

683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080 Tel: +82-31-321-2664 Fax: +82-31-321-1664 http://www.digitalemc.com

CERTIFICATE OF COMPLIANCE FCC Part 22 & 24 Certification

Dates of Tests: September 12 ~ 19, 2008 Test Report S/N:DR50110809X Test Site: DIGITAL EMC CO., LTD.

FCC ID.

WRLWINDDUO2100

APPLICANT

WND TELECOM OFFSHOE S.A.L

Classification : Licensed Portable Transmitter Held to Ear (PCE)

FCC Rule Part(s) : §22(H), §24(E), §2

EUT Type : Dual Face GSM/GPRS Mobile Phone with Bluetooth

Model name : WIND DUO 2100

Serial number : Identical prototype

TX Frequency Range : 824.2 ~ 848.8 MHz (GSM850) / 1850.2 ~ 1909.8 MHz (PCS1900)

RX Frequency Range : 869.2 ~ 893.8 MHz (GSM850) / 1930.2 ~ 1989.8 MHz (PCS1900)

Max. RF Output Power : 0.392 W ERP GSM850 (Black face)

0.202 W ERP GSM850 (Silver face)

0.292 W EIRP PCS1900 (Black face)

0.337 W EIRP PCS1900 (Silver face)

Max. SAR Measurement : 0.250 mW/g GSM850 Head SAR // 0.143 mW/g GSM850 GPRS Body SAR

: 1.460 mW/g PCS1900 Head SAR // 0.273 mW/g PCS1900 GPRS Body SAR

Date of Issue : September 25, 2008

TABLE OF CONTENTS

	CONFIDENTIALITY LETTER(S)	
\rightarrow	AUTHOLIZATION LETTER	
	TEST REPORT	
	1 SCOPE	3
	2 INTRODUCTION	4
	3 TEST REPORT	5
	3.1 SUMMARY OF TEST	5
	3.2 POWER OUTPUT	6
	3.3 OCUPIED BANDWIDTH	17
	3.4 OCCUPIED BANDWIDTH EMISSION LIMIT	24
	3.5 SPURIOUS EMISSION AT ANT. TERMINAL	36
	3.6 FIELD STRENGTH OF SPURIOUS RADIATION	55
	3.7 FREQUENCY STABILITY	70
	4 TEST EQUIPMENT	79
	5 EMISSION DESIGNATOR	81
	6 CONCLUSION	82
\rightarrow	PART LOCATION	
\&	FCC ID LABEL & LOCATION	
\&	TEST SETUP PHOTOGRAPHS	
\rightarrow	EXTERNAL PHOTOGRAPHS	
\rightarrow	INTERNAL PHOTOGRAPHS	
\&	BLOCK DIAGRAM(S)	
\rightarrow	SCHEMATIC DIAGRAM(S)	
\rightarrow	OPERATIONAL DESCRIPTION	
\&	PARTS LIST	
\rightarrow	USER'S MANUAL	
\rightarrow	SAR TEST REPORT	
\&	SAR VALIDATION AND TEST PLOTS	
\&	SAR TEST SETUP PHOTOGRAPHS	
\rightarrow	PROBE CALIBRATION	
	DIPOLE CALIBRATION	

MEASUREMENT REPORT

1. Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

§2.1033 General Information

Applicant: WND TELECOM OFFSHORE S.A.L

Address: EMILE EDDEH ST. TOUR DE LYON 9TH FL. SNOUBRA, 2033 7001. BEIRUT, LEBANON

Attention: TAE SOO LEE (Principal Research Engineer)

• FCC ID: WRLWINDDUO2100

• Quantity: The mass product

Tx Freq. Range: 824.2 ~ 848.8 MHz (GSM850) / 1850.2 ~ 1909.8 MHz (PCS1900)
 Rx Freq. Range: 869.2 ~ 893.8 MHz (GSM850) / 1930.2 ~ 1989.8 MHz (PCS1900)

• Max. Power Rating: 0.392 W ERP GSM850 (Black face)

0.202 W ERP GSM850 (Silver face)
0.292 W EIRP PCS1900 (Black face)

0.337 W EIRP PCS1900 (Silver face)

• FCC Classification(s): Licensed Portable Transmitter Held to Ear (PCE)

• Equipment (EUT) Type: Dual Face GSM/GPRS Mobile Phone with Bluetooth

• Brief Description of EUT: This device has two independent GSM modules and it's antennas and a

Bluetooth module and it's antenna.

• Modulation(s): GMSK

Frequency Tolerance: ± 0.00025 % (2.5ppm)
 FCC Rule Part(s): \$22(H), \$24(E), \$2
 Dates of Tests: September 12 ~ 19, 2008

Place of Tests: DIGITAL EMCTest Report S/N: DR50110809X

2. General Information

This report contains the result of tests performed by:

DIGITAL EMC CO., LTD.

Address: 683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080

http://www.digitalemc.com E-mail : demc@unitel.co.kr

Tel: +82-31-321-2664 Fax: +82-31-321-1664

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the

"General requirements for the competents of calibration and testing laboratory".

This laboratory is accredited by NVLAP for NVLAP Lab. Code: 200559-0.

Test operator: Test Engineer

September 25, 2008 D.C. Cha

Data Name Signature

Report Reviewed By: Technical Manager

September 25, 2008 Harvey Sung

Data Name Signature

Ordering party:

Company name : WND TELECOM OFFSHORE S.A.L

Address : EMILE EDDEH ST. TOUR DE LYON 9TH FL. SNOUBRA, 2033 7001

City/town : BEIRUT

Country : LEBANON

Date of order : August 13, 2008

3. Test Report

3.1 Summary of test

FCC Part Section(s)	Parameter	Status (note 1)
22.913(a) / 24.232(b),	Power Output	С
2.1046	rowei Gutput	
22.917 / 24.238,	Occupied Bandwidth	С
2.1049(h)(i)	Occupied Bandwidni	
22.917(b) / 24.238(b)	Emission Bandwidth	C
22.917 / 24.238	Emission Limits Transmitter	С
2.1051	Emission Limits Transmitter	C
2.1053 (a)	Field Strength of Spurious Radiation	C
2.1055	Frequency Stability	С

Note 1: C= Complies NC=Not Complies NT=Not Tested NA=Not Applicable

Note 2: This device has two independent GSM modules (Each one module on the black face and the silver face). So all test items were repeated for each GSM module on black face and silver face of the device.

The sample was tested according to the following specification:

FCC Parts §22(H), §24(E), §2; ANSI/TIA/EIA-603-C 2004

3.2 Power Output

FCC ID : WRLWINDDUO2100

Specification : 47 CFR 2.1046 (a)

Tested Frequency : 824.2MHz, 836.6MHz and 848.8MHz for GSM850

1850.2MHz, 1880.0MHz and 1909.8MHz for PCS1900

Measurement Procedure:

- During the process of testing, the EUT was controlled via Radio Communication Tester to ensure max. power transmission and proper modulation.

- Power output was measured at the RF output terminals when the transmitter is adjusted in accordance with communication tester (or the tune-up procedure).

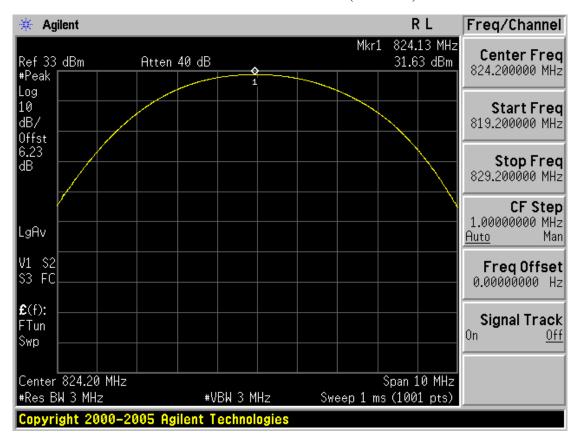
Measurement Data:

GSM850 (Black face)

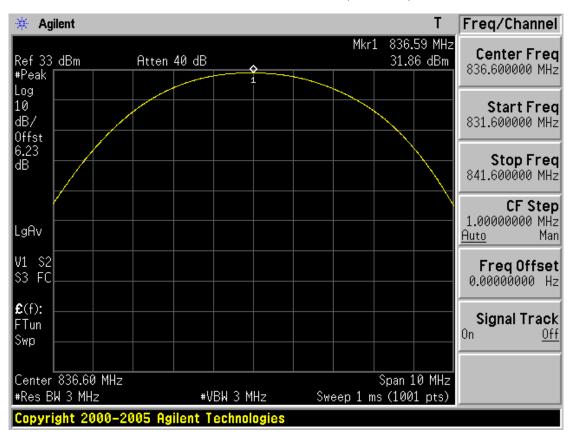
Champal	Frequency	TEST CONDITIONS Power Step: 5
Channel	(MHz)	(dBm)
128	824.2	31.63
190	836.6	31.86
251	848.8	31.79

PCS1900 (Black face)

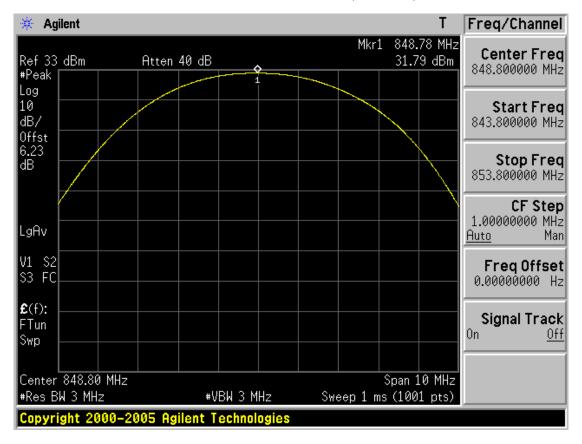
Charrie	Frequency	TEST CONDITIONS Power Step: 0
Channel	(MHz)	(dBm)
512	1850.2	28.65
661	1880.0	28.40
810	1909.8	28.43

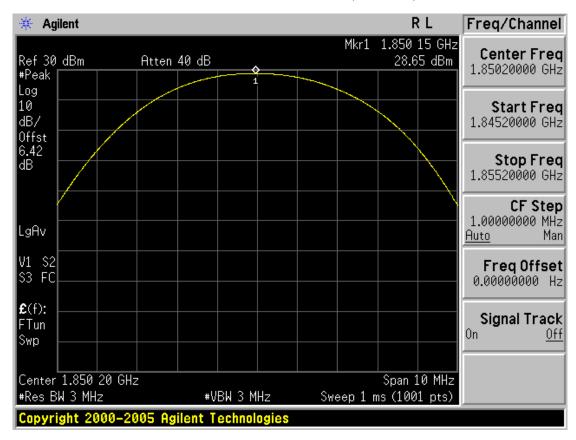

GSM850 (Silver face)

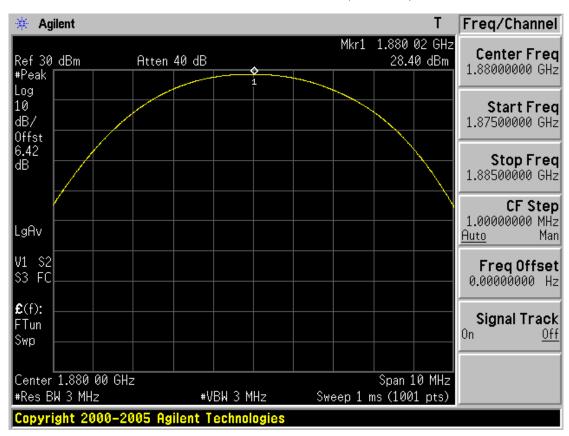
Channel	Frequency	TEST CONDITIONS Power Step: 5
Channel	(MHz)	(dBm)
128	824.2	31.63
190	836.6	31.84
251	848.8	31.64

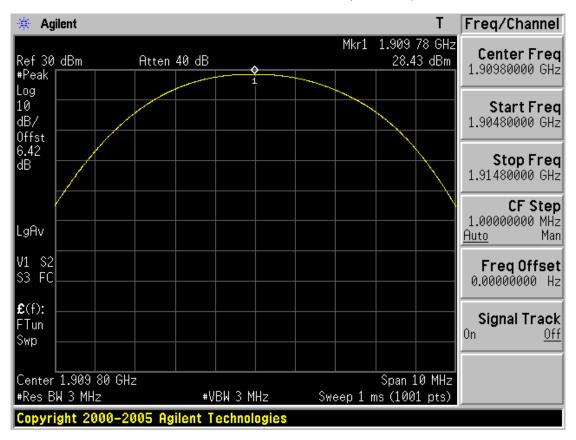

PCS1900 (Silver face)

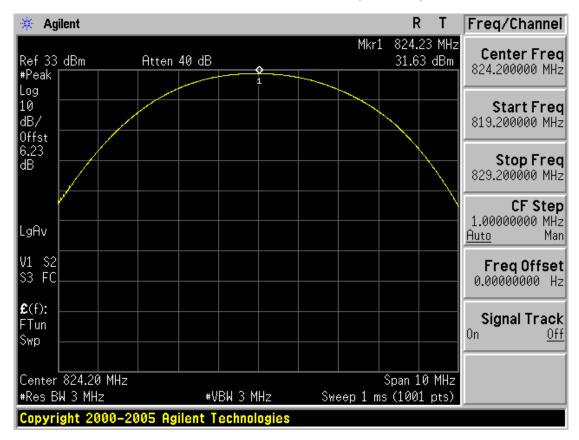
Channel	Frequency	TEST CONDITIONS Power Step: 0
	(MHz)	(dBm)
512	1850.2	28.51
661	1880.0	28.38
810	1909.8	28.46

