

RF Test Report

Standard(s): FCC Part 15 Subpart 15.247,
RSS-247 Issue 3:2023
Unlicensed Intentional Radiators

Issued To: Ecobee Inc
207 Queens Quay Suite 600,
Toronto, ON M5J 1A7
Canada

Product Name: Smart Thermostat Lite
Model: ECB701
FCC ID: WR9202428847PR
IC: 7981A-202428847PR

Report No. ML301913C-RF01 (DSS – FHSS)
Date of Issue: March 24, 2025

Report Prepared By:

Min Xie, Sr. EMC/RF Engineer

Reviewed By:

Amir Emami, Project Engineer

Megalab Group Inc. – 150 Addison Hall Circle, Aurora, Ontario, L4G 3X8, Canada

www.megalabinc.com – (905) 752-1925

This report may not be reproduced, except in full, without prior written approval of Megalab Group Inc.
TRRF_FCC-ICES-247-DTS_v1

Table of Contents

1. Revision History	3
1.1 Test Verdict.....	4
1.2 Test Standards	5
1.3 Test Facility	6
2. General Information	9
2.1 Client Information	9
2.2 Device Under Test (DUT)	9
2.3 Test Setup of DUT.....	10
2.4 Modifications for Compliance	10
3. Test Results	11
3.1 Transmitter Spurious Radiated Emissions.....	11
3.2 Power Line Conducted Emissions.....	19

1. Revision History

Project No. & Revision	Report Date	Initials	Description
ML301913C-RF00 (DSS – FHSS)	March 24, 2025	MX	Initial Release

NOTE:

- Latest reports marked as a revision replace any previous report and/or report revision issued under the same project number.

Summary of Test Results

1.1 Test Verdict

Unless otherwise stated, the test data and results in this test report relate only to the sample(s) tested.

Requirement		Test Type	Result	Remark
FCC	ISED			
15.247(d)/ 15.209	RSS-GEN 8.9 (Table 5 & 6)	Transmitter Spurious Radiated Emissions	Pass	---
15.207	RSS-GEN (Table 4)	Power Line Conducted Emissions	N/A	--

1.1.1 Test Verdict Notes and Justifications

The DUT was mounted as in normal usage. See the Test Setup Photos for details.

This report is for an update to the original filing based on Class II Permissive Change made to the product. See C2PC Cover Letter filed with the application for additional details on the changes.

The sub-gig transmitter operates in FHSS and hybrid modes. Both modes use the same antenna/balun and operate with the same power setting – the main difference is the number of channels each mode uses. For the purpose of Class II Permissive Change evaluation, this report represents both modes. Refer to the original test report, Megalab Reports **301244C-RF01 (DSS – SubGig FHSS)** and **301244D-RF01 (DSS – SubGig Hybrid)**, for full testing and test results.

As per the manufacturer, the transmitter in the new sample is electrically identical to previous tested sample. Non transmitter components were replaced/added with new parts. The following tests were re-evaluated on the EUT to verify if the change did not degrade the emission data previously reported.

- Spurious radiated emission
- Power line conducted emission

Spurious radiated emissions were tested to verify that emission characteristics were not degraded due to the changes.

1.2 Test Standards

Standard	Description
47 CFR FCC Part 15 Subpart C	Code of Federal Regulations – Radio Frequency Devices, Intentional Radiators
FCC KDB 558074:2019	Digital Transmission Systems, measurements and procedures
RSS-247 Issue 3:2023	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
RSS-GEN Issue 5:2021	General Requirements for Compliance of Radio Apparatus
ANSI C63.4:2014	Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10:2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
ISO 17025:2017	General Requirements for the Competence of Testing and Calibration Laboratories

1.3 Test Facility

All tests were performed at Megalab Group Inc., located at 150 Addison Hall Circle, Aurora, ON, L4G 3X8, Canada.

The 10-meter semi-anechoic chamber for radiated emission and radiated immunity is designed to handle weights of up to 10,000lb and has power capability of over 100A. The turntable is capable of supporting test devices or systems either floor standing or table top of up to 4 meters wide and 3m tall. Conducted emissions, unless otherwise specified, are performed on a 2.44m x 2.48m ground plane and using a 2.44m x 2.48m vertical ground plane if applicable.

1.3.1 Accreditations

This report does not indicate any product endorsement by any government, accreditation agency, or Megalab Group Inc. Megalab Group Inc. shall have no liability for any deductions, interpretations or generalizations drawn by the client or others from the issued reports. If any opinions or interpretations are expressed in this report, they are outside Megalab Group Inc.'s scope of accreditation and do not necessarily reflect the opinions of Megalab Group Inc., unless otherwise specified.

A2LA (Certificate #5179.02)

Megalab Group Inc. is accredited to ISO/IEC 17025:2017 by the American Association for Laboratory Accreditation (A2LA) with Testing Certificate #5179.02. The laboratories current scope of accreditation can be found as listed on A2LA's website.

ISED

Megalab Group Inc. is registered with and recognized by Innovation, Science and Economic Development Canada (ISED) as an accredited testing laboratory.

Company Number: 28697

FCC

Megalab Group Inc. is registered with and recognized by the Federal Communications Commission (FCC) as an accredited testing laboratory.

Registration No. 200040

VCCI

The Semi-anechoic chamber of Megalab Group Inc. is registered with the Regulations for Voluntary Control Council for Interference (VCCI). Registration No.: R-20173, G-20174, C-20132, T-20133.

1.3.2 Measurement Uncertainty

As per ISO/IEC 17025 requirements, an evaluation of the measurement uncertainties associated with the emission test results should be included in the test report.

Where relevant, the following measurement uncertainty levels have been estimated for the tests performed on the DUT as specified in CISPR 16-4-2. The measurement uncertainties given below are based on a coverage factor $k = 2$ which yields approximately a 95% level of confidence for the near-normal distribution typical of most measurement results.

