



## RF Test Report

**Standard(s):** FCC Part 15 Subpart 15.247,  
RSS-247 Issue 3:2023  
Unlicensed Intentional Radiators

**Issued To:** Ecobee Inc  
207 Queens Quay Suite 600  
Toronto, ON M5J 1A7  
Canada

**Product Name:** Smart Thermostat Lite  
**Model:** ECB701  
**FCC ID:** WR9202428847PR  
**IC:** 7981A-202428847PR

**Report No.** ML301913A-RF00 (DTS – BLE)  
**Date of Issue:** February 14, 2025

**Report Prepared By:**

  
Min Xie, Sr. EMC/RF Project Engineer

**Reviewed By:**

  
Amir Emami, Project Engineer

Megalab Group Inc. – 150 Addison Hall Circle, Aurora, Ontario, L4G 3X8, Canada

[www.megalabinc.com](http://www.megalabinc.com) – (905) 752-1925

This report may not be reproduced, except in full, without prior written approval of Megalab Group Inc.  
TRRF\_FCC-ICES-247-DTS\_v1

## Table of Contents

|     |                                              |    |
|-----|----------------------------------------------|----|
| 1.  | Revision History .....                       | 3  |
| 2.  | Summary of Test Results.....                 | 4  |
| 2.1 | Test Verdict.....                            | 4  |
| 2.2 | Test Standards .....                         | 5  |
| 2.3 | Test Facility.....                           | 6  |
| 3.  | General Information .....                    | 9  |
| 3.1 | Client Information .....                     | 9  |
| 3.2 | Device Under Test (DUT) .....                | 9  |
| 3.3 | Test Setup of DUT .....                      | 10 |
| 3.4 | Modifications for Compliance .....           | 10 |
| 4.  | Test Results .....                           | 11 |
| 4.1 | Transmitter Spurious Radiated Emissions..... | 11 |
| 4.2 | Lower and Upper Band Edges.....              | 21 |
| 4.3 | Power Line Emissions .....                   | 29 |

## 1. Revision History

| Project No. & Revision        | Report Date       | Initials | Description     |
|-------------------------------|-------------------|----------|-----------------|
| ML301913A-RF00<br>(DTS – BLE) | February 14, 2025 | MX       | Initial Release |
|                               |                   |          |                 |

NOTE:

- Latest reports marked as a revision replace any previous report and/or report revision issued under the same project number.

## 2. Summary of Test Results

### 2.1 Test Verdict

Unless otherwise stated, the test data and results in this test report relate only to the sample(s) tested.

| Requirement         |                              | Test Type                                  | Result | Remark                                                                           |
|---------------------|------------------------------|--------------------------------------------|--------|----------------------------------------------------------------------------------|
| FCC                 | ISED                         |                                            |        |                                                                                  |
| 15.247(d)<br>15.209 | RSS-GEN 8.9<br>(Table 5 & 6) | Transmitter Spurious<br>Radiated Emissions | Pass   | ---                                                                              |
| 15.205<br>15.209    | RSS-GEN<br>8.10<br>(Table 7) | Lower and Upper Band<br>Edges              | Pass   | Transmitter spurious<br>radiated emissions which fall<br>in the restricted bands |
| 15.207              | RSS-GEN<br>(Table 4)         | Power Line Conducted<br>Emissions          | Pass   | --                                                                               |

#### 2.1.1 Test Verdict Notes and Justifications

The DUT was mounted as in normal usage. See the Test Setup Photos for details.

This report is for an update to the original filing based on Class II Permissive Change made to the product. See C2PC Cover Letter filed with the application for additional details. Refer to the original test report, Megalab Report # **301244A-RF01 (DTS-BLE)**, for full testing and test results.

As per the manufacturer, the transmitter in the new sample is electrically identical to previous tested sample. Non transmitter components were replaced/added with new parts. The following test was re-evaluated on the EUT to verify if this change did not degrade the emission data previously reported:

- Spurious radiated emission
- Band Edge measurements
- Power line conducted emission

Spurious radiated emissions and band edge was tested in 1 MBPS configuration to verify that these two characteristics were not degraded due to the changes. The 1 MBPS data rate of the BLE was chosen as it has equal or lower margin than the 2 MBPS data rate.

## 2.2 Test Standards

| Standard                     | Description                                                                                                                          |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 47 CFR FCC Part 15 Subpart C | Code of Federal Regulations – Radio Frequency Devices, Intentional Radiators                                                         |
| FCC KDB 558074:2019          | Digital Transmission Systems, measurements and procedures                                                                            |
| RSS-247 Issue 3:2023         | Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices         |
| RSS-GEN Issue 5:2021         | General Requirements for Compliance of Radio Apparatus                                                                               |
| ANSI C63.4:2014              | Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz |
| ANSI C63.10:2013             | American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices                                       |
| ISO 17025:2017               | General Requirements for the Competence of Testing and Calibration Laboratories                                                      |

## 2.3 Test Facility

All tests were performed at Megalab Group Inc., located at 150 Addison Hall Circle, Aurora, ON, L4G 3X8, Canada.

The 10-meter semi-anechoic chamber for radiated emission and radiated immunity is designed to handle weights of up to 10,000lb and has power capability of over 100A. The turntable is capable of supporting test devices or systems either floor standing or table top of up to 4 meters wide and 3m tall. Conducted emissions, unless otherwise specified, are performed on a 2.44m x 2.48m ground plane and using a 2.44m x 2.48m vertical ground plane if applicable.

### 2.3.1 Accreditations

This report does not indicate any product endorsement by any government, accreditation agency, or Megalab Group Inc. Megalab Group Inc. shall have no liability for any deductions, interpretations or generalizations drawn by the client or others from the issued reports. If any opinions or interpretations are expressed in this report, they are outside Megalab Group Inc.'s scope of accreditation and do not necessarily reflect the opinions of Megalab Group Inc., unless otherwise specified.



#### A2LA (Certificate #5179.02)

Megalab Group Inc. is accredited to ISO/IEC 17025:2017 by the American Association for Laboratory Accreditation (A2LA) with Testing Certificate #5179.02. The laboratories current scope of accreditation can be found as listed on A2LA's website.



#### ISED

Megalab Group Inc. is registered with and recognized by Innovation, Science and Economic Development Canada (ISED) as an accredited testing laboratory.

Company Number: 28697



#### FCC

Megalab Group Inc. is registered with and recognized by the Federal Communications Commission (FCC) as an accredited testing laboratory.

Registration No. 200040



#### VCCI

The Semi-anechoic chamber of Megalab Group Inc. is registered with the Regulations for Voluntary Control Council for Interference (VCCI). Registration No.: R-20173, G-20174, C-20132, T-20133.

### 2.3.2 Measurement Uncertainty

As per ISO/IEC 17025 requirements, an evaluation of the measurement uncertainties associated with the emission test results should be included in the test report.