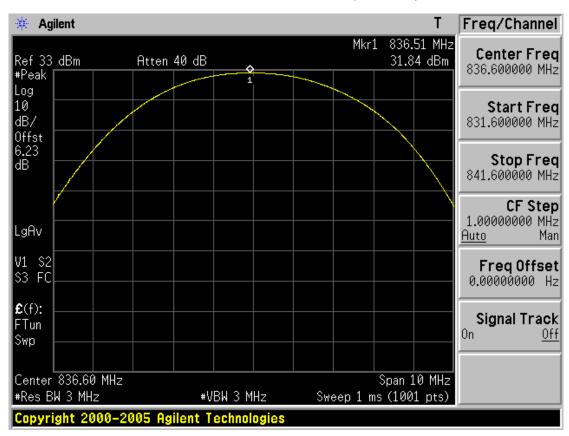

POWER OUT. GSM850 Ch.128 (Black face)

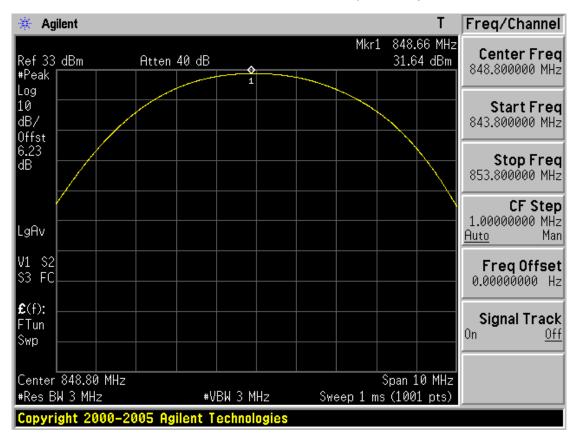

POWER OUT. GSM850 Ch.190 (Black face)

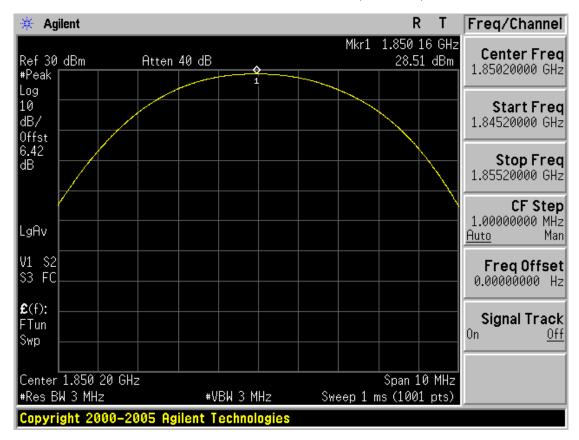

POWER OUT. GSM850 Ch.251 (Black face)

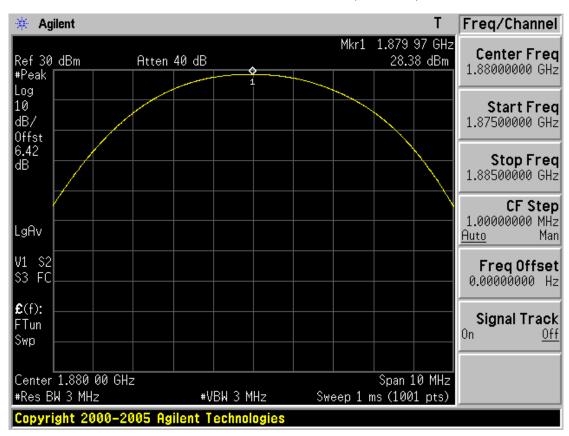

POWER OUT. PCS1900 Ch.512 (Black face)

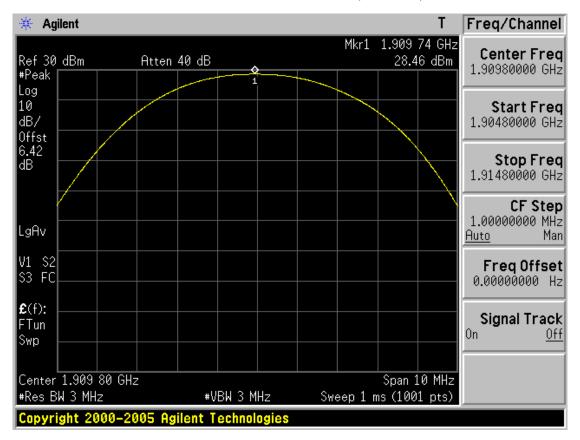

POWER OUT. PCS1900 Ch.661 (Black face)


POWER OUT. PCS1900 Ch.810 (Black face)


POWER OUT. GSM850 Ch.128 (Silver face)


POWER OUT. GSM850 Ch.190 (Silver face)


POWER OUT. GSM850 Ch.251 (Silver face)


POWER OUT. PCS1900 Ch.512 (Silver face)

POWER OUT. PCS1900 Ch.661 (Silver face)

POWER OUT. PCS1900 Ch.810 (Silver face)

ERP (GSM850)

FCC ID : WRLWINDDUO2100

Specification : 47 CFR 22.913(a)

Tested Frequency : 824.2MHz, 836.6MHz and 848.8MHz for GSM850

RBW=VBW : 3MHz

Measurement Procedure:

Effective Radiated Power Output Measurements by Substitution Method

according to ANSI/TIA/EIA-603-C 2004

The EUT was placed on a wooden turntable 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

Measurement Data:

	Frequency		TEST	CONDITIO	ONS Powe	er Step: 5	
Channel	(MHz)	Ref. level (dBm)	Pol. (H/V)	ERP (dBm)	ERP (W)	Battery	Note.
128	824.2	-14.58	Н	24.02	0.253	Battery	Black Face
190	836.6	-14.68	Н	24.55	0.285	Battery	Black Face
251	848.8	-13.41	Н	25.93	0.392	Battery	Black Face
128	824.2	-13.91	Н	23.05	0.202	Battery	Silver Face
190	836.6	-14.34	Н	21.53	0.142	Battery	Silver Face
251	848.8	-13.67	Н	21.89	0.155	Battery	Silver Face
251(Black)/251(Silver)	848.8	-14.10	Н	21.46	0.140	Battery	Simultaneous mode

Note: The ERP test for simultaneous operation mode was repeated at the same channel which is the worst case channel of black face and silver face.

EIRP (PCS1900)

FCC ID : WRLWINDDUO2100

Specification : 47 CFR 24.232(b)

Tested Frequency : 1850.2MHz, 1880.0MHz and 1909.8MHz for PCS1900

RBW=VBW : 3MHz

Measurement Procedure:

Effective Radiated Power Output Measurements by Substitution Method

according to ANSI/TIA/EIA-603-C 2004

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the Horn antenna is measured. The difference between the gain of the horn and an isotropic antenna is taken into consideration and the EIRP is recorded.

Measurement Data:

	Frequency			TEST CON	DITIONS	Power St	ep: 0	
Channel	(MHz)	Ref. level (dBm)	Pol. (H/V)	ANT GAIN	EIRP (dBm)	EIRP (W)	Battery	Note.
512	1850.20	-16.86	Н	8.55	22.58	0.181	Battery	Black Face
661	1880.00	-15.56	Н	8.39	24.65	0.292	Battery	Black Face
810	1909.80	-15.81	Н	8.37	24.03	0.253	Battery	Black Face
512	1850.20	-15.67	Н	8.55	23.77	0.238	Battery	Silver Face
661	1880.00	-14.93	Н	8.39	25.28	0.337	Battery	Silver Face
810	1909.80	-16.20	Н	8.37	23.64	0.231	Battery	Silver Face
661(Black)/661(Silver)	1880.00	-13.58	Н	8.39	26.63	0.460	Battery	Simultaneous mode

Note: The EIRP test for simultaneous operation mode was repeated at the same channel which is the worst case channel of black face and silver face.

3.3 Occupied Bandwidth

FCC ID : WRLWINDDUO2100 Specification : 47 CFR 2.1049 (h)(i)

Tested Frequency : 824.2MHz, 836.6MHz and 848.8MHz for GSM850

1850.2MHz, 1880.0MHz and 1909.8MHz for PCS1900

Measurement Procedure:

- The 99% power bandwidth was measured with a calibrated spectrum analyzer.

- Spectrum analyzer plots are included on the following pages.

Measurement Data:

GSM850 (Black face)

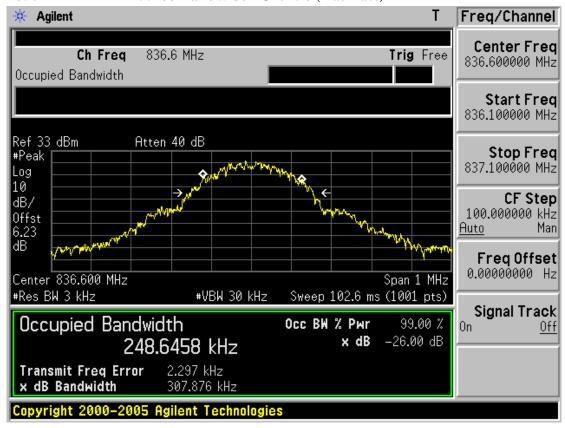
Channel	Frequency	99% Bandwidth
Channel	(MHz)	(kHz)
128	824.2	242.8999
190	836.6	248.6458
251	848.8	242.3537

PCS1900 (Black face)

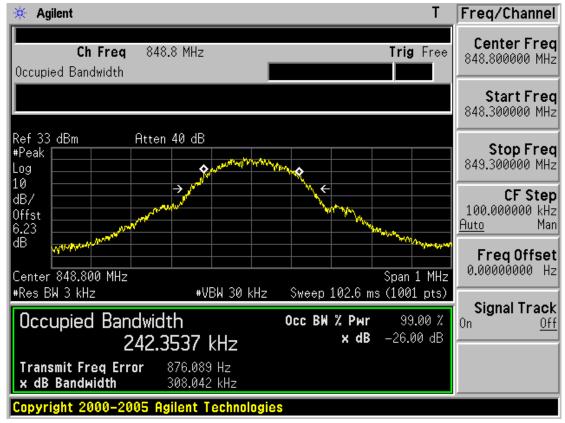
Channel	Frequency (MHz)	99% Bandwidth
Channel		(kHz)
512	1850.2	248.0033
661	1880.0	233.1220
810	1909.8	243.7615

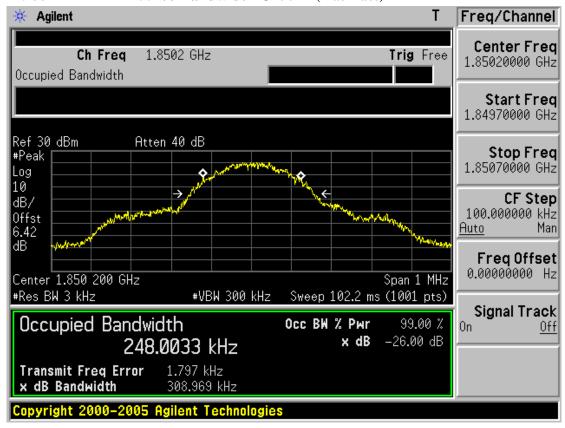
GSM850 (Silver face)

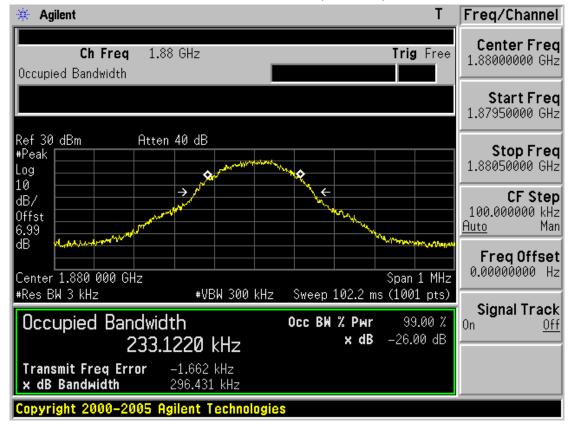
Chamal	Frequency	99% Bandwidth
Channel	(MHz)	(kHz)
128	824.2	245.4415
190	836.6	245.1189
251	848.8	246.0588


PCS1900 (Silver face)

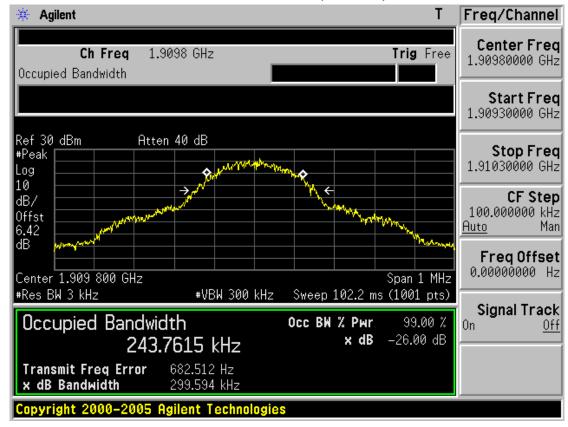
Channal	Frequency	99% Bandwidth
Channel	(MHz)	(kHz)
512	1850.2	244.4350
661	1880.0	243.2601
810	1909.8	244.4562



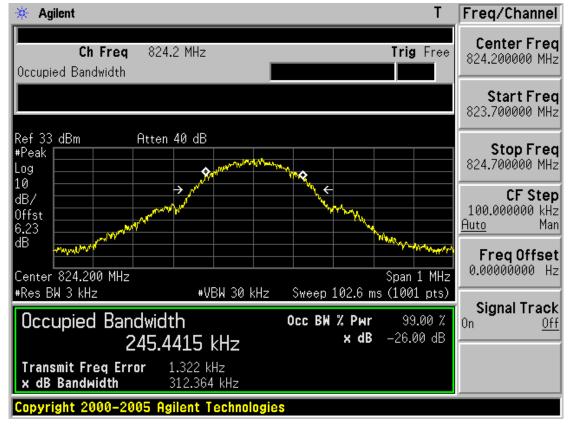

GSM850 99 % Bandwidth Ch. 190 (Black face)



