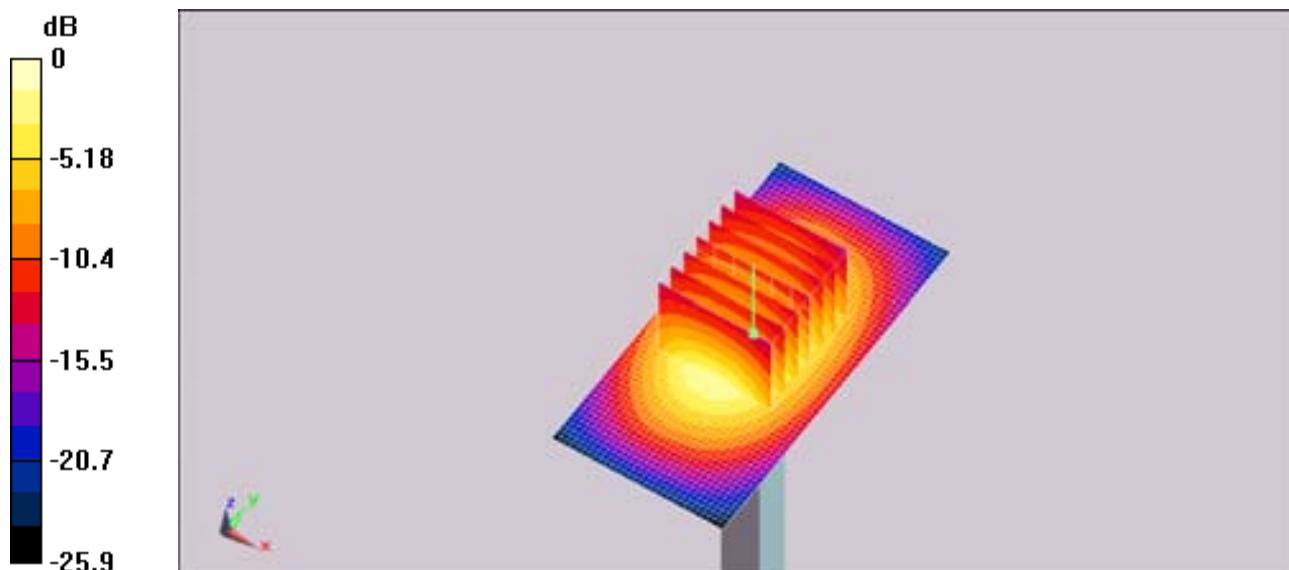
D1900V2 2/Zoom Scan (7x7x6)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 88.8 V/m; Power Drift = 0.014 dB

Peak SAR (extrapolated) = 18.7 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.35 mW/g

Maximum value of SAR (measured) = 11.5 mW/g


D1900V2 2/Area Scan (31x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 12.3 mW/g

FCC Part 2.1093 (2006-3-23), FCC OET 65C (01-01), IEEE Std 1528™-2003

Equipment: Sonim XP3.20-E Quest / Land Rover S1-E by Sonim

REPORT NO.: I09GE4049-FCC-SAR

0 dB = 12.3mW/g

CTT Test Report

ANNEX D Probes Calibration Certificates

The System Validation was conducted following the requirements of standard

IEEE 1528: 2003 Clause 8.3.

The scanned copy of the calibration certificate of the probe used is as following.

CTT Test Report

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di Isotruzione
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates.

Accreditation No.: SCS 108

Client **CTTL (MTT)**

Certificate No: ES3-3158_Apr08

CALIBRATION CERTIFICATEObject **ES3DV3 - SN:3158**Calibration procedure(s) **QA CAL-01.v6 and QA CAL-23.v3**
Calibration procedure for dosimetric E-field probesCalibration date: **April 7, 2008**Condition of the calibrated item **In Tolerance**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility, environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E44169	GB41293874	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MW41486277	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4413A	MT41486287	1-Apr-08 (No. 217-00788)	Apr-09
Reference 3 dB Attenuator	SN: 55054 (3c)	8-Aug-07 (No. 217-00719)	Aug-08
Reference 20 dB Attenuator	SN: 55086 (20b)	31-Mar-08 (No. 217-00767)	Apr-09
Reference 30 dB Attenuator	SN: 55129 (30b)	8-Aug-07 (No. 217-00720)	Aug-08
Reference Probe ES3DV2	SN: 3013	2-Jan-08 (No. ES3-3013, Jan08)	Jan-09
DAE4	SN: 654	20-Apr-07 (No. DAE4-654, Apr07)	Apr-08

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-09 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37360545	18-Oct-01 (in house check Oct-07)	In house check: Oct-08

