

FCC RF Test Report

APPLICANT : Viavi Solutions Inc.
EQUIPMENT : 5G Sub-6 GHz M.2 Module with WCDMA and LTE
BRAND NAME : VIAVI
MODEL NAME : RM520N-GL
FCC ID : WUW-RM520NGL
STANDARD : 47 CFR Part 90(S)
CLASSIFICATION : PCS Licensed Transmitter (PCB)
TEST DATE(S) : Jul. 30, 2024 ~ Nov. 04, 2024

The product was installed into a host (Brand Name: VIAVI, Model Name: NXE-DEVICE-4M) during the test, only Conducted Power and RSE test items are tested in this report.

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.26-2015 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

Jason Jia

Approved by: Jason Jia

Sportun International Inc. (Kunshan)
No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300
People's Republic of China

TABLE OF CONTENTS

REVISION HISTORY.....	3
SUMMARY OF TEST RESULT	4
1 GENERAL DESCRIPTION.....	5
1.1 Applicant.....	5
1.2 Manufacturer	5
1.3 Feature of Equipment Under Test.....	5
1.4 Product Specification of Equipment Under Test	6
1.5 Modification of EUT	6
1.6 Maximum Conducted Power	7
1.7 Testing Site.....	7
1.8 Test Software	7
1.9 Applied Standards	8
2 TEST CONFIGURATION OF EQUIPMENT UNDER TEST.....	9
2.1 Test Mode.....	9
2.2 Connection Diagram of Test System	10
2.3 Support Unit used in test configuration and system.....	10
2.4 Frequency List of Low/Middle/High Channels	11
3 TEST RESULT.....	12
3.1 Conducted Output Power Measurement.....	12
3.2 Field Strength of Spurious Radiation Measurement	13
4 LIST OF MEASURING EQUIPMENT	16
5 MEASUREMENT UNCERTAINTY	17
APPENDIX A. TEST RESULTS OF CONDUCTED TEST	
APPENDIX B. TEST RESULTS OF RADIATED TEST	
APPENDIX C. TEST SETUP PHOTOGRAPHS	

REVISION HISTORY

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	§2.1046	Conducted Output Power	—	Report only	-
-	§2.1049 §90.209	Occupied Bandwidth and 26dB Bandwidth	—	Report only	1
-	§2.1051 §90.691	Emission masks – In-band emissions	$< 50+10\log_{10}(P[\text{Watts}])$	PASS	1
-	§2.1051 §90.691	Emission masks – Out of band emissions	$< 43+10\log_{10}(P[\text{Watts}])$	PASS	1
3.2	§2.1053 §90.691	Field Strength of Spurious Radiation	$< 43+10\log_{10}(P[\text{Watts}])$	PASS	Under limit 30.66 dB at 2440.00 MHz
-	§2.1055 §90.213	Frequency Stability for Temperature & Voltage	< 2.5 ppm	PASS	1

Remark 1: Test results are leveraged from module RF report No “SEWA2204000008RG02”.

Conformity Assessment Condition:

1. The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.
2. The measurement uncertainty please refer to each test result in the section “Measurement Uncertainty”

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

1 General Description

1.1 Applicant

Viavi Solutions Inc.

1445 South Spectrum Boulevard, Suite 102, Chandler, Arizona 85286

1.2 Manufacturer

Viavi Solutions Inc.