GSM1900 99 % Bandwidth Ch. 512 (Black face)

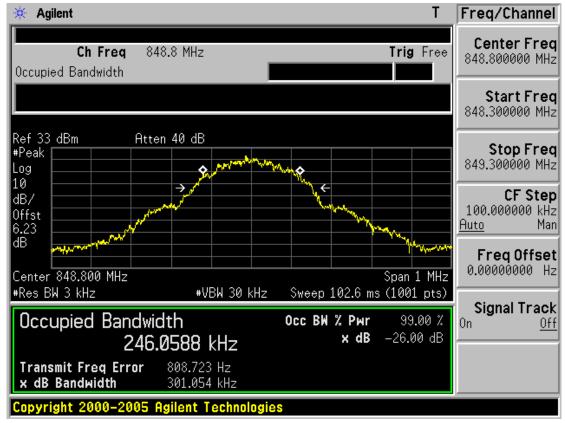

GSM1900

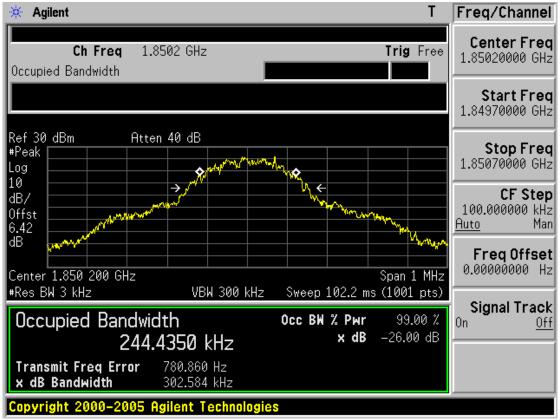
99 % Bandwidth Ch. 661 (Black face)

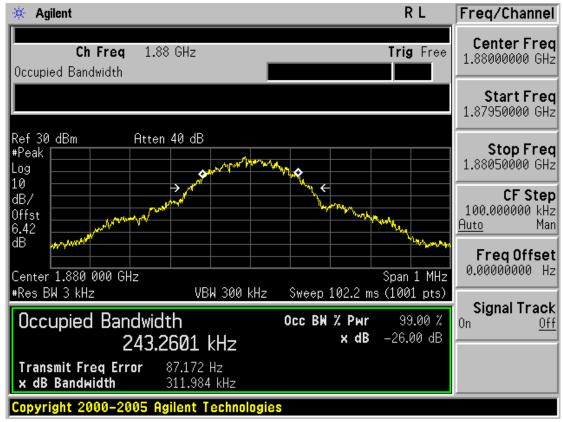


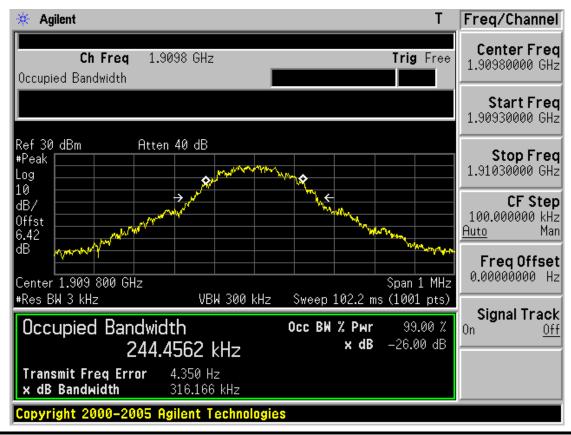
GSM1900

99 % Bandwidth Ch. 810 (Black face)




GSM850 99 % Bandwidth Ch. 190 (Silver face)




GSM1900 99 % Bandwidth Ch. 512 (Silver face)

GSM1900 99 % Bandwidth Ch. 810 (Silver face)

3.4 Occupied Bandwidth Emission Limit

FCC ID : WRLWINDDUO2100

Specification : 47 CFR 24.238(b)

Tested Frequency : 824.2MHz, 836.6MHz and 848.8MHz for GSM850

1850.2MHz, 1880.0MHz and 1909.8MHz for PCS1900

Measurement Procedure:

- (a) On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43+10log(P) dB.

(b) Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1^{MHz} or greater. However, in the 1^{MHz} bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26dB below the transmitter power.

- (c) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- The measurement of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.
- Spectrum analyzer plots are included on the following pages.

Measurement Data:

- Refer to the next page.

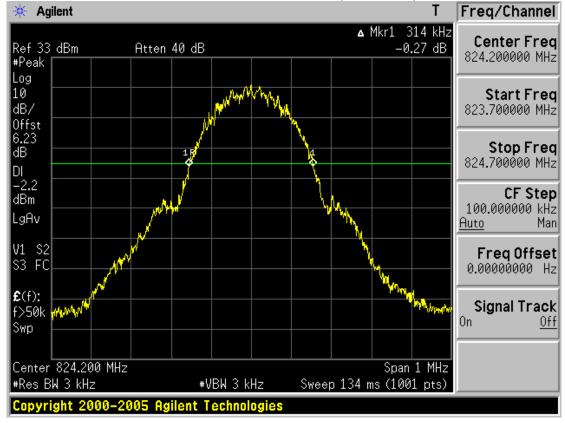
GSM850 (Black face)

Channel	Frequency (MHz)	-26dBc Bandwidth
		(kHz)
128	824.2	314
190	836.6	314
251	848.8	311

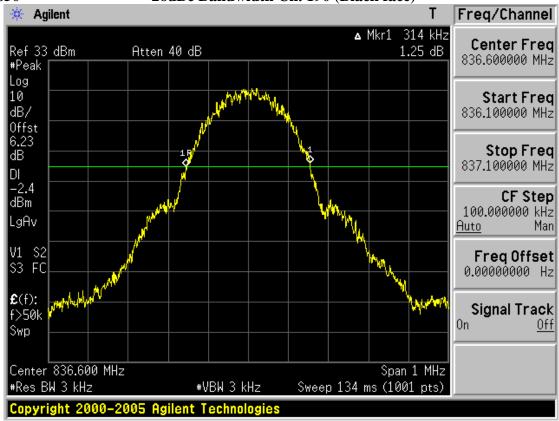
PCS1900 (Black face)

Channel	Frequency (MHz)	-26dBc Bandwidth
		(kHz)
512	1850.2	309
661	1880.0	314
810	1909.8	313

GSM850 (Silver face)

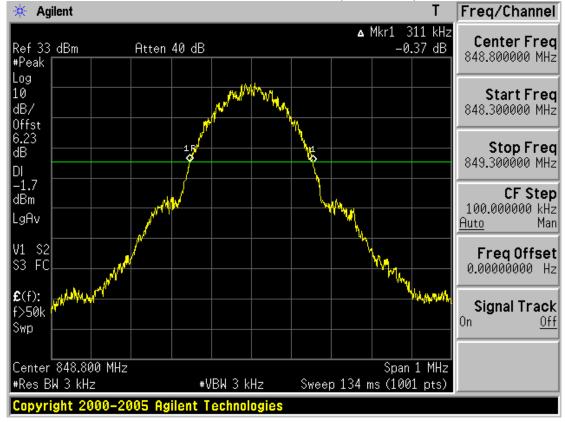

Channel	Frequency (MHz)	-26dBc Bandwidth
		(kHz)
128	824.2	309
190	836.6	310
251	848.8	312

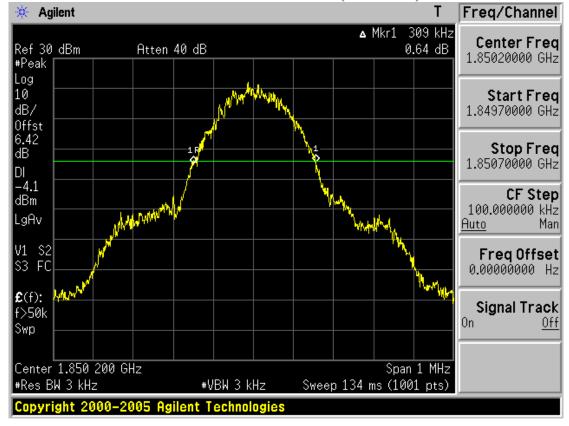
PCS1900 (Silver face)


Channel	Frequency (MHz)	-26dBc Bandwidth
		(kHz)
512	1850.2	309
661	1880.0	313
810	1909.8	312

GSM850

-26dBc Bandwidth Ch. 128 (Black face)

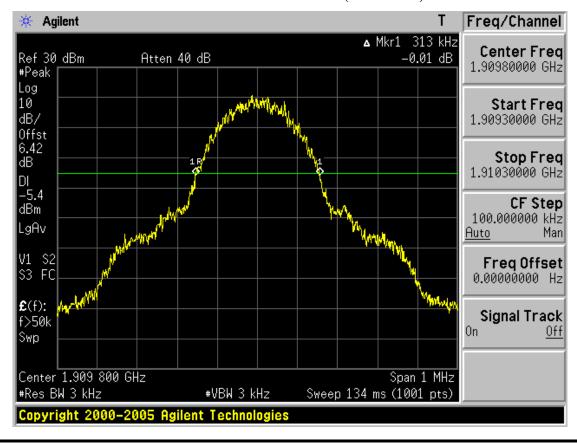



GSM850

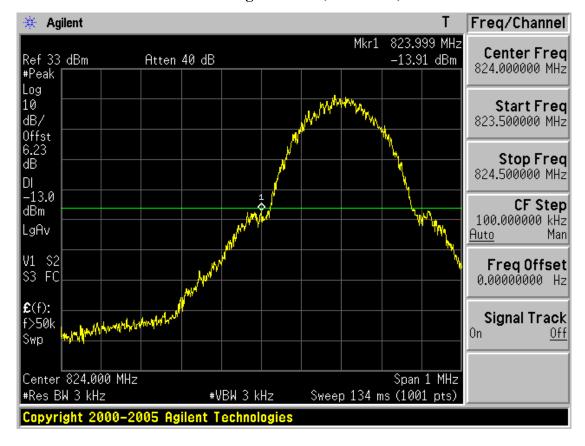
-26dBc Bandwidth Ch. 251 (Black face)


PCS1900

-26dBc Bandwidth Ch. 512 (Black face)


PCS1900

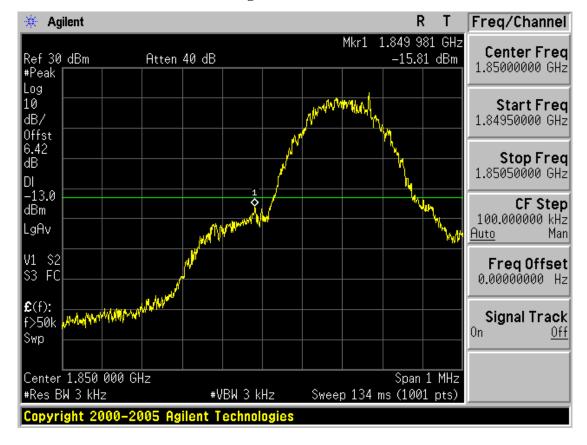
-26dBc Bandwidth Ch. 661 (Black face)


PCS1900

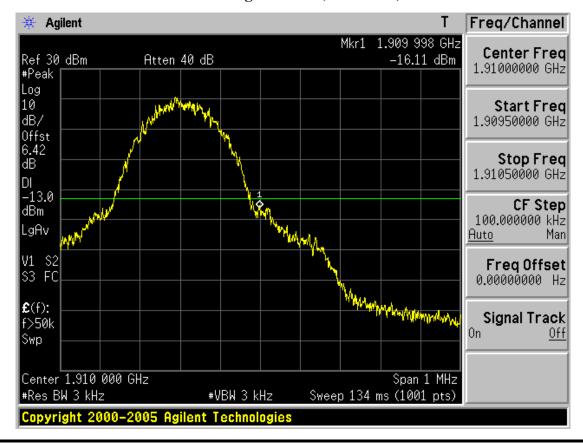
-26dBc Bandwidth Ch. 810 (Black face)

GSM850

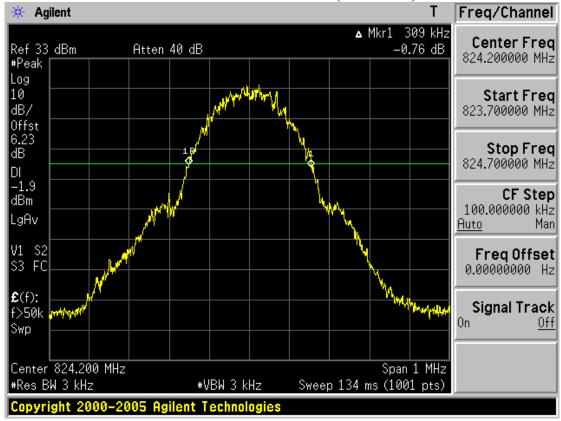
Band Edge Ch. 128 (Black face)