Calibrated by:	Name	Function	Signature
	Katja Polakovic	Technical Manager	
Approved by:	Heiko Kuster	Quality Manager	

Issued: April 7, 2008

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: ES3-3158_Apr08

Page 1 of 9

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di tattatura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
NORM x,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORM x,y,z
DCP	diode compression point
Polarization ϕ	ϕ rotation around probe axis
Polarization β	β rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\beta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- $NORMx,y,z$: Assessed for E-field polarization $\beta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). $NORMx,y,z$ are only intermediate values; i.e., the uncertainties of $NORMx,y,z$ does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * \text{frequency_response}$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- $DCPx,y,z$: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORMx,y,z * ConvF$ whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical Isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

ES3DV3 SN:3158

April 7, 2008

Probe ES3DV3

SN:3158

Manufactured: August 13, 2007
Calibrated: April 7, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3158_Apr08

Page 3 of 9

ES3DV3 SN:3158

April 7, 2008

DASY - Parameters of Probe: ES3DV3 SN:3158**Sensitivity in Free Space^A**

NormX	1.11 ± 10.1%	µV/(V/m) ²	DCP X	97 mV
NormY	1.20 ± 10.1%	µV/(V/m) ²	DCP Y	91 mV
NormZ	1.16 ± 10.1%	µV/(V/m) ²	DCP Z	93 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz Typical SAR gradient: 5 % per mm

Sensor Center to Phantom Surface Distance	3.0 mm	4.0 mm
SAR _{iso} [%] Without Correction Algorithm	9.2	5.2
SAR _{iso} [%] With Correction Algorithm	0.8	0.7

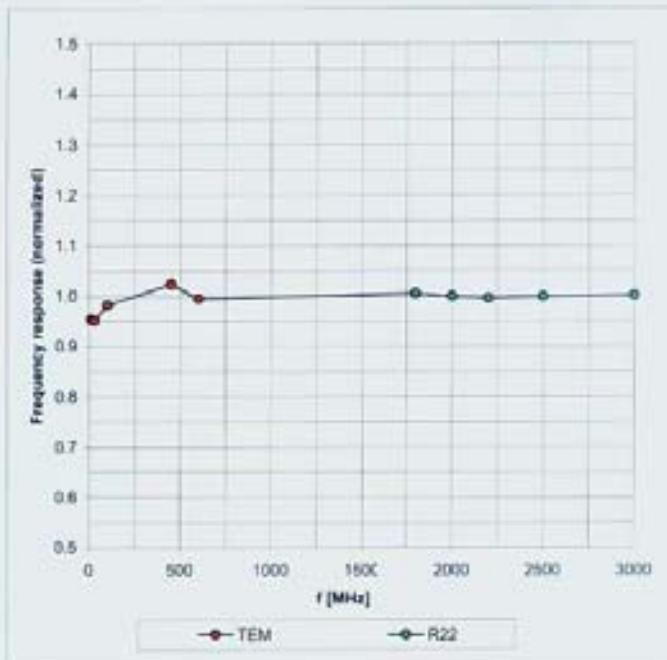
TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Center to Phantom Surface Distance	3.0 mm	4.0 mm
SAR _{iso} [%] Without Correction Algorithm	10.8	6.0
SAR _{iso} [%] With Correction Algorithm	0.8	0.7

Sensor Offset

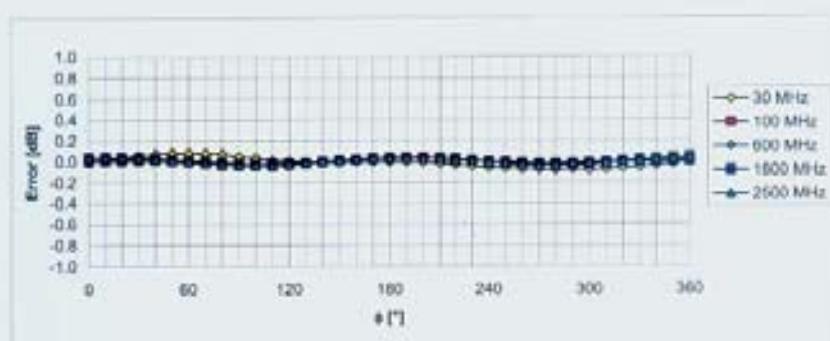
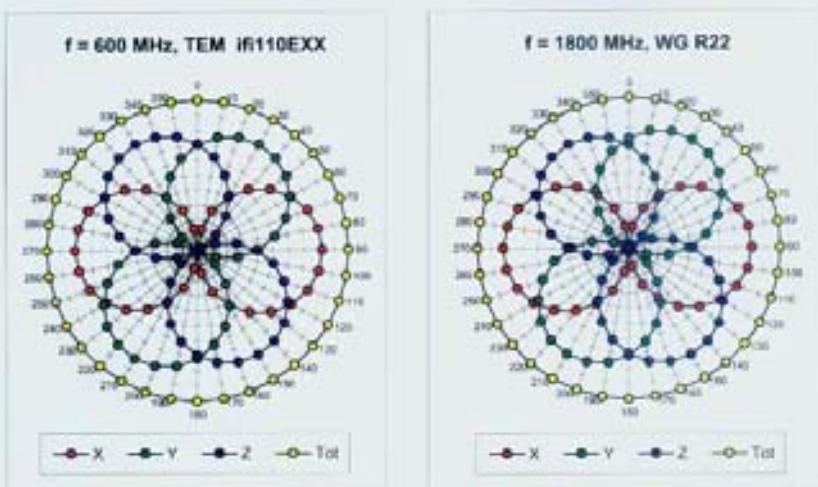
Probe Tip to Sensor Center 2.0 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.