1445 South Spectrum Boulevard, Suite 102, Chandler, Arizona 85286

1.3 Feature of Equipment Under Test

Product Feature	
Equipment	5G Sub-6 GHz M.2 Module with WCDMA and LTE
Brand Name	VIAVI
Model Name	RM520N-GL
FCC ID	WUW-RM520NGL
EUT Stage	Identical Prototype

Host Product Feature	
Equipment	XEDGE 2.0
Brand Name	VIAVI
Model Name	NXE-DEVICE-4M
IMEI Code	Conducted : IMEI A: 868371051639645 IMEI B: 868371051635213 IMEI C: 868371051635338 IMEI D: 868371051639819 Radiation : IMEI A: 868371051120539 IMEI B: 868371051121032 IMEI C: 868371051143184 IMEI D: 868371051635312
Applicant	Viavi Solutions Inc. 1445 South Spectrum Boulevard, Suite 102, Chandler, Arizona 85286
Manufacturer	Viavi Solutions Inc. 1445 South Spectrum Boulevard, Suite 102, Chandler, Arizona 85286

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Product Specification subjective to this standard	
Tx Frequency	814 ~ 824 MHz
Rx Frequency	859 ~ 869 MHz
SCS / Bandwidth	15kHz : 5MHz / 10MHz / 15MHz / 20MHz
Maximum Output Power to Antenna	< Module A> <Ant.0> 22.81 dBm < Module B> <Ant.0> 22.80 dBm < Module C> <Ant.0> 22.80 dBm < Module D> <Ant.0> 22.81 dBm
Antenna Gain	< Module A/B/C/D> <Ant.0> 6.0 dBi
Type of Modulation	CP-OFDM: QPSK / 16QAM / 64QAM / 256QAM DFT-s-OFDM: Pi/2 BPSK / QPSK / 16QAM / 64QAM / 256QAM

Note:

1. Only maximum conducted Power of Ant.0 (Modem A) is shown in the report.
2. The four Modules are the same include Power setting, but we still verified the real power, which is within the uncertainty range, so we chose the module of the higher power for testing, each Module has four antennas, for 5G NR n26, only Ant.0 supports TX/RX function, the others are RX only.
3. For RSE testing, we choice the module of the higher conducted Power to test, because between four modules do not support MIMO mode.
4. 5G NR n26 is SA mode only.

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Maximum Conducted Power

5G NR n26		PI/2 BPSK / QPSK		16QAM / 64QAM / 256QAM	
BW (MHz)	Frequency Range (MHz)	Maximum Conducted power (W)	Emission Designator (99%OBW)	Maximum Conducted power (W)	Emission Designator (99%OBW)
5	816.5 ~ 821.5	0.1945	-	0.1507	-
10	819	0.1871	-	0.1466	-
15	821.5	0.1901	-	0.1483	-
20	824	0.1910	-	0.1592	-

Note: All modulations have been tested, and only the worst test results of PSK & QAM are shown in the report.

1.7 Testing Site

Sportun International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sportun International Inc. (Kunshan)		
Test Site Location	No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China TEL : +86-512-57900158		
Test Site No.	Sportun Site No.	FCC Designation No.	FCC Test Firm Registration No.
	03CH04-KS TH01-KS	CN1257	314309

1.8 Test Software

Item	Site	Manufacture	Name	Version
1.	TH01-KS	SPORTON	FCC LTE_Ver2.0 Auto_china_210503	2.0
2.	03CH04-KS	AUDIX	E3	210616