GSM850

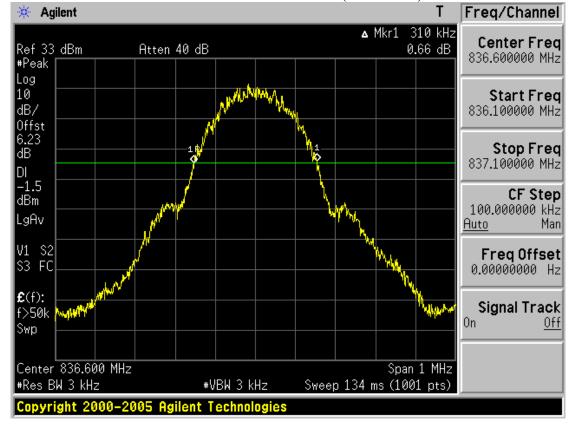
Band Edge Ch. 251 (Black face)


PCS1900

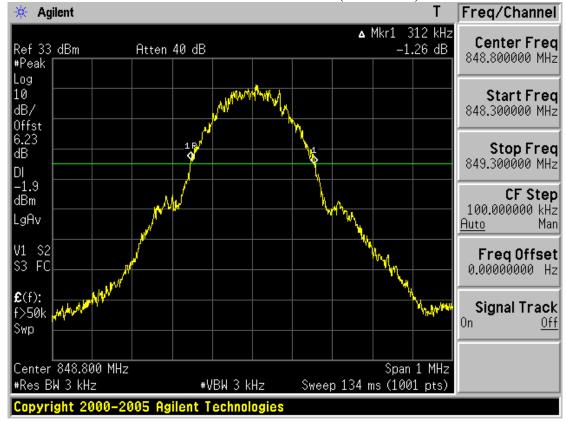
Band Edge Ch. 512 (Black face)


PCS1900

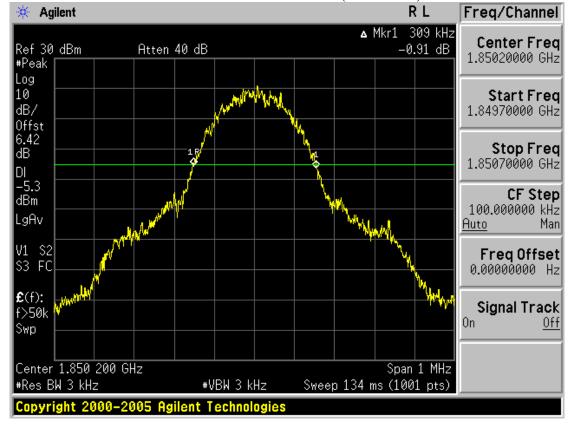
Band Edge Ch. 810 (Black face)


GSM850

-26dBc Bandwidth Ch. 128 (Silver face)



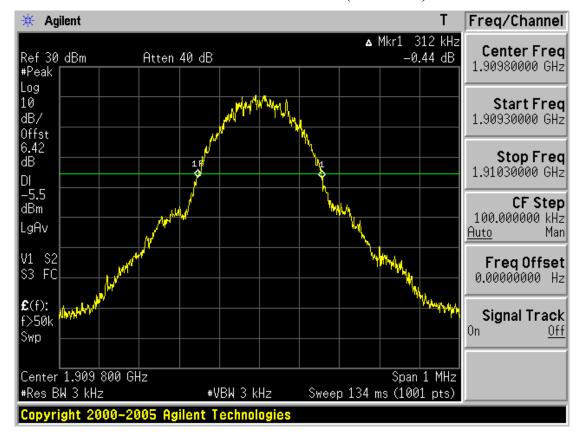
-26dBc Bandwidth Ch. 190 (Silver face)



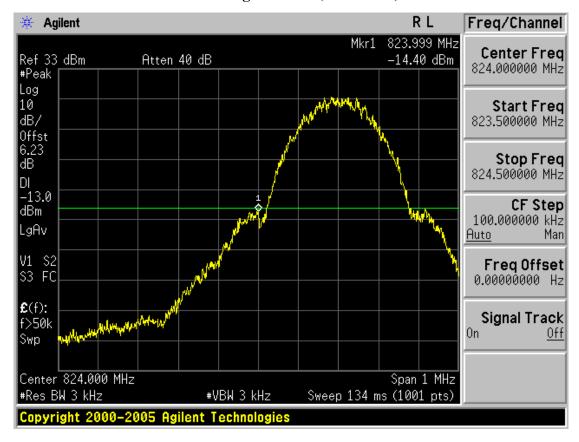
-26dBc Bandwidth Ch. 251 (Silver face)

PCS1900

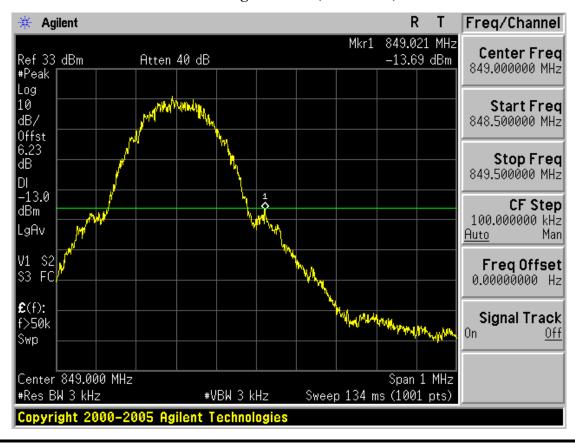
-26dBc Bandwidth Ch. 512 (Silver face)


PCS1900

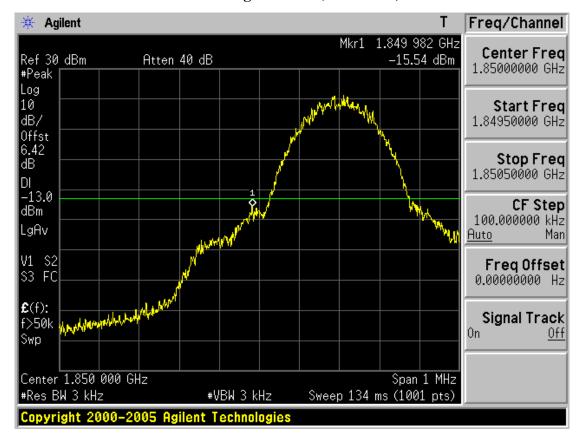
-26dBc Bandwidth Ch. 661 (Silver face)


PCS1900

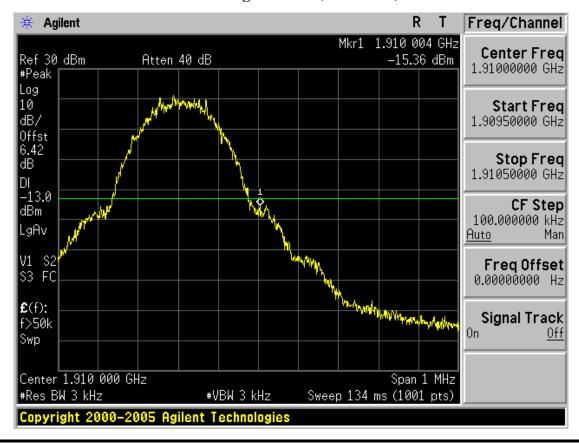
-26dBc Bandwidth Ch. 810 (Silver face)


GSM850

Band Edge Ch. 128 (Silver face)


GSM850

Band Edge Ch. 251 (Silver face)


PCS1900

Band Edge Ch. 512 (Silver face)

PCS1900

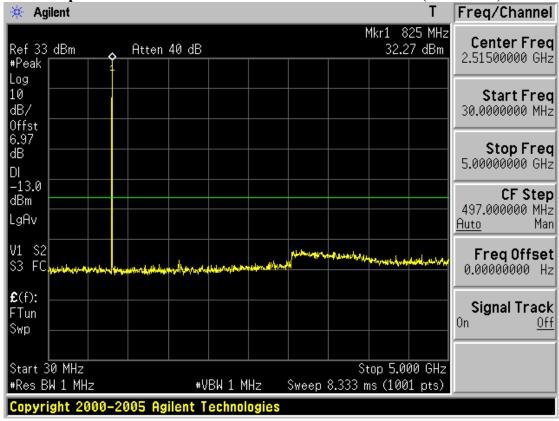
Band Edge Ch. 810 (Silver face)

3.5 Spurious and Harmonic Emissions at Antenna Terminal

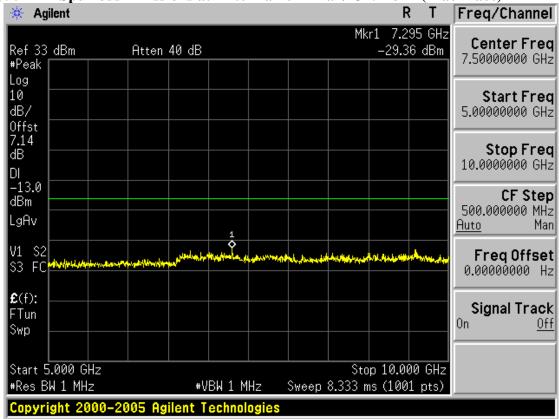
FCC ID : **WRLWINDDUO2100**Specification : 47 CFR 2.1051, 24.238(a)

Tested Frequency : 824.2MHz, 836.6MHz and 848.8MHz for GSM850

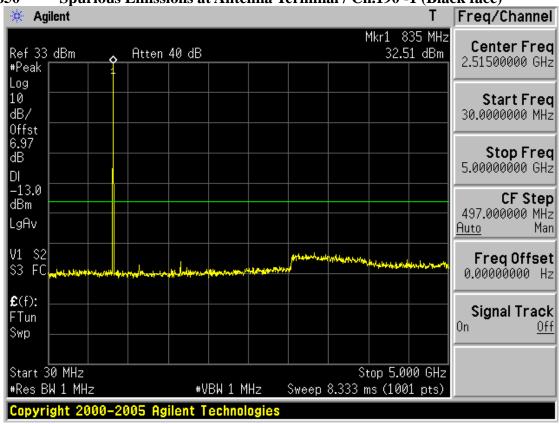
1850.2MHz, 1880.0MHz and 1909.8MHz for PCS1900

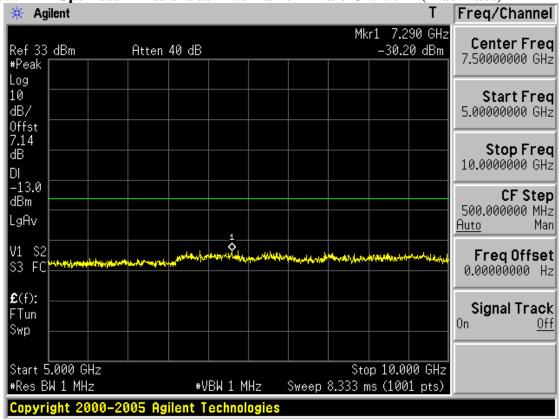

Measurement Procedure:

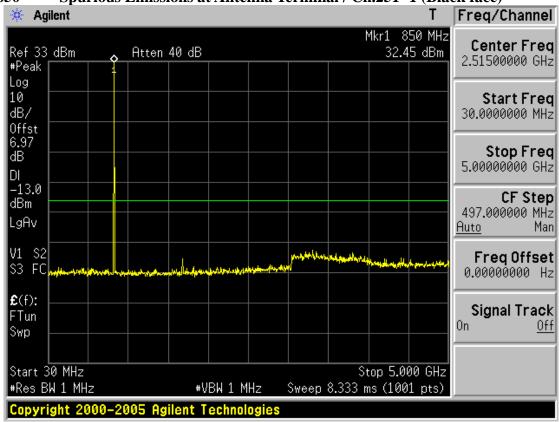
The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer.

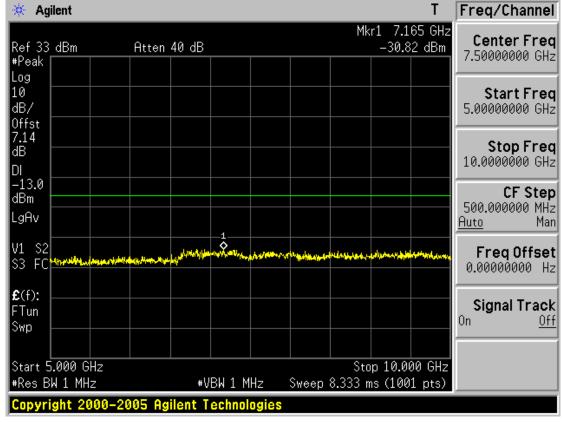

The spectrum is scanned from the lowest frequency generated in the equipment up to 10'th harmonics of the highest frequency.

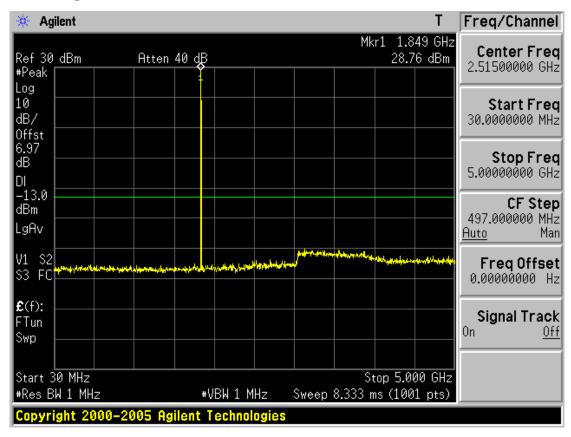
Spectrum analyzer plots are included on the following pages.

