



# FCC RF Test Report

**APPLICANT** : Doro AB  
**EQUIPMENT** : GSM Mobile Telephone  
**BRAND NAME** : Doro  
**MODEL NAME** : Doro PhoneEasy 612  
**FCC ID** : WS5DORO612G19  
**STANDARD** : FCC 47 CFR Part 2, 24(E)  
**CLASSIFICATION** : PCS Licensed Transmitter Held to Ear (PCE)  
**Tx/Rx FREQUENCY RANGE** : GSM1900 : 1850.2 ~ 1909.8 MHz /  
1930.2 ~ 1989.8 MHz  
**MAX. ERP/EIRP POWER** : GSM1900 (GSM) : 0.74 W

The product was received on Mar. 27, 2012 and completely tested on Apr. 12, 2012. We, SPORTON INTERNATIONAL (KUNSHAN) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI / TIA / EIA-603-C-2004 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (KUNSHAN) INC., the test report shall not be reproduced except in full.

Reviewed by:

Jones Tsai / Manager



***SPORTON INTERNATIONAL (KUNSHAN) INC.***  
***No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P.R.C.***



## TABLE OF CONTENTS

|                                                               |           |
|---------------------------------------------------------------|-----------|
| <b>REVISION HISTORY.....</b>                                  | <b>3</b>  |
| <b>SUMMARY OF TEST RESULT .....</b>                           | <b>4</b>  |
| <b>1 GENERAL DESCRIPTION.....</b>                             | <b>5</b>  |
| 1.1    Applicant.....                                         | 5         |
| 1.2    Manufacturer .....                                     | 5         |
| 1.3    Feature of Equipment Under Test.....                   | 5         |
| 1.4    Emission Designator and Maximum EIRP Power .....       | 6         |
| 1.5    Testing Site .....                                     | 6         |
| 1.6    Applied Standards .....                                | 6         |
| 1.7    Ancillary Equipment List.....                          | 6         |
| <b>2 TEST CONFIGURATION OF EQUIPMENT UNDER TEST.....</b>      | <b>7</b>  |
| 2.1    Test Mode.....                                         | 7         |
| 2.2    Connection Diagram of Test System .....                | 8         |
| <b>3 TEST RESULT.....</b>                                     | <b>9</b>  |
| 3.1    Conducted Output Power Measurement.....                | 9         |
| 3.2    Effective Isotropic Radiated Power Measurement .....   | 10        |
| 3.3    Occupied Bandwidth Measurement .....                   | 12        |
| 3.4    Band Edge Measurement.....                             | 14        |
| 3.5    Conducted Emission Measurement .....                   | 17        |
| 3.6    Field Strength of Spurious Radiation Measurement ..... | 21        |
| 3.7    Frequency Stability Measurement.....                   | 25        |
| <b>4 LIST OF MEASURING EQUIPMENT.....</b>                     | <b>28</b> |
| <b>5 UNCERTAINTY OF EVALUATION.....</b>                       | <b>29</b> |
| <b>APPENDIX A. PHOTOGRAPHS OF EUT</b>                         |           |
| <b>APPENDIX B. SETUP PHOTOGRAPHS</b>                          |           |



## REVISION HISTORY



## SUMMARY OF TEST RESULT

| Report Section | FCC Rule              | Description                                   | Limit                               | Result | Remark                                 |
|----------------|-----------------------|-----------------------------------------------|-------------------------------------|--------|----------------------------------------|
| 3.1            | §2.1046               | Conducted Output Power                        | N/A                                 | PASS   | -                                      |
| 3.2            | §24.232(c)            | Equivalent Isotropic Radiated Power           | < 2 Watts                           | PASS   | -                                      |
| 3.3            | §2.1049<br>§24.238(a) | Occupied Bandwidth                            | N/A                                 | PASS   | -                                      |
| 3.4            | §2.1051<br>§24.238(a) | Band Edge Measurement                         | $< 43+10\log_{10}(P[\text{Watts}])$ | PASS   | -                                      |
| 3.5            | §2.1051<br>§24.238(a) | Conducted Emission                            | $< 43+10\log_{10}(P[\text{Watts}])$ | PASS   | -                                      |
| 3.6            | §2.1053<br>§24.238(a) | Field Strength of Spurious Radiation          | $< 43+10\log_{10}(P[\text{Watts}])$ | PASS   | Under limit<br>39.40 dB at<br>3760 MHz |
| 3.7            | §2.1055<br>§24.235    | Frequency Stability for Temperature & Voltage | < 2.5 ppm                           | PASS   | -                                      |



## 1 General Description

### 1.1 Applicant

Doro AB

Magistratsvägen 10 SE-226 43 Lund Sweden

### 1.2 Manufacturer

CK TELECOM LTD.

Technology Road. High-Tech Development Zone. Heyuan, Guangdong, P.R.China.

### 1.3 Feature of Equipment Under Test

| Product Feature & Specification |                                     |
|---------------------------------|-------------------------------------|
| Equipment                       | GSM Mobile Telephone                |
| Brand Name                      | Doro                                |
| Model Name                      | Doro PhoneEasy 612                  |
| FCC ID                          | WS5DORO612G19                       |
| Tx Frequency                    | 1850 MHz ~ 1910 MHz                 |
| Rx Frequency                    | 1930 MHz ~ 1990 MHz                 |
| Maximum Output Power to Antenna | 29.85 dBm                           |
| Antenna Type                    | Fixed Internal Antenna              |
| HW Version                      | YACHT-V3.0                          |
| SW Version                      | YACHT-S01A_DORO612_L18EN_204_120315 |
| Type of Modulation              | GMSK                                |
| EUT Stage                       | Identical Prototype                 |

**Remark:** The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.



## 1.4 Emission Designator and Maximum EIRP Power

| FCC Rule | System      | Type of Modulation | Emission Designator | Maximum EIRP |
|----------|-------------|--------------------|---------------------|--------------|
| Part 24  | GSM1900 GSM | GMSK               | 252KGXW             | 0.74 W       |

## 1.5 Testing Site

|                    |                                                                                                                  |           |                         |
|--------------------|------------------------------------------------------------------------------------------------------------------|-----------|-------------------------|
| Test Site          | SPORTON INTERNATIONAL (KUNSHAN) INC.                                                                             |           |                         |
| Test Site Location | No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P.R.C.<br>TEL: +86-0512-5790-0158<br>FAX: +86-0512-5790-0958 |           |                         |
| Test Site No.      | Sporton Site No.                                                                                                 |           | FCC/IC Registration No. |
|                    | TH01-KS                                                                                                          | 03CH01-KS | 149928/4086E-1          |

## 1.6 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC 47 CFR Part 2, 24(E)
- ANSI / TIA / EIA-603-C-2004
- FCC KDB 971168 D01 Power Meas. License Digital Systems v01

**Remark:**

1. All test items were verified and recorded according to the standards and without any deviation during the test.
2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

## 1.7 Ancillary Equipment List

| Item | Equipment        | Trade Name | Model No. | FCC ID | Data Cable | Power Cord        |
|------|------------------|------------|-----------|--------|------------|-------------------|
| 1.   | System Simulator | R&S        | CMU200    | N/A    | N/A        | Unshielded, 1.8 m |
| 2.   | DC Power Supply  | GW         | GPS-30300 | N/A    | N/A        | Unshielded, 1.8 m |