1.9 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

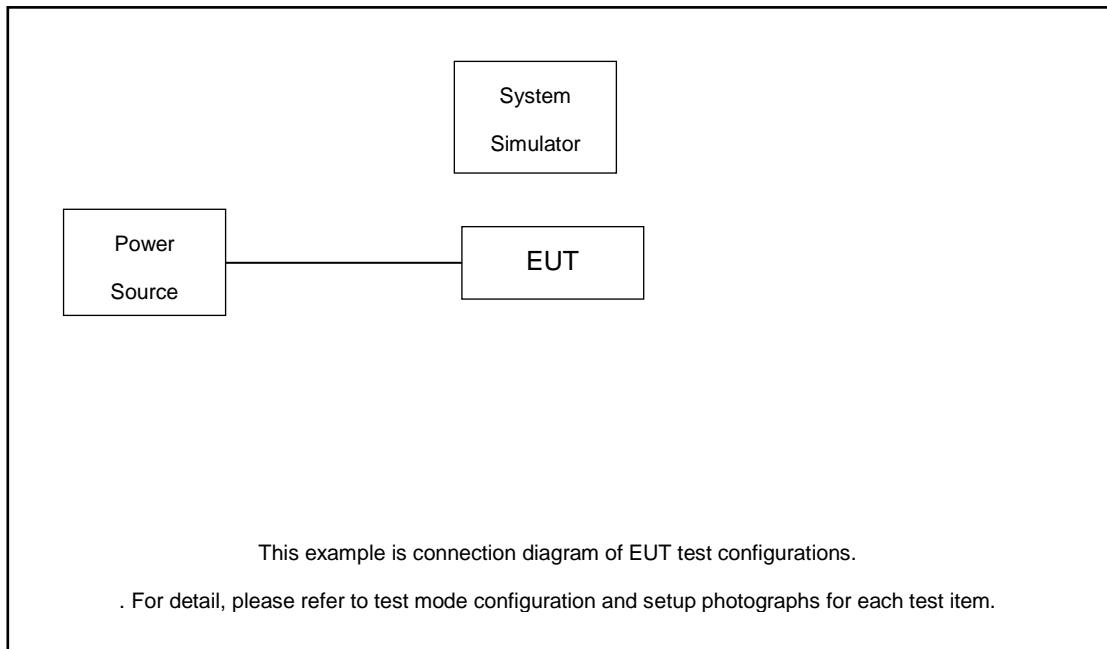
- 47 CFR 90(S)
- ANSI C63.26-2015
- FCC KDB 971168 D01 Power Meas. License Digital Systems v03r01
- FCC KDB 971168 D02 Misc Rev Approv License Devices v02r02

Remark:

1. All test items were verified and recorded according to the standards and without any deviation during the test.
2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Test Mode


During all testing, EUT is in link mode with base station emulator at maximum power level. The spurious emission measurements were carried out in semi-anechoic chamber with 3-meter test range, and EUT is rotated on three test planes to find out the worst emission.

Frequency range investigated for radiated emission is 30 MHz to 9000 MHz. (Y Plane)

Test Items	Band	Bandwidth (MHz)				Modulation					RB #			Test Channel		
		5	10	15	20	PI/2 BPSK	QPSK	16QAM	64QAM	256QAM	1	Half	Full	L	M	H
Max. Output Power	n26	v	v	v	v	v	v	v	v	v	v		v	v	v	v
Radiated Spurious Emission	n26	Worst Case														
Note	<ol style="list-style-type: none">1. The mark "v" means that this configuration is chosen for testing2. The mark "-" means that this bandwidth is not supported.3. 5G NR n26 transmit frequency for part22 rule is 824MHz-849MHz, for part90 rule is 814MHz-824MHz. ERP over 15MHz bandwidth complies the ERP limit line of part22 rule, therefore ERP of the partial frequency spectrum which falls within part 22 also complies.4. Frequency Stability: Normal Voltage = 24V ; Low Voltage =11V.; High Voltage =28V															

2.2 Connection Diagram of Test System

2.3 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model No.	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	NR Base Station	Anritsu	MT8000A	N/A	N/A	Unshielded, 1.8 m

2.4 Frequency List of Low/Middle/High Channels

5G NR n26 Channel and Frequency List				
BW [MHz]	Channel/Frequency(MHz)	Lowest	Middle	Highest
10	Channel	-	163800	-
	Frequency	-	819	-
5	Channel	163300	163800	164300
	Frequency	816.5	819	821.5

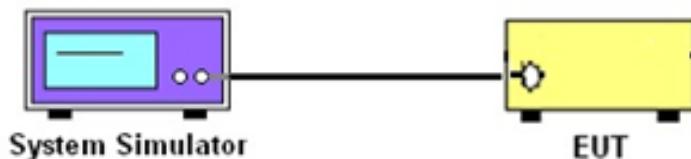
5G NR n26 Cross-rule Channel and Frequency List				
BW [MHz]	Channel/Frequency(MHz)	-	Middle	-
20	Channel	-	164800	-
	Frequency	-	824	-
15	Channel	-	164300	-
	Frequency	-	821.5	-

3 Test Result

3.1 Conducted Output Power Measurement

3.1.1 Description of the Conducted Output Power Measurement

A system simulator was used to establish communication with the EUT. Its parameters were set to enforce EUT transmitting at the maximum power. The measured power in the radio frequency on the transmitter output terminals shall be reported.