Measurement	Frequency Range	Uncertainty
Conducted Emissions at AC Mains Power Port	150kHz to 30MHz	2.27 dB
Radiated Emissions	30MHz to 1GHz	5.22 dB
	1GHz to 18GHz	4.76 dB

1.3.3 Sample Calculations

Conducted Emissions

$$\begin{aligned} \text{Emission Level (dB}\mu\text{V)} &= \text{Read Level (dB}\mu\text{V)} + \text{LISN Factor (dB)} + \text{Attenuation Factor (dB)} + \text{Cable Loss (dB)} \\ &= \frac{34.8}{45.1} + 0.1 + 10.0 + 0.2 \end{aligned}$$

$$\begin{aligned} \text{Margin (dB)} &= \text{Limit (dB}\mu\text{V)} - \text{Emission Level (dB}\mu\text{V)} \\ &= \frac{60.0}{14.9} - 45.1 \end{aligned}$$

Radiated Emissions

$$\begin{aligned} \text{Emission Level (dB}\mu\text{V/m)} &= \text{Read Level (dB}\mu\text{V)} + \text{Antenna Factor (dB/m)} + \text{Cable Loss (dB)} - \text{Pre-Amp Gain (dB)} \\ &= \frac{52.4}{33.9} + 9.4 + 1.3 - 29.2 \end{aligned}$$

$$\begin{aligned} \text{Margin (dB)} &= \text{Limit (dB}\mu\text{V/m)} - \text{Emission Level (dB}\mu\text{V/m)} \\ &= \frac{50.0}{16.1} - 33.9 \end{aligned}$$

1.3.4 Terms, Definitions and Abbreviations

AE	Auxiliary Equipment
DUT	Device Under Test
DTS	Digital Transmission System
EMC	Electro-Magnetic Compatibility
FHSS	Frequency Hopping Spread Spectrum
ISM	Industrial, Scientific and Medical
LISN	Line Impedance Stabilization Network
N/A	Not Applicable
NCR	No Calibration Required
RF	Radio Frequency
RBW	Resolution Bandwidth
VBW	Video Bandwidth

Auxiliary Equipment/Support Equipment

Equipment needed to exercise and/or monitor the operation of the DUT.

Artificial Mains Network

Network that provides a defined impedance to the DUT at radio frequencies, couples the disturbance voltage to the measuring receiver and decouples the test circuit from the supply mains.

Class A Equipment

Equipment suitable for use in all locations other than those allocated in residential environments and those directly connected to a low voltage power supply network which supplies buildings used for domestic purposes.

Class B Equipment

Equipment suitable for use in all locations, including in residential environments and in establishments directly connected to a low voltage power supply network which supplies buildings used for domestic purposes.

Device Under Test

Device or system being evaluated for compliance with the requirements of the Test Standards listed in this report.

Electro-Magnetic Compatibility

Ability of equipment or system to function satisfactorily in its EM environment without introducing intolerable electromagnetic disturbances to anything in that environment.

Electromagnetic Disturbance

Any electromagnetic phenomenon which may degrade the performance of a device, equipment or system.

2. General Information

2.1 Client Information

Company	Ecobee Inc
Address	207 Queens Quay Suite 600, Toronto, ON M5J 1A7 Canada
Contact	John Russomanno
Email	john@ecobee.com

2.2 Device Under Test (DUT)

2.2.1 DUT Information

DUT Name	Smart Thermostat Lite
DUT Model(s)	ECB701
Serial Number	Production Sample
Power Source (AC / DC / Battery)	AC
Input Voltage (V) or Range	24Vac
Frequency (Hz) or Range	60Hz
Mode(s) of Operation	Continuous transmission
Connectors Available on DUT	Standard thermostat connections
Transmitter Information	
FCC ID	WR9202428847PR
IC	7981A-202428847PR
Technology Used	FHSS/Hybrid
Operating Frequency	920 MHz – 928 MHz
Modulation Type	FSK
Number of Channels	FHSS: 50 Hybrid: 2
Antenna Manufacturer	Custom – PCB trace
Antenna Model	N/A
Antenna Type	Monopole
Antenna Gain	2.6 dBi

Note: Above antenna information is provided by the client. The characteristics and gain are obtained from the Antenna Manufacturer's Data Sheet.

2.2.2 DUT Description

EUT is a smart thermostat; it contains 2400 – 2483.5 MHz DTS (802.11 b/g/n and BLE) transmitters on one chip, and a 920 – 928 MHz FHSS/Hybrid transmitter on second chip.

This report documents the compliance of the BLE transmitter.

2.3 Test Setup of DUT

2.3.1 Configuration

The DUT was configured in a direct test mode with the following parameters

- For all the tests, the DUT was set to transmit continuously with 100% duty cycle
- Output Power setting: 12 dBm (Peak)
- Channels:
 - 0 (low, 920 MHz),
 - 49 (High, 927.35 MHz)
- Packet Type: Random

During all radiated emission measurements, the DUT was mounted in three orthogonal axes. See Test Setup Photos for axis details.

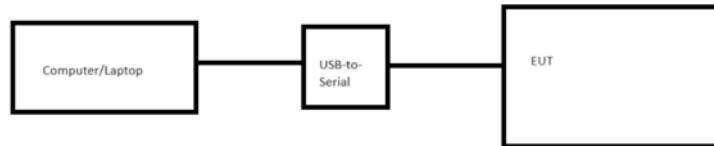


Figure 1 – Configuration Block Diagram

Description of I/O Cables			
Cable Function	Length of Cable (m)	Shielded (Y/N)	Outdoor Use (Y/N)
Thermostat control	>3	N	N

2.3.2 Support Equipment

Device	Manufacturer	Model	S/N
Custom USB Interface	Ecobee	--	---

2.4 Modifications for Compliance

No modifications were made to the device under test to comply with the testing requirements.

3. Test Results

3.1 Transmitter Spurious Radiated Emissions

Test Date:	Dec-11, 2024	Initials: MX
Temperature (°C)	20.5	
Relative Humidity (%)	27.9	
Barometric Pressure (kPa)	96.4	

3.1.1 Limits

Any radiated emissions which fall in the restricted bands, as defined in FCC 15.205(a), must comply with the general radiated emission limits specified in FCC 15.209(a). Other emissions shall be at least 20dB below the highest level of the intentional transmitter.

Base Standard(s): FCC Subpart C 15.209 and RSS-Gen Section 8.9.

