

Königswinkel 10
32825 Blomberg, Germany
Phone: +49 (0) 52 35 / 95 00-0
Fax: +49 (0) 52 35 / 95 00-10
office@phoenix-testlab.de
www.phoenix-testlab.de

Test Report

Report Number:

F161191E1

Equipment under Test (EUT):

SePem 155

Applicant:

Hermann Sewerin GmbH

Manufacturer:

Hermann Sewerin GmbH

REFERENCES

- [1] **FCC CFR 47 Part 90 (October 25, 2016)** Private Land Mobile Radio Services
- [2] **FCC CFR 47 Part 2 (October 25, 2016)** Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
- [3] **TIA-603-E (2016)** Land Mobile FM or PM Communications Equipment Measurement and Performance Standards
- [4] **ANSI C63.4-2014** American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

TEST RESULT

The requirements of the tests performed as shown in the overview (clause 4) were fulfilled by the equipment under test.

The complete test results are presented in the following.

Test engineer:	Wolfgang KASALOWSKY		28.10.2016
	Name	Signature	Date
Authorized reviewer:	Bernd STEINER		28.10.2016
	Name	Signature	Date

This test report is only valid in its original form.

Any reproduction of its contents in extracts without written permission of the accredited test laboratory PHOENIX TESTLAB GmbH is prohibited.

The test results herein refer only to the tested sample. PHOENIX TESTLAB GmbH is not responsible for any generalizations or conclusions drawn from these test results concerning further samples. Any modification of the tested samples is prohibited and leads to the invalidity of this test report. Each page necessarily contains the PHOENIX TESTLAB Logo and the TEST REPORT NUMBER.

Contents:

	Page
1 Identification.....	.4
1.1 Applicant.....	4
1.2 Manufacturer.....	4
1.3 Test laboratory	4
1.4 EUT (Equipment Under Test)	5
1.5 Technical data of equipment.....	5
1.6 Dates	6
2 Operational states.....	7
3 Additional information.....	8
4 Overview.....	8
5 Test results	9
5.1 Transmitter output power.....	9
5.1.1 Method of measurement.....	9
5.1.2 Test result	9
5.2 Occupied bandwidth.....	10
5.2.1 Method of measurement.....	10
5.2.2 Test result	10
5.3 Emission masks	13
5.3.1 Method of measurement.....	13
5.3.2 Test Results	14
5.4 Spurious emissions (radiated)	19
5.4.1 General method of measurement	19
5.4.2 Preliminary radiated emission measurement.....	26
5.4.3 Final Results	32
5.4.3.1 Final radiated emission measurement (9 kHz to 1 GHz).....	32
5.4.3.2 Final radiated emission measurement (1 GHz to 5 GHz).....	32
5.5 Frequency Stability.....	34
5.5.1 Method of measurement.....	34
5.5.1.1 Test results.....	34
6 Test equipment used for tests	36
7 Report history.....	37
8 List of annexes.....	37

1 Identification

1.1 Applicant

Name:	Hermann Sewerin GmbH
Address:	Robert-Bosch-Strasse 3 33334 Gütersloh
Country:	Germany
Name for contact purposes:	Mr. Christian KREIENBRINCK
Phone:	+49 (0)5241 934 319
Fax:	+49 (0)5241 934 444
eMail Address:	Christian.Kreienbrinck@sewerin.com
Applicant represented during the test by the following person:	---

1.2 Manufacturer

Name:	Hermann Sewerin GmbH
Address:	Robert-Bosch-Strasse 3 33334 Gütersloh
Country:	Germany
Name for contact purposes:	Mr. Christian KREIENBRINCK
Phone:	+49 (0)5241 934 319
Fax:	+49 (0)5241 934 444
eMail Address:	Christian.Kreienbrinck@sewerin.com
Applicant represented during the test by the following person:	---

1.3 Test laboratory

The tests were carried out at: **PHOENIX TESTLAB GmbH**
Königswinkel 10
32825 Blomberg
Germany

accredited by Deutsche Akkreditierungsstelle GmbH (DAkkS) in compliance with DIN EN ISO/IEC 17025 under Reg. No. D-PL-17186-01-02, FCC Test Firm Accreditation with the registration number 469623, designation number DE0004 and Industry Canada Test site registration SITE# IC3469A-1.

1.4 EUT (Equipment Under Test)

Test object: *	Stationary noise logger
HVIN: *	SF02-A0205
PMN: *	SePem 155
FCC ID: *	WSP-SF02A0205
IC: *	7994A-SF02A0205
Serial number: *	100 09 00002

* declared by the applicant.

1.5 Technical data of equipment

Operating frequency range: *	TX: 461.0375 MHz to 464.5625 MHz RX: 466.0375 MHz to 469.5625 MHz		
Channel spacing: *	12.5 kHz		
Modulation: *	GFSK		
Rated Power: *	<p>-6dBm: - when the logger will be activated by a magnet. - when the reading device (Master) and the logger are close together.</p> <p>13dBm: - when the logger sends in its transmission window (depends on the settings). - when the transmission quality (between master and logger) falls below a specific value (RSSI).</p> <p>The customer cannot choose directly the output power.</p>		
Data Rate: *	4800 kbps		
Duty cycle: *	10%		
Antenna type: *	YUE-XP-378		
Antenna gain: *	1.8 dBi		
Antenna connector: *	TNC		
Power supply: *	3.6 V _{DC} by internal lithium battery		
Supply Voltage: *	$U_{\text{nom}} = 3.6 \text{ V}_{\text{DC}}$	$U_{\text{min}} = 3.1 \text{ V}_{\text{DC}}$	$U_{\text{max}} = 3.7 \text{ V}_{\text{DC}}$
Audio Filter: *	None		
Temperature range: *	- 20°C to + 55°C		
Lowest internal frequency: *	32 kHz		

* declared by the applicant.

List of Operating Frequencies (Transmit / Receive) *

§90.267 (d) Group B Frequencies [MHz]	§90.267 (e) Group C Frequencies [MHz]	
462.2125 / 467.2125	461.0375 / 466.0375	461.2875 / 466.2875
462.2375 / 467.2375	461.0625 / 466.0625	461.3125 / 466.3125
462.2625 / 467.2625	461.0875 / 466.0875	461.3375 / 466.3375
462.2875 / 467.2875	461.1125 / 466.1125	461.3625 / 466.3625
462.3125 / 467.3125	461.1375 / 466.1375	462.8625 / 467.8625
462.3375 / 467.3375	461.1625 / 466.1625	462.8875 / 467.8875
462.3625 / 467.3625	461.1875 / 466.1875	462.9125 / 467.9125
462.3875 / 467.3875	461.2125 / 466.2125	464.4875 / 469.4875
467.4125 / 467.4125	461.2375 / 466.2375	464.5125 / 469.5125
462.4375 / 467.4375	461.2625 / 466.2625	464.5375 / 469.5375
		464.5625 / 469.5625

* declared by the applicant.

The following external I/O cables were used:

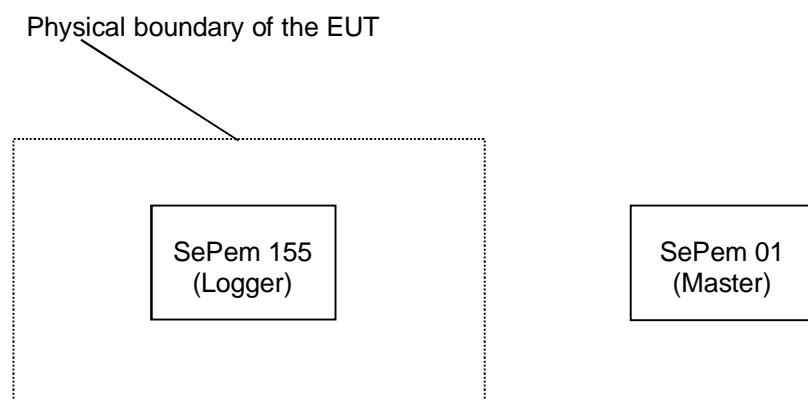
No cables were connectable to the EUT

1.6 Dates

Date of receipt of test sample:	29.06.2016
Start of test:	30.06.2016
End of test:	18.07.2016

2 Operational states

The test was carried out with an unmodified test sample operating in test mode. The test mode was implemented by the applicant. To enter the test mode, the EUT has to be activated with the help of a permanent magnet, presented on the housing of the EUT. So the operational state of the SePem 155 (Logger) could be chosen with the help of a SePem 01 (Master).


During the spurious emission and radiation measurement the test sample was powered by the internal 3.6 V battery.

For measurements under extreme conditions, an external power supply was connected to the battery contacts of the EUTs transmitter.

As declared by the applicant, the EUT is intended to be used in the frequency range -20°C to $+55^{\circ}\text{C}$. Due to this fact the measurements under extreme conditions were carried out using this temperature range.

The EUT is equipped with a permanent external antenna connector, but is intended to be used with the antenna type YUE-XP-378 from Yue Young only (dedicated antenna).

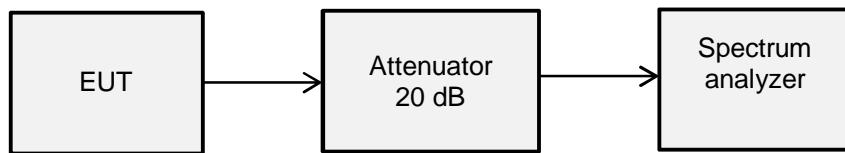
During the tests, the EUT was labelled with a preliminary label.

3 Additional information

A SePem01 Master with special configuration software was used to set the SePem 01 Data Logger in the requested operation mode.

All measurements were performed with the EUT set to maximum RF power.

4 Overview


Application	FCC CFR 47 section	Status	Refer page
Transmitter output power	90.205 [1] 2.1046 [2]	Passed	9 et seq.
Occupied bandwidth	90.209 [1] 2.1049 [2]	Passed	10 et seq.
Spectrum emission mask	90.217 [1] 2.1049 [2]	Passed	13 et seq.
Spurious emissions (transmitter, radiated)	90.210 [1] 2.1057 [2] 2.1053 [2]	Passed	19 et seq.
Frequency stability	90.213 [1] 2.1055 [2]	Passed	34 et seq.

5 Test results

5.1 Transmitter output power

5.1.1 Method of measurement

Test setup:

The EUT is set to transmit continuously at maximum RF power.

The following spectrum analyser settings were used:

- Span: 100kHz
- Resolution bandwidth: 50 kHz
- Video bandwidth: 500 kHz
- Sweep time: 45 ms
- Detector function: Peak
- Trace mode: Max hold

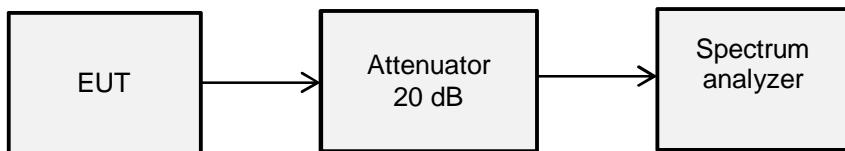
5.1.2 Test result

Ambient temperature	23 °C	Relative humidity	22 %
Test Condition	Measured output power [dBm]		Limit [dBm]
T _{nom} (20 °C)	461.0375 MHz	462.8625 MHz	464.5625 MHz
U _{nom} (3.6 V DC)	12.9	12.9	12.9
U _{min} (3.1 V DC)	13.2	13.2	13.2
U _{max} (3.7 V DC)	13.2	13.2	13.2
Measurement uncertainty: +0.66 dB / -0.72 dB			

Limit:

The output power shall be within ± 1 dB of the manufacturer's rated power listed in the equipment specifications.