3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

1. The transmitter output port was connected to the system simulator.
2. Set EUT at maximum power through the system simulator.
3. Select lowest, middle, and highest channels for each band and different modulation.
4. Measure and record the power level from the system simulator.

3.1.4 Test Setup

3.1.5 Test Result of Conducted Output Power

Please refer to Appendix A.

3.2 Field Strength of Spurious Radiation Measurement

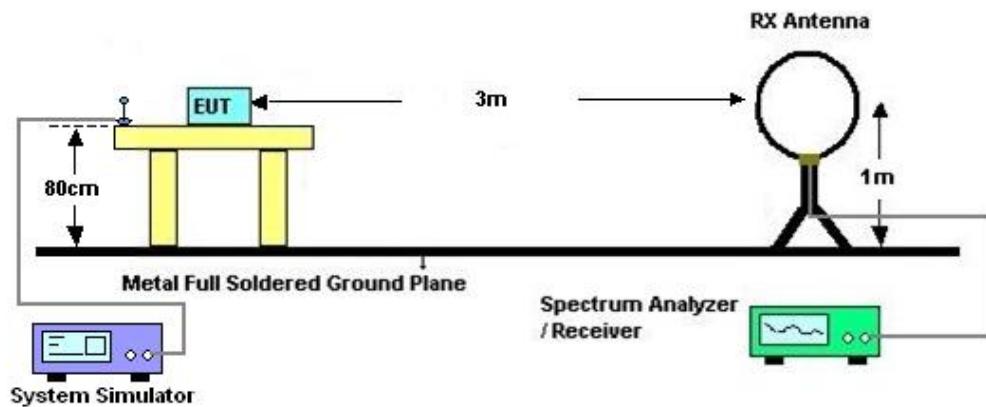
3.2.1 Description of Field Strength of Spurious Radiated Measurement

The radiated spurious emission was measured by substitution method according to ANSI C63.26.

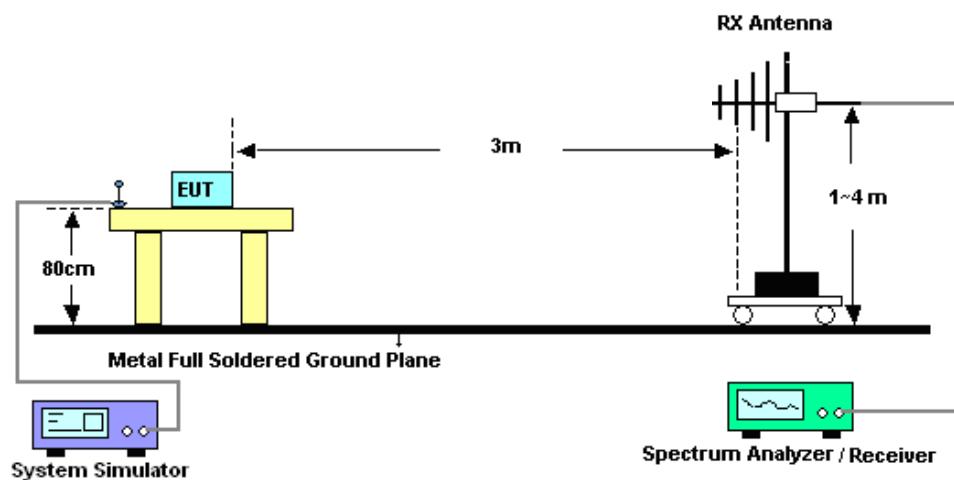
The power of any emission FCC Part 90.691 on any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth at least $43 + 10 \log(P)$ dB. The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log_{10}(P[\text{Watts}])$ dB. The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