Frequency Range (MHz)	Field Strength Limit		Field Strength at 3m (dB μ V/m)	Detector Type / Measurement Bandwidth
	μ V/m	Distance		
0.009 – 0.150	2400/F(kHz)	300	128.5 – 104.1	Quasi-Peak‡ / 200Hz
0.150 – 0.490	2400/F(kHz)	300	104.1 – 93.8	Quasi-Peak‡ / 9kHz
0.490 – 1.705	24000/F(kHz)	30	73.8 – 63.0	Quasi-Peak / 9kHz
1.705 – 30	30	30	69.5	Quasi-Peak / 9kHz
30 – 88	100	3	40.0	Quasi-Peak / 120kHz
88 – 216	150	3	43.5	Quasi-Peak / 120kHz
216 – 960	200	3	46.0	Quasi-Peak / 120kHz
960 – 1000	500	3	54.0	Quasi-Peak / 120kHz
Above 1000	500	3	54.0	Average / 1MHz
Above 1000	5000	3	74.0	Peak / 1MHz

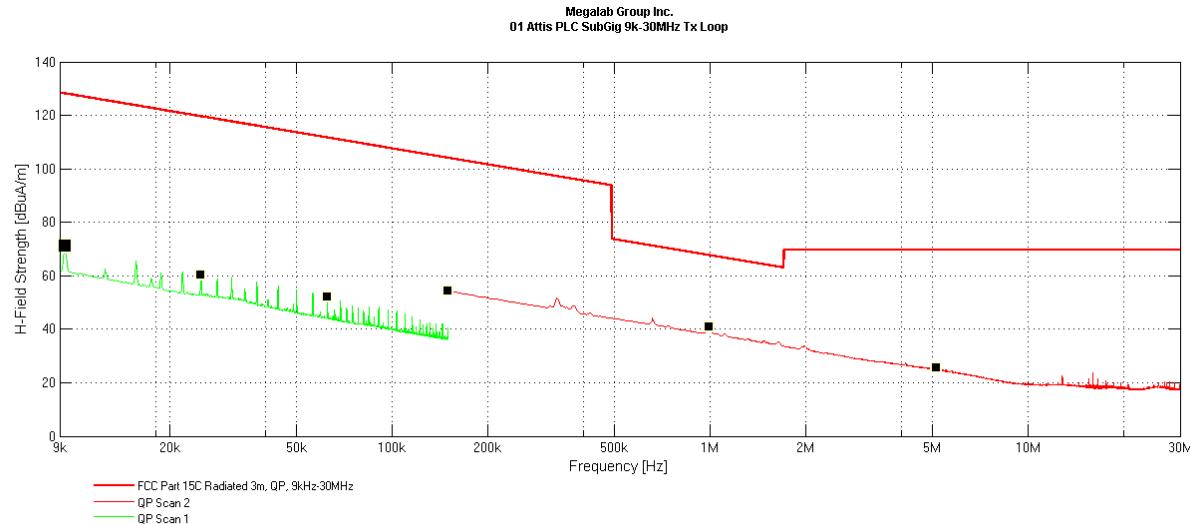
‡The emission limits below 1GHz shown in the above table are based on measurements employing a CISPR Quasi-Peak detector except for the frequency bands 9-90 kHz and 110-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.

As per ANSI C63.4 Section 4.2, if the Peak detector measurements do not exceed the Quasi-Peak limits, or Average limits where defined, then the DUT is considered to have passed the requirements.

3.1.2 Test Procedure

Tested according to ANSI C63.10 Section 6.3.

The device under test was setup inside a semi-anechoic chamber with remotely controlled turntable and antenna positioner at a 3m test distance. The DUT was placed on top of a 0.8m high non-conductive table above the reference ground plane for frequencies below 1GHz and 1.5m high for frequencies above 1GHz.

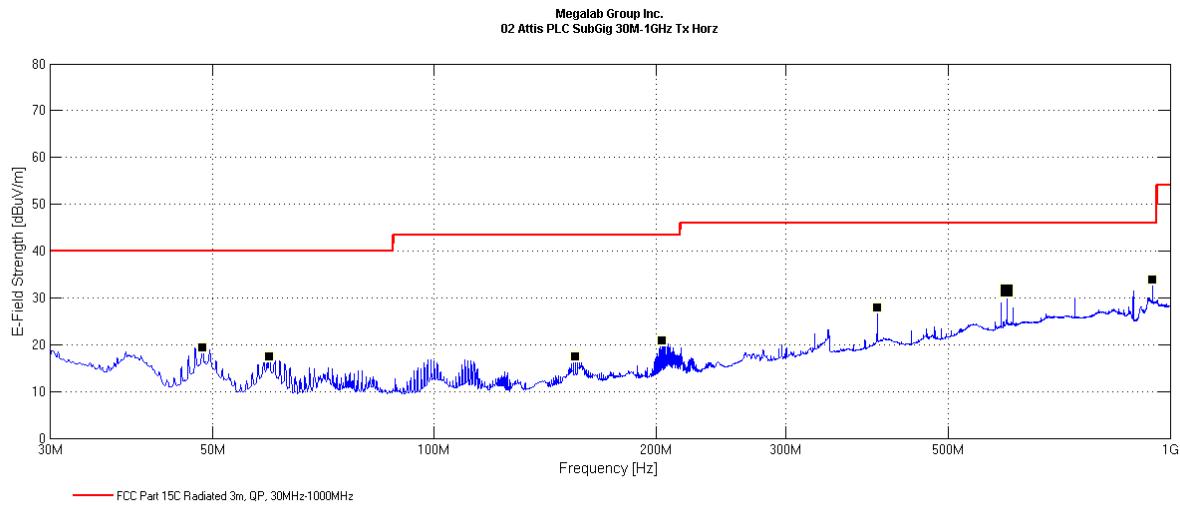

To determine the emission characteristics of the DUT, exploratory radiated emission scans were made while rotating the turntable 0° to 360° and using a Peak detector. The results were recorded in graphical form.