Test: Passed


Test equipment used (refer clause 6):

23, 29

5.2 Occupied bandwidth

5.2.1 Method of measurement

Test setup:

The EUT is set to transmit continuously.

The following spectrum analyser settings were used:

Channel spacing: 12.5 kHz

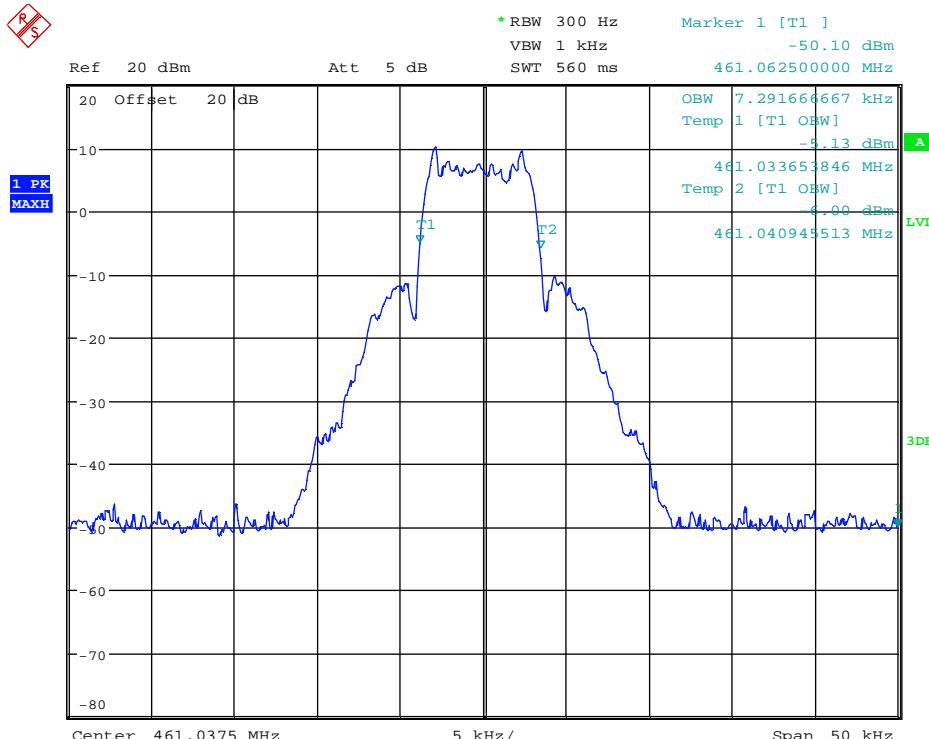
- Span: 50 kHz
- Resolution bandwidth: 300 Hz
- Video bandwidth: 1 kHz
- Sweep time: 560 ms
- Detector function: Peak
- Trace mode: Max hold

5.2.2 Test result

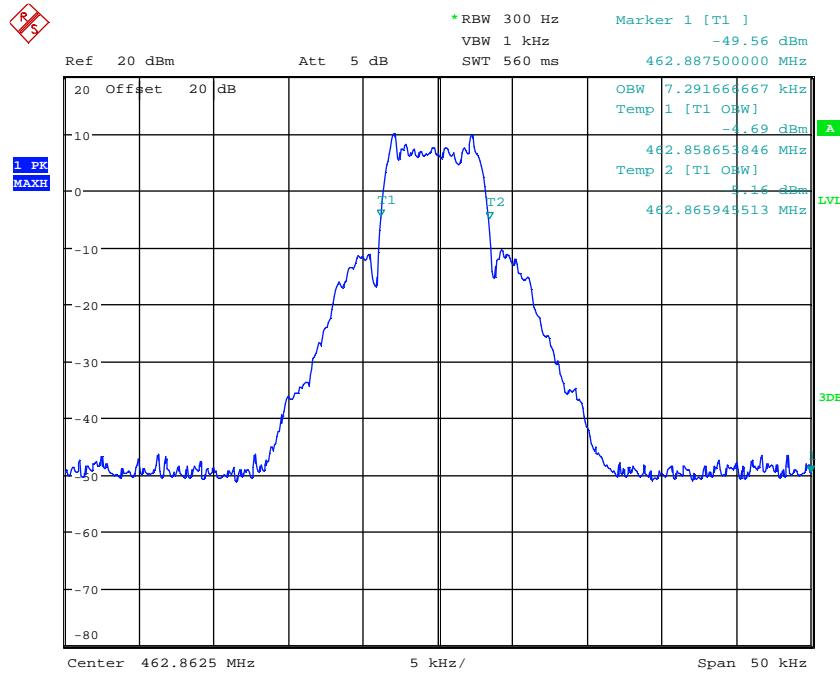
Ambient temperature	23 °C	Relative humidity	22 %
---------------------	-------	-------------------	------

Measured 99% bandwidth [kHz]			Limit [kHz] (Authorized bandwidth)
461.0375 MHz	462.8625 MHz	464.5625 MHz	
7.292	7.292	7.372	11.25
Measurement uncertainty: <10 ⁻⁷ (frequency), 0.66 dB / -0.72 dB (level)			

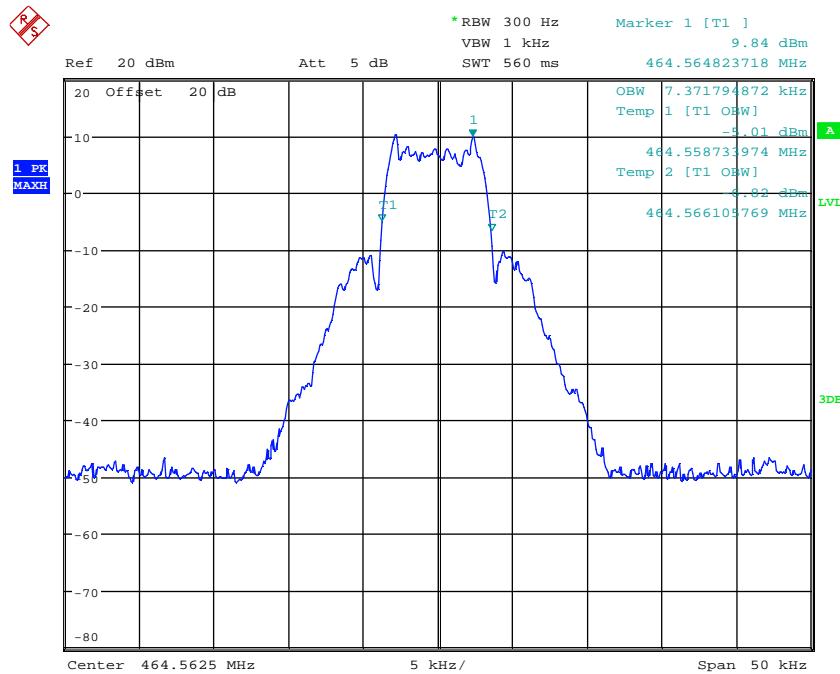
Limit:


The maximum permissible occupied bandwidth shall not exceed the authorized bandwidth. The authorized bandwidth is defined as the maximum width of the band of frequencies used to derive spectrum masks and is not necessarily equivalent to the bandwidth found on radio and spectrum licenses.

Frequency Band (MHz)	Channel Spacing (kHz)	Authorized Bandwidth (kHz)	Spectrum Masks for Equipment With Audio Filter	Spectrum Masks for Equipment Without Audio Filter
406.1-430 and 450-470	25	20 22	B Y	C (G) * Y
	12.5	11.25	D	D

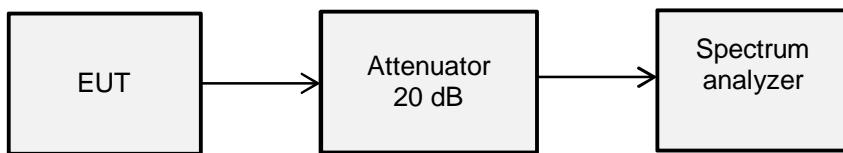

* Paging transmitters in the bands 406.1-430 MHz and 450-470 MHz are to use mask G.

Test: Passed


161191_OBW_461.0375_PERM.wmf

161191_OBW_462.8625_PERM.wmf

161191_OBW_464.5625_PERM.wmf


Test equipment used (refer clause 6):

23, 29

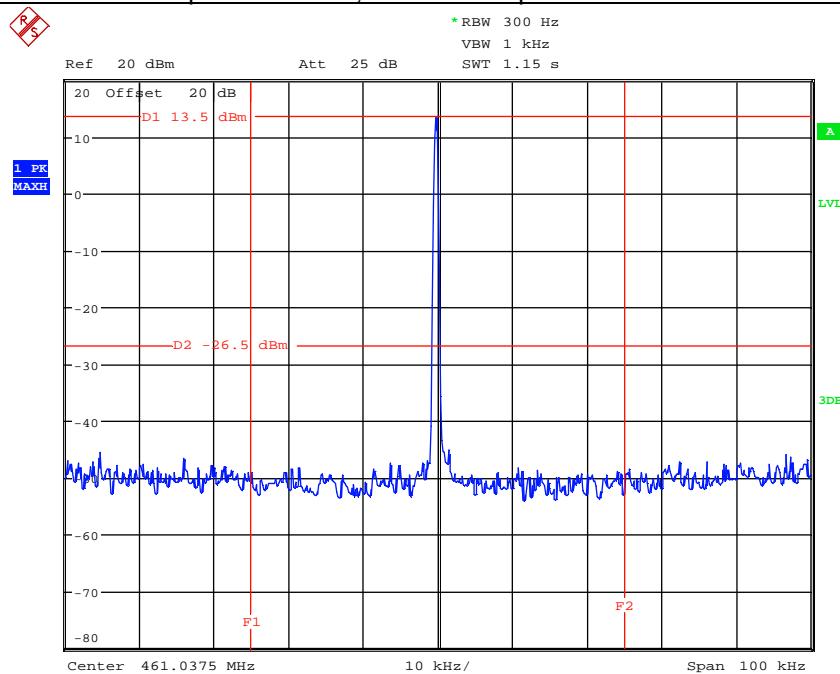
5.3 Emission masks

5.3.1 Method of measurement

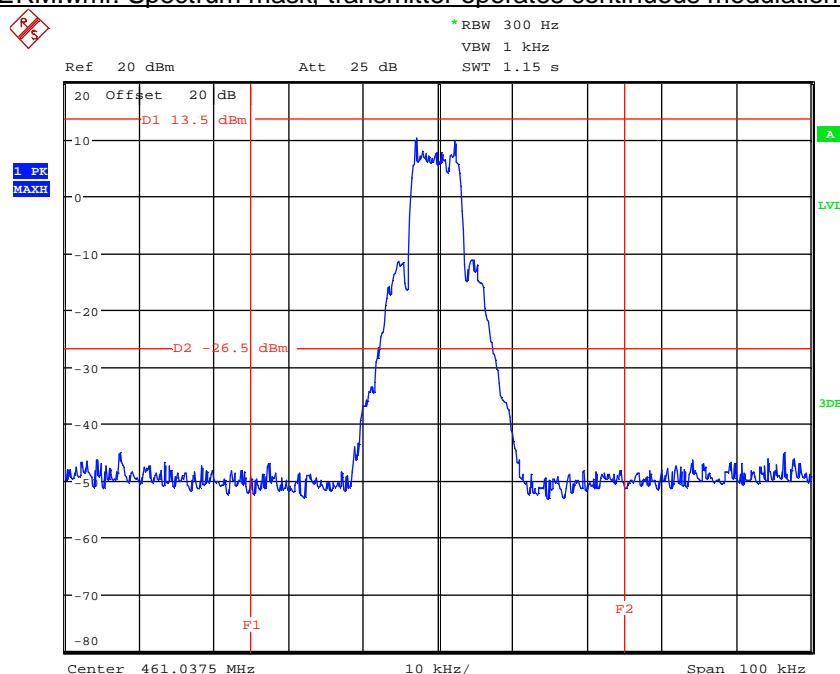
Test setup:

The following spectrum analyser settings were used:

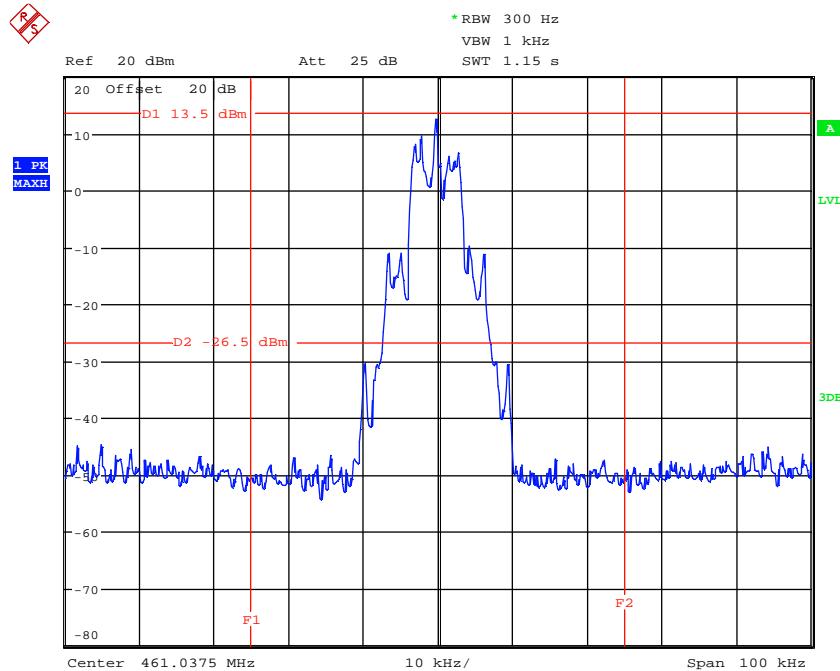
Channel spacing:	12.5 kHz
- Span:	50 kHz
- Resolution bandwidth:	300 Hz
- Video bandwidth:	1 kHz
- Mode:	Auto sweep
- Sweep time:	500 ms
- Detector function:	Peak
- Trace mode:	Max hold


The measurement is done with unmodulated carrier, continuous transmission with modulation and transmission of bursts.

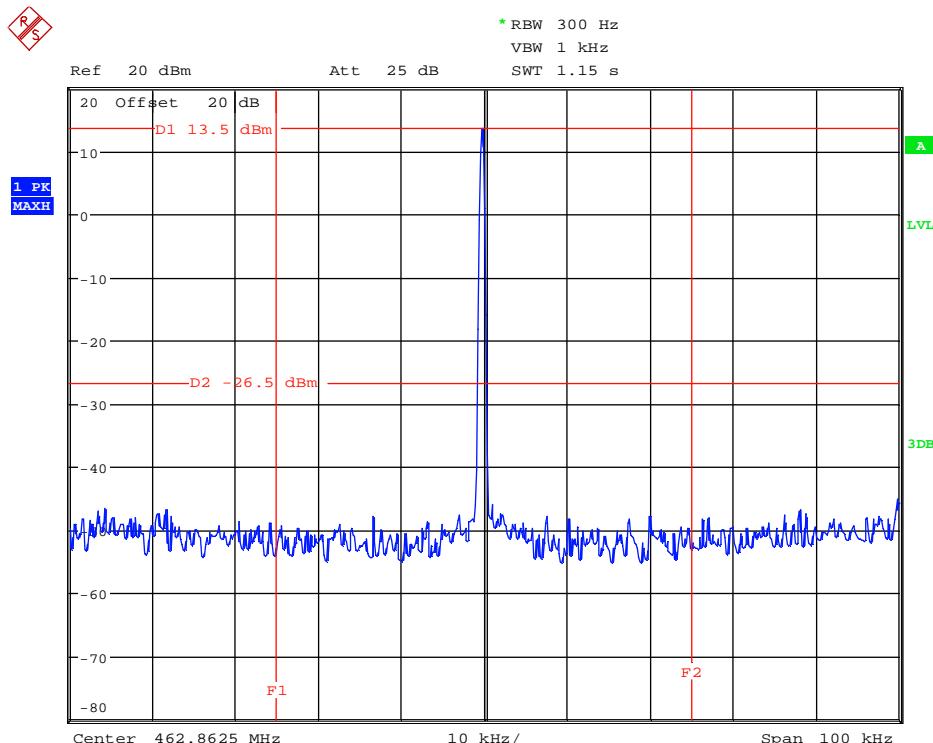
5.3.2 Test Results


Ambient temperature	23 °C	Relative humidity	22 %
---------------------	-------	-------------------	------

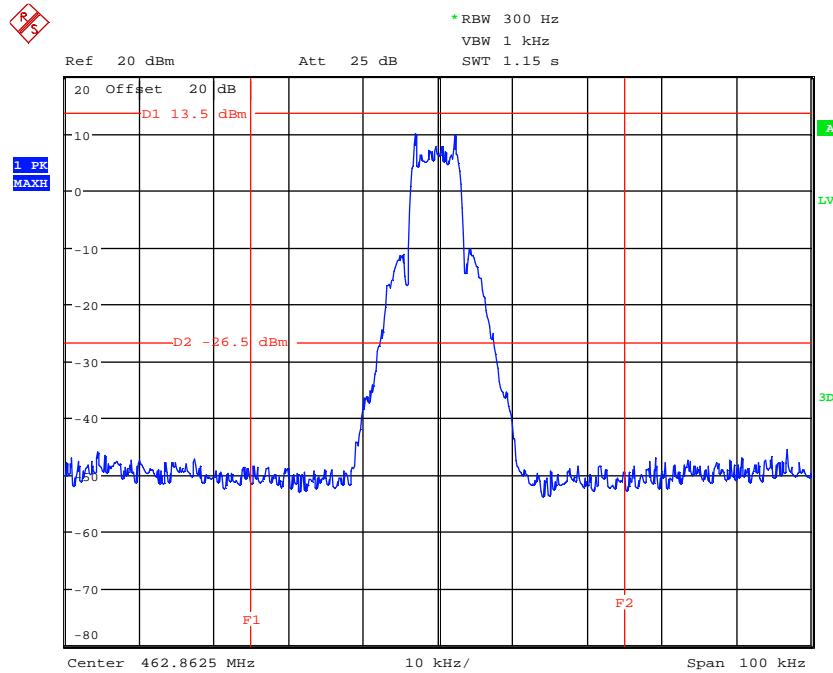
Transmitter operates on 461.0375 MHz:


161191_LOW_CARRIER.wmf: Spectrum mask, transmitter operates without modulation at 461.0375 MHz:

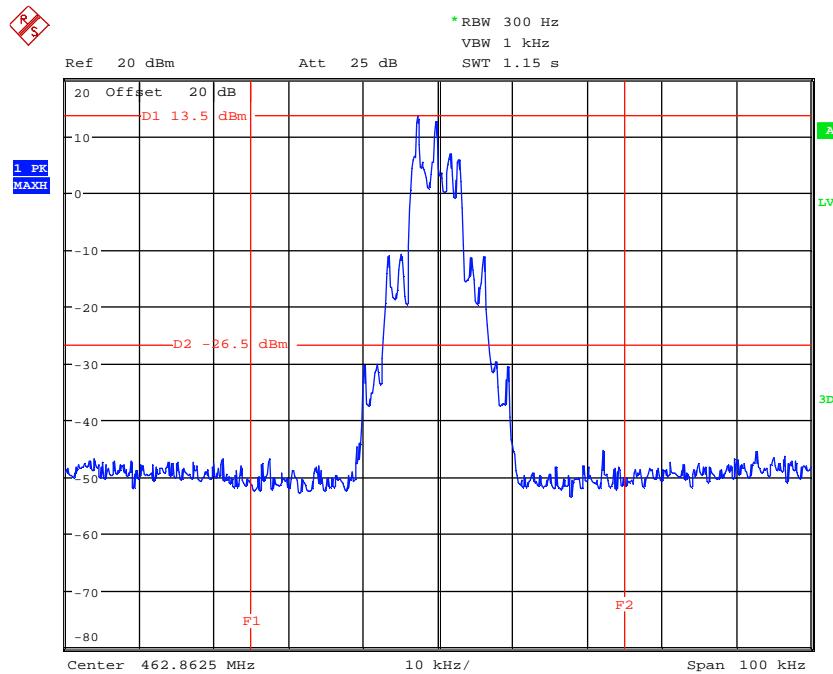
161191_LOW_PERM.wmf: Spectrum mask, transmitter operates continuous modulation at 461.0375 MHz:



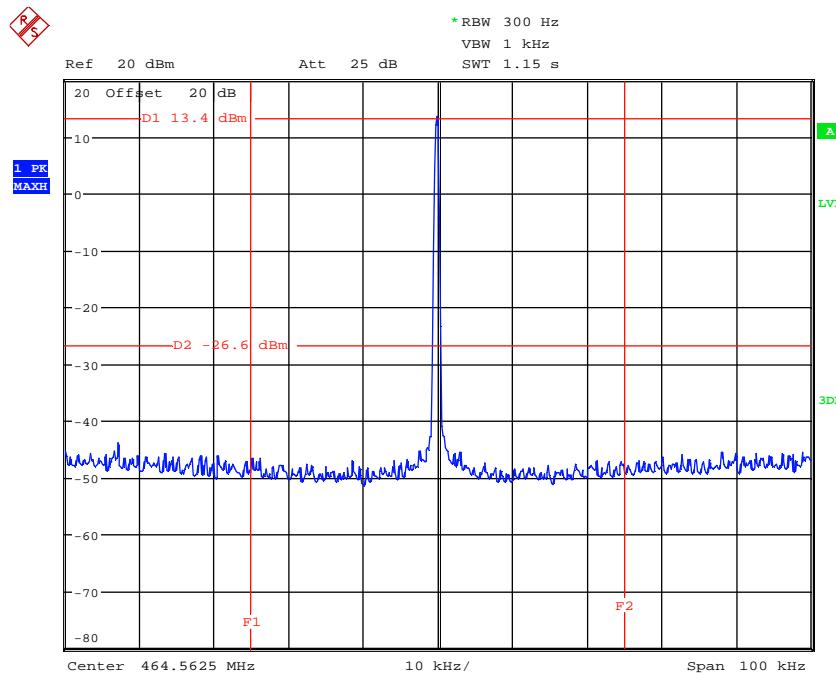
161191_LOW_BURST.wmf: Spectrum mask, transmitter operates with burst modulation at 461.0375 MHz:



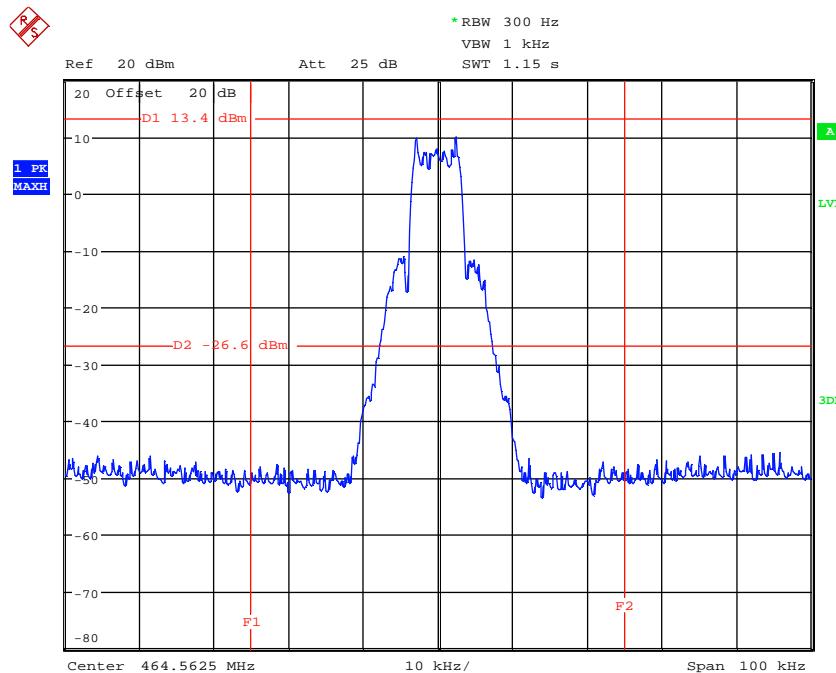
Transmitter operates on 462.8625 MHz:


161191_MID_CARRIER.wmf: Spectrum mask, transmitter operates without modulation at 462.8625 MHz:

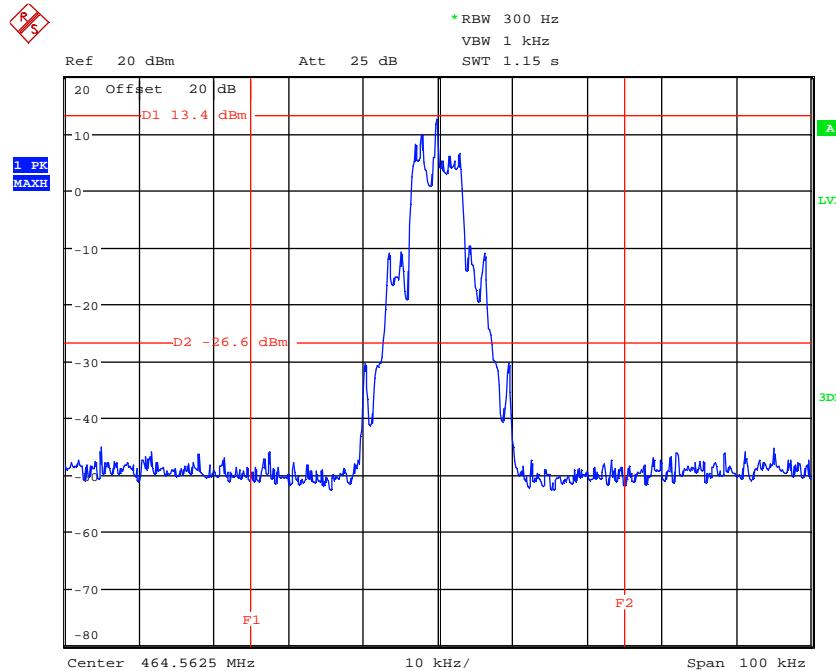
161191_MID_PERM.wmf: Spectrum mask, transmitter operates continuous modulation at 462.8625 MHz:



161191_MID_BURST.wmf: Spectrum mask, transmitter operates with burst modulation at 462.8625 MHz:


Transmitter operates on 464.5625 MHz:

161191_HIGH_CARRIER.wmf: Spectrum mask, transmitter operates without modulation at 464.5625 MHz:



161191 HIGH PERM.wmf:

Spectrum mask, transmitter operates with continuous modulation at 464.5625 MHz:

161191_HIGH_BURST.wmf: Spectrum mask, transmitter operates with burst modulation at 464.5625 MHz:

Limit:

Transmitters that have an output power that does not exceed 120 mW are exempt from the emission masks provided that they comply with the following:

The sum of the bandwidth occupied by the emitted signal plus the bandwidth required for frequency stability shall be adjusted so that any emission appearing on a displacement frequency, f_d , from the assigned frequency as shown in [the table below](#) is attenuated below the unmodulated carrier power by at least 30 dB, when measured with a resolution bandwidth of 300 Hz. If the unmodulated carrier power is not available, the modulated transmitter output power can be used instead. The transmitter output power is measured or integrated over its occupied bandwidth.

Displacement frequency for required attenuation for transmitters having an output power of less than 120 mW	
Equipment channel bandwidth (kHz)	Displacement frequency, f_d (kHz)
25	$f_d \geq 40$
30	$f_d \geq 40$
12.5	$f_d \geq 25$
15	$f_d \geq 25$
6.25	$f_d \geq 12.5$
7.5	$f_d \geq 12.5$

Test: Passed

Test equipment used (refer clause 6):

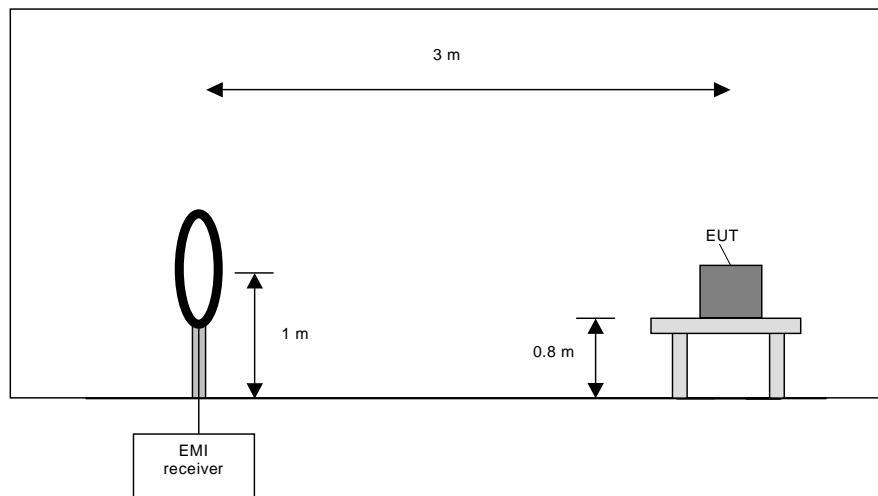
23, 29

5.4 Spurious emissions (radiated)

5.4.1 General method of measurement

The radiated emission measurement is subdivided into five stages.

- A preliminary measurement carried out in a fully anechoic chamber with a fixed antenna height in the frequency range 9 kHz to 1 GHz.
- A final measurement carried out at an outdoor test site without reflecting ground plane and a fixed antenna height in the frequency range 9 kHz to 30 MHz.
- A final measurement carried out at an open area test site with reflecting ground plane and various antenna heights in the frequency range 30 MHz to 1 GHz.
- A preliminary measurement carried out in a fully anechoic chamber with a fixed antenna height and various EUT positions in the frequency range 1 GHz to 5 GHz.
- A final measurement carried out in a fully anechoic chamber with various antenna heights in the frequency range 1 GHz to 5 GHz.


Preliminary measurement (9 kHz to 30 MHz):

In the first stage a preliminary measurement will be performed in a shielded room with a measuring distance of 3 meters. Table-top devices will be set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices will be placed directly on the turntable/ground plane. The setup of the Equipment under test will be in accordance to [4].

The frequency range 9 kHz to 30 MHz will be monitored with a spectrum analyser while the system and its cables will be manipulated to find out the configuration with the maximum emission levels if applicable. The EMI Receiver will be set to MAX Hold mode. The EUT and the measuring antenna will be rotated around their vertical axis to find the maximum emissions.

The resolution bandwidth of the spectrum analyser will be set to the following values:

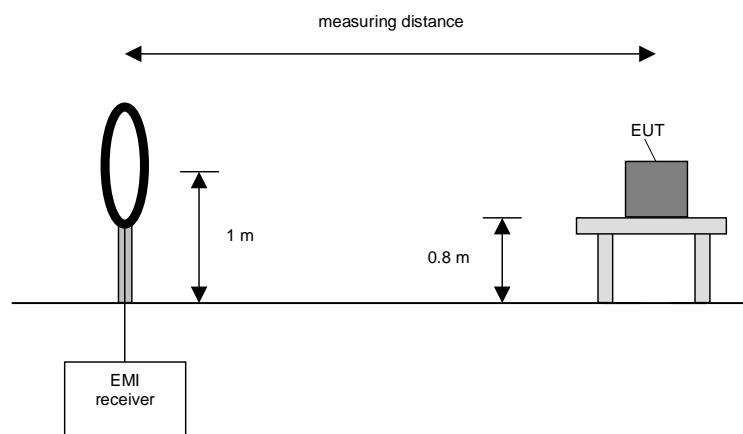
Frequency range	Resolution bandwidth
9 kHz to 150 kHz	300 Hz
150 kHz to 30 MHz	10 kHz

Preliminary measurement procedure:

Prescans were performed in the frequency range 9 kHz to 150 kHz and 150 kHz to 30 MHz.

The following procedure will be used:

- 1) Monitor the frequency range at horizontal polarisation and a EUT azimuth of 0 °.
- 2) Manipulate the system cables within the range to produce the maximum level of emission.
- 3) Rotate the EUT by 360 ° to maximize the detected signals.
- 4) Make a hardcopy of the spectrum.
- 5) Measure the frequencies of highest detected emission with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 6) Repeat steps 1) to 5) with the other orthogonal axes of the EUT (because of EUT is a module and might be used in a handheld equipment application).
- 7) Rotate the measuring antenna and repeat steps 1) to 5).