## 2 Test Configuration of Equipment Under Test

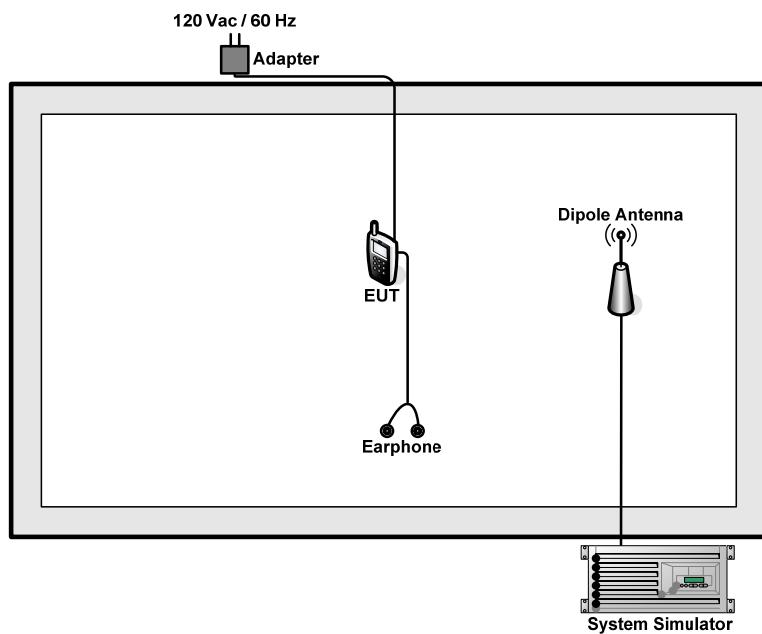
### 2.1 Test Mode

During all testing, EUT is in link mode with base station emulator at maximum power level. The spurious emission measurements were carried out in semi-anechoic chamber with 3-meter test range, and EUT is rotated on three test planes to find out the worst emission.

Frequency range investigated for radiated emission is as follows:

1. 30 MHz to 19000 MHz for GSM1900.

| Test Modes |              |               |
|------------|--------------|---------------|
| Band       | Radiated TCs | Conducted TCs |
| GSM 1900   | ■ GSM Link   | ■ GSM Link    |


**Note:**

1. The maximum power levels are GSM mode for GMSK link, only these modes were used for all tests.
2. Because there are individual antennas for each WWAN, and Bluetooth, the co-location test modes are not required.

The conducted power tables are as follows:

| Conducted Power (*Unit: dBm) |         |        |        |
|------------------------------|---------|--------|--------|
| Band                         | GSM1900 |        |        |
| Channel                      | 512     | 661    | 810    |
| Frequency                    | 1850.2  | 1880.0 | 1909.8 |
| GSM (1 Uplink)               | 29.75   | 29.77  | 29.85  |
| GPRS 8 (1 Uplink) – CS1      | 29.72   | 29.74  | 29.82  |
| GPRS 10 (2 Uplink) – CS1     | 28.77   | 28.79  | 28.87  |
| GPRS 11 (3 Uplink) – CS1     | 26.74   | 26.77  | 26.82  |
| GPRS 12 (4 Uplink) – CS1     | 25.65   | 25.67  | 25.75  |

## **2.2 Connection Diagram of Test System**

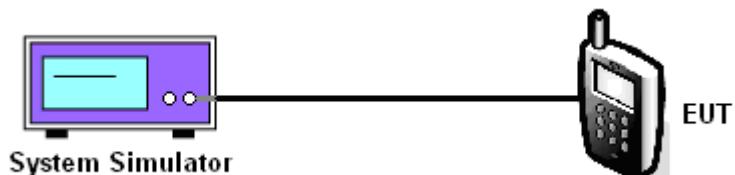


### 3 Test Result

#### 3.1 Conducted Output Power Measurement

##### 3.1.1 Description of the Conducted Output Power Measurement

A base station simulator was used to establish communication with the EUT. Its parameters were set to transmit the maximum power on the EUT. The measured power in the radio frequency on the transmitter output terminals shall be reported.


##### 3.1.2 Measuring Instruments

See list of measuring instruments of this test report.

##### 3.1.3 Test Procedures

1. The transmitter output port was connected to base station.
2. Set EUT at maximum power through base station.
3. Select lowest, middle, and highest channels for each band and different modulation.

##### 3.1.4 Test Setup



##### 3.1.5 Test Result of Conducted Output Power

| PCS Band                |               |              |               |
|-------------------------|---------------|--------------|---------------|
| Modes                   | GSM1900 (GSM) |              |               |
| Channel                 | 512<br>(Low)  | 661<br>(Mid) | 810<br>(High) |
| Frequency (MHz)         | 1850.2        | 1880         | 1909.8        |
| Conducted Power (dBm)   | 29.75         | 29.77        | 29.85         |
| Conducted Power (Watts) | 0.94          | 0.95         | 0.97          |



## 3.2 Effective Isotropic Radiated Power Measurement

### 3.2.1 Description of the EIRP Measurement

The substitution method, in ANSI / TIA / EIA-603-C-2004, was used for EIRP measurement, and the spectrum analyzer configuration follows KDB 971168 D01 Power Meas. License Digital Systems v01. The EIRP of mobile transmitters are limited to 2 Watts.

### 3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

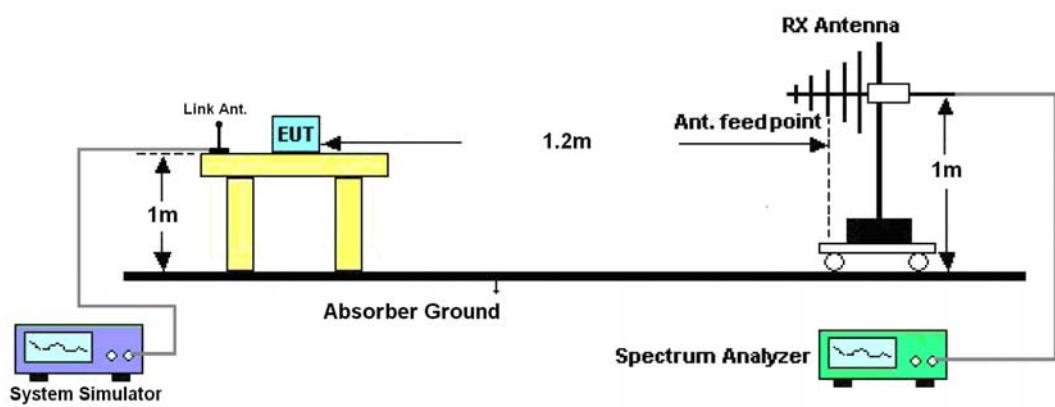
### 3.2.3 Test Procedures

1. The EUT was placed on a turntable with 1.0 meter height in a fully anechoic chamber.
2. The EUT was set at 1.2 meters from the receiving antenna, which was mounted on the antenna tower.
3. The table was rotated 360 degrees to determine the position of the highest radiated power.
4. The height of the receiving antenna is adjusted to look for the maximum ERP/EIRP.
5. Taking the record of maximum ERP/EIRP.
6. A dipole antenna was substituted in place of the EUT and was driven by a signal generator.
7. The conducted power at the terminal of the dipole antenna is measured.
8. Repeat step 3 to step 5 to get the maximum ERP/EIRP of the substitution antenna.
9.  $ERP/EIRP = Ps + Et - Es + Gs = Ps + Rt - Rs + Gs$

$Ps$  (dBm) : Input power to substitution antenna.

