

Eurofins York Castleford
Unit 5, Speedwell Road
Castleford, WF10 5PY
United Kingdom
+44 (0) 1977 731173
enquiryyork@eurofins.com
eurofins.co.uk/york

# MPE (for FCC) and RF Exposure (for ISED) Calculation

Project: C5985

Report number: 14294TR1 Customer Details

| Company name | IceRobotics Ltd         |
|--------------|-------------------------|
| Address      | Bankhead Steading       |
|              | Bankhead Road           |
|              | South Queensferry       |
|              | Midlothian              |
|              | EH30 9TF                |
|              | United Kingdom          |
| Tel:         | +44 131 541 2010        |
| Contact      | Mr Gavin Saxby          |
| Email        | g.saxby@icerobotics.com |

| Date received:          | 12 <sup>th</sup> March 2021 |  |
|-------------------------|-----------------------------|--|
| Product Marketing Name: | IceQube wireless sensor     |  |
| FCC ID                  | WWP-1-QUBE                  |  |
| ISED Number             | 8143A-I-QUBE                |  |





Reference: 14292TR1

#### **MPE and RF Exposure Calculation for Ice Robotics**

#### **MPE Calculation – FCC**

Mobile devices are defined by the FCC as transmitters designed to be used in other than fixed locations and generally to be used in such a way that a separation distance of 20cm is normally maintained between radiating structures and the body of the user or nearby persons. These devices are normally evaluated for exposure potential with relation to the MPE limit. As the 20cm separation may not be achievable under normal operating conditions, an RF exposure calculation is used to demonstrate the minimum distance required to be less than the power density limit, as required under FCC rules.

FCC rule part:47CFR2.1091(3)

Power density (S) relates to Equivalent Isotropic Radiated power (EIRP) according to the following:

$$S = \frac{EIRP}{4\pi R}$$

Where,

R is the distance to the centre of radiation of the antenna (cm)

S is power density in mW/cm<sup>2</sup>

Rearranging,

$$R = \sqrt{\frac{EIRP}{S4\pi}}$$

Using the measured value of EIRP (derived from electric field strength, and using the limit for S, it is possible to determine the value R i.e. distance from the EUT, where the limit is met.

Reference: 14292TR1

# MPE and RF Exposure Calculation for Ice Robotics

The distance R is calculated as:

| Frequency<br>(MHz) | Conducted power (mW) | Antenna<br>gain | Maximum<br>EIRP (mW) | Power density limit (S)<br>(mW/cm²)<br>47CFR1.1310 Table 1<br>(Notes 2 and 3) | Distance (R) (cm) required to be less than S |
|--------------------|----------------------|-----------------|----------------------|-------------------------------------------------------------------------------|----------------------------------------------|
| 903.2              | 0.081                | 1.71            | 0.139                | 0.6                                                                           | 0.14                                         |
| 914.4              | 0.065                | 1.71            | 0.111                | 0.61                                                                          | 0.12                                         |
| 926.3              | 0.024                | 1.71            | 0.041                | 0.62                                                                          | 0.07                                         |

Note 1:

Limits for General Population / Uncontrolled Exposure.

Note 2:

The limit is defined in Table 1 of 47CFR1.1310(e)(1) as:

Between 300 and 1500MHz as  $f/1500 \text{ mW/cm}^2$ 

Where f is frequency in MHz

## Conclusion

The product met the 20cm distance requirement.

Reference: 14292TR1

## MPE and RF Exposure Calculation for Ice Robotics

## **RF Exposure Evaluation - ISED**

**RSS Standard:** 

RSS-102 Issue 5 Posted on ISED website: March 19, 2015

## Clause: 2.5.2 Exemption Limits for Routine Evaluation — RF Exposure Evaluation

RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:

At or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than

1.31 x 10<sup>-2</sup> f<sup>0.6834</sup> W

(adjusted for tune-up tolerance), where f is in MHz

#### **Evaluation**

| Frequency<br>(MHz) | Conducted power (mW) | Antenna<br>gain | Maximum EIRP (mW) (Conducted measurement) | Maximum EIRP (W)<br>(From above formula) | Maximum ERP (mW) (From above formula) |
|--------------------|----------------------|-----------------|-------------------------------------------|------------------------------------------|---------------------------------------|
| 903.2              | 0.081                | 1.71            | 0.139                                     | 1.37                                     | 1370                                  |
| 914.4              | 0.065                | 1.71            | 0.111                                     | 1.38                                     | 1380                                  |
| 926.3              | 0.024                | 1.71            | 0.041                                     | 1.4                                      | 1400                                  |

## Conclusion

The apparatus meets the exclusion requirements for RF exposure.