

RF Exposure / MPE Calculation

No.	:	13525959H
Applicant	:	SHIMANO INC.
Type of Equipment	:	Rear Derailleur
Model No.	:	3GK1
FCC ID	:	WY7-3GK1

SHIMANO INC. declares that Model: 3GK1 complies with FCC radiation exposure requirement specified in the FCC Rule 2.1091 (for mobile).

RF Exposure Calculations:

The following information provides the minimum separation distance for the highest gain antenna provided with the “3GK1” as calculated from (B) Limits for General Population / Uncontrolled Exposure of TABLE 1- LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE) of §1.1310 Radiofrequency radiation exposure limits.

[SHIMANO ORIGINAL]

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1mW/cm² uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

P = 8.34 mW (Maximum average output power)

Time average was used for the above value in consideration of 6-minutes time-ave
 Burst power average was used for the above value in consideration of worst condit

G = 0.427 Numerical Antenna gain; equal to -3.7dBi

r = 20 cm (Separation distance)

Power Density Result $S = 0.00071 \text{ mW/cm}^2$

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN
Telephone : +81 596 24 8999
Facsimile : +81 596 24 8124

[Bluetooth Low Energy]

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1mW/cm² uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

P = 2.12 mW (Maximum average output power)

Time average was used for the above value in consideration of 6-minutes time-ave
 Burst power average was used for the above value in consideration of worst condit

G = 0.427 Numerical Antenna gain; equal to -3.7dBi

r = 20 cm (Separation distance)

Power Density Result $S = 0.00018 \text{ mW/cm}^2$

[ANT+]

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1mW/cm² uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

P = 2.12 mW (Maximum average output power)

Time average was used for the above value in consideration of 6-minutes time-ave
 Burst power average was used for the above value in consideration of worst condit

G = 0.427 Numerical Antenna gain; equal to -3.7dBi

r = 20 cm (Separation distance)

Power Density Result $S = 0.00018 \text{ mW/cm}^2$

Therefore, if SHIMANO ORIGINAL, Bluetooth Low Energy and ANT+ transmit simultaneously,

$$\begin{aligned} S &= 0.00071 \text{ W/m}^2 + 0.00018 \text{ W/m}^2 + 0.00018 \text{ W/m}^2 \\ &= 0.00107 \text{ W/m}^2 \end{aligned}$$

Even taking into account the tolerance, this device can be satisfied with the limits.

UL Japan, Inc.

Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8999

Facsimile : +81 596 24 8124