Where relevant, the following measurement uncertainty levels have been estimated for the tests performed on the DUT as specified in CISPR 16-4-2. The measurement uncertainties given below are based on a coverage factor  $k = 2$  which yields approximately a 95% level of confidence for the near-normal distribution typical of most measurement results.

| Measurement                                | Frequency Range | Uncertainty |
|--------------------------------------------|-----------------|-------------|
| Conducted Emissions at AC Mains Power Port | 150kHz to 30MHz | 2.27 dB     |
| Radiated Emissions                         | 30MHz to 1GHz   | 5.22 dB     |
|                                            | 1GHz to 18GHz   | 4.76 dB     |

### 2.3.3 Sample Calculations

#### Conducted Emissions

$$\begin{aligned} \text{Emission Level (dB}\mu\text{V)} &= \text{Read Level (dB}\mu\text{V)} + \text{LISN Factor (dB)} + \text{Attenuation Factor (dB)} + \text{Cable Loss (dB)} \\ &= \frac{34.8}{45.1} + 0.1 + 10.0 + 0.2 \end{aligned}$$

$$\begin{aligned} \text{Margin (dB)} &= \text{Limit (dB}\mu\text{V)} - \text{Emission Level (dB}\mu\text{V)} \\ &= \frac{60.0}{14.9} - 45.1 \end{aligned}$$

#### Radiated Emissions

$$\begin{aligned} \text{Emission Level (dB}\mu\text{V/m)} &= \text{Read Level (dB}\mu\text{V)} + \text{Antenna Factor (dB/m)} + \text{Cable Loss (dB)} - \text{Pre-Amp Gain (dB)} \\ &= \frac{52.4}{33.9} + 9.4 + 1.3 - 29.2 \end{aligned}$$

$$\begin{aligned} \text{Margin (dB)} &= \text{Limit (dB}\mu\text{V/m)} - \text{Emission Level (dB}\mu\text{V/m)} \\ &= \frac{50.0}{16.1} - 33.9 \end{aligned}$$

### 2.3.4 Terms, Definitions and Abbreviations

|             |                                      |
|-------------|--------------------------------------|
| <b>AE</b>   | Auxiliary Equipment                  |
| <b>DUT</b>  | Device Under Test                    |
| <b>DTS</b>  | Digital Transmission System          |
| <b>EMC</b>  | Electro-Magnetic Compatibility       |
| <b>FHSS</b> | Frequency Hopping Spread Spectrum    |
| <b>ISM</b>  | Industrial, Scientific and Medical   |
| <b>LISN</b> | Line Impedance Stabilization Network |
| <b>N/A</b>  | Not Applicable                       |
| <b>NCR</b>  | No Calibration Required              |
| <b>RF</b>   | Radio Frequency                      |
| <b>RBW</b>  | Resolution Bandwidth                 |
| <b>VBW</b>  | Video Bandwidth                      |

#### **Auxiliary Equipment/Support Equipment**

Equipment needed to exercise and/or monitor the operation of the DUT.

#### **Artificial Mains Network**

Network that provides a defined impedance to the DUT at radio frequencies, couples the disturbance voltage to the measuring receiver and decouples the test circuit from the supply mains.

#### **Class A Equipment**

Equipment suitable for use in all locations other than those allocated in residential environments and those directly connected to a low voltage power supply network which supplies buildings used for domestic purposes.

#### **Class B Equipment**

Equipment suitable for use in all locations, including in residential environments and in establishments directly connected to a low voltage power supply network which supplies buildings used for domestic purposes.

#### **Device Under Test**

Device or system being evaluated for compliance with the requirements of the Test Standards listed in this report.

#### **Electro-Magnetic Compatibility**

Ability of equipment or system to function satisfactorily in its EM environment without introducing intolerable electromagnetic disturbances to anything in that environment.

#### **Electromagnetic Disturbance**

Any electromagnetic phenomenon which may degrade the performance of a device, equipment or system.

### 3. General Information

#### 3.1 Client Information

|         |                                                            |
|---------|------------------------------------------------------------|
| Company | Ecobee Inc                                                 |
| Address | 207 Queens Quay Suite 600<br>Toronto, ON M5J 1A7<br>Canada |
| Contact | John Russomanno                                            |
| Email   | john@ecobee.com                                            |

#### 3.2 Device Under Test (DUT)

##### 3.2.1 DUT Information

|                                  |                                 |
|----------------------------------|---------------------------------|
| DUT Name                         | Smart Thermostat Lite           |
| DUT Model(s)                     | ECB701                          |
| Serial Number                    | Production samples              |
| Power Source (AC / DC / Battery) | AC                              |
| Input Voltage (V) or Range       | 24Vac                           |
| Frequency (Hz) or Range          | 60Hz                            |
| Mode(s) of Operation             | Continuous transmission         |
| Connectors Available on DUT      | Standard thermostat connections |
| <b>Transmitter Information</b>   |                                 |
| FCC ID                           | WR9202428847PR                  |
| IC                               | 7981A-202428847PR               |
| Technology Used                  | BLE                             |
| Operating Frequency              | 2402 MHz to 2480 MHz            |
| Modulation Type                  | GFSK                            |
| Number of Channels               | 40                              |
| Antenna Manufacturer             | Custom – PCB trace              |
| Antenna Model                    | N/A                             |
| Antenna Type                     | Monopole                        |
| Antenna Gain                     | 2.5 dBi                         |

Note: Above antenna information is provided by the client. The characteristics and gain are obtained from the Antenna Manufacturer's Data Sheet.

### 3.2.2 DUT Description

EUT is a smart thermostat; it contains 2400 – 2483.5 MHz DTS (802.11 b/g/n and BLE) transmitters on one chip, and a 920 – 928 MHz FHSS/Hybrid transmitter on second chip.

This report documents the compliance of the BLE transmitter.

## 3.3 Test Setup of DUT

### 3.3.1 Configuration

The DUT was configured in a direct test mode with the following parameters

- For all the tests, the DUT was set to transmit continuously with maximum duty cycle; 61.8% for 1 MBPS (0.772 ms ON time with a period of 1.25 ms) and 31.5% for 2 MBPS (0.394 ms ON time with a period of 1.25 ms)
- Output Power: +20 dBm
- Channels:
  - low, 2402MHz
  - High, 2480MHz

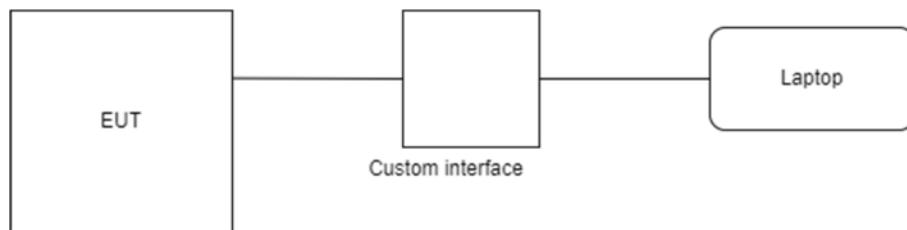



Figure 1 – Configuration Block Diagram

| Description of I/O Cables |                     |                |                   |
|---------------------------|---------------------|----------------|-------------------|
| Cable Function            | Length of Cable (m) | Shielded (Y/N) | Outdoor Use (Y/N) |
| Thermostat control        | >3                  | N              | N                 |

### 3.3.2 Support Equipment

| Device               | Manufacturer | Model | S/N |
|----------------------|--------------|-------|-----|
| Custom USB Interface | Ecobee       | --    | --- |

## 3.4 Modifications for Compliance

No modifications were made to the device under test to comply with the testing requirements.

## 4. Test Results

### 4.1 Transmitter Spurious Radiated Emissions

|                           |                   |              |
|---------------------------|-------------------|--------------|
| Test Date:                | Dec 11 – 12, 2024 | Initials: MX |
| Temperature (°C)          | 20.5 – 20.9       |              |
| Relative Humidity (%)     | 27.9 – 12.5       |              |
| Barometric Pressure (kPa) | 96.4 – 97.6       |              |

#### 4.1.1 Limits

Any radiated emissions which fall in the restricted bands, as defined in FCC 15.205(a), must comply with the general radiated emission limits specified in FCC 15.209(a). Other emissions shall be at least 20dB below the highest level of the intentional transmitter.