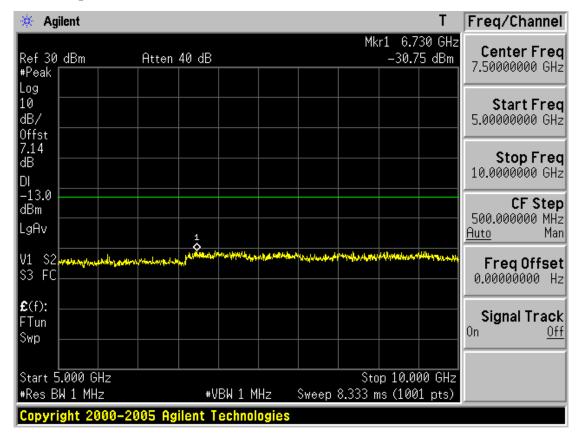


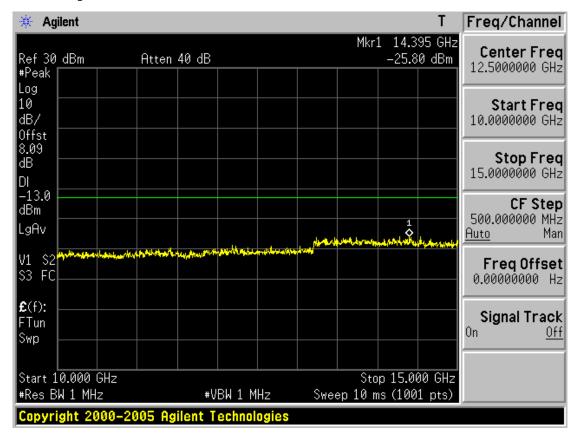

GSM850 Spurious Emissions at Antenna Terminal / Ch.128 -2 (Black face)

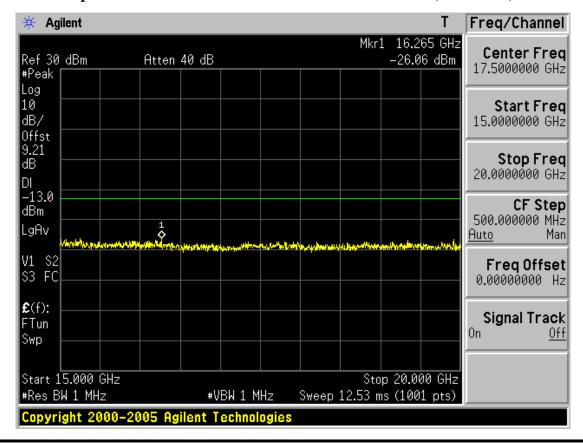


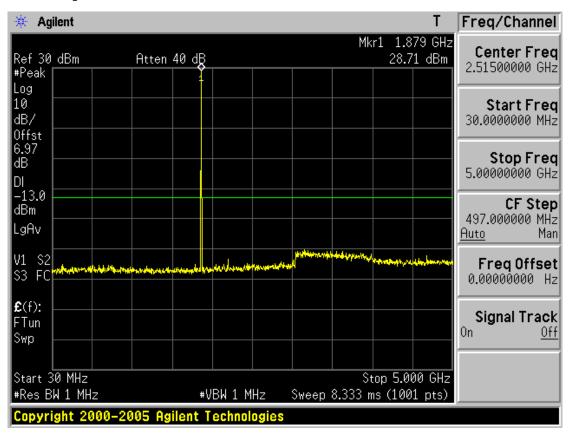

GSM850 Spurious Emissions at Antenna Terminal / Ch.190 -2 (Black face)

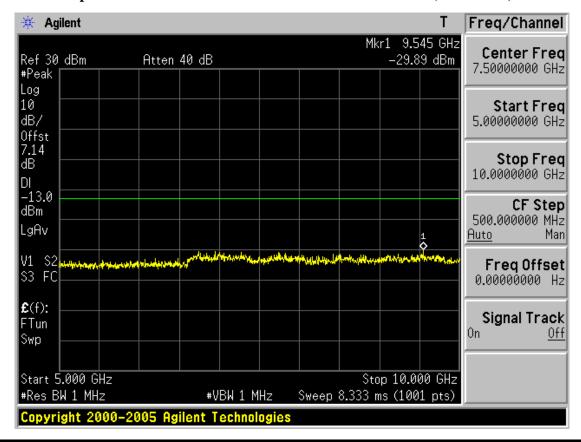


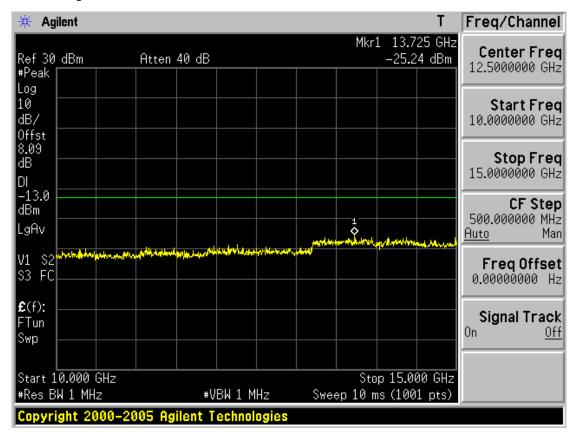

GSM850 Spurious Emissions at Antenna Terminal / Ch.251-2 (Black face)

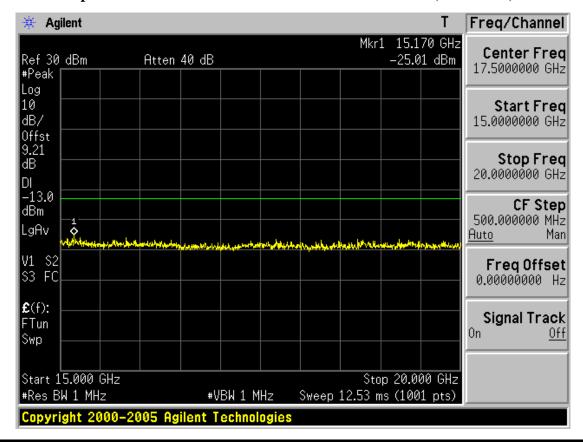

PCS1900 Spurious Emissions at Antenna Terminal / Ch.512 -1 (Black face)

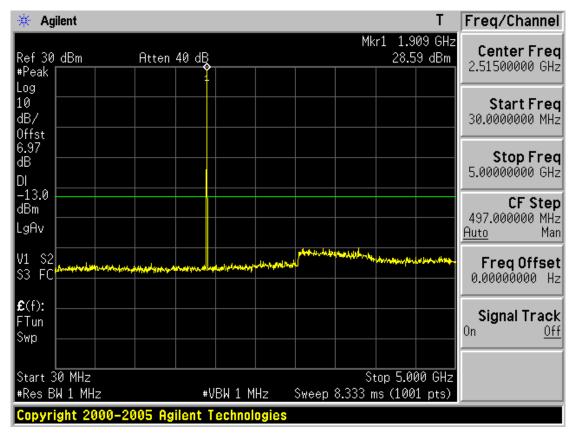

PCS1900 Spurious Emissions at Antenna Terminal / Ch.512 -2 (Black face)

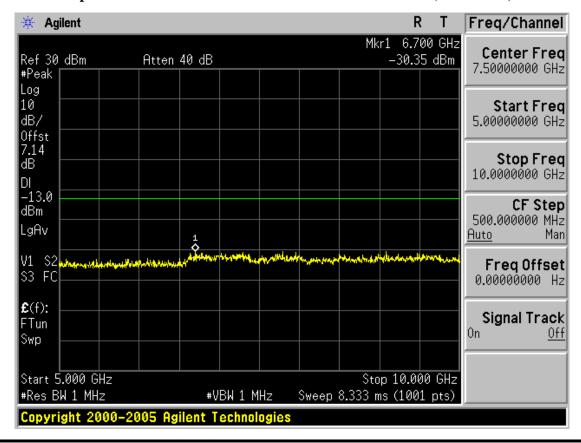

PCS1900 Spurious Emissions at Antenna Terminal / Ch.512 -3 (Black face)

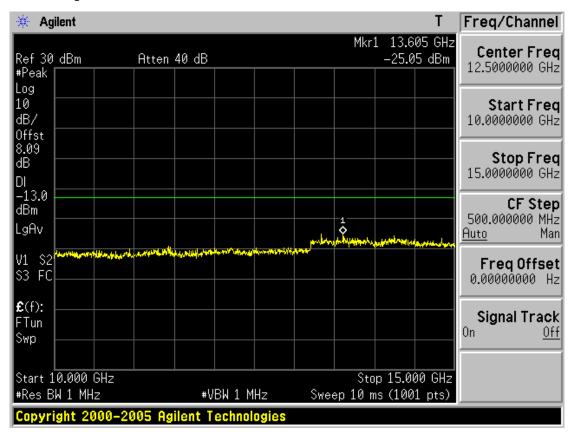

PCS1900 Spurious Emissions at Antenna Terminal / Ch.512 -4 (Black face)

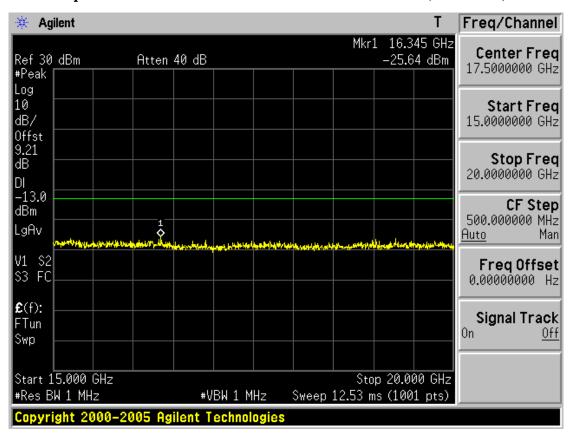

PCS1900 Spurious Emissions at Antenna Terminal / Ch.661 -1 (Black face)

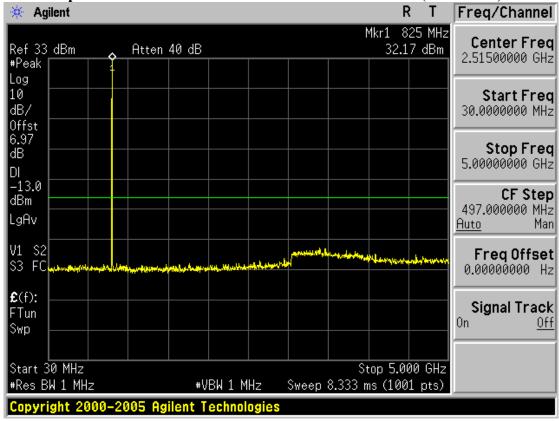

PCS1900 Spurious Emissions at Antenna Terminal / Ch.661 -2 (Black face)

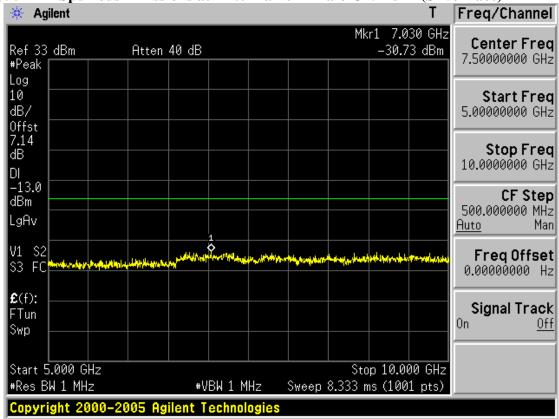

PCS1900 Spurious Emissions at Antenna Terminal / Ch.661 -3 (Black face)

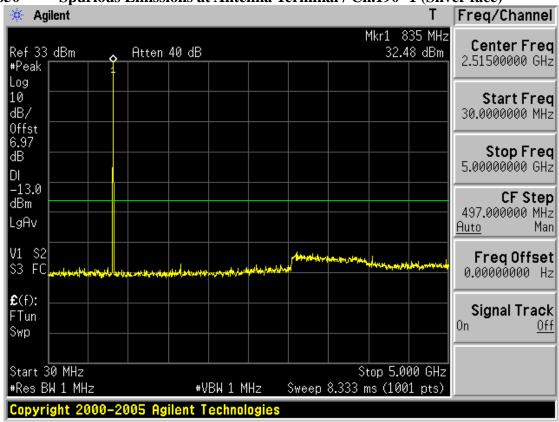

PCS1900 Spurious Emissions at Antenna Terminal / Ch.661 -4 (Black face)

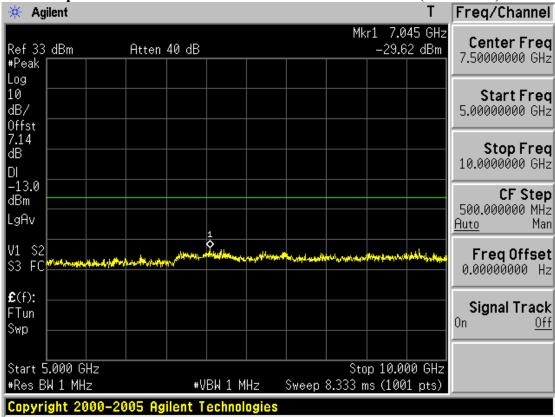


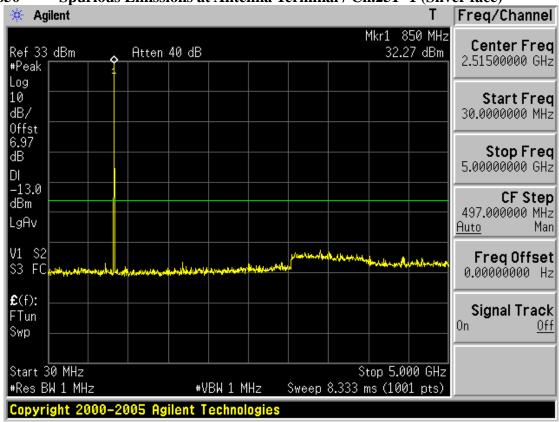

PCS1900 Spurious Emissions at Antenna Terminal / Ch.810 -2 (Black face)