$Gs$  (dBi or dBd) : Substitution antenna Gain.

$Et = Rt + AF$


$Es = Rs + AF$

$AF$  (dB/m) : Receive antenna factor

$Rt$  : The highest received signal in spectrum analyzer for EUT.

$Rs$  : The highest received signal in spectrum analyzer for substitution antenna.

### 3.2.4 Test Setup



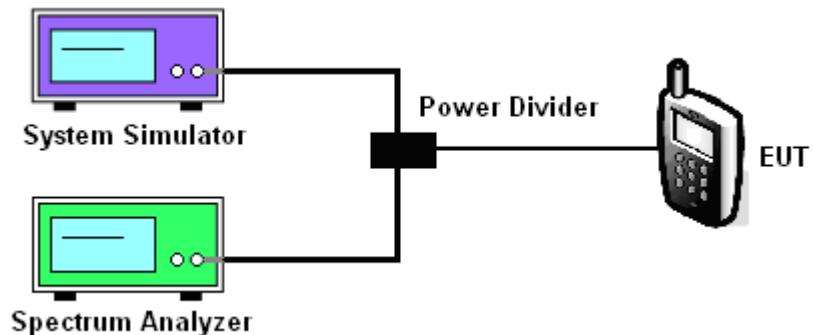
### 3.2.5 Test Result of EIRP

| GSM1900 (GSM) Radiated Power EIRP |          |          |          |          |            |          |
|-----------------------------------|----------|----------|----------|----------|------------|----------|
| Horizontal Polarization           |          |          |          |          |            |          |
| Frequency (MHz)                   | Rt (dBm) | Rs (dBm) | Ps (dBm) | Gs (dBi) | EIRP (dBm) | EIRP (W) |
| 1850.20                           | -25.68   | -51.88   | 0.00     | 1.96     | 28.16      | 0.65     |
| 1880.00                           | -27.06   | -52.99   | 0.00     | 2.00     | 27.93      | 0.62     |
| 1909.80                           | -28.05   | -54.28   | 0.00     | 1.98     | 28.21      | 0.66     |
| Vertical Polarization             |          |          |          |          |            |          |
| Frequency (MHz)                   | Rt (dBm) | Rs (dBm) | Ps (dBm) | Gs (dBi) | EIRP (dBm) | EIRP (W) |
| 1850.20                           | -26.21   | -52.13   | 0.00     | 1.96     | 27.88      | 0.61     |
| 1880.00                           | -26.85   | -53.17   | 0.00     | 2.00     | 28.32      | 0.68     |
| 1909.80                           | -27.44   | -54.13   | 0.00     | 1.98     | 28.67      | 0.74     |

### 3.3 Occupied Bandwidth Measurement

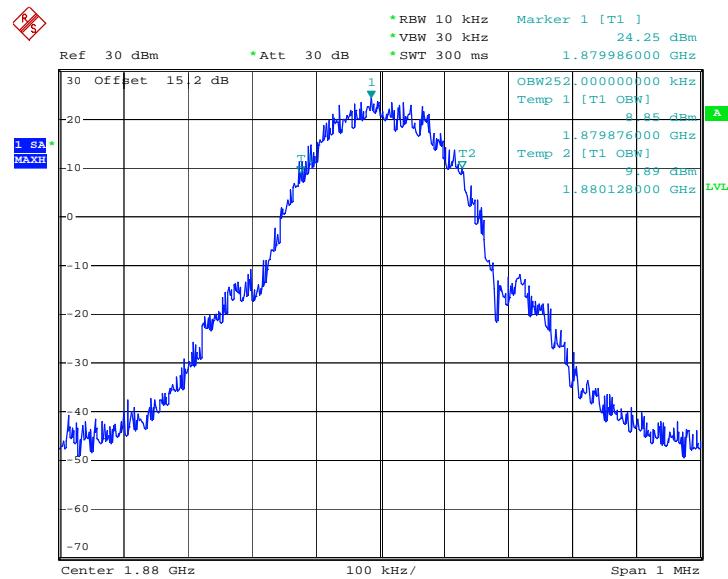
#### 3.3.1 Description of Occupied Bandwidth Measurement

The emission bandwidth is defined as the width of the signal between two points, located at the 2 sides of the carrier frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

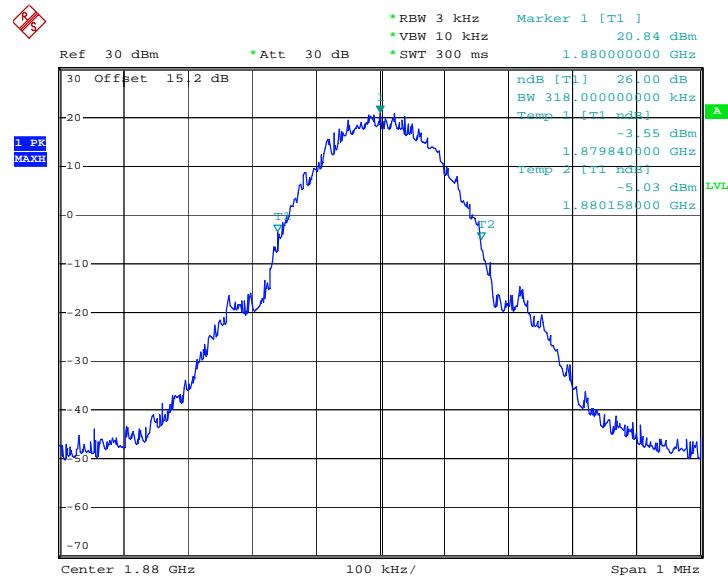

#### 3.3.2 Measuring Instruments

See list of measuring instruments of this test report.

#### 3.3.3 Test Procedures


1. The EUT was connected to Spectrum Analyzer and Base Station via power divider.
2. The 99% and 26 dB occupied bandwidth (BW) of the middle channel for the highest RF powers were measured.

#### 3.3.4 Test Setup




### 3.3.5 Test Result (Plots) of Occupied Bandwidth

|                    |          |                      |      |
|--------------------|----------|----------------------|------|
| <b>Band :</b>      | GSM 1900 | <b>Power Stage :</b> | High |
| <b>Test Mode :</b> | GSM Link |                      |      |

**99% Occupied Bandwidth Plot on Channel 661**


Date: 9.APR.2012 16:59:23

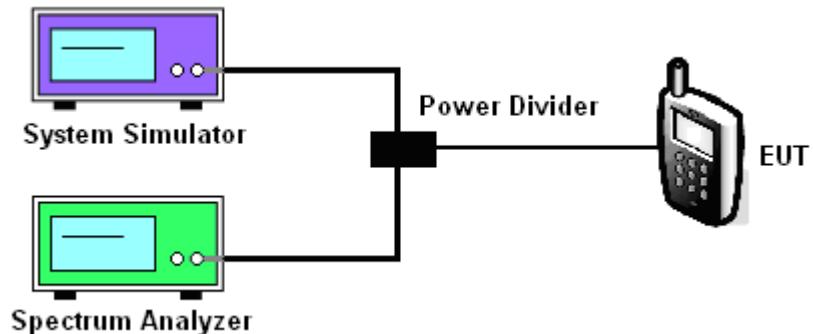
**26dB Bandwidth Plot on Channel 661**


Date: 9.APR.2012 16:58:04

## 3.4 Band Edge Measurement

### 3.4.1 Description of Band Edge Measurement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least  $43 + 10 \log (P)$  dB.