Base Standard(s): FCC Subpart C 15.209 and RSS-Gen Section 8.9.

| Frequency Range (MHz) | Field Strength Limit |          | Field Strength at 3m (dB $\mu$ V/m) | Detector Type / Measurement Bandwidth |
|-----------------------|----------------------|----------|-------------------------------------|---------------------------------------|
|                       | $\mu$ V/m            | Distance |                                     |                                       |
| 0.009 – 0.150         | 2400/F(kHz)          | 300      | 128.5 – 104.1                       | Quasi-Peak‡ / 200Hz                   |
| 0.150 – 0.490         | 2400/F(kHz)          | 300      | 104.1 – 93.8                        | Quasi-Peak‡ / 9kHz                    |
| 0.490 – 1.705         | 24000/F(kHz)         | 30       | 73.8 – 63.0                         | Quasi-Peak / 9kHz                     |
| 1.705 – 30            | 30                   | 30       | 69.5                                | Quasi-Peak / 9kHz                     |
| 30 – 88               | 100                  | 3        | 40.0                                | Quasi-Peak / 120kHz                   |
| 88 – 216              | 150                  | 3        | 43.5                                | Quasi-Peak / 120kHz                   |
| 216 – 960             | 200                  | 3        | 46.0                                | Quasi-Peak / 120kHz                   |
| 960 – 1000            | 500                  | 3        | 54.0                                | Quasi-Peak / 120kHz                   |
| Above 1000            | 500                  | 3        | 54.0                                | Average / 1MHz                        |
| Above 1000            | 5000                 | 3        | 74.0                                | Peak / 1MHz                           |

‡The emission limits below 1GHz shown in the above table are based on measurements employing a CISPR Quasi-Peak detector except for the frequency bands 9-90 kHz and 110-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.

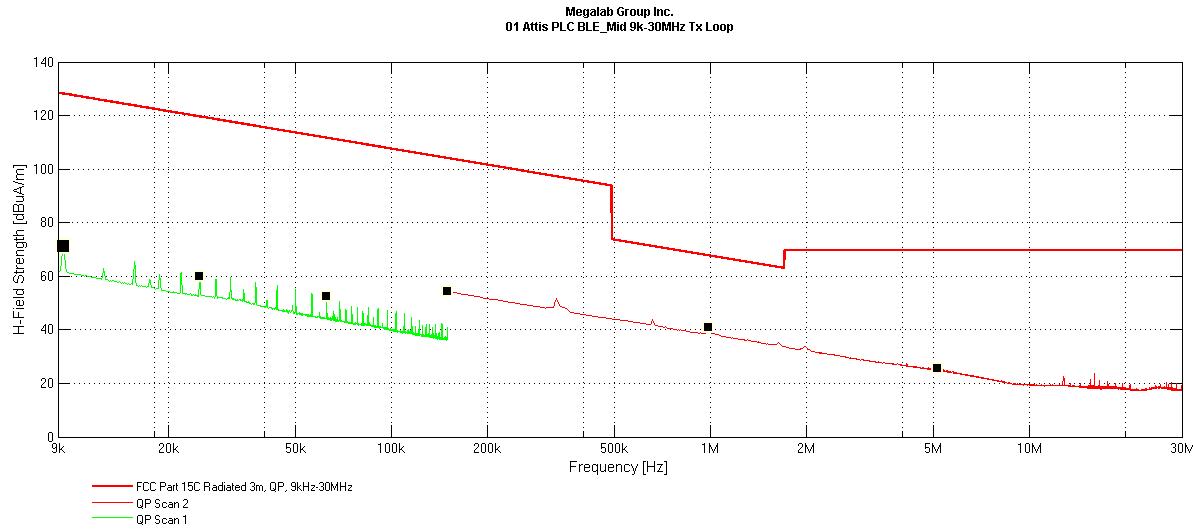
As per ANSI C63.10 Section 4.1, if the Peak detector measurements do not exceed the Quasi-Peak limits, or Average limits where defined, then the DUT is considered to have passed the requirements.

#### 4.1.2 Test Procedure

Tested according to ANSI C63.10 Section 6.3.

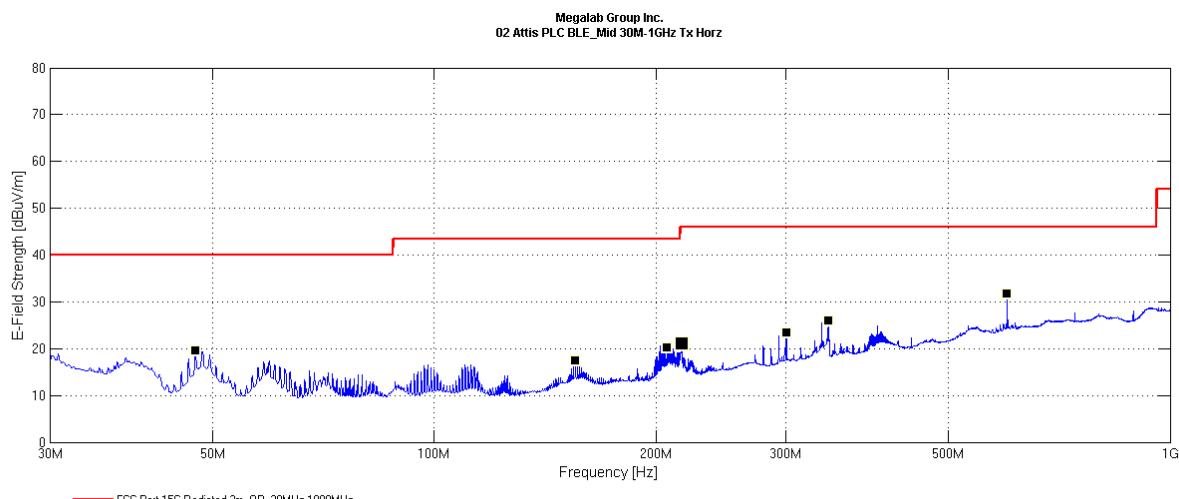
The device under test was setup inside a semi-anechoic chamber with remotely controlled turntable and antenna positioner at a 3m test distance. The DUT was placed on top of a 0.8m high non-conductive table above the reference ground plane for frequencies below 1GHz and 1.5m high for frequencies above 1GHz.

To determine the emission characteristics of the DUT, exploratory radiated emission scans were made while rotating the turntable 0° to 360° and using a Peak detector. The results were recorded in graphical form.


For each suspected emission, final measurements of the DUT radiated emissions with the Quasi-Peak, Average or Peak detector, as defined in the limit tables above, were made with the turntable azimuth rotated 0° to 360° and antenna height varied from 1m to 4m. The antenna was positioned to receive emissions in the vertical and horizontal polarizations such that the maximum radiated emission levels were detected.

As per FCC Part 15.33(a), the DUT was scanned to the 10th harmonic of the highest fundamental frequency.

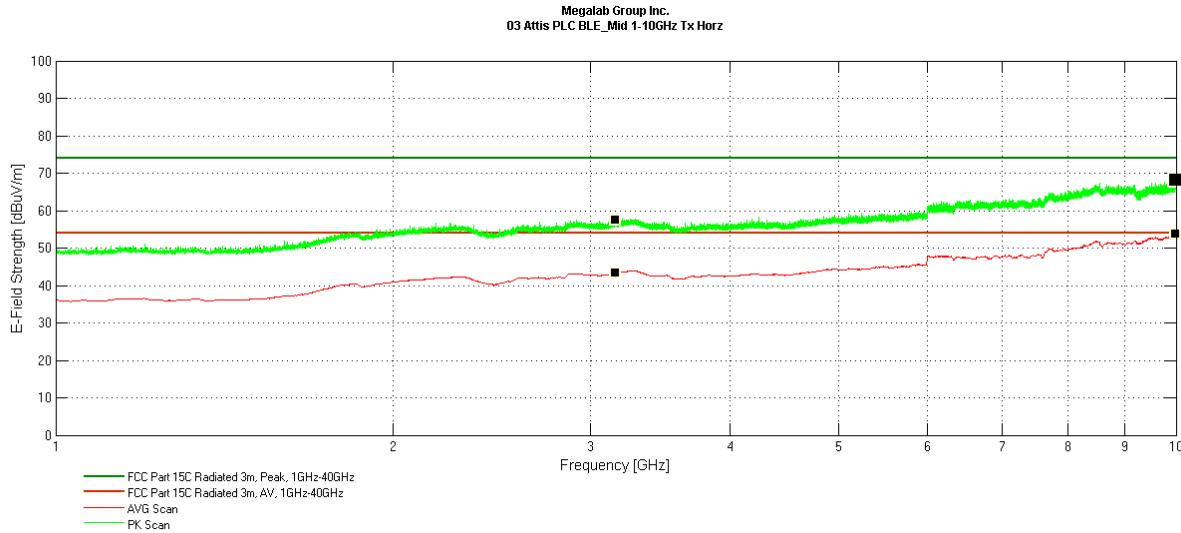
Testing for 9 kHz – 30 MHz was performed with 3 orthogonal antenna polarities. The worst case results were present in this report.