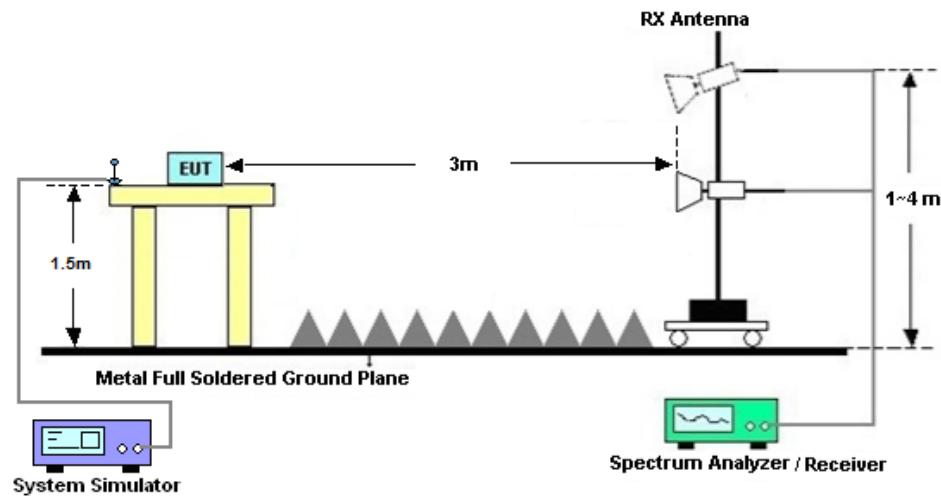
3.2.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures


1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
2. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
4. The height of the receiving antenna is varied between one meter and four meters to search the maximum spurious emission for both horizontal and vertical polarizations.
5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, Sweep = 500ms, Taking the record of maximum spurious emission.
6. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
7. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
8. Taking the record of output power at antenna port.
9. Repeat step 7 to step 8 for another polarization.
10. EIRP (dBm) = S.G. Power – Tx Cable Loss + Tx Antenna Gain
11. ERP (dBm) = EIRP - 2.15
12. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
13. The limit line is derived from $43 + 10 \log(P)$ dB below the transmitter power P(Watts)

3.2.4 Test Setup


For radiated test from 30MHz

For radiated test from 30MHz to 1GHz

For radiated test above 1GHz

3.2.5 Test Result of Field Strength of Spurious Radiated

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

Please refer to Appendix B.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Oct. 10, 2024	Oct. 16, 2024~Nov. 04, 2024	Oct. 09, 2025	Conducted (TH01-KS)
Power divider	STI	STI08-0055	-	0.5~40GHz	NCR	Oct. 16, 2024~Nov. 04, 2024	NCR	Conducted (TH01-KS)
EXA Spectrum Analyzer	Keysight	N9010B	MY5747107 9	10Hz-44G,MAX 30dB	Oct. 11, 2023	Jul. 30, 2024	Oct. 10, 2024	Radiation (03CH04-KS)
Loop Antenna	R&S	HFH2-Z2E	101125	9kHz~30MHz	Sep. 09, 2023	Jul. 30, 2024	Sep. 08, 2024	Radiation (03CH04-KS)
Bilog Antenna	TeseQ	CBL6111D	44483	30MHz-1GHz	Dec. 06, 2023	Jul. 30, 2024	Dec. 05, 2024	Radiation (03CH04-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	75957	1GHz~18GHz	Oct. 23, 2023	Jul. 30, 2024	Oct. 22, 2024	Radiation (03CH04-KS)
SHF-EHF Horn	Com-power	AH-840	101070	18GHz~40GHz	Jan. 27, 2024	Jul. 30, 2024	Jan. 26, 2025	Radiation (03CH04-KS)
Amplifier	SONOMA	310N	413740	9KHz-1GHz	Jan. 03, 2024	Jul. 30, 2024	Jan. 02, 2025	Radiation (03CH04-KS)
Amplifier	EM	EM18G40GA	060728	18~40GHz	Jan. 02, 2024	Jul. 30, 2024	Jan. 01, 2025	Radiation (03CH04-KS)
high gain Amplifier	EM	EM01G18GA	060840	1Ghz-18Ghz	Oct. 11, 2023	Jul. 30, 2024	Oct. 10, 2024	Radiation (03CH04-KS)
Amplifier	EM	EM01G18GA	060892	1Ghz-18Ghz	Oct. 11, 2023	Jul. 30, 2024	Oct. 10, 2024	Radiation (03CH04-KS)
AC Power Source	Chroma	61601	F104090004	N/A	NCR	Jul. 30, 2024	NCR	Radiation (03CH04-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Jul. 30, 2024	NCR	Radiation (03CH04-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Jul. 30, 2024	NCR	Radiation (03CH04-KS)