Final measurement (9 kHz to 30 MHz):

In the second stage a final measurement will be performed on an open area test site with no conducting ground plane in a measuring distances of 3 m, 10 m and 30 m

On the frequencies, which were detected during the preliminary measurements, the final measurement will be performed while rotating the EUT and the measuring antenna in the range of 0 ° to 360 ° around their vertical axis until the maximum value is found.

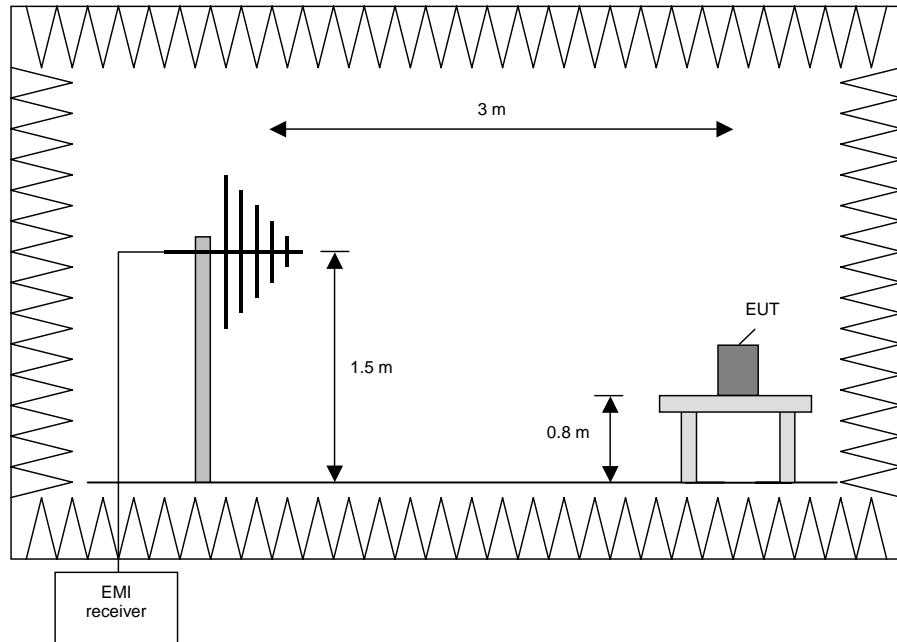
The resolution bandwidth of the EMI Receiver will be set to the following values:

Frequency range	Resolution bandwidth
9 kHz to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz

Final measurement procedure:

The following procedure will be used:

- 1) Monitor the frequency range with the measuring antenna at vertical orientation parallel to the EUT at an azimuth of 0 °.
- 2) Rotate the EUT by 360 ° to maximize the detected signals and note the azimuth and orientation.
- 3) Rotate the measuring antenna to find the maximum and note the value.
- 4) Rotate the measuring antenna and repeat steps 1) to 3) until the maximum value is found.
- 5) If the EUT is a module and might be used in a handheld equipment application:
Repeat steps 1) to 4) with the other orthogonal axes of the EUT.


Preliminary measurement (30 MHz to 1 GHz)

In the first stage a preliminary measurement will be performed in a fully anechoic chamber with a measuring distance of 3 meter. Table top devices will set up on a non-conducting table at the height of 0.8 m. Floor-standing devices will be placed directly on the turntable/ground plane.

The frequency range 30 MHz to 1 GHz will be measured with an EMI Receiver set to MAX Hold mode and a resolution bandwidth of 100 kHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 ° to 360 °.

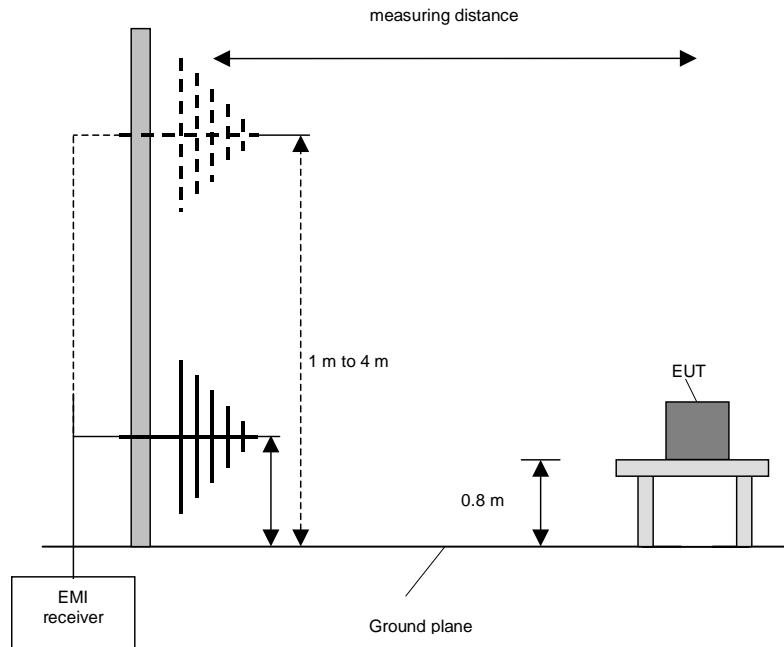
The resolution bandwidth of the EMI Receiver will be set to the following values:

Frequency range	Resolution bandwidth
30 MHz to 230 MHz	100 kHz
230 MHz to 1 GHz	100 kHz

Procedure preliminary measurement:

Prescans were performed in the frequency range 30 MHz to 1 GHz.

The following procedure will be used:


1. Monitor the frequency range at horizontal polarisation and a EUT azimuth of 0 °.
2. Manipulate the system cables within the range to produce the maximum level of emission.
3. Rotate the EUT by 360 ° to maximize the detected signals.
4. Make a hardcopy of the spectrum.
5. Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
6. Repeat 1) to 4) for each orthogonal axes of the EUT (only if the EUT is a module or is used in a handheld application).
7. Repeat 1) to 5) with the vertical polarisation of the measuring antenna.

Final measurement (30 MHz to 1 GHz)

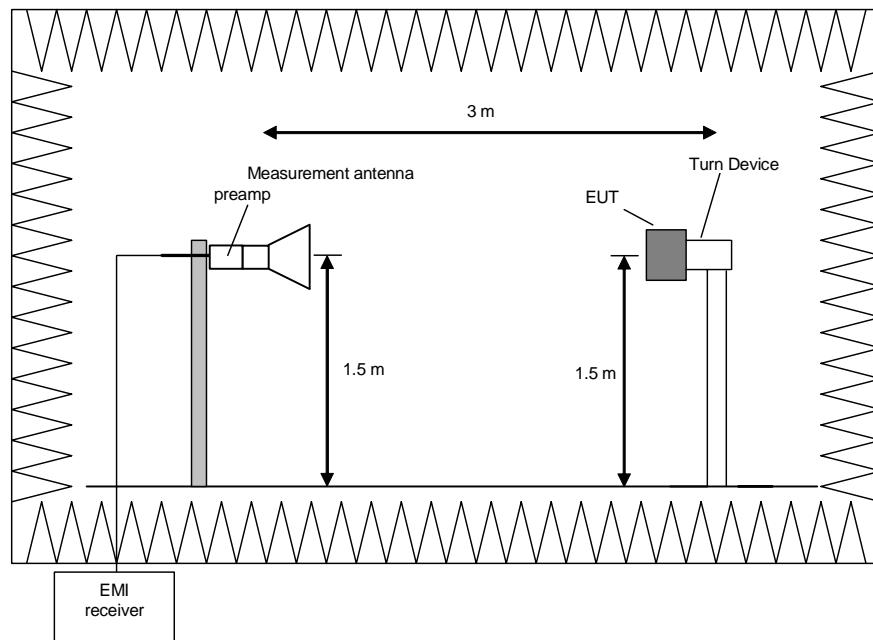
A final measurement at an open area test site will be performed on selected frequencies found in the preliminary measurement. During this test the EUT will be rotated in the range of 0 ° to 360 °, the measuring antenna will be set to horizontal and vertical polarisation and raised and lowered in the range from 1 m to 4 m to find the maximum level of emissions.

The resolution bandwidth of the EMI Receiver will be set to the following values:

Frequency range	Resolution bandwidth
30 MHz to 1 GHz	120 kHz

Procedure final measurement:

The following procedure will be used:


- 1) Measure on the selected frequencies at an antenna height of 1 m and a EUT azimuth of 23 °.
- 2) Move the antenna from 1 m to 4 m and note the maximum value at each frequency.
- 3) Rotate the EUT by 45 ° and repeat 2) until an azimuth of 337 ° is reached.
- 4) Repeat 1) to 3) for the other orthogonal antenna polarization.
- 5) Move the antenna and the turntable to the position where the maximum value is detected.
- 6) Measure while moving the antenna slowly +/- 1 m.
- 7) Set the antenna to the position where the maximum value is found.
- 8) Measure while moving the turntable +/- 45 °.
- 9) Set the turntable to the azimuth where the maximum value is found.
- 10) Measure with Final detector (QP and AV) and note the value.
- 11) Repeat 5) to 10) for each frequency.
- 12) Repeat 1) to 11) for each orthogonal axes of the EUT, if the EUT is a module and might be used in a handheld equipment application).

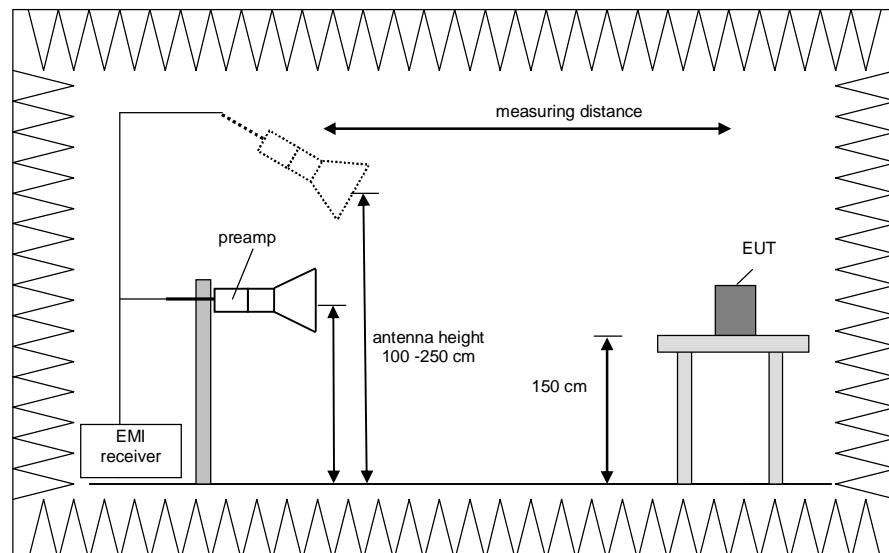
Preliminary and final measurement (1 GHz to 5 GHz)

This measurement will be performed in a fully anechoic chamber. The EUT will be set up on a non-conducting support at the height of 1.5 m. The set up of the Equipment under test will be in accordance to [4].