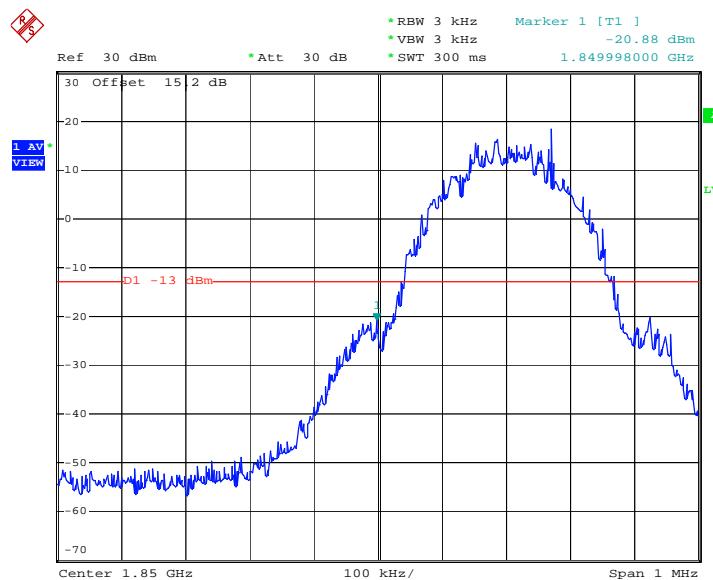

### 3.4.2 Measuring Instruments

See list of measuring instruments of this test report.

### 3.4.3 Test Procedures

1. The EUT was connected to Spectrum Analyzer and Base Station via power divider.
2. The band edges of low and high channels for the highest RF powers were measured. Setting RBW as roughly BW/100.

### 3.4.4 Test Setup

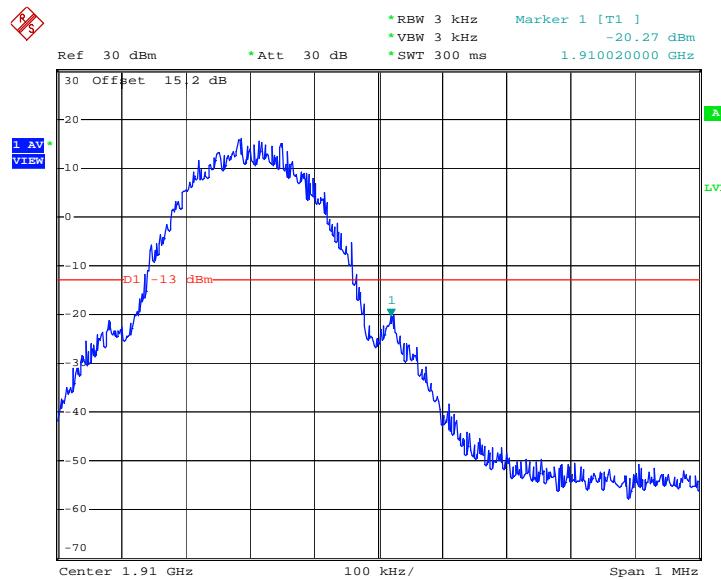





### 3.4.5 Test Result (Plots) of Conducted Band Edge

|                           |           |                           |           |
|---------------------------|-----------|---------------------------|-----------|
| <b>Band :</b>             | GSM1900   | <b>Power Stage :</b>      | High      |
| <b>Test Mode :</b>        | GSM Link  | <b>26dB Bandwidth:</b>    | 0.316MHz  |
| <b>Correction Factor:</b> | 0.25dB    | <b>Measurement Value:</b> | -20.88dBm |
| <b>Band Edge:</b>         | -20.63dBm |                           |           |

Lower Band Edge Plot on Channel 512




Date: 9.APR.2012 17:01:13

1. Correction Factor(dB)=  $10\log(1\% \text{ Emission BW}/\text{RBW})$

2. Band Edge= Measurement Value + Correction Factor(dB)

|                           |           |                           |           |
|---------------------------|-----------|---------------------------|-----------|
| <b>Band :</b>             | GSM1900   | <b>Power Stage :</b>      | High      |
| <b>Test Mode :</b>        | GSM Link  | <b>26dB Bandwidth:</b>    | 0.308MHz  |
| <b>Correction Factor:</b> | 0.25dB    | <b>Measurement Value:</b> | -20.27dBm |
| <b>Band Edge:</b>         | -20.02dBm |                           |           |

**Higher Band Edge Plot on Channel 810**


Date: 9.APR.2012 17:01:39

1. Correction Factor(dB) =  $10\log(1\% \text{ Emission BW}/\text{RBW})$

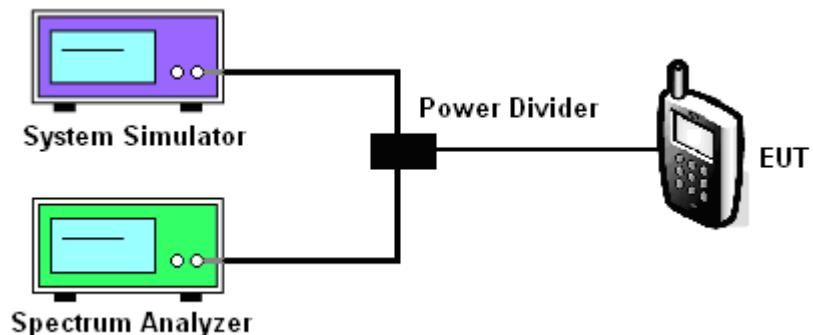
2. Band Edge = Measurement Value + Correction Factor(dB)

### 3.5 Conducted Emission Measurement

#### 3.5.1 Description of Conducted Emission Measurement

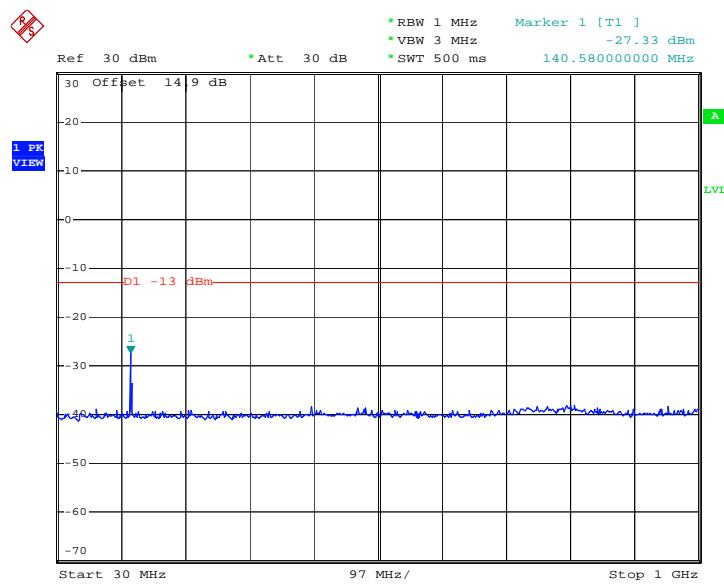
The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least  $43 + 10 \log (P)$  dB.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10<sup>th</sup> harmonic.