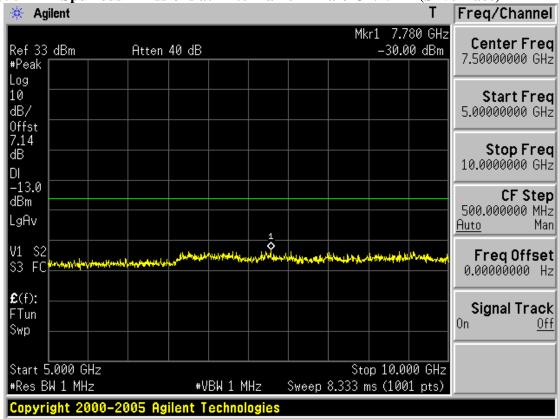

PCS1900 Spurious Emissions at Antenna Terminal / Ch.810 -3 (Black face)

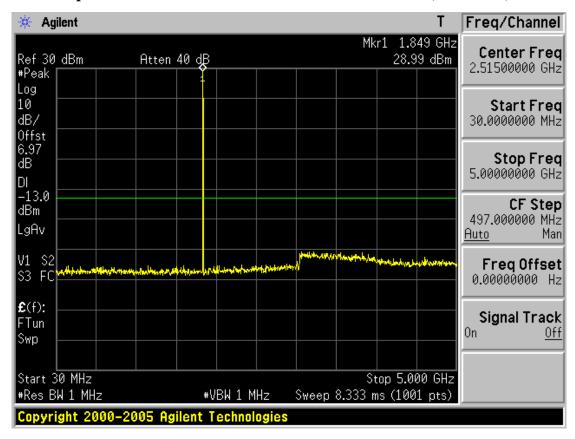

PCS1900 Spurious Emissions at Antenna Terminal / Ch.810 -4 (Black face)

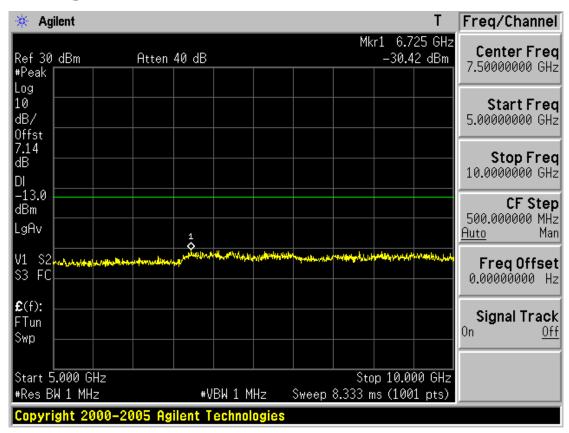


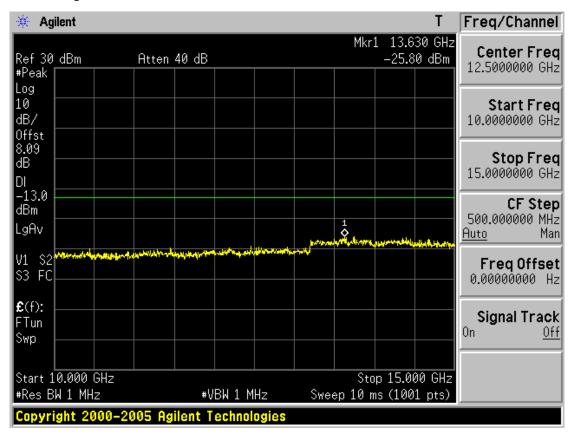

GSM850 Spurious Emissions at Antenna Terminal / Ch.128 -2 (Silver face)

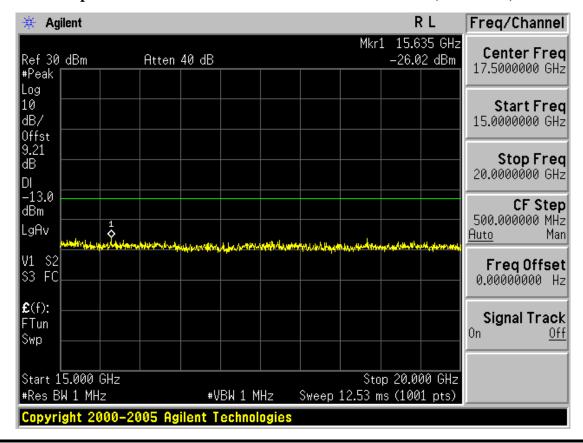


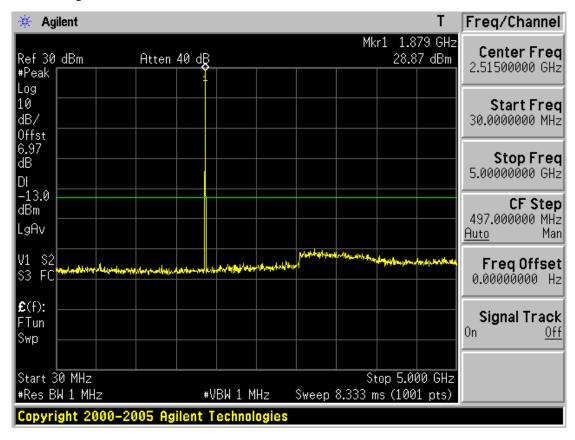

GSM850 Spurious Emissions at Antenna Terminal / Ch.190 -2 (Silver face)

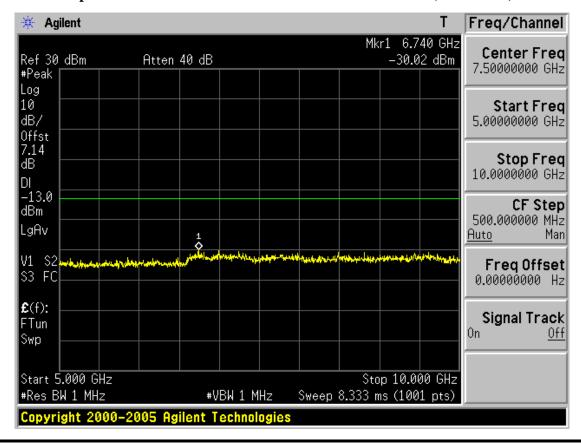


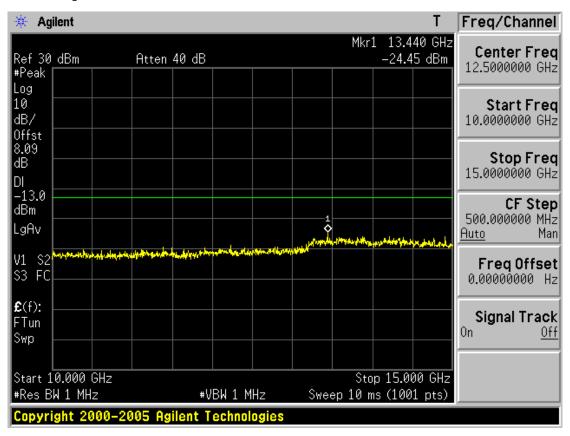

GSM850 Spurious Emissions at Antenna Terminal / Ch.251-2 (Silver face)

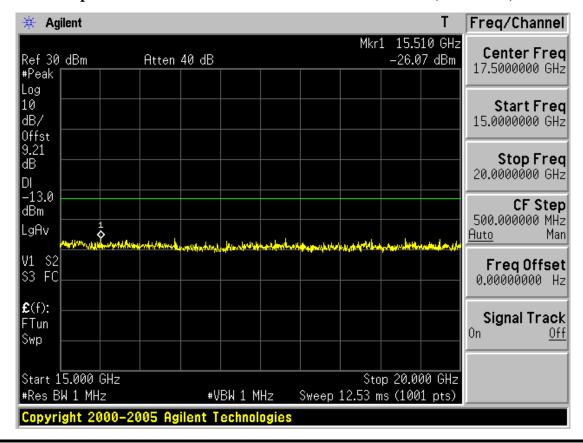

PCS1900 Spurious Emissions at Antenna Terminal / Ch.512 -1 (Silver face)

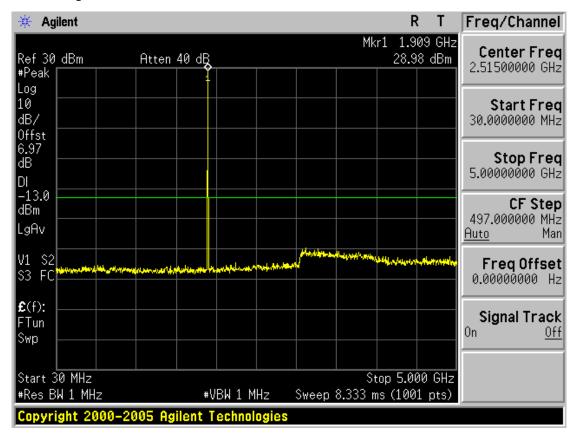

PCS1900 Spurious Emissions at Antenna Terminal / Ch.512 -2 (Silver face)

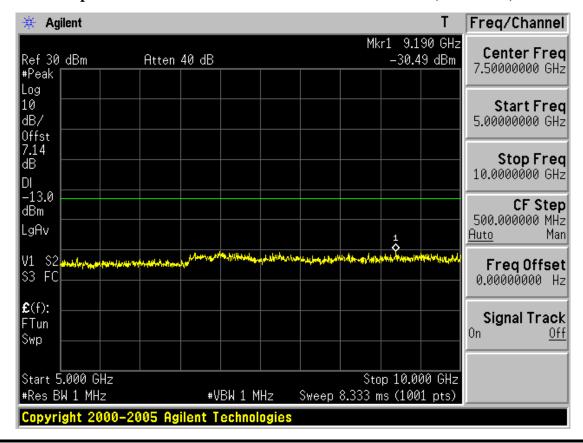

PCS1900 Spurious Emissions at Antenna Terminal / Ch.512 -3 (Silver face)

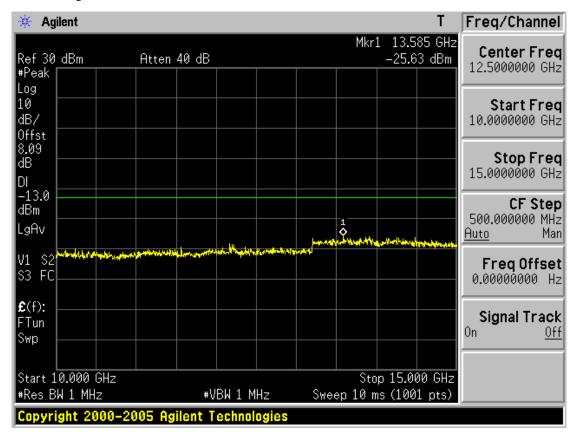

PCS1900 Spurious Emissions at Antenna Terminal / Ch.512 -4 (Silver face)

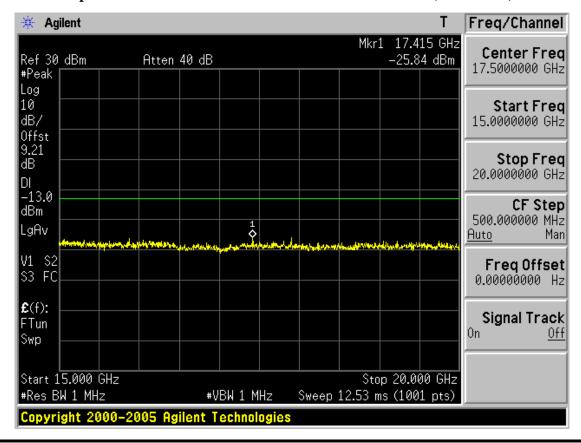

PCS1900 Spurious Emissions at Antenna Terminal / Ch.661 -1 (Silver face)


PCS1900 Spurious Emissions at Antenna Terminal / Ch.661 -2 (Silver face)


PCS1900 Spurious Emissions at Antenna Terminal / Ch.661 -3 (Silver face)


PCS1900 Spurious Emissions at Antenna Terminal / Ch.661 -4 (Silver face)


PCS1900 Spurious Emissions at Antenna Terminal / Ch.810 -1 (Silver face)


PCS1900 Spurious Emissions at Antenna Terminal / Ch.810 -2 (Silver face)

PCS1900 Spurious Emissions at Antenna Terminal / Ch.810 -3 (Silver face)

PCS1900 Spurious Emissions at Antenna Terminal / Ch.810 -4 (Silver face)

3.6 Field Strength of Spurious Radiation

FCC ID : WRLWINDDUO2100

Specification : 47 CFR 2.1053(a)

Tested Frequency : 824.2MHz, 836.6MHz and 848.8MHz for GSM850

1850.2MHz, 1880.0MHz and 1909.8MHz for PCS1900

Measurement Procedure:

Radiation and harmonic emissions are measured outdoors at our 3-meter test range. The equipment under test is placed on a wooden turntable 3-meters from the receive antenna.