^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).^B Numerical linearization parameter: uncertainty not required.

ES3DV3 SN:3158

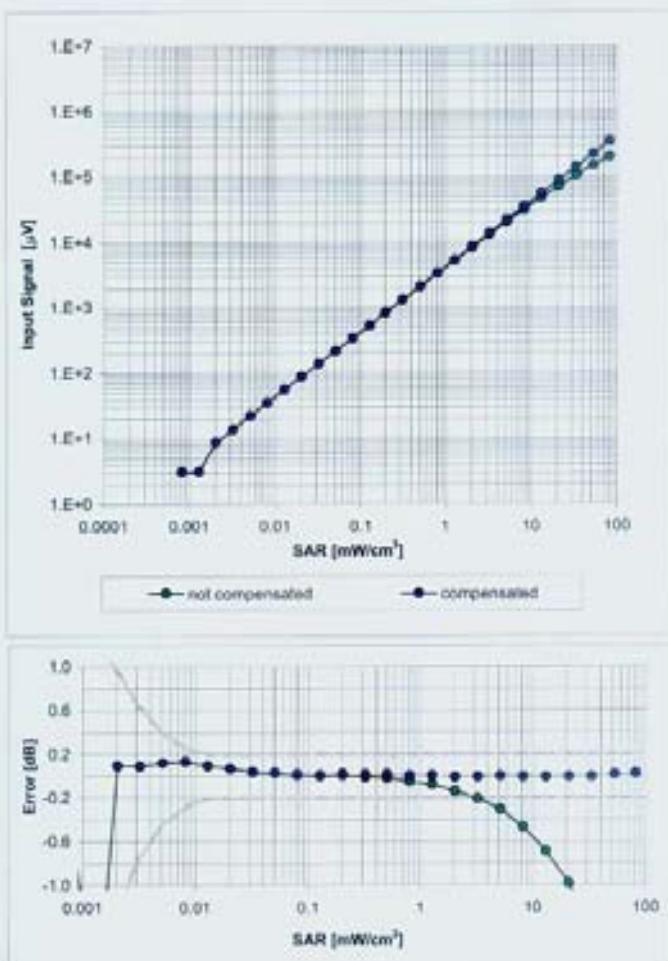
April 7, 2008



Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

ES3DV3 SN:3158

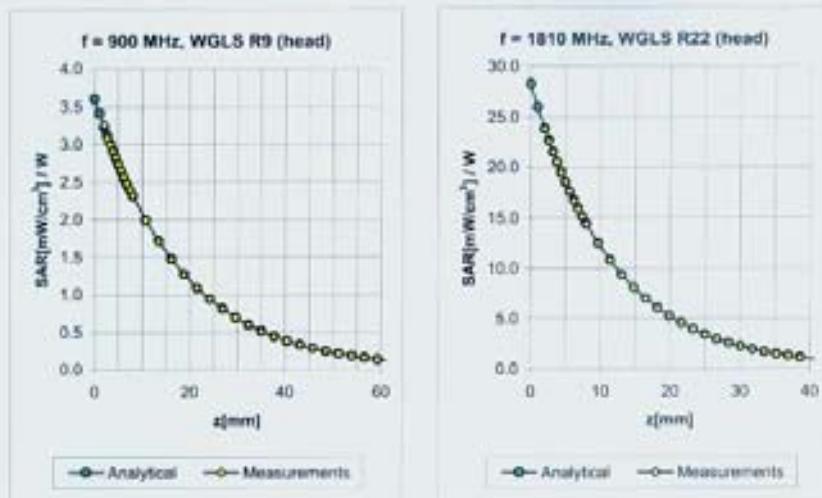

April 7, 2008

Receiving Pattern (ϕ), $\theta = 0^\circ$ Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