#### 4.1.3 Test Results

|                      |                |                             |          |
|----------------------|----------------|-----------------------------|----------|
| <b>Range:</b>        | 9kHz to 30 MHz | <b>Tx Frequency</b>         | 2480 MHz |
| <b>Test Voltage:</b> | 24Vac 60Hz     | <b>Antenna Polarization</b> | XZ-Plane |



Remark: Quasi-Peak Emission Plot


|                      |               |                             |            |
|----------------------|---------------|-----------------------------|------------|
| <b>Range:</b>        | 30MHz to 1GHz | <b>Tx Frequency</b>         | 2480 MHz   |
| <b>Test Voltage:</b> | 24Vac 60Hz    | <b>Antenna Polarization</b> | Horizontal |

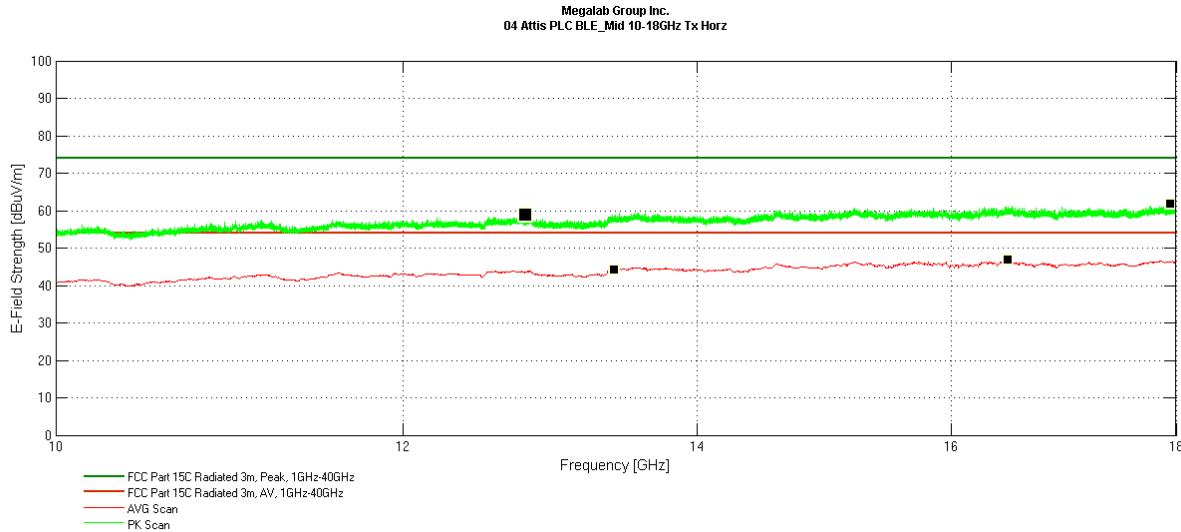


Remark: - Quasi-Peak Emission Plot

- A Notch filter was used to filter out the fundamental

|                      |               |                             |            |
|----------------------|---------------|-----------------------------|------------|
| <b>Range:</b>        | 1GHz to 10GHz | <b>Tx Frequency</b>         | 2480 MHz   |
| <b>Test Voltage:</b> | 24Vac 60Hz    | <b>Antenna Polarization</b> | Horizontal |




Operator: admin  
Last Data Update: 2024-12-12 13:01:19

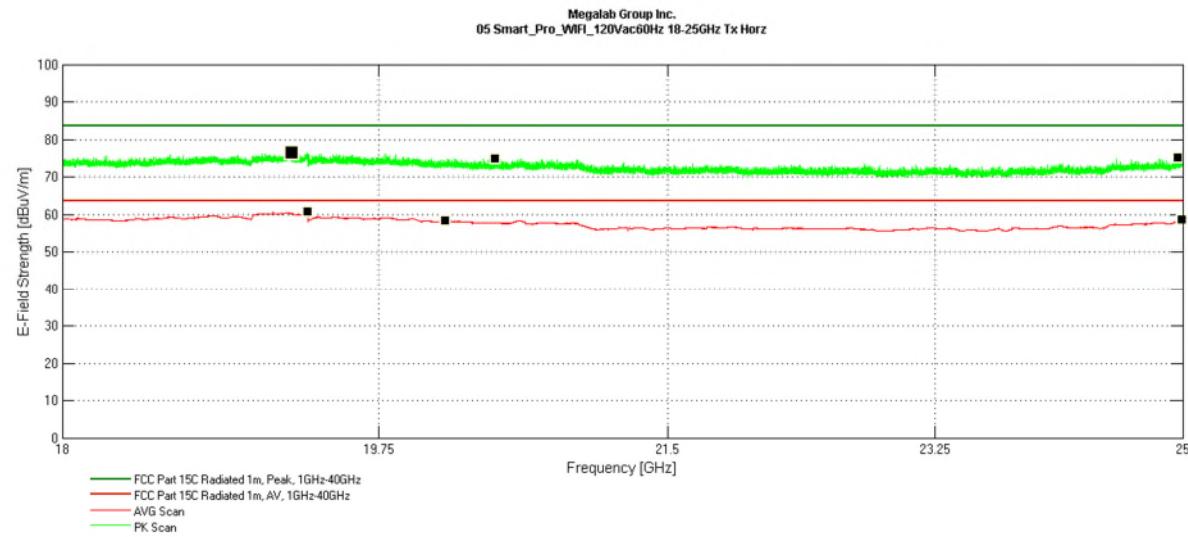
Project: Ecobee Attis PLC FCC Subpart15C BLE S64

**Remark:** - **Peak and Average Emission Plot**

- A Notch filter was used to filter out the fundamental

|                      |                |                             |            |
|----------------------|----------------|-----------------------------|------------|
| <b>Range:</b>        | 10GHz to 18GHz | <b>Tx Frequency</b>         | 2480 MHz   |
| <b>Test Voltage:</b> | 24Vac 60Hz     | <b>Antenna Polarization</b> | Horizontal |