Preliminary measurement (1 GHz to 5 GHz)

The spectrum analyser is set to MAX Hold mode and a resolution bandwidth of 100 kHz. The measurement will be performed in horizontal and vertical polarisation of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0° to 360°. This measurement is repeated after raising the EUT in 30 ° steps from 0° to 150°.

Procedure of preliminary measurement:


Prescans were performed in the frequency range 1 to 5 GHz.

The following procedure will be used:

1. Monitor the frequency range at horizontal polarisation and a EUT azimuth of 0 °.
2. Rotate the EUT by 360° to maximize the detected signals.
3. Repeat 1) to 2) with the vertical polarisation of the measuring antenna.
4. Make a hardcopy of the spectrum.
5. Repeat 1) to 4) with the EUT raised by an angle of 30° (60°, 90°, 120° and 150°).
6. Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
7. The measurement antenna polarisation, with the according EUT position (Turntable and Turn device) which produces the highest emission for each frequency will be used for the final measurement.

Final measurement (1 GHz to 5 GHz)

The EMI Receiver is set to peak and average mode and a resolution bandwidth of 1 MHz. The measurement will be performed at the frequencies found during the preliminary measurements by rotating the turntable from 0 to 360° and at antenna height varied from 100 cm up to 250 cm. The setup will be in accordance to [3] and [4].

Procedure of final measurement:

The measurements were performed in the frequency range 1 GHz to 5 GHz.

The following procedure will be used:

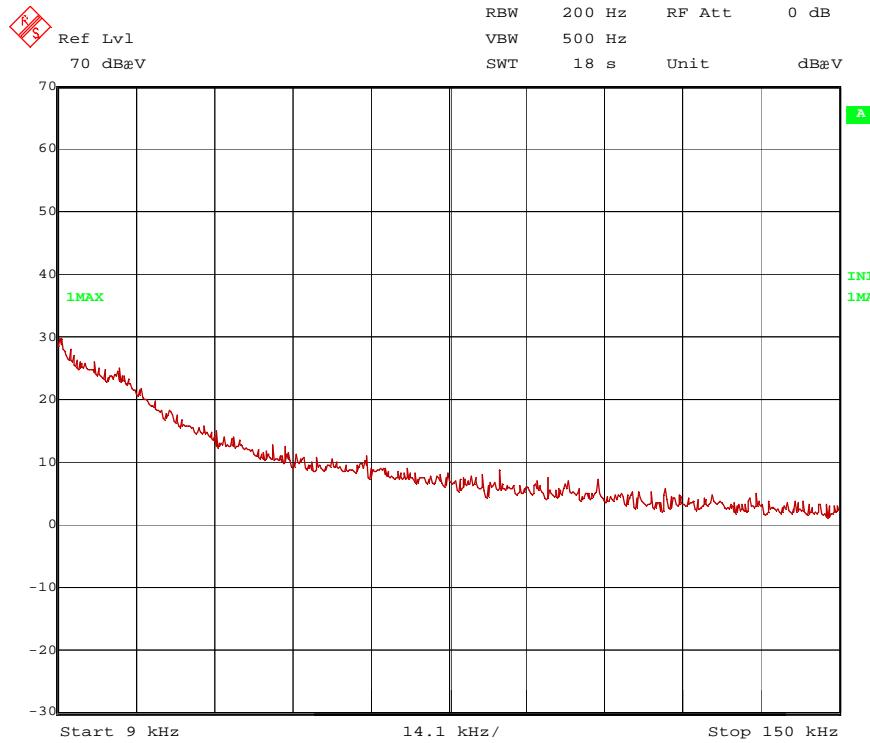
- 1) Monitor the selected frequencies from the preliminary measurement at horizontal and vertical polarisation and turn the EUT 360°.
- 2) Change the antenna height and repeat 1) with 100, 150, 200 and 250 cm height and an elevation pointing towards the EUT.
- 3) Make a hardcopy of the spectrum with each antenna height.
- 4) Compare the spectrum plots and take for each frequency the antenna height with the maximum emission.
- 5) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarisation and azimuth and the peak and average detector, which causes the maximum emission.
- 6) Replace the EUT by a suitable substitution antenna and connect this antenna to a signal generator.
- 7) Set the turntable to the azimuth and the antenna height to the position where the maximum value was found.
- 8) Change the output power for each frequency until the level of the EUT's emission is found.
- 9) Note the output power of the signal generator.

5.4.2 Preliminary radiated emission measurement

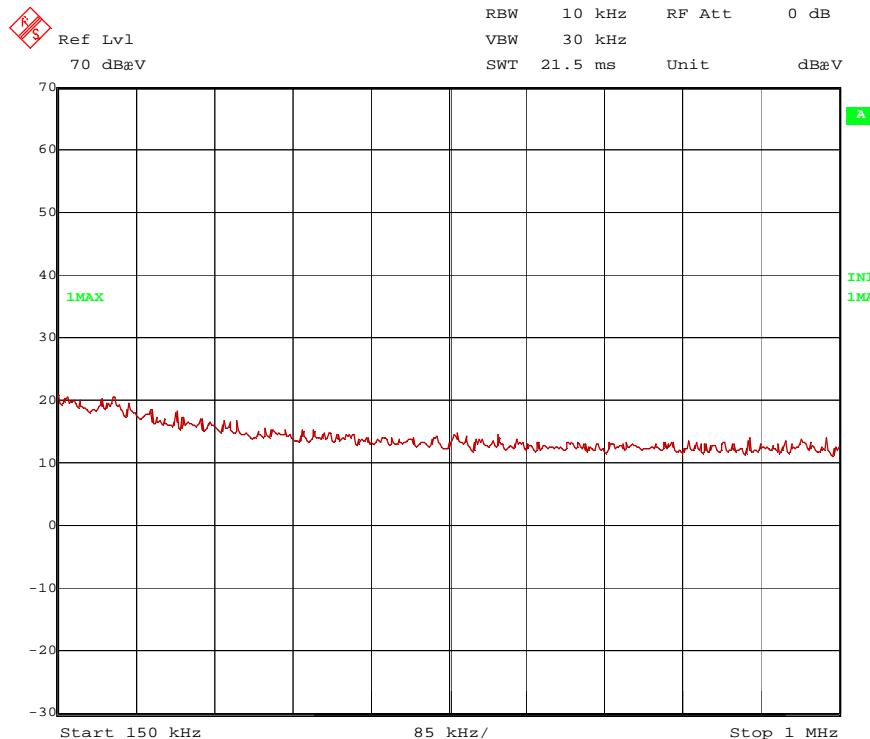
Ambient temperature	22°C	Relative humidity	72 %
---------------------	------	-------------------	------

Position of EUT: The EUT was set-up on a non-conducting table at a height of 0.8 m below 1 GHz and on a positioner at a height of 1,5 m above 1 GHz. The positioner was set to 0°, 30°, 60°, 90°, 120° and 150°. The distance between EUT and antenna was 3 m.

Cable guide: No cables were connectable to the EUT.

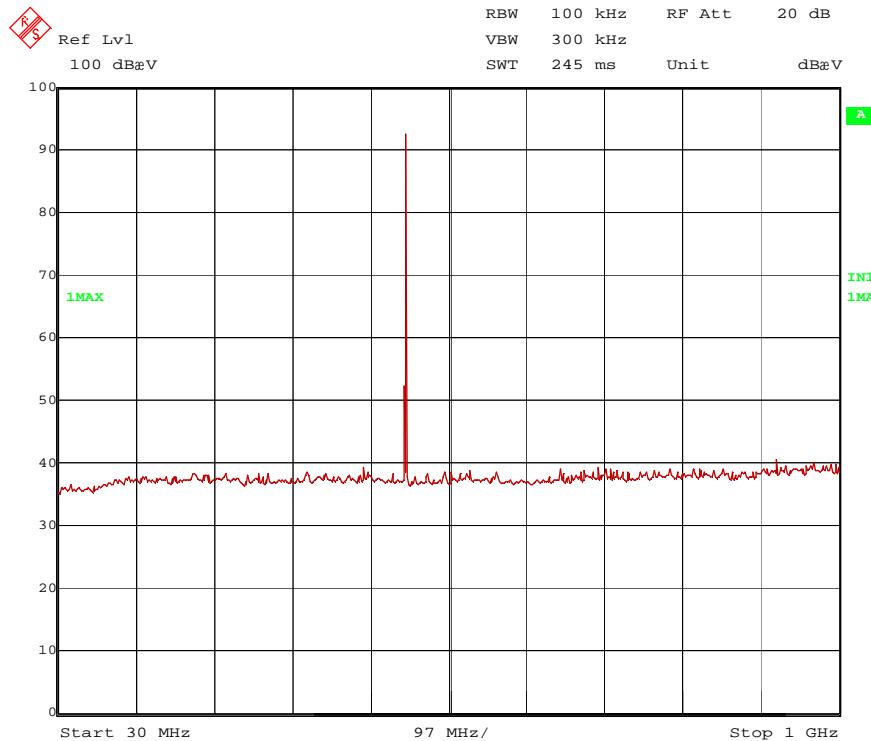

Test record: All results are shown in the following.

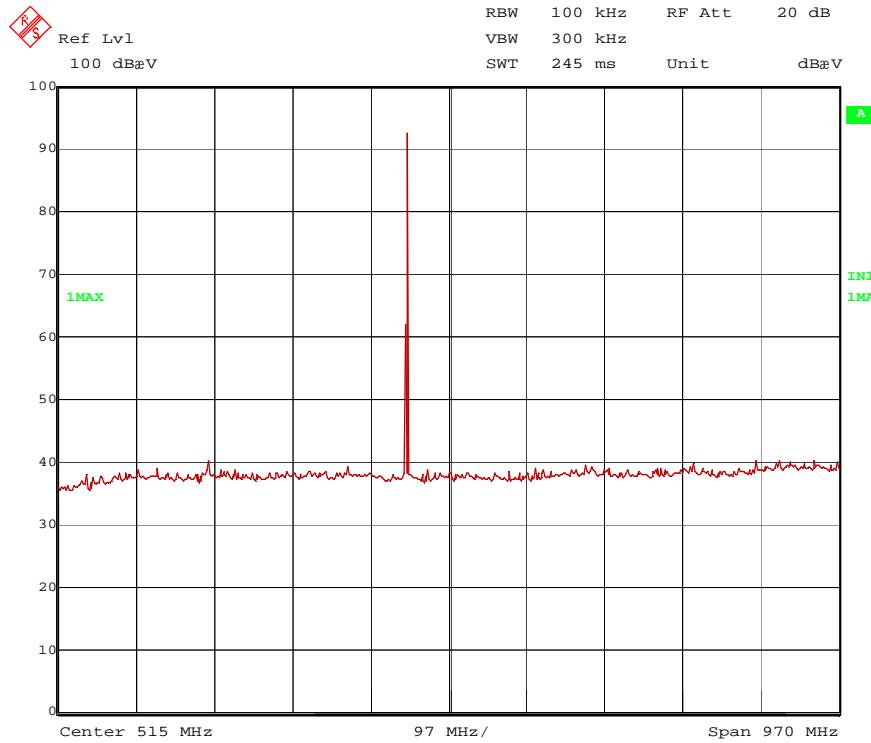
Supply voltage: During all measurements the EUT was powered with 3.6 V DC via the internal battery.