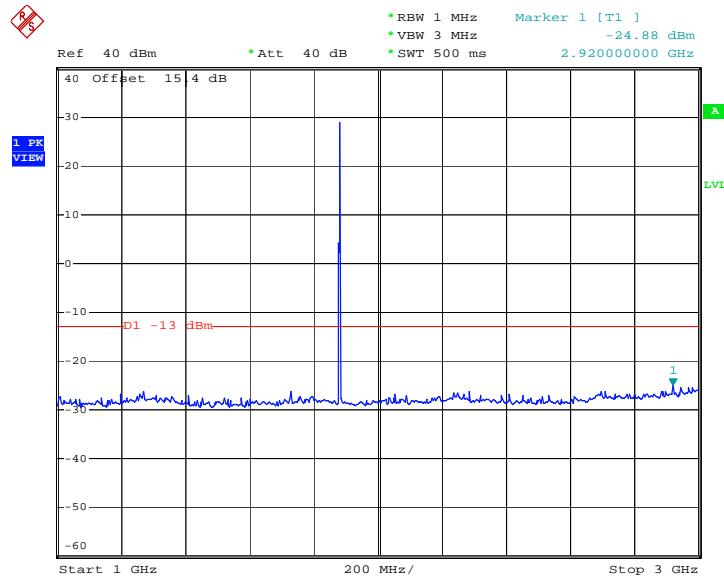

#### 3.5.2 Measuring Instruments

See list of measuring instruments of this test report.

#### 3.5.3 Test Procedures


1. The EUT was connected to spectrum analyzer and base station via power divider.
2. The middle channel for the highest RF power within the transmitting frequency was measured.
3. The conducted spurious emission for the whole frequency range was taken.

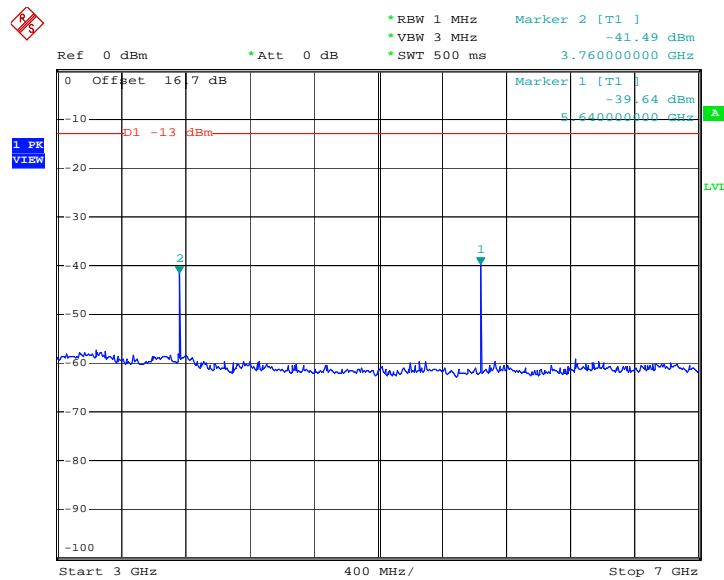
#### 3.5.4 Test Setup




### 3.5.5 Test Result (Plots) of Conducted Emission

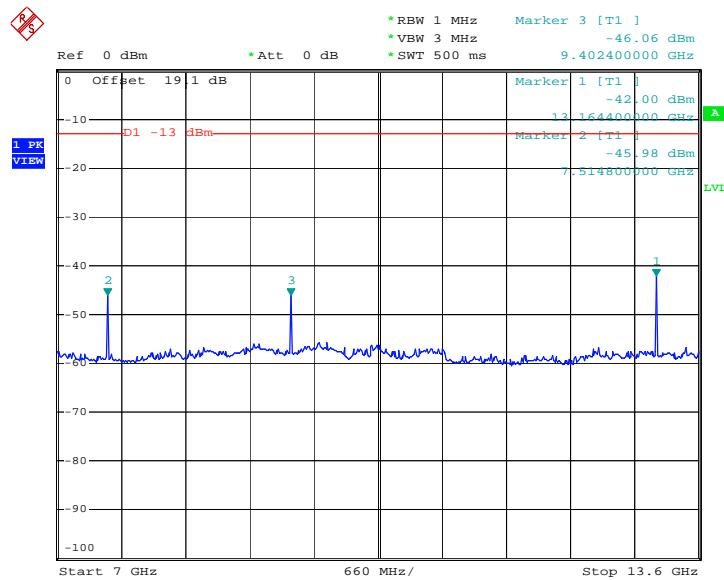
|                    |          |                  |       |
|--------------------|----------|------------------|-------|
| <b>Band :</b>      | GSM1900  | <b>Channel :</b> | CH661 |
| <b>Test Mode :</b> | GSM Link |                  |       |