Operator: admin  
Last Data Update: 2024-12-12 12:14:22

Project: Ecobee Attis PLC FCC Subpart15C BLE S64

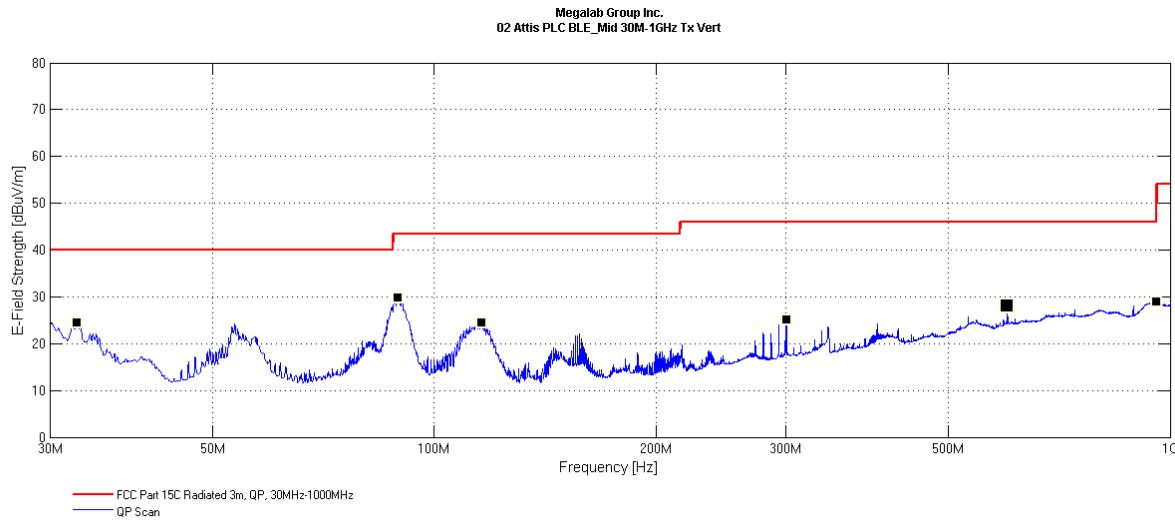
**Remark:** - **Peak and Average Emission Plot**

- A Notch filter was used to filter out the fundamental

|               |                |                      |            |
|---------------|----------------|----------------------|------------|
| Range:        | 18GHz to 25GHz | Tx Frequency         | 2480 MHz   |
| Test Voltage: | 24Vac 60Hz     | Antenna Polarization | Horizontal |



Operator: admin  
Last Data Update: 2024-12-12 17:01:25


Project: Ecobee Attis PLC FCC Subpart15C BLE S64

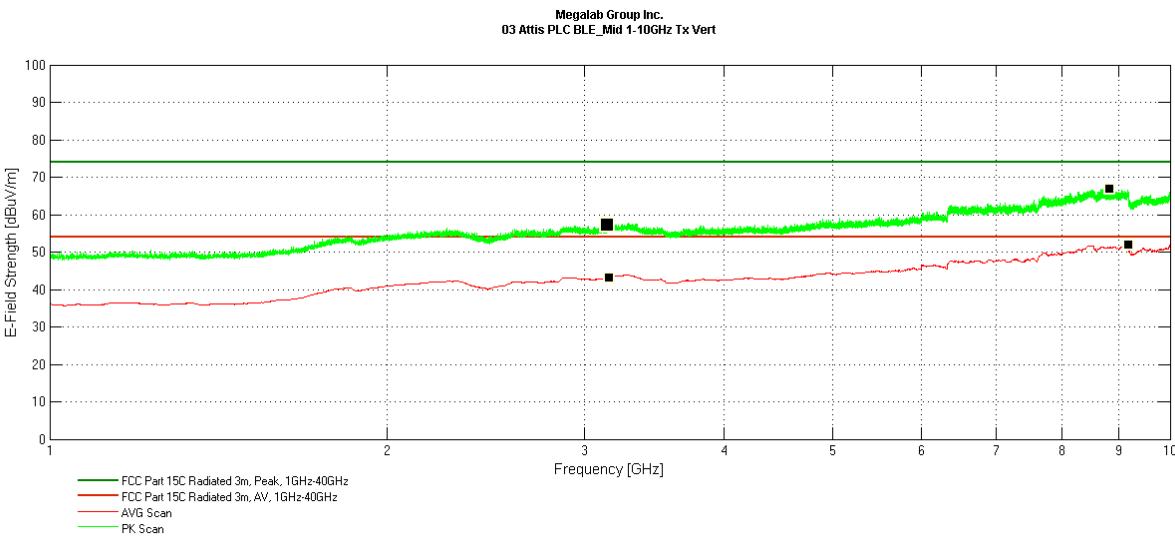
Remark: - Peak and Average Emission Plot

| Horizontal Antenna Polarization |                           |                     |                           |                   |                |
|---------------------------------|---------------------------|---------------------|---------------------------|-------------------|----------------|
| Frequency                       | Raw QP Amplitude (dBuV/m) | System Factors (dB) | Net QP Amplitude (dBuV/m) | QP Limit (dBuV/m) | QP Margin (dB) |
| 216.950 MHz                     | 43.96                     | -22.99              | 20.97                     | 46                | 25.03          |
| 47.350 MHz                      | 46.11                     | -26.66              | 19.45                     | 40                | 20.55          |
| 155.600 MHz                     | 40.8                      | -23.44              | 17.36                     | 43.5              | 26.14          |
| 301.000 MHz                     | 44.03                     | -20.62              | 23.41                     | 46                | 22.59          |
| 343.050 MHz                     | 44.05                     | -18.24              | 25.82                     | 46                | 20.18          |
| 599.950 MHz                     | 43.53                     | -11.86              | 31.66                     | 46                | 14.34          |
| 207.050 MHz                     | 43.35                     | -23.17              | 20.18                     | 43.5              | 23.32          |

| Horizontal Antenna Polarization – Harmonic Emissions |          |                      |                        |                               |                      |             |             |
|------------------------------------------------------|----------|----------------------|------------------------|-------------------------------|----------------------|-------------|-------------|
| Frequency (MHz)                                      | Detector | Reading (dB $\mu$ V) | Correction Factor (dB) | Emission Level (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Test Result |
| <b>Low Channel</b>                                   |          |                      |                        |                               |                      |             |             |
| 4804                                                 | PEAK     | 50.2                 | 0.8                    | 51.0                          | 74.0                 | 23.0        | Pass        |
| 4804                                                 | AVG      | 42.1                 | 0.8                    | 42.9                          | 54.0                 | 11.1        | Pass        |
| 7206                                                 | PEAK     | 48.1                 | 4.0                    | 52.1                          | 74.0                 | 21.9        | Pass        |
| 7206                                                 | AVG      | 35.9                 | 4.0                    | 39.9                          | 54.0                 | 14.1        | Pass        |
| <b>High Channel</b>                                  |          |                      |                        |                               |                      |             |             |
| 4960                                                 | PEAK     | 48.9                 | 1.4                    | 50.3                          | 74.0                 | 23.7        | Pass        |
| 4960                                                 | AVG      | 37.4                 | 1.4                    | 38.8                          | 54.0                 | 15.2        | Pass        |
| 7440                                                 | PEAK     | 48.1                 | 4.5                    | 52.5                          | 74.0                 | 21.5        | Pass        |
| 7440                                                 | AVG      | 37.4                 | 4.5                    | 41.9                          | 54.0                 | 12.1        | Pass        |

|                      |               |                             |          |
|----------------------|---------------|-----------------------------|----------|
| <b>Range:</b>        | 30MHz to 1GHz | <b>Tx Frequency</b>         | 2480 MHz |
| <b>Test Voltage:</b> | 24Vac 60Hz    | <b>Antenna Polarization</b> | Vertical |