For each suspected emission, final measurements of the DUT radiated emissions with the Quasi-Peak, Average or Peak detector, as defined in the limit tables above, were made with the turntable azimuth rotated 0° to 360° and antenna height varied from 1m to 4m. The antenna was positioned to receive emissions in the vertical and horizontal polarizations such that the maximum radiated emission levels were detected.

As per FCC Part 15.33(a), the DUT was scanned to the 10th harmonic of the highest fundamental frequency.

3.1.3 Test Results

Range:	9kHz to 30 MHz	Tx Frequency	927.35 MHz
Test Voltage:	24Vac 60Hz	Antenna Polarization	XZ-Plane

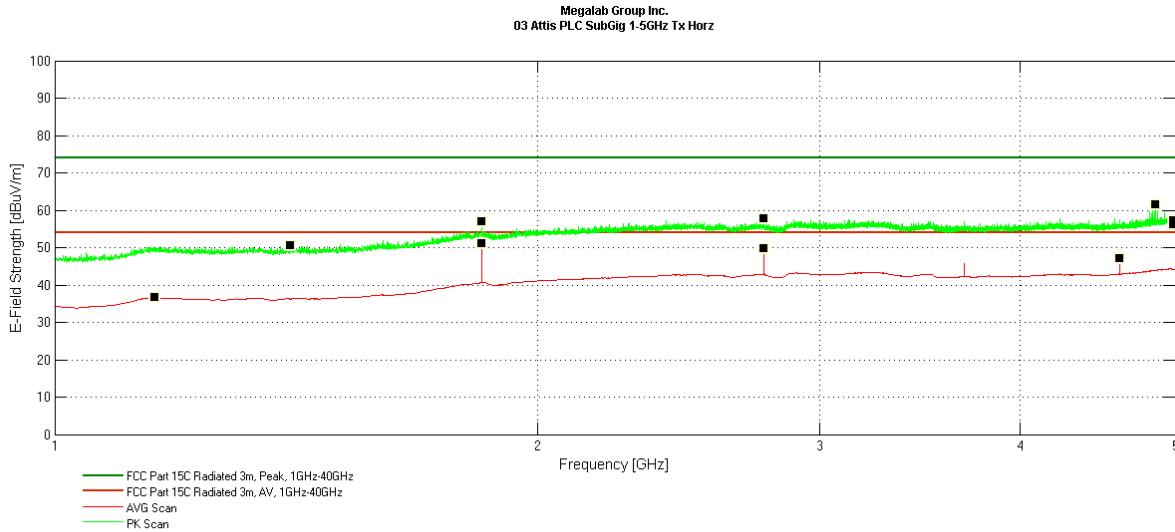


Operator: admin
Last Data Update: 2024-12-11 12:44:21

Project: Ecobee Attis PLC FCC Subpart15C SubGig.S64

Remark: Quasi-Peak Emission Plot

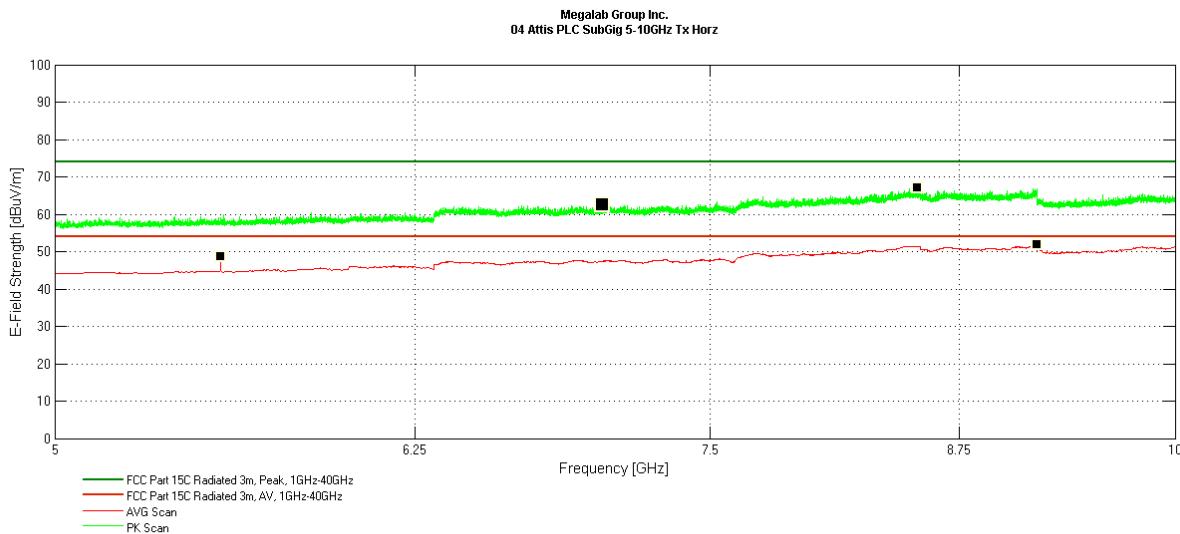
Range:	30MHz to 1GHz	Tx Frequency	927.35 MHz
Test Voltage:	24Vac 60Hz	Antenna Polarization	Horizontal