ES3DV3 SN:3158

April 7, 2008

Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz)

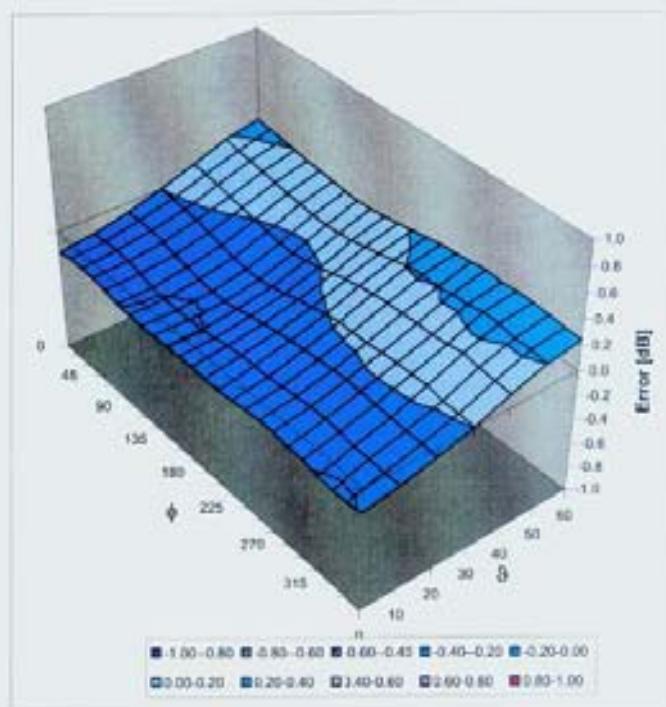


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

ES3DV3 SN:3158

April 7, 2008

Conversion Factor Assessment


f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
835	$\pm 50 / \pm 100$	Head	$41.5 \pm 5\%$	$0.90 \pm 5\%$	1.00	1.15	6.15	$\pm 11.0\% (k=2)$
900	$\pm 50 / \pm 100$	Head	$41.5 \pm 5\%$	$0.97 \pm 5\%$	1.00	1.11	6.16	$\pm 11.0\% (k=2)$
1810	$\pm 50 / \pm 100$	Head	$40.0 \pm 5\%$	$1.40 \pm 5\%$	0.96	1.12	5.08	$\pm 11.0\% (k=2)$
1900	$\pm 50 / \pm 100$	Head	$40.0 \pm 5\%$	$1.40 \pm 5\%$	0.82	1.20	5.05	$\pm 11.0\% (k=2)$
1950	$\pm 50 / \pm 100$	Head	$40.0 \pm 5\%$	$1.40 \pm 5\%$	0.92	1.12	4.83	$\pm 11.0\% (k=2)$
2450	$\pm 50 / \pm 100$	Head	$39.2 \pm 5\%$	$1.80 \pm 5\%$	0.74	1.29	4.56	$\pm 11.0\% (k=2)$
835	$\pm 60 / \pm 100$	Body	$55.2 \pm 6\%$	$0.97 \pm 6\%$	1.00	1.16	5.70	$\pm 11.0\% (k=2)$
900	$\pm 50 / \pm 100$	Body	$55.0 \pm 5\%$	$1.05 \pm 5\%$	1.00	1.16	5.69	$\pm 11.0\% (k=2)$
1810	$\pm 50 / \pm 100$	Body	$53.3 \pm 5\%$	$1.52 \pm 5\%$	0.78	1.26	5.13	$\pm 11.0\% (k=2)$
1900	$\pm 50 / \pm 100$	Body	$53.3 \pm 5\%$	$1.52 \pm 5\%$	0.87	1.21	4.70	$\pm 11.0\% (k=2)$
1950	$\pm 50 / \pm 100$	Body	$53.3 \pm 5\%$	$1.52 \pm 5\%$	0.76	1.32	4.91	$\pm 11.0\% (k=2)$
2450	$\pm 50 / \pm 100$	Body	$52.7 \pm 5\%$	$1.95 \pm 5\%$	0.64	1.50	4.20	$\pm 11.0\% (k=2)$

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the R88 of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

ES3DV3 SN:3158

April 7, 2008

Deviation from Isotropy in HSL

Error (ϕ, θ), $f = 900$ MHzUncertainty of Spherical Isotropy Assessment: $\pm 2.6\%$ ($k=2$)

Certificate No: ES3-3158_Apr08

Page 9 of 9

ANNEX E Deviations from Prescribed Test Methods

No deviation from Prescribed Test Methods.

_____ The End of this Report _____

CTT Test Report