Operator: admin  
Last Data Update: 2024-12-11 11:45:34

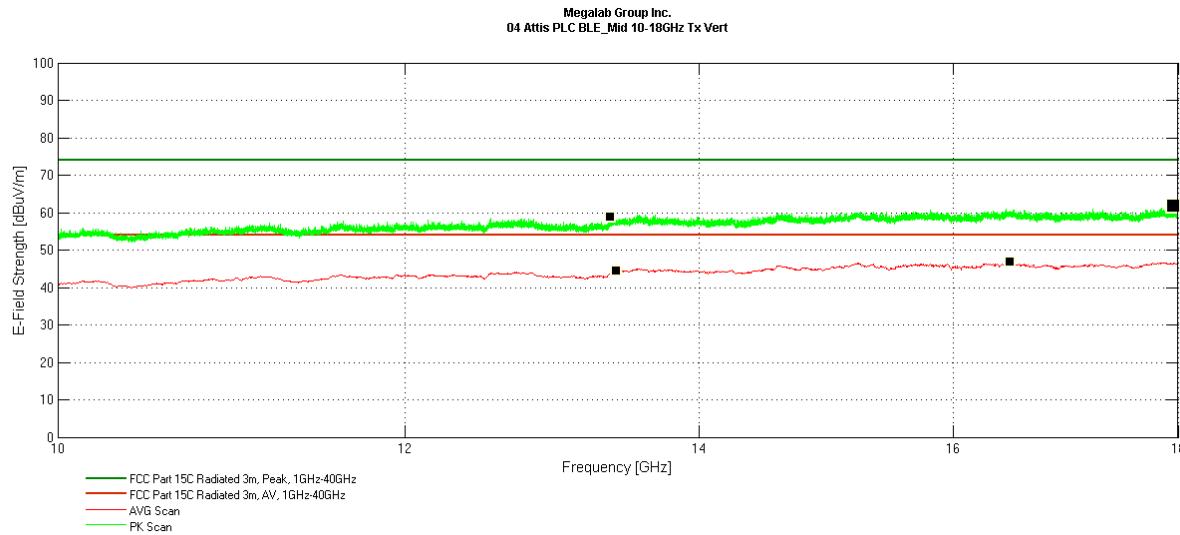
Project: Ecobee Attis PLC FCC Subpart15C BLE S64

**Remark: - Quasi-Peak Emission Plot**

- A Notch filter was used to filter out the fundamental

|                      |               |                             |          |
|----------------------|---------------|-----------------------------|----------|
| <b>Range:</b>        | 1GHz to 10GHz | <b>Tx Frequency</b>         | 2480 MHz |
| <b>Test Voltage:</b> | 24Vac 60Hz    | <b>Antenna Polarization</b> | Vertical |




Operator: admin  
Last Data Update: 2024-12-12 13:13:39

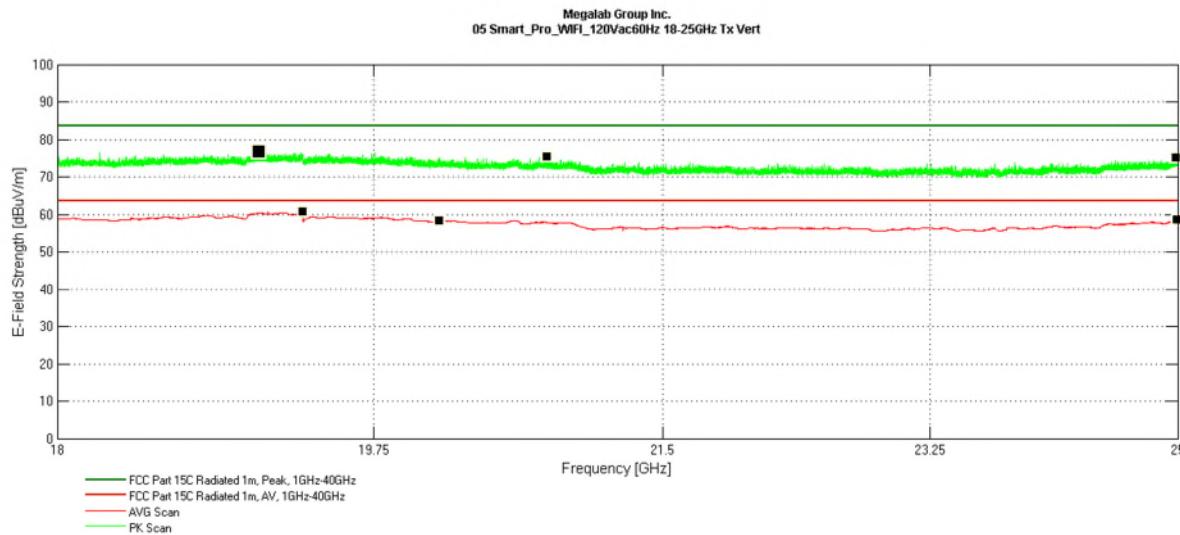
Project: Ecobee Attis PLC FCC Subpart15C BLE S64

**Remark: - Peak and Average Emission Plot**

- A Notch filter was used to filter out the fundamental

|                      |                |                             |          |
|----------------------|----------------|-----------------------------|----------|
| <b>Range:</b>        | 10GHz to 18GHz | <b>Tx Frequency</b>         | 2480 MHz |
| <b>Test Voltage:</b> | 24Vac 60Hz     | <b>Antenna Polarization</b> | Vertical |




Operator: admin  
Last Data Update: 2024-12-12 12:43:56

Project: Ecobee Attis PLC FCC Subpart15C BLE S64

Remark: - **Peak and Average** Emission Plot

- A Notch filter was used to filter out the fundamental

|                      |                |                             |          |
|----------------------|----------------|-----------------------------|----------|
| <b>Range:</b>        | 18GHz to 25GHz | <b>Tx Frequency</b>         | 2480 MHz |
| <b>Test Voltage:</b> | 24Vac 60Hz     | <b>Antenna Polarization</b> | Vertical |



Operator: admin  
Last Data Update: 2024-12-12 17:14:37

Project: Ecobee Attis PLC FCC Subpart15C BLE S64

Remark: **Peak and Average** Emission Plot

| Vertical Antenna Polarization |                           |                     |                           |                   |                |
|-------------------------------|---------------------------|---------------------|---------------------------|-------------------|----------------|
| Frequency                     | Raw QP Amplitude (dBuV/m) | System Factors (dB) | Net QP Amplitude (dBuV/m) | QP Limit (dBuV/m) | QP Margin (dB) |
| 32.700 MHz                    | 43.4                      | -18.88              | 24.52                     | 40                | 15.48          |
| 89.350 MHz                    | 56.76                     | -27.01              | 29.75                     | 43.5              | 13.75          |
| 115.900 MHz                   | 50.74                     | -26.38              | 24.36                     | 43.5              | 19.14          |
| 301.000 MHz                   | 45.71                     | -20.62              | 25.09                     | 46                | 20.91          |
| 599.950 MHz                   | 40.01                     | -11.86              | 28.15                     | 46                | 17.85          |
| 959.951 MHz                   | 35.86                     | -6.98               | 28.88                     | 46                | 17.12          |

| Vertical Antenna Polarization – Harmonic Emissions |          |                      |                        |                               |                      |             |             |
|----------------------------------------------------|----------|----------------------|------------------------|-------------------------------|----------------------|-------------|-------------|
| Frequency (MHz)                                    | Detector | Reading (dB $\mu$ V) | Correction Factor (dB) | Emission Level (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Test Result |
| <b>Low Channel</b>                                 |          |                      |                        |                               |                      |             |             |
| 4804                                               | PEAK     | 50.1                 | 0.8                    | 50.9                          | 74.0                 | 23.1        | Pass        |
| 4804                                               | AVG      | 39.3                 | 0.8                    | 40.0                          | 54.0                 | 14.0        | Pass        |
| 7206                                               | PEAK     | 47.7                 | 4.0                    | 51.7                          | 74.0                 | 22.3        | Pass        |
| 7206                                               | AVG      | 34.9                 | 4.0                    | 39.0                          | 54.0                 | 15.0        | Pass        |
| <b>High Channel</b>                                |          |                      |                        |                               |                      |             |             |
| 4960                                               | PEAK     | 48.2                 | 1.4                    | 49.6                          | 74.0                 | 24.4        | Pass        |
| 4960                                               | AVG      | 37.1                 | 1.4                    | 38.5                          | 54.0                 | 15.5        | Pass        |
| 7440                                               | PEAK     | 48.5                 | 4.5                    | 52.9                          | 74.0                 | 21.1        | Pass        |
| 7440                                               | AVG      | 37.6                 | 4.5                    | 42.1                          | 54.0                 | 11.9        | Pass        |