Operator: admin
Last Data Update: 2024-12-11 12:09:43

Project: Ecobee Attis PLC FCC Subpart15C SubGig.S64

Remark: - Quasi-Peak Emission Plot

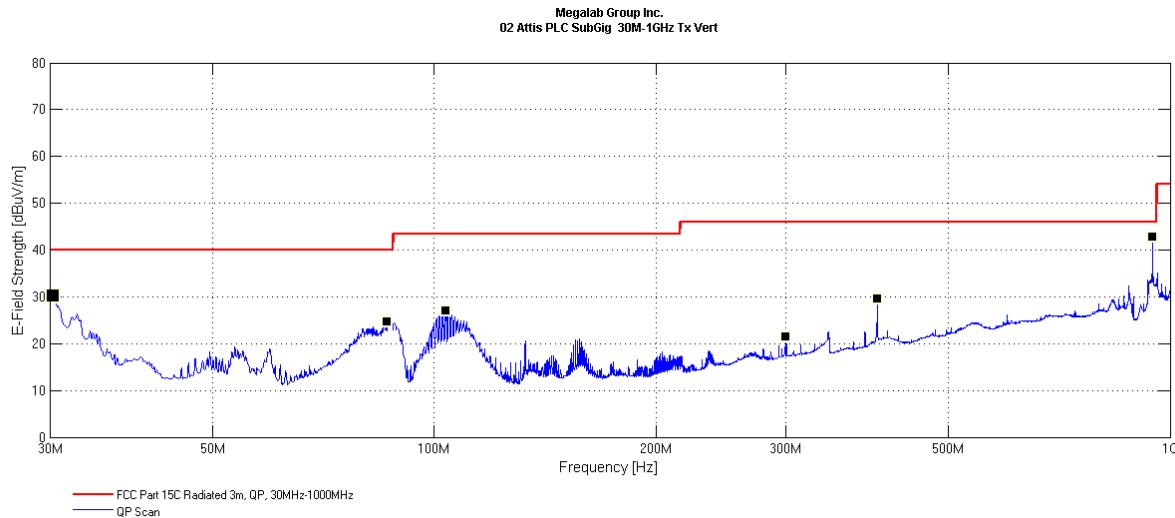
- A notch filter was used to filter out the fundamental


Range:	1GHz to 5GHz	Tx Frequency	927.35 MHz
Test Voltage:	24Vac 60Hz	Antenna Polarization	Horizontal

Remark: - Peak and Average Emission Plot

- A high pass filter was used to filter out the fundamental

Range:	5 GHz to 10GHz	Tx Frequency	927.35 MHz
Test Voltage:	24Vac 60Hz	Antenna Polarization	Horizontal

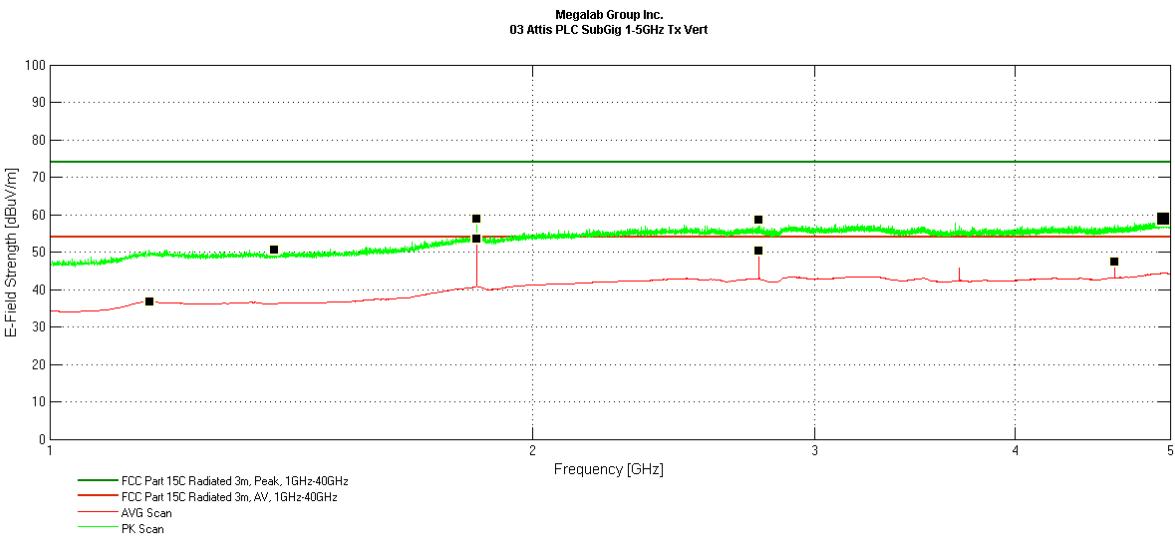


Remark: - Peak and Average Emission Plot

- A high pass filter was used to filter out the fundamental

Horizontal Antenna Polarization							
Frequency (MHz)	Detector	Reading (dB μ V)	Correction Factor (dB)	Emission Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Test Result
48.50	QP	46.40	-27.04	19.36	40.00	20.64	Pass
59.60	QP	44.72	-27.38	17.34	40.00	22.66	Pass
155.60	QP	40.82	-23.44	17.38	43.50	26.12	Pass
204.00	QP	44.27	-23.39	20.87	43.50	22.63	Pass
399.90	QP	43.40	-15.66	27.74	46.00	18.26	Pass
947.00	QP	40.76	-6.88	33.88	46.00	12.12	Pass
599.95	QP	43.41	-11.86	31.55	46.00	14.45	Pass
5000.00	PEAK	44.93	11.81	56.74	74.00	17.26	Pass
1403.00	PEAK	47.05	3.52	50.56	74.00	23.44	Pass
1847.00	AVG	43.35	7.65	51.00	54.00	3.00	Pass
1847.00	PEAK	49.33	7.65	56.98	74.00	17.02	Pass
2771.00	AVG	40.60	9.12	49.72	54.00	4.28	Pass
2771.00	PEAK	48.64	9.12	57.75	74.00	16.25	Pass
4864.00	PEAK	50.17	11.42	61.59	74.00	12.41	Pass
1155.00	AVG	32.93	3.67	36.60	54.00	17.40	Pass
4618.00	AVG	36.80	10.37	47.17	54.00	6.83	Pass
5542.00	AVG	35.64	12.91	48.56	54.00	5.44	Pass

Range:	30MHz to 1GHz	Tx Frequency	927.35 MHz
Test Voltage:	24Vac 60Hz	Antenna Polarization	Vertical