GSM850 Field Strength of SPURIOUS Radiation (Black face)

OPERATING FREQUENCY : 824.2 MHz

CHANNEL: 128(Low)

MEASURED OUTPUT POWER : $\underline{24.02}$ dBm = $\underline{0.253}$ W

MODULATION SIGNAL : GSM (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 37.02$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBd)	(dBm)		
1648.4	-47.11	6.31	-40.80	V	64.82
1648.4	-48.05	6.31	-41.74	Н	65.76
-	-	-	-	-	-

NOTE

<u>Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C 2004:</u>

GSM850 Field Strength of SPURIOUS Radiation (Black face)

OPERATING FREQUENCY : 836.6 MHz

CHANNEL: 190(Mid)

MEASURED OUTPUT POWER : <u>24.55</u> dBm = <u>0.285</u> W

MODULATION SIGNAL : GSM (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 37.55$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBd)	(dBm)		
1673.2	-50.37	6.36	-44.01	V	68.56
1673.2	-51.68	6.36	-45.32	Н	69.87
-	-	-	-	-	-

|--|

<u>Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C 2004:</u>

GSM850 Field Strength of SPURIOUS Radiation (Black face)

OPERATING FREQUENCY : 848.8 MHz

CHANNEL: 251(High)

MEASURED OUTPUT POWER : $\underline{25.93}$ dBm = $\underline{0.392}$ W

MODULATION SIGNAL : GSM (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 38.93$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBd)	(dBm)		
1697.6	-47.82	6.41	-41.41	V	67.34
1697.6	-45.47	6.41	-39.06	Н	64.99
-	-	-	-	-	-

<u>Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C 2004:</u>

GSM850 Field Strength of SPURIOUS Radiation (Silver face)

OPERATING FREQUENCY : 824.2 MHz

CHANNEL: 128(Low)

MEASURED OUTPUT POWER : $\underline{23.05}$ dBm = $\underline{0.202}$ W

MODULATION SIGNAL : GSM (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 36.05$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBd)	(dBm)		
1648.4	-43.13	6.31	-36.82	V	59.87
1648.4	-43.66	6.31	-37.35	Н	60.40
-	-	-	-	-	-

NOTE

<u>Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C 2004:</u>

GSM850 Field Strength of SPURIOUS Radiation (Silver face)

OPERATING FREQUENCY : 836.6 MHz

CHANNEL: 190(Mid)

MEASURED OUTPUT POWER : $\underline{21.53}$ dBm = $\underline{0.142}$ W

MODULATION SIGNAL : GSM (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 34.53$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBd)	(dBm)		
1673.2	-50.87	6.36	-44.51	V	66.04
1673.2	-49.20	6.36	-42.84	Н	64.37
-	-	-	-	-	-

NOTE

<u>Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C 2004:</u>

GSM850 Field Strength of SPURIOUS Radiation (Silver face)

OPERATING FREQUENCY : 848.8 MHz

CHANNEL: 251(High)

MEASURED OUTPUT POWER : <u>21.89</u> dBm = <u>0.155</u> W

MODULATION SIGNAL : GSM (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 34.89$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBd)	(dBm)		
1697.6	-48.10	6.41	-41.69	V	63.58
1697.6	-47.19	6.41	-40.78	Н	62.67
-	-	-	-	-	-

NOTE

<u>Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C 2004:</u>

GSM850 Field Strength of SPURIOUS Radiation (Simultaneous mode)

OPERATING FREQUENCY : 848.8 MHz

CHANNEL: 251(High)

MEASURED OUTPUT POWER : $\underline{21.46}$ dBm = $\underline{0.140}$ W

MODULATION SIGNAL : GSM (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 34.46$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBd)	(dBm)		
1697.6	-51.77	6.41	-45.36	V	66.82
1697.6	-45.92	6.41	-39.51	Н	60.97
-	-	-	-	-	-

Note: This simultaneous operation mode test was repeated at the same channel which is the worst case channel of black face and silver face.

NOTE	

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C 2004:

GSM1900 Field Strength of SPURIOUS Radiation (Black Face)

OPERATING FREQUENCY : 1850.2 MHz

CHANNEL: 512(Low)

MEASURED OUTPUT POWER : $\underline{22.58}$ dBm = $\underline{0.181}$ W

MODULATION SIGNAL : GSM (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 35.58$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBi)	(dBm)		
3700.4	-48.55	9.60	-38.95	V	61.53
3700.4	-48.03	9.60	-38.43	Н	61.01
-	-	-	-	-	-

NOTE

<u>Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C 2004:</u>

GSM1900 Field Strength of SPURIOUS Radiation (Black Face)

OPERATING FREQUENCY : 1880.0 MHz

CHANNEL: 661(Mid)

MEASURED OUTPUT POWER : $\underline{24.65}$ dBm = $\underline{0.292}$ W

MODULATION SIGNAL : GSM (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 37.65$ dBo

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBi)	(dBm)		
3760	-47.21	9.59	-37.62	V	62.27
3760	-47.21	9.59	-37.62	Н	62.27
-	-	-	-	-	-

NOTE

<u>Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C 2004:</u>

GSM1900 Field Strength of SPURIOUS Radiation (Black Face)

OPERATING FREQUENCY : 1909.8 MHz

CHANNEL: 810(High)

MEASURED OUTPUT POWER : $\underline{24.03}$ dBm = $\underline{0.253}$ W

MODULATION SIGNAL : GSM (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 37.03$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBi)	(dBm)		
3819.6	-46.46	9.58	-36.88	V	60.91
3819.6	-47.76	9.58	-38.18	Н	62.21
-	-	-	-	-	-

NOTE

<u>Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C 2004:</u>

GSM1900 Field Strength of SPURIOUS Radiation (Silver face)

OPERATING FREQUENCY : 1850.2 MHz

CHANNEL: 512(Low)

MEASURED OUTPUT POWER : $\underline{23.77}$ dBm = $\underline{0.238}$ W

MODULATION SIGNAL : GSM (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = \underline{36.77} dBc$

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBi)	(dBm)		
3700.4	-45.98	9.60	-36.38	V	60.15
3700.4	-47.17	9.60	-37.57	Н	61.34
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C 2004:

GSM1900 Field Strength of SPURIOUS Radiation (Silver face)

OPERATING FREQUENCY : 1880.0 MHz

CHANNEL: 661(Mid)

MEASURED OUTPUT POWER : $\underline{25.28}$ dBm = $\underline{0.337}$ W

MODULATION SIGNAL : GSM (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 38.28$ dBo

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBi)	(dBm)		
3760	-47.46	9.59	-37.87	V	63.15
3760	-46.77	9.59	-37.18	Н	62.46
-	-	-	-	-	-

NOTE

<u>Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C 2004:</u>

GSM1900 Field Strength of SPURIOUS Radiation (Silver face)

OPERATING FREQUENCY : 1909.8 MHz

CHANNEL: 810(High)

MEASURED OUTPUT POWER : $\underline{23.64}$ dBm = $\underline{0.231}$ W

MODULATION SIGNAL : GSM (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = \underline{36.64} \text{ dBc}$

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBi)	(dBm)		
3819.6	-46.76	9.58	-37.18	V	60.82
3819.6	-47.48	9.58	-37.90	Н	61.54
-	-	-	-	-	-

NOTE

<u>Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C 2004:</u>

GSM1900 Field Strength of SPURIOUS Radiation (Simultaneous mode)

OPERATING FREQUENCY : 1880.0 MHz

CHANNEL: 661(Mid)

MEASURED OUTPUT POWER : $\underline{26.63}$ dBm = $\underline{0.460}$ W

MODULATION SIGNAL : GSM (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 39.63$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBi)	(dBm)		
3760.0	-43.98	9.59	-34.39	V	58.02
3760.0	-47.87	9.59	-38.28	Н	61.91
-	-	-	-	-	-

Note: This simultaneous operation mode test was repeated at the same channel which is the worst case channel of black face and silver face.

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C 2004:

3.7 Frequency Stability/Temperature Variation.

FCC ID : WRLWINDDUO2100

Specification : 47 CFR 2.1055

Tested Frequency : 836.6MHz for GSM850

1880.0MHz for PCS1900

Measurement Procedure:

The frequency stability of the transmitter is measured by:

a) **Temperature**: The temperature is varied from -30° C to $+50^{\circ}$ C using an environmental chamber.

b) **Primary Supply Voltage**: The primary supply voltage is varied from 85% to 115% of the voltage Normally at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification – The minimum frequency stability shall be +/- 0.00025% at any time during normal operation.

Specification — The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025(\pm 2.5 \text{ppm})$ of the center frequency.

Time Period and Procedure:

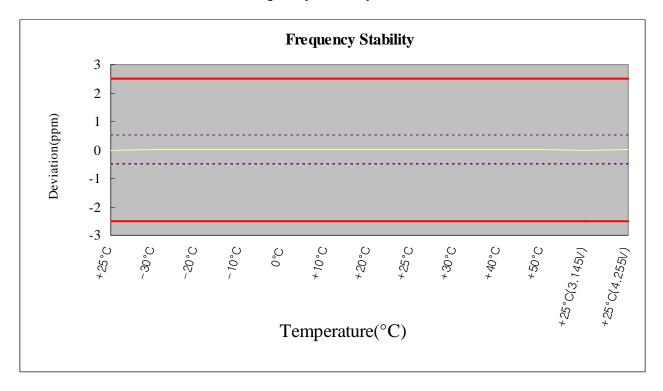
- 1. The carrier frequency of the transmitter and the individual oscillators is measured at room temperature (25°C to 27 °C to provide a reference)
- 2. The equipment is subjected to an overnight "soak" at -30°C without any power applied.
- 3. After the overnight "soak" at -30°C(usually 14-16 hours), the equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency to the transmitter and the individual oscillators is made within a three minute interval after applying power to the transmitter.
- 4. Frequency measurements is made at 10°C interval up to room temperature. At least a period of one and one half hour is provided to allow stabilization of the equipment at each temperature level.
- 5. Again the transmitter carrier frequency and the individual oscillators is measured at room temperature to begin measurement of the upper temperature levels.
- 6. Frequency were made at 10intervals starting at -30°C up to +50°C allowing at least two hours at each temperature for stabilization. In all measurements the frequency is measured within three minutes after applying power to the transmitter.
- 7. The artificial load is mounted external to the temperature chamber.

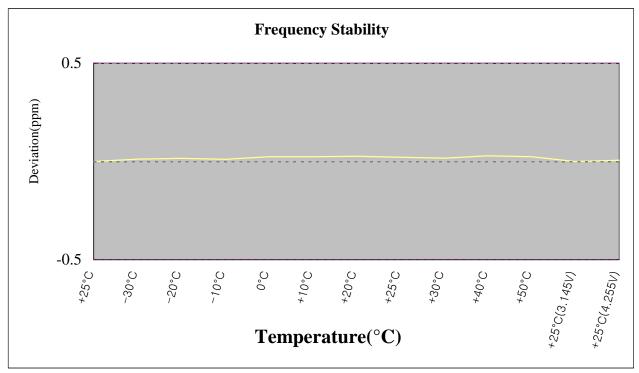
Frequency Stability (GSM850) (Black face)

OPERATING FREQUENCY : 836,599,960 Hz

CHANNEL: 190(Mid)

REFERENCE VOLTAGE : 3.7 VDC


DEVIATION LIMIT : ± 0.00025 % or 2.5 ppm


VOLTAGE	POWER	TEMP	FREQ	Deviation
(%)	(VDC)	(dB)	(Hz)	(%)
100%	3.7	+25(Ref)	836,599,960	0.000000
100%		-30	836,599,970	0.000001
100%		-20	836,599,973	0.000002
100%		-10	836,599,969	0.000001
100%		0	836,599,980	0.000002
100%		+10	836,599,980	0.000002
100%		+20	836,599,982	0.000003
100%		+25	836,599,978	0.000002
100%		+30	836,599,974	0.000002
100%		+40	836,599,984	0.000003
100%		+50	836,599,980	0.000002
85%	3.145	+25	-	-
115%	4.255	+25	836,599,965	0.000001
BAT. END Point	3.400	+25	836,599,971	0.01

This device is not operated at 3.145 V (85%).

Frequency Stability(GSM850)

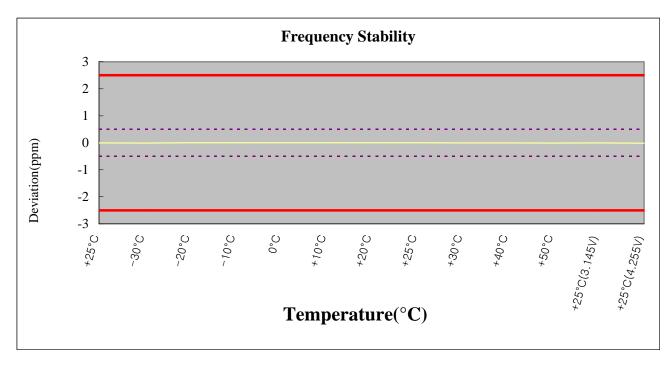
(Continued...)

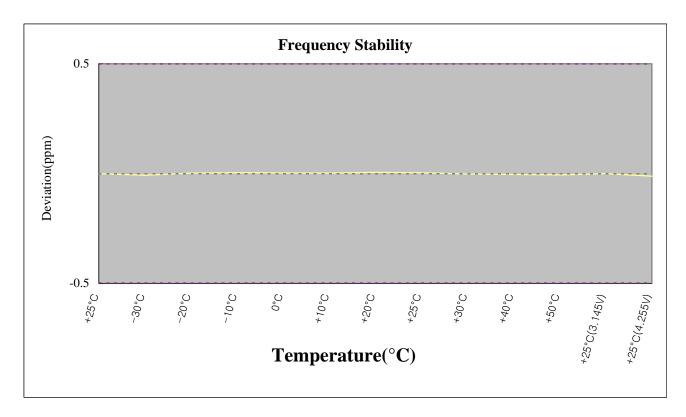
Frequency Stability (PCS1900) (Black face)

OPERATING FREQUENCY : 1,879,999,968 Hz

CHANNEL: 0661(Mid)

REFERENCE VOLTAGE : 3.7 VDC


DEVIATION LIMIT : ± 0.00025 % or 2.5 ppm


VOLTAGE	POWER	TEMP	FREQ	Deviation
(%)	(VDC)	(dB)	(Hz)	(%)
100%	3.7	+25(Ref)	1,879,999,968	0.000000
100%		-30	1,879,999,953	-0.000001
100%		-20	1,879,999,972	0.000000
100%		-10	1,879,999,975	0.000000
100%		0	1,879,999,973	0.000000
100%		+10	1,879,999,971	0.000000
100%		+20	1,879,999,978	0.000001
100%		+25	1,879,999,974	0.000000
100%		+30	1,879,999,965	0.000000
100%		+40	1,879,999,961	0.000000
100%		+50	1,879,999,956	-0.000001
85%	3.145	+25	-	-
115%	4.255	+25	1,879,999,945	-0.000001
BATT.ENDPOINT	3.400	+25	1,879,999,965	0.000000

This device is not operated at 3.145~V~(85%).