#### 4.1.4 Test Equipment List

| Equipment ID | Description                  | Manufacturer       | Model          | Calibration Date | Calibration Due |
|--------------|------------------------------|--------------------|----------------|------------------|-----------------|
| EQ_EMCA_58   | EMI Receiver                 | Rohde & Schwarz    | ESW 44         | Mar 1, 2024      | Mar 1, 2026     |
| EQ_EMCA_132  | EMI Test Receiver (v6.91.2)  | Gauss Instruments  | TDEMI X40      | Nov 29, 2023     | Nov 29, 2025    |
| EQ_EMCA_48   | Loop Antenna                 | Com-Power          | AL-130R        | Apr 9, 2024      | Apr 9, 2026     |
| EQ_EMCA_59   | BiLog Antenna                | ETS Lindgren       | 3142E          | Apr 19, 2024     | Apr 19, 2026    |
| EQ_EMCA_60   | Horn Antenna                 | ETS Lindgren       | 3117           | Apr 9, 2024      | Apr 9, 2026     |
| EQ_EMCA_56   | DRG Horn Antenna 18GHz-40GHz | A.H Systems        | SAS-574        | Apr 8, 2024      | Apr 8, 2026     |
| EQ_EMCA_68   | 6dB Attenuator               | Fairview Microwave | SA3NS-06       | Apr 19, 2024     | Apr 19, 2026    |
| EQ_EMCA_85   | RF Cable <1GHz               | Times Microwave    | LMR-400        | NCR              | NCR             |
| EQ_EMCA_75   | RF Cable >1GHz               | MegaPhase          | EMC2           | NCR              | NCR             |
| EQ_EMCA_123  | Preamplifier 30MHz-9GHz      | RF Bay             | EPA-250T       | Jan 23, 2024     | Jan 23, 2026    |
| EQ_EMCA_42   | Preamplifier 1GHz-18GHz      | Com-Power          | PAM-118A       | Jan 17, 2024     | Jan 17, 2026    |
| EQ_EMCA_43   | Preamplifier 18GHz-40GHz     | Com-Power          | PAM-840A       | Jan 31, 2024     | Jan 31, 2026    |
| EQ_EMCA_108  | 2400 - 2500MHz Notch Filter  | Micro-Tronics      | BRM50702       | NCR              | NCR             |
| EQ_EMCA_149  | Emission Software RE/CE      | Gauss Instruments  | EMI64k v6.31.2 | NCR              | NCR             |

## 4.2 Lower and Upper Band Edges

|                           |                           |
|---------------------------|---------------------------|
| Test Date:                | Dec-18, 2024/Jan-08, 2025 |
| Temperature (°C)          | 19.7/20.4                 |
| Relative Humidity (%)     | 26.2/6.4                  |
| Barometric Pressure (kPa) | 97.9/97.9                 |

Initials: MX

### 4.2.1 Limits

Any radiated emissions which fall in the restricted bands, as defined in FCC 15.205(a), must comply with the general radiated emission limits specified in FCC 15.209(a).

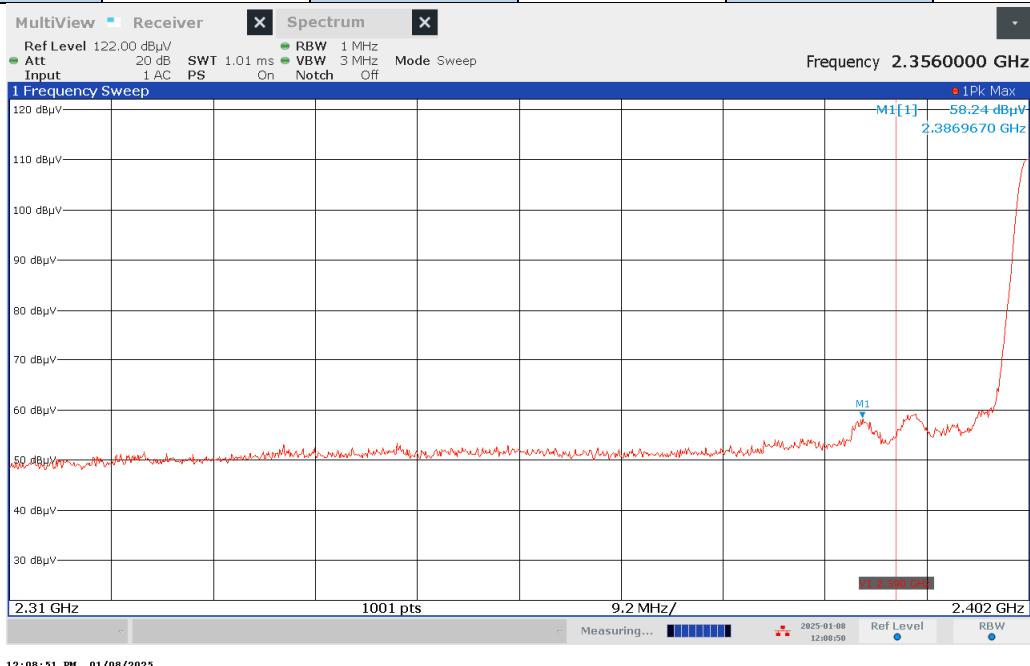
### 4.2.2 Test Procedure

Tested according to ANSI C63.10 Section 11.12

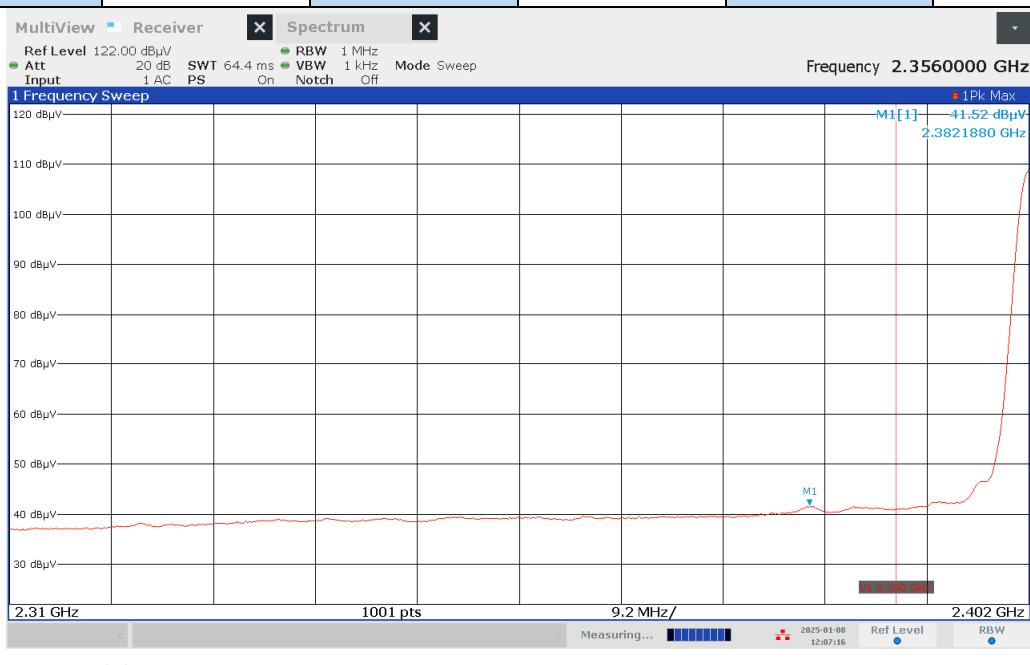
The device under test was setup inside a semi-anechoic chamber with remotely controlled turntable and antenna positioner at a 3m test distance. The DUT was placed on top of a 0.8m high non-conductive table above the reference ground plane for frequencies below 1GHz and 1.5m high for frequencies above 1GHz.