**Conducted Emission Plot between 30MHz ~ 1GHz**



Date: 9.APR.2012 17:22:15

**Conducted Emission Plot between 1GHz ~ 3GHz**

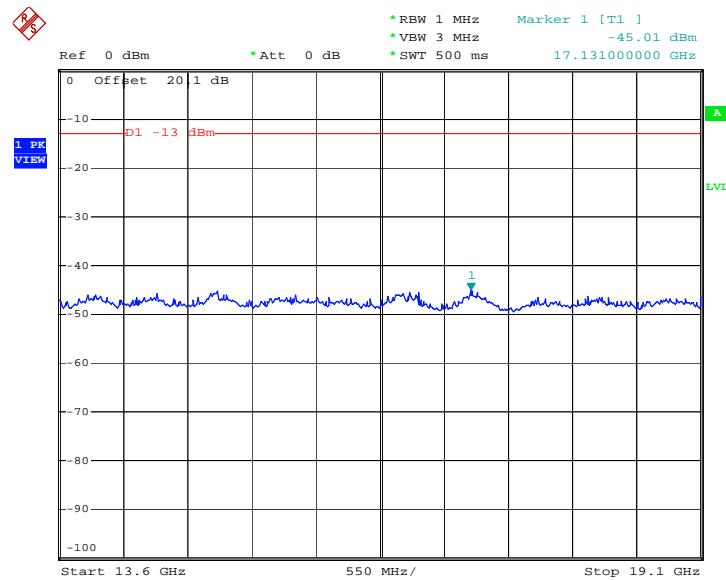

Date: 9.APR.2012 17:23:07




## Conducted Emission Plot between 3GHz ~ 7GHz



Date: 9.APR.2012 17:24:12


## Conducted Emission Plot between 7GHz ~ 13.6GHz



Date: 9.APR.2012 17:24:57



## Conducted Emission Plot between 13.6GHz ~ 19.1GHz



Date: 9.APR.2012 17:25:38

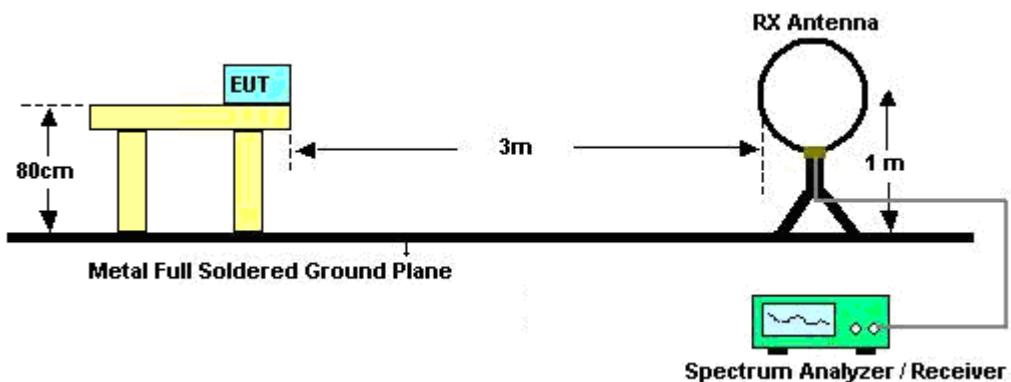


## 3.6 Field Strength of Spurious Radiation Measurement

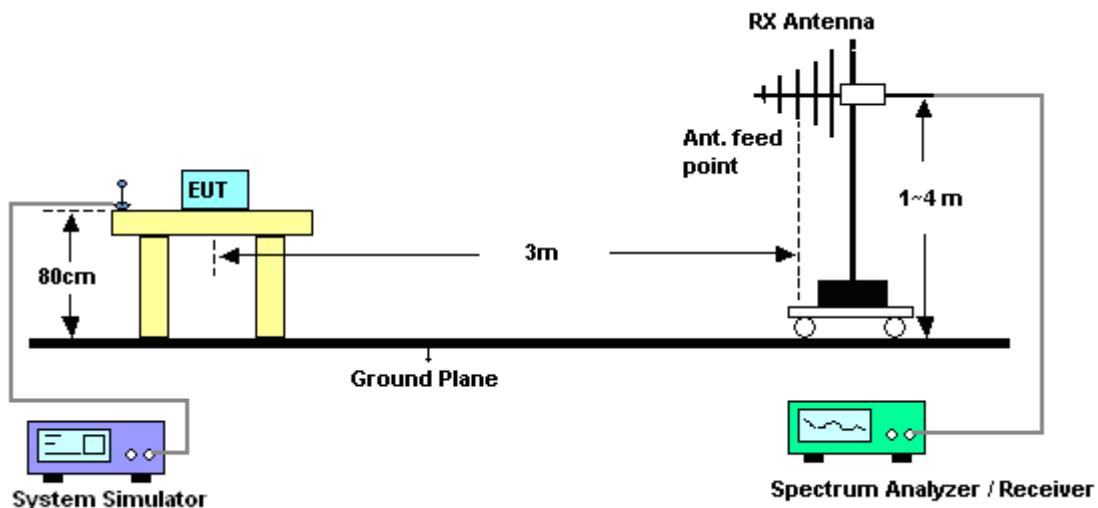
### 3.6.1 Description of Field Strength of Spurious Radiated Measurement

The radiated spurious emission was measured by substitution method according to ANSI / TIA / EIA-603-C-2004. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least  $43 + 10 \log (P)$  dB. The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

### 3.6.2 Measuring Instruments


See list of measuring instruments of this test report.

### 3.6.3 Test Procedures


1. The EUT was placed on a rotatable wooden table with 0.8 meter about ground.
2. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
4. The height of the receiving antenna is varied between one meter and four meters to search the maximum spurious emission for both horizontal and vertical polarizations.
5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, Sweep = 500ms, Taking the record of maximum spurious emission.
6. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
7. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
8. Taking the record of output power at antenna port.
9. Repeat step 7 to step 8 for another polarization.
10.  $EIRP \text{ (dBm)} = S.G. \text{ Power} - Tx \text{ Cable Loss} + Tx \text{ Antenna Gain}$
11.  $ERP \text{ (dBm)} = EIRP - 2.15$

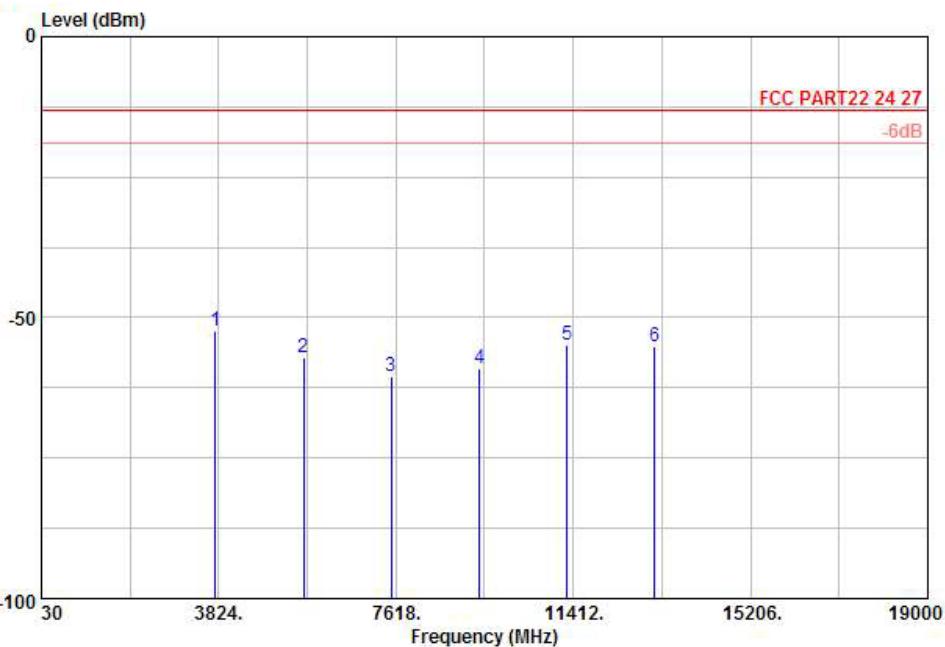
### 3.6.4 Test Setup

For radiated emissions below 30MHz



For radiated emissions above 30MHz



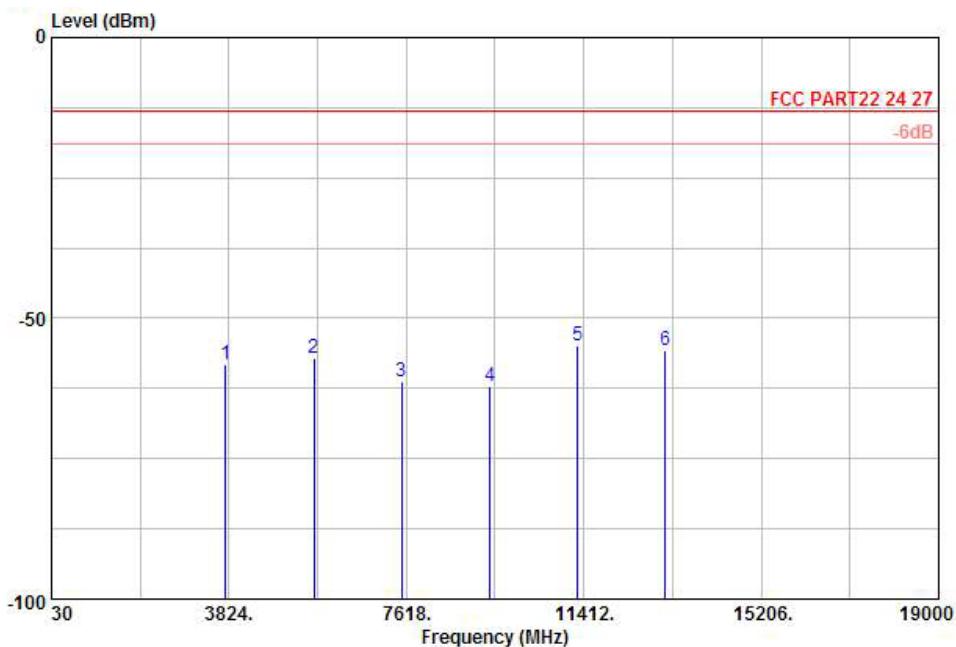

### 3.6.5 Test Results of Radiated Emissions (9 KHz ~ 30 MHz)

The low frequency, which started from 9 KHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.