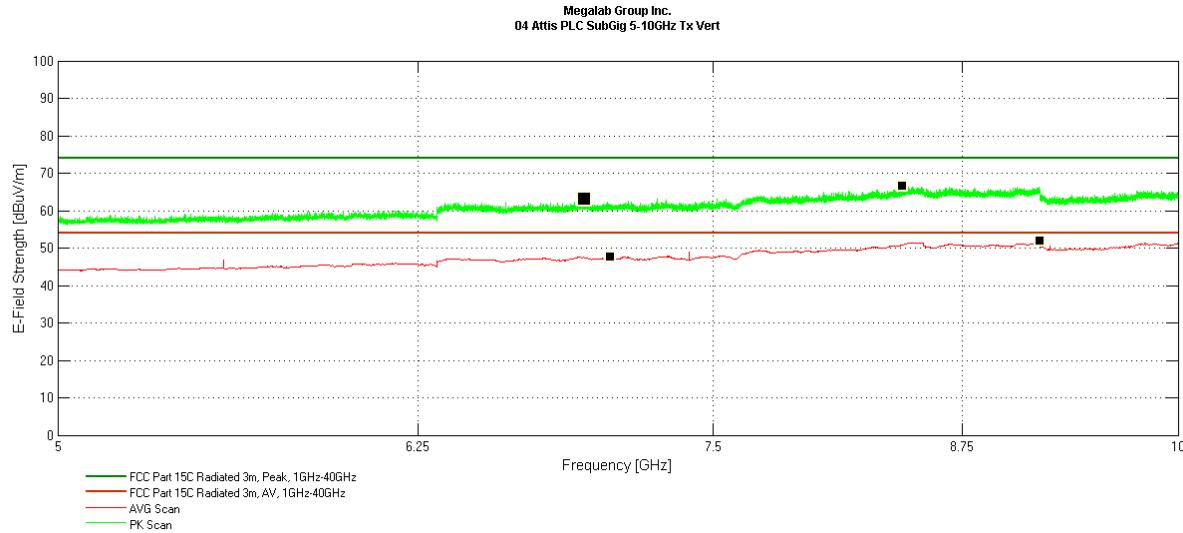

Operator: admin
Last Data Update: 2024-12-11 12:18:56

Project: Ecobee Attis PLC FCC Subpart15C SubGig S64

Remark: - Quasi-Peak Emission Plot

- A Notch filter was used to filter out the fundamental

Range:	1GHz to 5GHz	Tx Frequency	2403.5 MHz
Test Voltage:	24Vac 60Hz	Antenna Polarization	Vertical


Operator: admin
Last Data Update: 2024-12-11 17:03:51

Project: Ecobee Attis PLC FCC Subpart15C SubGig S64

Remark: - Peak and Average Emission Plot

- A high pass filter was used to filter out the fundamental

Range:	5GHz to 10GHz	Tx Frequency	927.35 MHz
Test Voltage:	24Vac 60Hz	Antenna Polarization	Vertical

Operator: admin
Last Data Update: 2024-12-11 17:33:12

Project: Ecobee Attis PLC FCC Subpart15C SubGig S64

Remark: - **Peak** and **Average** Emission Plot

- A high pass filter was used to filter out the fundamental

Vertical Antenna Polarization							
Frequency (MHz)	Detector	Reading (dB μ V)	Correction Factor (dB)	Emission Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Test Result
30.30	QP	47.37	-17.23	30.13	40.00	9.87	Pass
86.35	QP	51.85	-27.14	24.71	40.00	15.29	Pass
103.80	QP	52.85	-25.86	26.98	43.50	16.52	Pass
300.00	QP	42.14	-20.68	21.46	46.00	24.54	Pass
399.90	QP	45.30	-15.66	29.64	46.00	16.36	Pass
947.00	QP	49.72	-6.88	42.84	46.00	3.16	Pass
4957.00	PEAK	47.07	11.75	58.82	74.00	15.18	Pass
1382.00	PEAK	47.26	3.31	50.56	74.00	23.44	Pass
1847.00	PEAK	51.09	7.65	58.75	74.00	15.25	Pass
1847.00	AVG	45.89	7.65	53.55	54.00	0.45	Pass
2771.00	PEAK	49.44	9.11	58.55	74.00	15.45	Pass
1155.00	AVG	32.99	3.67	36.66	54.00	17.34	Pass
2771.00	AVG	41.22	9.12	50.33	54.00	3.67	Pass
4618.00	AVG	36.88	10.37	47.25	54.00	6.75	Pass

Worst case position: Angle: 0 Deg
Height: 151 cm

3.1.4 Test Equipment List

Equipment ID	Description	Manufacturer	Model	Calibration Date	Calibration Due
EQ_EMCA_58	EMI Receiver	Rohde & Schwarz	ESW 44	Mar 1, 2024	Mar 1, 2026
EQ_EMCA_132	EMI Test Receiver (v6.91.2)	Gauss Instruments	TDEMI X40	Nov 29, 2023	Nov 29, 2025
EQ_EMCA_48	Loop Antenna	Com-Power	AL-130R	Apr 9, 2024	Apr 9, 2026
EQ_EMCA_59	BiLog Antenna	ETS Lindgren	3142E	Apr 19, 2024	Apr 19, 2026
EQ_EMCA_60	Horn Antenna	ETS Lindgren	3117	Apr 9, 2024	Apr 9, 2026
EQ_EMCA_68	6dB Attenuator	Fairview Microwave	SA3NS-06	Apr 19, 2024	Apr 19, 2026
EQ_EMCA_85	RF Cable <1GHz	Times Microwave	LMR-400	NCR	NCR
EQ_EMCA_75	RF Cable >1GHz	MegaPhase	EMC2	NCR	NCR
EQ_EMCA_123	Preamplifier 30MHz-9GHz	RF Bay	EPA-250T	Jan 23, 2024	Jan 23, 2026
EQ_EMCA_42	Preamplifier 1GHz-18GHz	Com-Power	PAM-118A	Jan 17, 2024	Jan 17, 2026
EQ_EMCA_107	902MHz-928MHz Notch Filter	Micro-Tronics	BRC50722	NCR	NCR
EQ_EMCA_110	1 GHz HPF Filter	Micro-Tronics	HPM50108	NCR	NCR
EQ_EMCA_149	Emission Software RE/CE	Gauss Instruments	EMI64k v6.31.2	NCR	NCR

3.2 Power Line Conducted Emissions

Test Date: February 7, 2025
Temperature (°C) 20.7
Relative Humidity (%) 10.9
Barometric Pressure (kPa) 98.0

Initials: MX

The conducted emission test is to measure radio-frequency (RF) signals and noise emitted from electrical and electronic devices in the frequency range of 150kHz to 30MHz.

3.2.1 Limits

Base Standard(s): FCC Subpart B 15.207 and RSS-GEN Section 8.8.