NCR: No Calibration Required

5 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.26-2015. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Measurement

Conducted Power	±0.50 dB
-----------------	----------

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	2.83 dB
---	---------

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	2.83 dB
---	---------

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	2.82 dB
---	---------

----- THE END -----

Appendix A. Test Results of Conducted Test

Test Engineer :	Smile Wang	Temperature :	22~23°C
		Relative Humidity :	40~42%

Conducted Output Power (Average power)

5G NR n26_ Module A Ant0 :

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.
Channel				164800		
Frequency (MHz)				824		
20	PI/2 BPSK	1	1	22.66		
20	PI/2 BPSK	1	53	22.70		
20	PI/2 BPSK	1	104	22.81		
20	PI/2 BPSK	50	0	22.33		
20	PI/2 BPSK	50	28	22.70		
20	PI/2 BPSK	50	56	22.43		
20	PI/2 BPSK	100	0	22.23		
20	QPSK	1	1	22.78		
20	QPSK	1	53	22.70		
20	QPSK	1	104	22.65		
20	QPSK	50	0	21.84		
20	QPSK	50	28	22.79		
20	QPSK	50	56	21.93		
20	QPSK	100	0	21.93		
20	16QAM	1	1	22.02		
20	64QAM	1	1	20.39		
20	256QAM	1	1	18.33		
Channel				164300		
Frequency (MHz)				821.5		
15	QPSK	1	1	22.79		
15	16QAM	1	1	21.71		
Channel				163800		
Frequency (MHz)				819		
10	QPSK	1	1	22.72		
10	16QAM	1	1	21.66		
Channel				163300	163800	164300
Frequency (MHz)				816.5	819	821.5
5	QPSK	1	1	22.72	22.89	22.78
5	16QAM	1	1	21.69	21.78	21.72

Appendix B. Test Results of Radiated Test

Radiated Spurious Emission

Test Engineer :	Bruce	Temperature :	23~25°C
		Relative Humidity :	41~42%

5G NR n26 / 10MHz / QPSK / Ant. 0								
Channel	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Over Limit (dB)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)
Middle	1632	-60.36	-13	-47.36	-67.33	1.58	10.70	H
	2440	-43.66	-13	-30.66	-51.91	2.102	12.50	H
	3256	-53.17	-13	-40.17	-62.06	2.856	13.90	H
	4072	-59.79	-13	-46.79	-68.25	2.689	13.30	H
	1632	-61.38	-13	-48.38	-68.35	1.58	10.70	V
	2440	-51.61	-13	-38.61	-59.86	2.10	12.50	V
	3256	-50.29	-13	-37.29	-59.18	2.86	13.90	V
	4072	-56.96	-13	-43.96	-65.42	2.69	13.30	V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.