## 3.6.6 Test Result of Field Strength of Spurious Radiated

|                 |                                                                                  |                     |            |
|-----------------|----------------------------------------------------------------------------------|---------------------|------------|
| Band :          | GSM1900                                                                          | Temperature :       | 19~20°C    |
| Test Mode :     | GSM Link                                                                         | Relative Humidity : | 43~44%     |
| Test Engineer : | Jack Li                                                                          | Polarization :      | Horizontal |
| Remark :        | Spurious emissions within 30-1000MHz were found more than 20dB below limit line. |                     |            |




Site : 03CH01-KS  
Condition: FCC PART22 24 27 HF EIRP FACTOR-09020 HORIZONTAL  
Project : (FG) 232702

| Frequency<br>( MHz ) | EIRP<br>( dBm ) | Limit<br>( dBm ) | Over<br>Limit<br>( dB ) | SPA<br>( dBm ) | S.G.<br>Power<br>( dBm ) | TX Cable<br>loss<br>( dB ) | TX Antenna<br>Gain<br>( dBi ) | Polarization<br>( H/V ) | Result |
|----------------------|-----------------|------------------|-------------------------|----------------|--------------------------|----------------------------|-------------------------------|-------------------------|--------|
| 3760                 | -52.40          | -13              | -39.40                  | -54.06         | -58.78                   | 0.78                       | 7.16                          | H                       | Pass   |
| 5640                 | -57.16          | -13              | -44.16                  | -61.34         | -65.70                   | 1.04                       | 9.58                          | H                       | Pass   |
| 7520                 | -60.32          | -13              | -47.32                  | -65.45         | -70.43                   | 1.35                       | 11.46                         | H                       | Pass   |
| 9400                 | -59.05          | -13              | -46.05                  | -62.31         | -70.11                   | 1.75                       | 12.81                         | H                       | Pass   |
| 11280                | -54.76          | -13              | -41.76                  | -66.25         | -65.85                   | 2                          | 13.09                         | H                       | Pass   |
| 13160                | -55.06          | -13              | -42.06                  | -66.36         | -66.77                   | 2.04                       | 13.75                         | H                       | Pass   |



|                 |                                                                                  |                     |          |
|-----------------|----------------------------------------------------------------------------------|---------------------|----------|
| Band :          | GSM1900                                                                          | Temperature :       | 19~20°C  |
| Test Mode :     | GSM Link                                                                         | Relative Humidity : | 43~44%   |
| Test Engineer : | Jack Li                                                                          | Polarization :      | Vertical |
| Remark :        | Spurious emissions within 30-1000MHz were found more than 20dB below limit line. |                     |          |



Site : 03CH01-KS  
Condition: FCC PART22 24.27 HF EIRP FACTOR-09020 VERTICAL  
Project : (FG) 232702

| Frequency<br>( MHz ) | EIRP<br>( dBm ) | Limit<br>( dBm ) | Over<br>Limit<br>( dB ) | SPA<br>Reading<br>( dBm ) | S.G.<br>Power<br>( dBm ) | TX Cable<br>loss<br>( dB ) | TX Antenna<br>Gain<br>( dBi ) | Polarization<br>( H/V ) | Result |
|----------------------|-----------------|------------------|-------------------------|---------------------------|--------------------------|----------------------------|-------------------------------|-------------------------|--------|
| 3760                 | -58.25          | -13              | -45.25                  | -59.62                    | -64.63                   | 0.78                       | 7.16                          | V                       | Pass   |
| 5640                 | -57.07          | -13              | -44.07                  | -60.29                    | -65.61                   | 1.04                       | 9.58                          | V                       | Pass   |
| 7520                 | -61.23          | -13              | -48.23                  | -65.72                    | -71.34                   | 1.35                       | 11.46                         | V                       | Pass   |
| 9400                 | -62.00          | -13              | -49.00                  | -63.22                    | -73.06                   | 1.75                       | 12.81                         | V                       | Pass   |
| 11280                | -54.81          | -13              | -41.81                  | -66.05                    | -65.90                   | 2                          | 13.09                         | V                       | Pass   |
| 13160                | -55.62          | -13              | -42.62                  | -66.81                    | -67.33                   | 2.04                       | 13.75                         | V                       | Pass   |



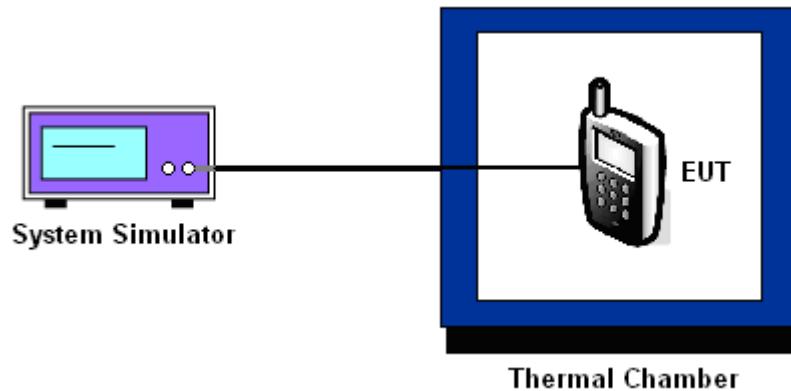
## **3.7 Frequency Stability Measurement**

### **3.7.1 Description of Frequency Stability Measurement**

The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within  $\pm 0.00025\%$  ( $\pm 2.5\text{ppm}$ ) of the center frequency.

### **3.7.2 Measuring Instruments**

See list of measuring instruments of this test report.


### **3.7.3 Test Procedures for Temperature Variation**

1. The EUT was set up in the thermal chamber and connected with the base station.
2. With power OFF, the temperature was decreased to  $-30^\circ\text{C}$  and the EUT was stabilized for three hours. Power was applied and the maximum change in frequency was recorded within one minute.
3. With power OFF, the temperature was raised in  $10^\circ\text{C}$  step up to  $50^\circ\text{C}$ . The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.
4. If the EUT cannot be turned on at  $-30^\circ\text{C}$ , the testing lowest temperature will be raised in  $10^\circ\text{C}$  step until the EUT can be turned on.

### **3.7.4 Test Procedures for Voltage Variation**

1. The EUT was placed in a temperature chamber at  $25\pm 5^\circ\text{C}$  and connected with the base station.
2. The power supply voltage to the EUT was varied from BEP to 115% of the nominal value measured at the input to the EUT.
3. The variation in frequency was measured for the worst case.

### 3.7.5 Test Setup



### 3.7.6 Test Result of Temperature Variation

| Band :           | GSM 1900 | Channel :       | 661             |
|------------------|----------|-----------------|-----------------|
| Limit (ppm) :    | 2.5      |                 |                 |
| Temperature (°C) |          | GSM             |                 |
|                  |          | Freq. Dev. (Hz) | Deviation (ppm) |
| -30              |          | N/A             | N/A             |
| -20              |          | N/A             | N/A             |
| -10              |          | N/A             | N/A             |
| 0                |          | -73             | -0.04           |
| 10               |          | 63              | 0.03            |
| 20               |          | 65              | 0.03            |
| 30               |          | 57              | 0.03            |
| 40               |          | 46              | 0.02            |
| 50               |          | N/A             | N/A             |
| Result           |          |                 |                 |
| PASS             |          |                 |                 |

**Note:**

1. The EUT stops transmitting at temperatures -10°C, -20°C, -30°C, and 50°C.
2. The manufacturer declared that the EUT could work properly between temperatures 0°C~40°C.