Frequency Range (MHz)	Coupling Device	Detector Type / Bandwidth	Limit (dBμV)
0.15 to 0.50	LISN	Quasi-Peak / 9kHz	66 to 56*
0.50 to 5			56
5 to 30			60
0.15 to 0.50	LISN	Average / 9kHz	56 to 46*
0.50 to 5			46
5 to 30			50

* Decreases linearly with the logarithm of the frequency

As per ANSI C63.4 Section 4.2, if the Peak or Quasi-Peak detector measurements do not exceed the Average limits, then the DUT is considered to have passed the requirements.

3.2.2 Test Procedure

Tested according to ANSI C63.10 Section 6.2.

Conducted emissions were measured on the DUT's power port via an Artificial Mains Network (AMN), also known as Line Impedance Stabilization Network (LISN), and maximum conducted emissions are checked on all the DUT's AC lines in the frequency range of 150kHz to 30MHz. The LISNs provide 50Ω/50μH of coupling impedance for the measuring receiver.

To determine the emission characteristics of the DUT, the conducted emission scans were made using a Peak detector and the results were recorded in graphical form.

For each suspected emission, final measurements of the DUT conducted emissions were made with the Quasi-Peak or Average detector as defined in the limits table above.

For Table-Top Equipment, the device under test is configured on a 0.8m high non-conductive table above the reference ground plane and 0.4m away from the vertical reference ground plane.

3.2.3 Setup Diagram

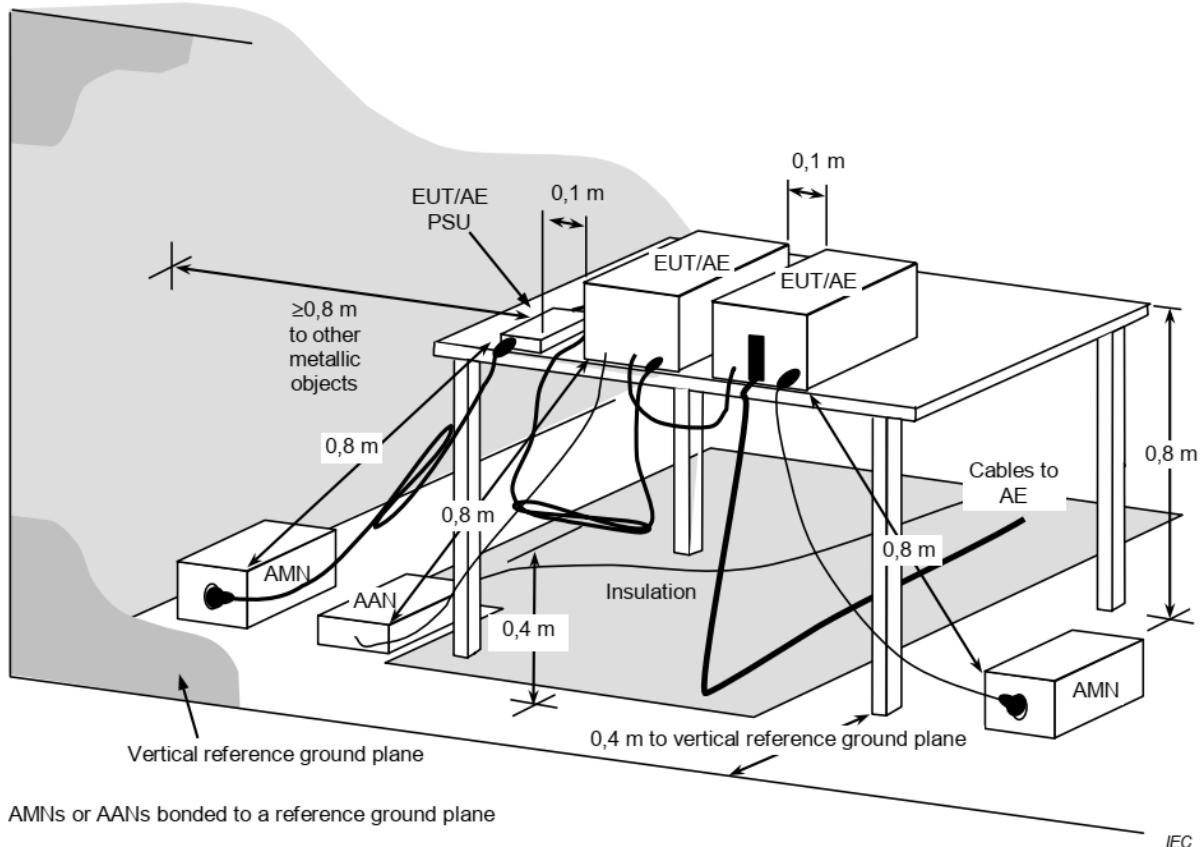
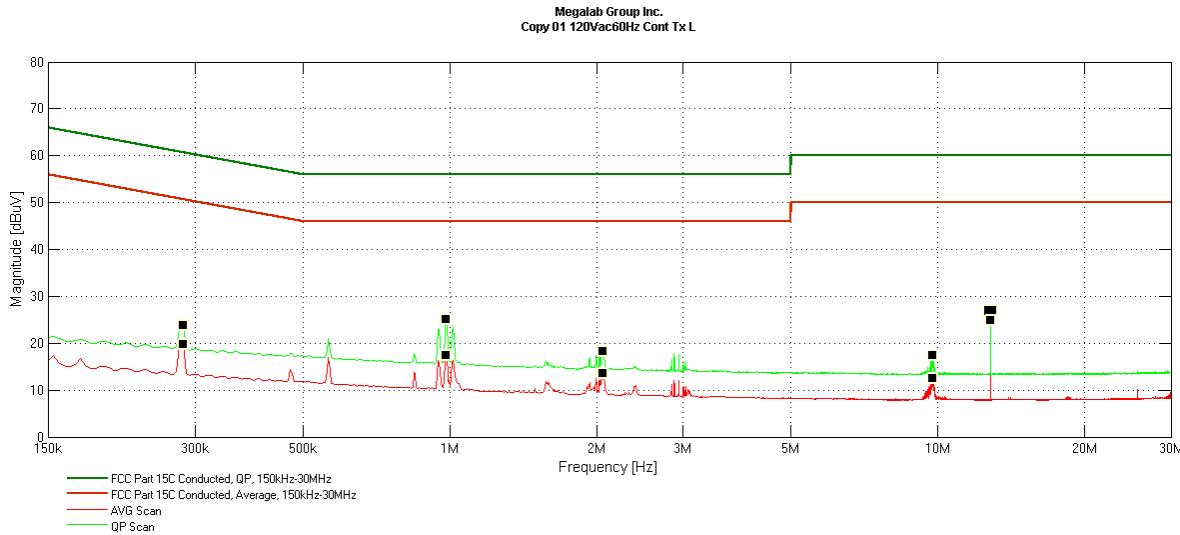
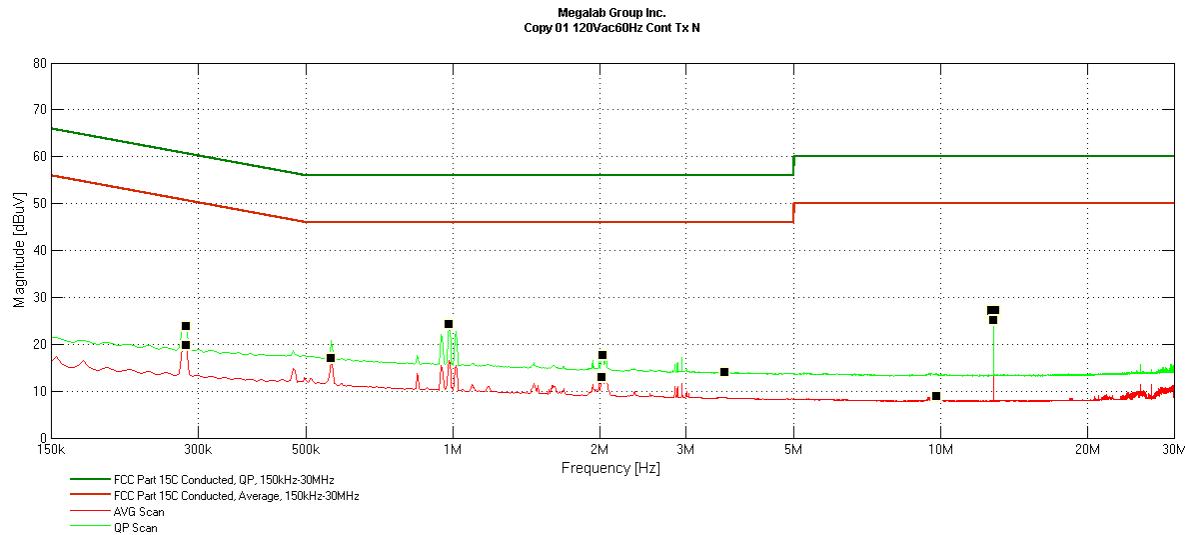