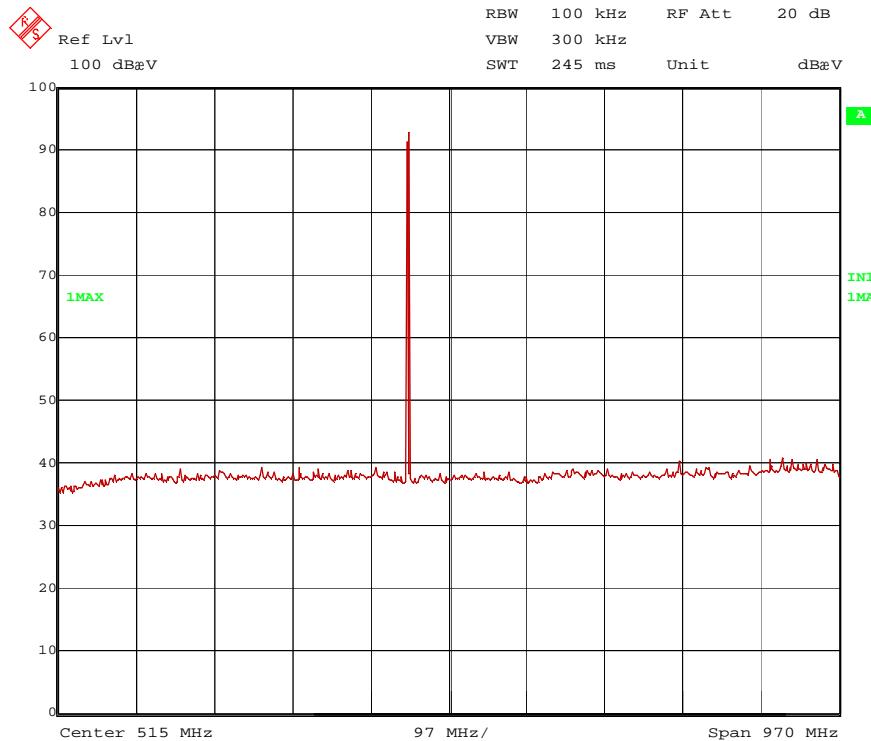

Remark: Only the plots of the worst case emissions are submitted for every frequency range above 30 MHz in the preliminary results.

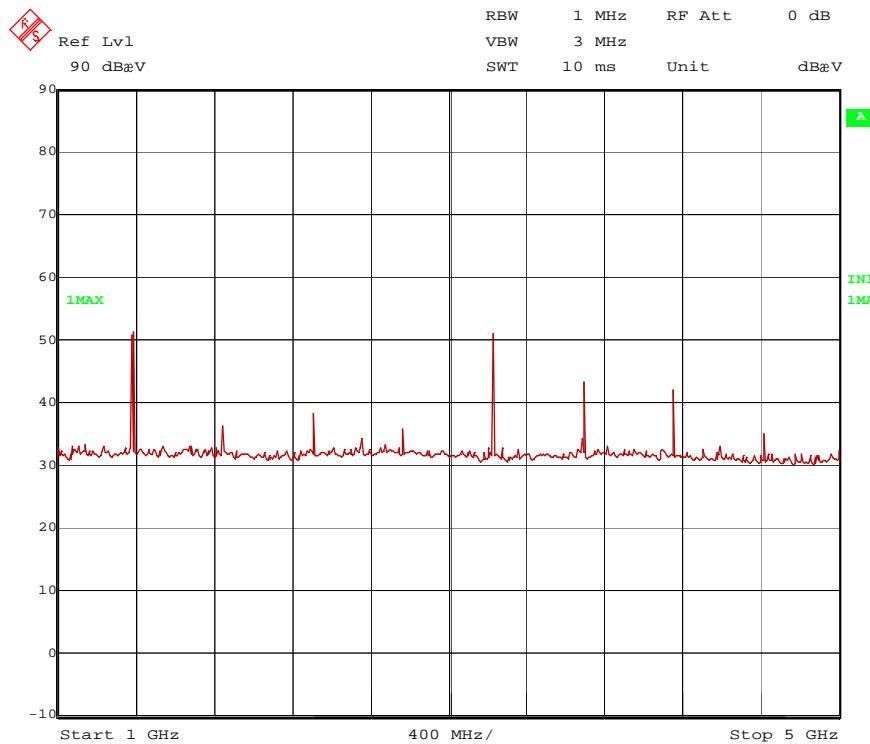
The Emissions below 30 MHz were similar for all transmit frequencies. Therefore only the results of an exemplary test case are submitted in the following.

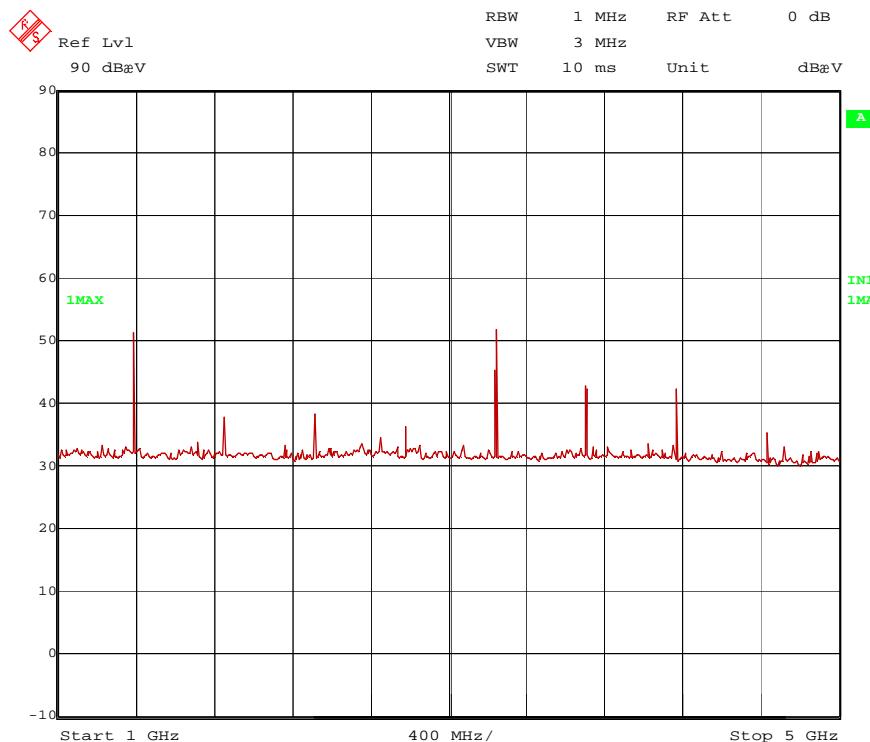
161191_TX_9k-150k.wmf

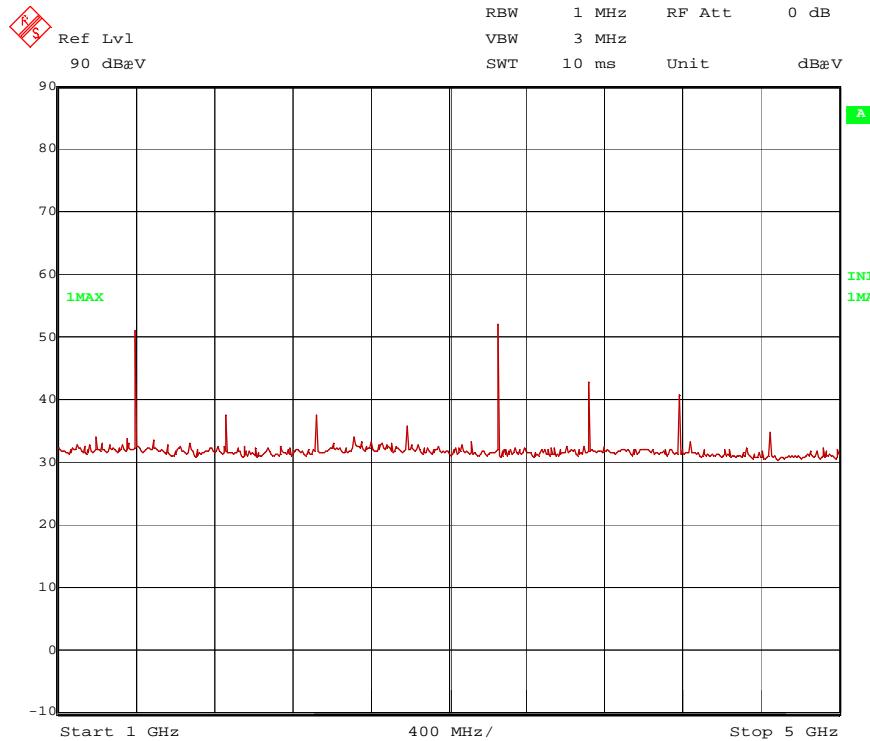

161191_TX_150k-1M.wmf


161191_TX_1-30M.wmf


161191_461.0375M_30M-1G.wmf


161191_462.8625M_30M-1G.wmf


161191_464.5625_30M-1G.wmf


161191_461.0375_1-5G.wmf

161191_462.8625_1-5G.wmf

161191_464.5625_1-5G.wmf

The following frequencies were found during the preliminary radiated emission test:

1383.1125 MHz, 3227.2625 MHz, 3688.3 MHz, 4149.3375 MHz,
 1388.5875 MHz, 3240.0375 MHz, 3702.9 MHz, 4165.7625 MHz,
 1393.6875 MHz, 3251.9375 MHz, 3716.5 MHz, 4181.0625 MHz

These frequencies have to be measured in a final measurement.
 The results are presented in the following.

5.4.3 Final Results

5.4.3.1 Final radiated emission measurement (9 kHz to 1 GHz)

No emissions could be found in the preliminary measurement. Therefore no final measurement was performed.

5.4.3.2 Final radiated emission measurement (1 GHz to 5 GHz)

Ambient temperature	22 °C	Relative humidity	72 %
---------------------	-------	-------------------	------

Position of EUT: The EUT was set-up on a non-conducting support at a height of 1.5 m. The antenna height was varied from 100 cm up to 250 cm. The distance between EUT and antenna was 1.9 m.

Cable guide: No cables were connectable to the EUT.

Test record: All results are shown in the following.

Supply voltage: During all measurements the EUT was powered with 3.6 V DC via the internal battery.

Resolution bandwidth: For all measurements a resolution bandwidth of 1 MHz was used.