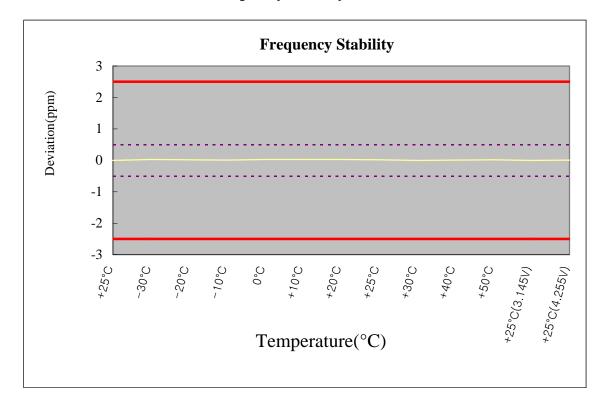
(continued...)

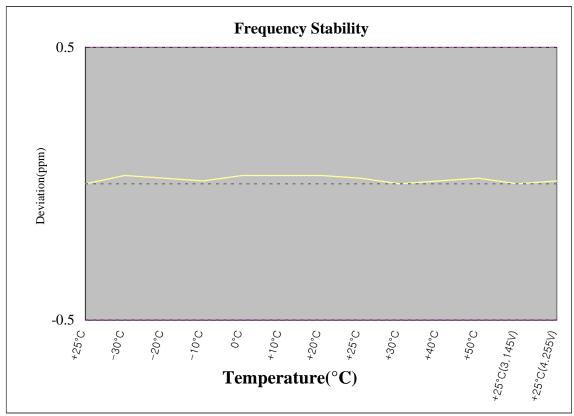
Frequency Stability (GSM850) (Silver face)

OPERATING FREQUENCY : 836,599,953 Hz

CHANNEL: 190(Mid)

REFERENCE VOLTAGE : 3.7 VDC


DEVIATION LIMIT : ± 0.00025 % or 2.5 ppm


VOLTAGE	POWER	TEMP	FREQ	Deviation
(%)	(VDC)	(dB)	(Hz)	(%)
100%	3.7	+25(Ref)	836,599,953	0.000000
100%		-30	836,599,975	0.000003
100%		-20	836,599,967	0.000002
100%		-10	836,599,965	0.000001
100%		0	836,599,978	0.000003
100%		+10	836,599,974	0.000003
100%		+20	836,599,980	0.000003
100%		+25	836,599,972	0.000002
100%		+30	836,599,954	0.000000
100%		+40	836,599,964	0.000001
100%		+50	836,599,966	0.000002
85%	3.145	+25	-	-
115%	4.255	+25	836,599,960	0.000001
BAT. END Point	3.250	+25	836,599,935	-0.000002

This device is not operated at 3.145 V (85%).

Frequency Stability(GSM850)

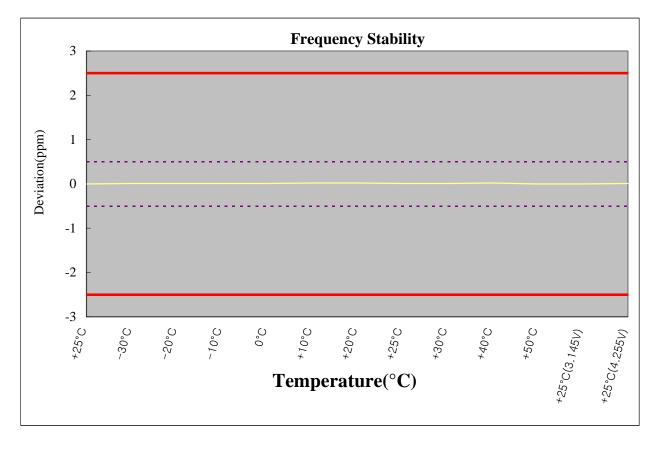
(Continued...)

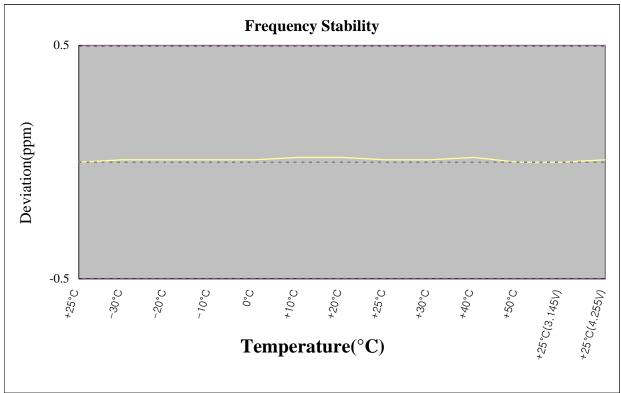
Frequency Stability (PCS1900) (Silver Face)

OPERATING FREQUENCY : 1,879,999,942 Hz

CHANNEL: 661(Mid)

REFERENCE VOLTAGE : 3.7 VDC


DEVIATION LIMIT : ± 0.00025 % or 2.5 ppm


VOLTAGE	POWER	TEMP	FREQ	Deviation
(%)	(VDC)	(dB)	(Hz)	(%)
100%	3.7	+25(Ref)	1,879,999,942	0.000000
100%		-30	1,879,999,954	0.000001
100%		-20	1,879,999,964	0.000001
100%		-10	1,879,999,970	0.000001
100%		0	1,879,999,965	0.000001
100%		+10	1,879,999,971	0.000002
100%		+20	1,879,999,971	0.000002
100%		+25	1,879,999,960	0.000001
100%		+30	1,879,999,970	0.000001
100%		+40	1,879,999,975	0.000002
100%		+50	1,879,999,945	0.000000
85%	3.145	+25	-	-
115%	4.255	+25	1,879,999,957	0.000001
BATT.ENDPOINT	3.250	+25	1,879,999,935	0.000000

This device is not operated at 3.145~V~(85%).

Frequency Stability (PCS1900)

(continued...)

4. TEST EQUIPMENT

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N
01	Spectrum Analyzer	Agilent	E4404B	21/03/08	21/03/09	US41061134
02	Spectrum Analyzer	Agilent	E4440A	06/11/08	06/11/09	MY45304199
03	Spectrum Analyzer	H.P	8563E	13/10/08	13/10/09	3551A04634
04	Spectrum Analyzer	H.P	8591E	26/04/08	26/04/09	3649A05889
05	Spectrum Analyzer	Rohde Schwarz	FSP	09/09/08	09/09/09	100385
06	EMI TEST RECEIVER	R&S	ESU	11/01/08	11/01/09	100014
07	EMI TEST RECEIVER	R&S	ESCI	13/05/08	13/05/09	100364
08	Power Meter	H.P	EMP-442A	10/07/08	10/07/09	GB37170413
09	Power Sensor	H.P	8481A	11/03/08	11/03/09	3318A96566
10	Power Divider	Agilent	11636B	17/12/07	17/12/08	56471
11	Signal Generator	Rohde Schwarz	SMR20	02/04/08	02/04/09	101251
12	Signal Generator	H.P	ESG-3000A	09/07/08	09/07/09	US37230529
13	Vector Signal Generator	Rohde Schwarz	SMJ100A	17/01/08	17/01/09	100148
14	Audio Analyzer	H.P	8903B	09/07/08	09/07/09	3011A09448
15	Modulation Analyzer	H.P	8901B	18/07/08	18/07/09	3028A03029
16	Oscilloscope	Tektronix	TDS3052	07/10/08	07/10/09	B016821
17	8960 Series 10 Wireless Comms. Test Set	Agilent	E5515C	31/07/08	31/07/09	GB43461134
18	Universal Radio communication Tester	Rohde Schwarz	CMU 200	02/04/08	02/04/09	107631
19	Bluetooth Tester	TESCOM	TC-3000A	01/08/08	01/08/09	3000A4A0121
20	Power Splitter	WEINSCHEL	1593	06/10/08	06/10/09	332
21	Power Splitter	Anritsu	K241B	14/10/08	14/10/09	020611
22	BAND Reject Filter	Microwave Circuits	N0308372	06/10/08	06/10/09	3125-01DC0352
23	BAND Reject Filter	Wainwright	WRCG1750	06/10/08	06/10/09	2
24	AC Power supply	DAEKWANG	5KVA	20/03/08	20/03/09	20060321-1
25	DC Power Supply	H.P	6622A	20/03/08	20/03/09	3448A03760
26	DC Power Supply	HP	6633A	20/03/08	20/03/09	3524A06634
27	HORN ANT	ETS	3115	13/06/08	13/06/09	6419
28	HORN ANT	ETS	3115	10/09/08	10/09/09	21097
29	HORN ANT	A.H.Systems	SAS-574	13/06/08	13/06/09	154
30	HORN ANT	A.H.Systems	SAS-574	13/06/08	13/06/09	155
31	Dipole Antenna	Schwarzbeck	VHA9103	19/12/07	19/12/08	2116

4. TEST EQUIPMENT

(CONTINUED)

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N
32	Dipole Antenna	Schwarzbeck	VHA9103	19/12/07	19/12/08	2117
33	Dipole Antenna	Schwarzbeck	UHA9105	20/12/07	20/12/08	2261
34	Dipole Antenna	Schwarzbeck	UHA9105	20/12/07	20/12/08	2262
35	TEMP & HUMIDITY Chamber	JISCO	J-RHC2	10/10/08	10/10/09	021031
36	Log Periodic Antenna	Schwarzbeck	UHALP9108A1	30/09/08	30/09/09	1098
37	Biconical Antenna	Schwarzbeck	VHA9103	13/06/08	13/06/09	2233
38	Digital Multimeter	H.P	34401A	20/03/08	20/03/09	3146A13475,US36122178
39	Attenuator (10dB)	WEINSCHEL	23-10-34	01/10/08	01/10/09	BP4386
40	Attenuator (10dB)	WEINSCHEL	23-10-34	30/01/08	30/01/09	BP4387
41	High-Pass Filter	ANRITSU	MP526D	06/10/08	06/10/09	MP27756
42	Attenuator (3dB)	Agilent	8491B	01/08/08	01/08/09	MY39260700
43	Attenuator (20dB)	Aeroflex/Weinschel	86-20-11	06/10/08	06/10/09	432
44	Attenuator (10dB)	Aeroflex/Weinschel	86-10-11	06/10/08	06/10/09	446
45	Attenuator (10dB)	Aeroflex/Weinschel	86-10-11	06/10/08	06/10/09	408
46	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0088CAN	11/07/08	11/07/09	788
47	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0185CAN	11/07/08	11/07/09	790
48	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0215CAN	11/07/08	11/07/09	112
49	Amplifier (25dB)	Agilent	8447D	21/05/08	21/05/09	2944A10144
50	Amplifier (30dB)	Agilent	8449B	13/10/08	13/10/09	3008A01590
51	Amplifier (22dB)	H.P	8447E	27/02/08	27/02/09	2945A02865
52	Position Controller	TOKIN	5901T	N/A	N/A	14173
53	Driver	TOKIN	5902T2	N/A	N/A	14174
54	LISN	Kyorits	KNW-407	04/08/08	04/08/09	8-317-8
55	LISN	Kyorits	KNW-242	13/10/08	13/10/09	8-654-15
56	CVCF	NF Electronic	4420	21/03/08	21/03/09	304935/337980
57	Software	ToYo EMI	EP5/RE	N/A	N/A	Ver 2.0.800
58	Software	ToYo EMI	EP5/CE	N/A	N/A	Ver 2.0.801
59	Software	AUDIX	e3	N/A	N/A	Ver 3.0
60	Software	Agilent	Benchlink	N/A	N/A	A.01.09 021211
61	RFI/FIELD Intensity Meter	Kyorits	KNW-2402	11/09/08	11/09/09	4N-170-3

5. EMISSION DESIGNATOR

GSM850 (Black Face)

Emission Designator = 249KGXW

GSM BW = 248.6458 KHz

G = Phase Modulation

X = Cases not otherwise covered

W = Combination (Audio/Data)

(Measured at the 99.75% power bandwidth)

PCS1900 (Black Face)

Emission Designator = 248KGXW

GSM BW = 248.0033 KHz

G = Phase Modulation

X = Cases not otherwise covered

W = Combination (Audio/Data)

(Measured at the 99.75% power bandwidth)

GSM850 (Silver Face)

Emission Designator = 246KGXW

GSM BW = 246.0588 KHz

G = Phase Modulation

X =Cases not otherwise covered

W = Combination (Audio/Data)

(Measured at the 99.75% power bandwidth)

PCS1900 (Silver Face)

Emission Designator = 244KGXW

GSM BW = 244.4562 KHz

G = Phase Modulation

X = Cases not otherwise covered

W = Combination (Audio/Data)

(Measured at the 99.75% power bandwidth)

6. CONCLUSION

The data collected shows that the **WND TELECOM OFFSHORE S.A.L** Dual band GSM phone **FCC ID: WRLWINDDUO2100** complies with all the requirements of Parts 2.22 and 24 of the FCC rules.