Figure 2 – Sample Measurement Arrangement for DUT

IEC

3.2.4 Test Results


Range:	150kHz to 30MHz	DUT	ECB701
Test Voltage:	120Vac 60Hz	Phase	Line

Remark: Quasi-Peak and Average Emission Plot

Line											
Freq (MHz)	QP Reading (dB μ V)	AVG Reading (dB μ V)	Corr Factor (dB)	QP Emission Level (dB μ V)	AVG Emission Level (dB μ V)	QP Limit (dB μ V)	QP Margin (dB)	AVG Limit (dB μ V)	AVG Margin (dB)	Test Result	
12.799	16.36	14.68	10.22	26.57	24.9	60	50	33.43	25.1	Pass	
0.283	13.92	9.79	9.94	23.86	19.73	60.71	50.71	36.86	30.98	Pass	
0.980	15.21	7.39	9.95	25.15	17.34	56	46	30.85	28.66	Pass	
2.057	8.24	3.63	9.95	18.2	13.58	56	46	37.8	32.42	Pass	
9.741	7.33	2.45	10.12	17.45	12.57	60	50	42.55	37.43	Pass	
12.799	16.36	14.68	10.22	26.57	24.9	60	50	33.43	25.1	Pass	

Range:	150kHz to 30MHz	DUT	ECB701
Test Voltage:	120Vac 60Hz	Phase	Neutral

Remark: Quasi-Peak and Average Emission Plot

Neutral										
Freq (MHz)	QP Reading (dB μ V)	AVG Reading (dB μ V)	Corr Factor (dB)	QP Emission Level (dB μ V)	AVG Emission Level (dB μ V)	QP Limit (dB μ V)	QP Margin (dB)	AVG Limit (dB μ V)	AVG Margin (dB)	Test Result
12.799	16.56	14.85	10.22	26.78	25.07	60	50	33.22	24.93	Pass
0.283	13.84	9.77	9.94	23.78	19.71	60.71	50.71	36.93	31.01	Pass
0.980	14.24	--	9.95	24.18	--	56	--	31.82	--	Pass
2.027	7.63	--	9.95	17.58	--	56	--	38.42	--	Pass
3.613	4.08	--	9.99	14.07	--	56	--	41.93	--	Pass
0.563	--	7.03	9.93	--	16.96	--	46	--	29.04	Pass
2.023	--	2.9	9.95	--	12.86	--	46	--	33.14	Pass
9.770	--	-1.18	10.12	--	8.94	--	50	--	41.06	Pass

3.2.5 Test Equipment List

Equipment ID	Description	Manufacturer	Model	Calibration Date	Calibration Due
EQ_EMCA_132	EMI Test Receiver (v6.91.2)	Gauss Instruments	TDEMI X40	Nov 29, 2023	Nov 29, 2025
EQ_EMCA_61	LISN	FCC	50/250-16-2-01	Jan 16, 2024	Jan 16, 2026
EQ_EMCA_44	Transient Limiter (10dB)	Com-Power	LIT-930A	NCR	NCR
EQ_EMCA_84	RF Cable	Times Microwave	LMR-400	NCR	NCR
EQ_EMCA_149	Emission Software RE/CE	Gauss Instruments	EMI64k v6.31.2	NCR	NCR

----- End of Test Report -----