Tx frequency: 416.0375 MHz

Frequency [MHz]	Result [dBm]	Limit [dBm]	Margin [dB]	Antenna Polarisation	Antenna height [m]	Turntable Angle [°]
1383.1	-44.1	-17.2	26,9	Ver.	1.5	54.00
3227.3	-37.7	-17.2	20,5	Ver.	1.5	229.00
3688.3	-43.1	-17.2	25,9	Ver.	1.5	230.00
4149.3	-43.5	-17.2	26,3	Ver.	1.5	203.00

Tx frequency: 462.8625 MHz

Frequency [MHz]	Result [dBm]	Limit [dBm]	Margin [dB]	Antenna Polarisation	Antenna height [m]	Turntable Angle [°]
1388.6	-44.4	-17.2	27,2	Ver.	1.5	54.00
3240.0	-36.7	-17.2	19,5	Ver.	1.5	227.00
3702.9	-43.5	-17.2	26,3	Ver.	1.5	230.00
4165.8	-43.6	-17.2	26,4	Ver.	1.5	204.00

Tx frequency: 464.5625MHz

Frequency [MHz]	Result [dBm]	Limit [dBm]	Margin [dB]	Antenna Polarisation	Antenna height [m]	Turntable Angle [°]
1393.7	-45.6	-17.2	28,4	Ver.	1.5	51.00
3251.9	-37.5	-17.2	20,3	Ver.	1.5	227.00
3716.5	-46.7	-17.2	29,5	Ver.	1.5	231.00
4181.1	-47.1	-17.2	29,9	Ver.	1.5	206.00

Measurement uncertainty: +2.2 dB / -3.6 dB

Limit:

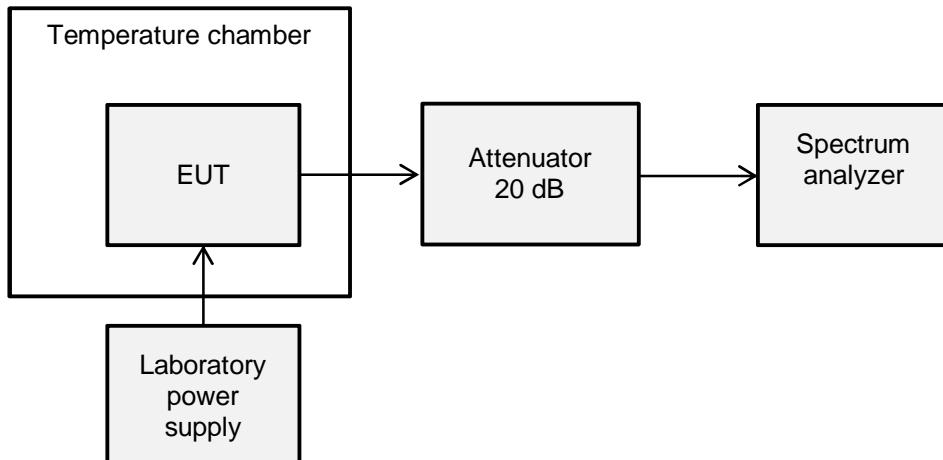
Any emission appearing on a displacement frequency, f_d , from the assigned frequency as shown in the table below has to be attenuated below the unmodulated carrier power by at least 30 dB.

Equipment channel bandwidth (kHz)	Displacement frequency, f_d (kHz)
25	$f_d \geq 40$
30	
12.5	$f_d \geq 25$
15	
6.25	$f_d \geq 12.5$
7.5	

$$\text{ERP} = P_{\text{conducted}} + G_{\text{antenna}} = 13.2 \text{ dBm} + 1.8 \text{ dBi} - 2.15 \text{ dB} = 12.85 \text{ dBm}$$

$$\text{ERP limit for any spurious emission: } 12.85 \text{ dBm} - 30 \text{ dB} = -17.15 \text{ dBm}$$

Test: Passed


Test equipment used (refer clause 6):

8, 11 – 22, 29, 31 – 34, 37

5.5 Frequency Stability

5.5.1 Method of measurement

Test setup:

The battery of the EUT was removed. The EUT was supplied by a laboratory power supply.

5.5.1.1 Test results

Ambient temperature	22 °C	Relative humidity	38 %
---------------------	-------	-------------------	------

Frequency stability versus voltage variations

Voltage [V]	Frequency [MHz]		Frequency error		
	measured	nominal	[Hz]	[ppm]	Limit [ppm]
3.7	461.037260	461.037500	-240	-0.52	±1.5
3.6	461.037260		-240	-0.52	
3.1	461.037258		-242	-0.52	
3.7	462.862244	462.862500	-256	-0.55	±1.5
3.6	462.862244		-256	-0.55	
3.1	462.862243		-257	-0.56	
3.7	464.562358	464.562500	-142	-0.30	±1.5
3.6	464.562358		-142	-0.30	
3.1	464.562356		-144	-0.31	
Measurement uncertainty: <10 ⁻⁷ (frequency), +0.66 dB / -0.72 dB (level)					

Frequency stability versus temperature variations

Temperature [°C]	Frequency [MHz]		Frequency error		
	measured	nominal	[Hz]	[ppm]	Limit [ppm]
55	461.037200	461.037500	-300	-0.65	±1.5
50	461.037200		-300	-0.65	
40	461.037240		-260	-0.56	
30	461.037280		-220	-0.48	
20	461.037260		-240	-0.52	
10	461.037220		-280	-0.61	
0	461.037220		-280	-0.61	
-10	461.037280		-220	-0.48	
-20	461.037300		-200	-0.43	
55	462.862180	462.862500	-320	-0.69	±1.5
50	462.862160		-340	-0.73	
40	462.862220		-280	-0.60	
30	462.862270		-230	-0.50	
20	462.862240		-260	-0.56	
10	462.862200		-300	-0.65	
0	462.862200		-300	-0.65	
-10	462.862260		-240	-0.52	
-20	462.862280		-220	-0.48	
55	464.562280	464.5625	-220	-0.47	±1.5
50	464.562260		-240	-0.52	
40	464.562320		-180	-0.39	
30	464.562360		-140	-0.30	
20	464.562358		-142	-0.31	
10	464.562300		-200	-0.43	
0	464.562300		-200	-0.43	
-10	464.562360		-140	-0.30	
-20	464.562380		-120	-0.26	
Measurement uncertainty: <10 ⁻⁷ (frequency)					

Limit:

The equipment tested shall not deviate more than 1.5 ppm from the nominal frequency.

Test: Passed

Test equipment used (refer clause 6):

23, 24, 29, 30, 35, 36

6 Test equipment used for tests

No.	Test equipment	Type	Manufacturer	Serial No.	PM. No.	Cal. Date	Cal. due
1	Open area test site	-	Phoenix Testlab	-	480085	Weekly verification (system cal.)	
2	Measuring receiver	ESIB7	Rohde & Schwarz	100304	480521	18.02.2016	02/2018
3	Controller	HD100	Deisel	100/670	480139	-	-
4	Turntable	DS420HE	Deisel	420/620/80	480087	-	-
5	Antenna support	AS615P	Deisel	615/310	480086	-	-
6	Antenna	CBL6111 D	Chase	25761	480894	-	-
7	EMI Software	EMC32	Rohde & Schwarz	100061	481022	-	-
8	Fully anechoic chamber M20	-	Albatross Projects	B83107-E2439-T232	480303	Weekly verification (system cal.)	
11	Measuring receiver	ESI 40	Rohde & Schwarz	100064	480355	16.02.2016	02/2017
12	Controller	MCU	Maturo	MCU/043/971107	480832	-	-
13	Turntable	DS420HE	Deisel	420/620/80	480315	-	-
14	Antenna support	AS615P	Deisel	615/310	480187	-	-
15	Positioner	TDF 1.5	Maturo	15920215	482034	-	-
16	Antenna	CBL6112 B	Chase	2688	480328	14.04.2014	04/2017
17	Horn Antenna	3115 A	EMCO	9609-4918	480183	10.11.2014	11/2017
18	High Pass Filter	WHJS1000C11/6 0EF	Wainwright Instruments GmbH	1	480413	Monthly verification (system cal.)	
19	RF-cable No. 36	Sucoflex 106B	Huber + Suhner	-	480865	Weekly verification (system cal.)	
20	RF-cable No. 3	Sucoflex 106B	Suhner	0563/6B	480670	Weekly verification (system cal.)	
21	RF-cable No. 40	Sucoflex 106B	Suhner	0708/6B	481330	Weekly verification (system cal.)	
22	Loop antenna	HFH2-Z2	Rohde & Schwarz	832609/014	480059	29.02.2016	02/2018
23	Spectrum analyser	FSU46	Rohde & Schwarz	200125	480596	17.02.2016	02/2017
24	Temperature Test Chamber	MK 240	Binder	05-79022	480462	06.08.2015	02/2017
29	Coaxial-Attenuator	WA47-20-34	Weinschel	A1169	481452	25.08.2015	08/2016
31	Precision dipole	HZ-12	Rohde & Schwarz	831781/02	480061	-	
32	Precision dipole	HZ-13	Rohde & Schwarz	831782/02	480062	-	
33	Horn Antenna	3115 B	EMCO	9609-4922	480184	18.09.2014	09/2017
34	Swept CW generator	83650L	Agilent	3844A00554	480333	25.02.2015	02/2017
35	Power Supply	TOE8871	Toellner Electronic	61008	480835	11.01.2016	01/2018
36	Multimeter	971A	Hewlett Packard	JP40010640	480724	19.01.2016	01/2018
37	Preamplifier	JS3-00101200-23-5A	Miteq	681851	480337	18.02.2016	02/2018

7 Report history

Report Number	Date	Comment
F161191E1	28.10.2016	Document created
-	-	-
-	-	-

8 List of annexes

ANNEX A	TEST SETUP PHOTOS	4 pages
	161191_01.JPG: Test setup - Radiated emission (fully anechoic chamber) 161191_02.JPG: Test setup - Radiated emission (fully anechoic chamber) 161191_03.JPG: Test setup - Radiated emission (fully anechoic chamber) 161191_04.JPG: Temperature chamber	
ANNEX B	EXTERNAL PHOTOS	7 pages
	161191_05.jpg: Front view of the EUT 161191_06.jpg: Side view 1 of the EUT 161191_07.jpg: Side view 2 of the EUT 161191_08.jpg: Backside view of the EUT 161191_09.jpg: Top view of the EUT 161191_10.jpg: Bottom view of the EUT 161191_11.jpg: Bottom view of the EUT, permanent magnet removed	
ANNEX C	INTERNAL PHOTOS	10 pages
	161191_12.jpg: EUT, exploded view (drawing supplied by the applicant) 161191_13.jpg: EUT, cabinet opened, battery and antenna cable 161191_14.jpg: EUT, cabinet opened, PCB 1 161191_15.jpg: PCB 1, top view 161191_16.jpg: PCB 1 without shielding, top view 161191_17.jpg: PCB 1, bottom view 161191_18.jpg: EUT, PCB 1 removed 161191_19.jpg: PCB 2, top view 161191_20.jpg: PCB 2, bottom view 161191_21.jpg: EUT, PCB 1 and PCB 2 removed	