### 3.7.7 Test Result of Voltage Variation

| Band & Channel    | Mode | Voltage (Volt) | Freq. Dev. (Hz) | Deviation (ppm) | Limit (ppm) | Result |
|-------------------|------|----------------|-----------------|-----------------|-------------|--------|
| GSM 1900<br>CH661 | GSM  | 3.7            | 8               | 0.00            | 2.5         | PASS   |
|                   |      | BEP            | 14              | 0.01            |             |        |
|                   |      | 4.2            | -15             | -0.01           |             |        |

**Note:**

1. Normal Voltage = 3.7V.
2. Battery End Point (BEP) = 3.6 V.



## 4 List of Measuring Equipment

| Instrument                | Manufacturer | Model No. | Serial No. | Characteristics | Calibration Date | Test Date     | Due Date      | Remark                |
|---------------------------|--------------|-----------|------------|-----------------|------------------|---------------|---------------|-----------------------|
| Spectrum Analyzer         | R&S          | FSP40     | 100319     | 9kHz~40GHz      | Dec. 30, 2011    | Apr. 09, 2012 | Dec. 29, 2012 | Conducted (TH01-KS)   |
| System Simulator          | R&S          | CMU200    | 837587/066 | 2G Full-Band    | Dec. 30, 2011    | Apr. 09, 2012 | Dec. 29, 2012 | Conducted (TH01-KS)   |
| DC Power Supply           | TOPWARD      | GPS-30300 | E1884515   | N/A             | Aug. 23, 2011    | Apr. 09, 2012 | Aug. 22, 2012 | Conducted (TH01-KS)   |
| Thermal Chamber           | Ten Billion  | TTC-B3S   | TBN-960502 | N/A             | Dec. 30, 2011    | Apr. 09, 2012 | Dec. 29, 2012 | Conducted (TH01-KS)   |
| EMI Test Receiver         | R&S          | ESCI      | 100534     | 9kHz~3GHz       | Nov. 09, 2011    | Apr. 12, 2012 | Nov. 08, 2012 | Radiation (03CH01-KS) |
| Spectrum Analyzer         | R&S          | FSP40     | 100319     | 9kHz~40GHz      | Dec. 30, 2011    | Apr. 12, 2012 | Dec. 29, 2012 | Radiation (03CH01-KS) |
| Bilog Antenna             | SCHAFFNER    | CBL6112D  | 23182      | 25MHz~2GHz      | Dec. 08, 2011    | Apr. 12, 2012 | Dec. 07, 2012 | Radiation (03CH01-KS) |
| Double Ridge Horn Antenna | EMCO         | 3117      | 00075959   | 1GHz~18GHz      | Jan. 06, 2012    | Apr. 12, 2012 | Jan. 05, 2013 | Radiation (03CH01-KS) |
| Amplifier                 | Wireless     | FPA-6592G | 060007     | 30MHz~2GHz      | Dec. 30, 2011    | Apr. 12, 2012 | Dec. 29, 2012 | Radiation (03CH01-KS) |
| Amplifier                 | Agilent      | 8449B     | 3008A02370 | 1GHz~26.5GHz    | Dec. 30, 2011    | Apr. 12, 2012 | Dec. 29, 2012 | Radiation (03CH01-KS) |
| SHE-EHF Horn              | Schwarzbeck  | BBHA9170  | BBHA170249 | 15GHz~40GHz     | Oct. 11, 2011    | Apr. 12, 2012 | Oct. 10, 2012 | Radiation (03CH01-KS) |
| Loop Antenna              | R&S          | HFH2-Z2   | 860004/00  | 9kHz~30 MHz     | Jul. 28, 2011    | Apr. 12, 2012 | Jul. 27, 2012 | Radiation (03CH01-KS) |
| System Simulator          | R&S          | CMU200    | 116456     | Full-Band       | Sep. 20, 2011    | Apr. 12, 2012 | Sep. 19, 2012 | Radiation (03CH01-KS) |



## 5 Uncertainty of Evaluation

### Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

| Contribution                                                                             | Uncertainty of $X_i$ |                          | $u(X_i)$ |
|------------------------------------------------------------------------------------------|----------------------|--------------------------|----------|
|                                                                                          | dB                   | Probability Distribution |          |
| Receiver Reading                                                                         | 0.41                 | Normal (k=2)             | 0.21     |
| Antenna Factor Calibration                                                               | 0.83                 | Normal (k=2)             | 0.42     |
| Cable Loss Calibration                                                                   | 0.25                 | Normal (k=2)             | 0.13     |
| Pre-Amplifier Gain Calibration                                                           | 0.27                 | Normal (k=2)             | 0.14     |
| RCV/SPA Specification                                                                    | 2.50                 | Rectangular              | 0.72     |
| Antenna Factor Interpolation for Frequency                                               | 1.00                 | Rectangular              | 0.29     |
| Site Imperfection                                                                        | 1.43                 | Rectangular              | 0.83     |
| Mismatch                                                                                 | +0.39 / -0.41        | U-Shape                  | 0.28     |
| <b>Combined Standard Uncertainty <math>U_c(y)</math></b>                                 | <b>1.27</b>          |                          |          |
| <b>Measuring Uncertainty for a Level of Confidence of 95% (<math>U = 2U_c(y)</math>)</b> | <b>2.54</b>          |                          |          |

### Uncertainty of Radiated Emission Measurement (1 GHz ~ 40 GHz)

| Contribution                                                                                                                    | Uncertainty of $X_i$ |                          | $u(X_i)$ | $C_i$ | $C_i * u(X_i)$ |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------|----------|-------|----------------|
|                                                                                                                                 | dB                   | Probability Distribution |          |       |                |
| Receiver Reading                                                                                                                | ±0.10                | Normal (k=2)             | 0.10     | 1     | 0.10           |
| Antenna Factor Calibration                                                                                                      | ±1.70                | Normal (k=2)             | 0.85     | 1     | 0.85           |
| Cable Loss Calibration                                                                                                          | ±0.50                | Normal (k=2)             | 0.25     | 1     | 0.25           |
| Receiver Correction                                                                                                             | ±2.00                | Rectangular              | 1.15     | 1     | 1.15           |
| Antenna Factor Directional                                                                                                      | ±1.50                | Rectangular              | 0.87     | 1     | 0.87           |
| Site Imperfection                                                                                                               | ±2.80                | Triangular               | 1.14     | 1     | 1.14           |
| Mismatch<br>Receiver VSWR $\Gamma_1 = 0.197$<br>Antenna VSWR $\Gamma_2 = 0.194$<br>Uncertainty = $20\log(1-\Gamma_1^*\Gamma_2)$ | +0.34 / -0.35        | U-Shape                  | 0.244    | 1     | 0.244          |
| <b>Combined Standard Uncertainty <math>U_c(y)</math></b>                                                                        | <b>2.36</b>          |                          |          |       |                |
| <b>Measuring Uncertainty for a Level of Confidence of 95% (<math>U = 2U_c(y)</math>)</b>                                        | <b>4.72</b>          |                          |          |       |                |



## **Appendix A. Photographs of EUT**

Please refer to Sporton report number EP232702 as below.