For both the lower and upper radiated band edges, the radiated emission was first maximized on the center frequency of the low and high channels with the turntable azimuth rotated 0° to 360° and antenna height varied from 1m to 4m. Once maximized, the start and stop frequency were adjusted to capture that channel's lower and upper band edges inside the restricted bands.

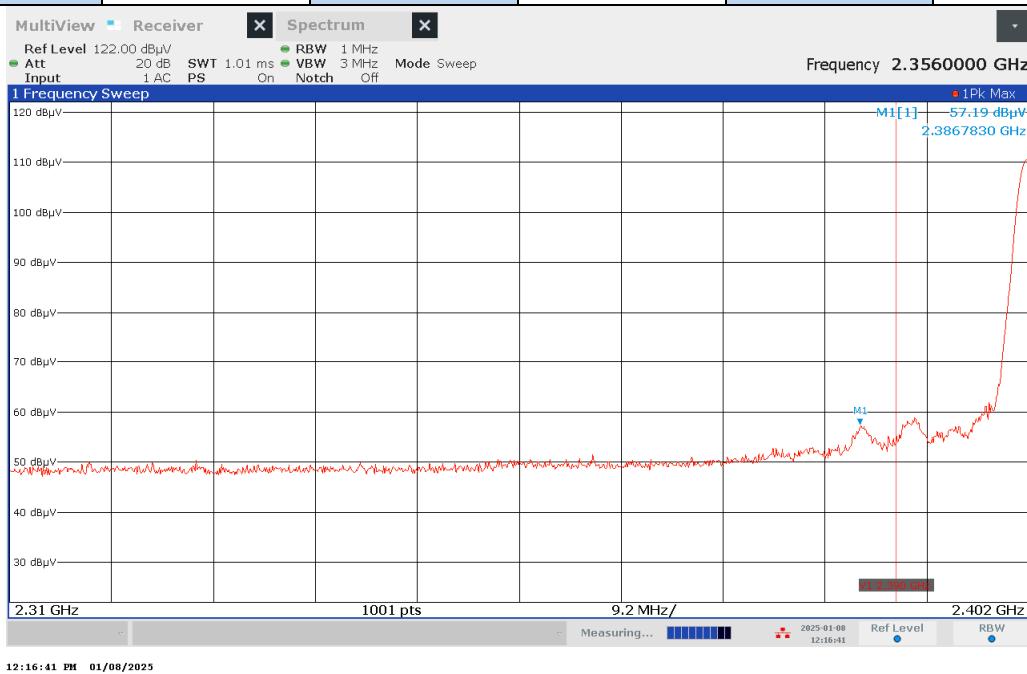
The antenna was positioned to receive emissions in the vertical and horizontal polarizations such that the maximum radiated emission levels were detected.


The radiated band edge measurements were made with the DUT in normal operation position.

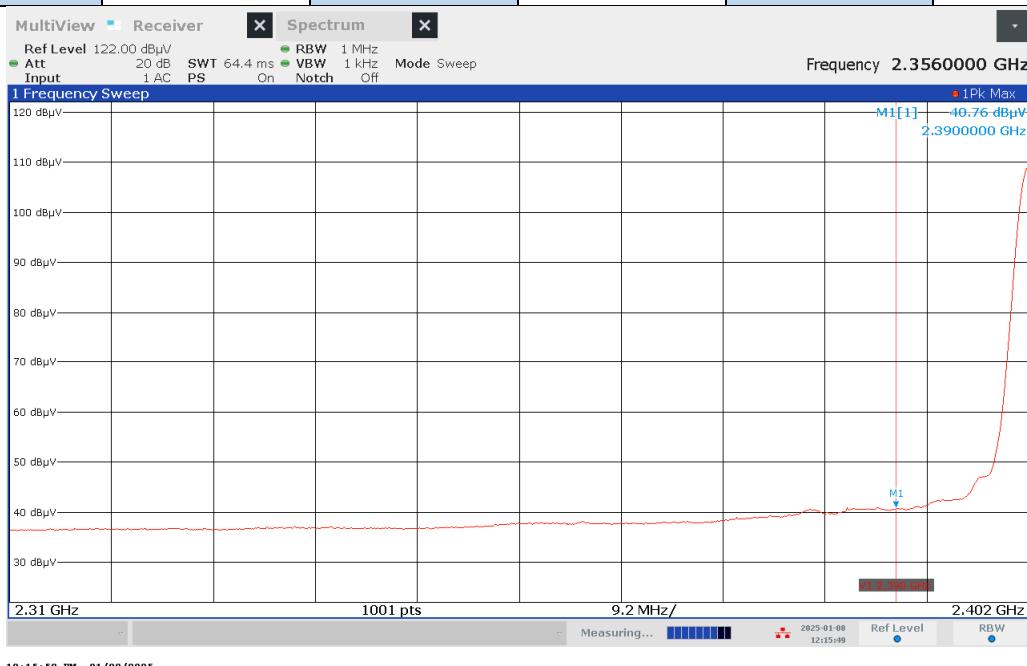
### 4.2.3 Test Results – 1 MBPS


The DUT met the band edge requirements. Peak output power for low, mid and high channels were measured and the Plots Section below contains the maximum radiated emission levels captured on the spectrum analyzer at the band edges. The Final Measurements Section contains the final results with the correction factors added in.

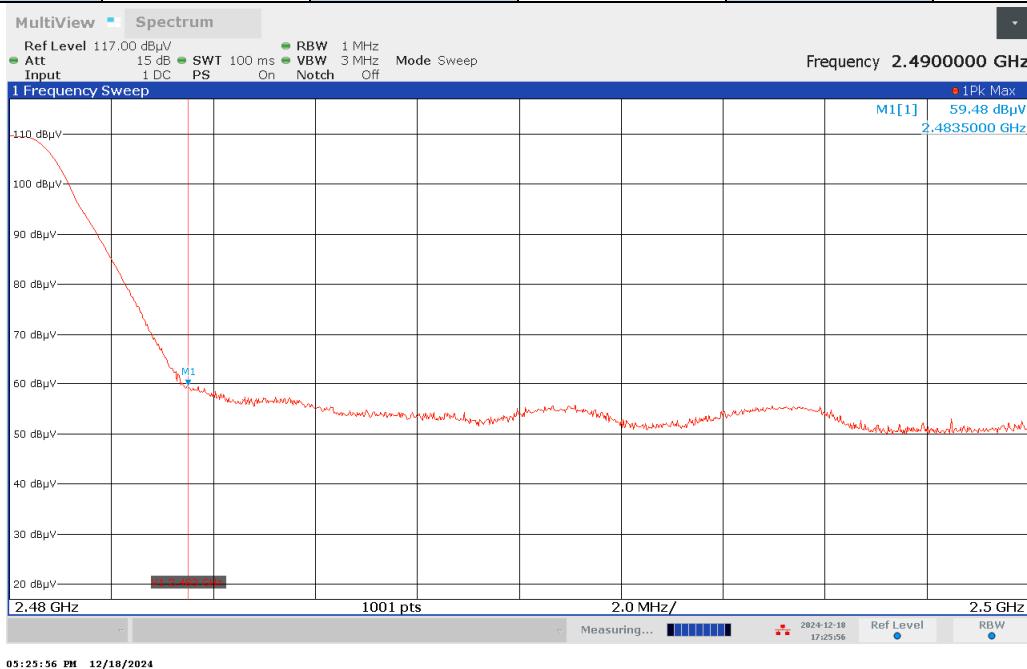
4.2.3.1. Plots


| Tx Frequency | Low Channel | Antenna Polarization | Horizontal | Emission | Peak |
|--------------|-------------|----------------------|------------|----------|------|
|--------------|-------------|----------------------|------------|----------|------|



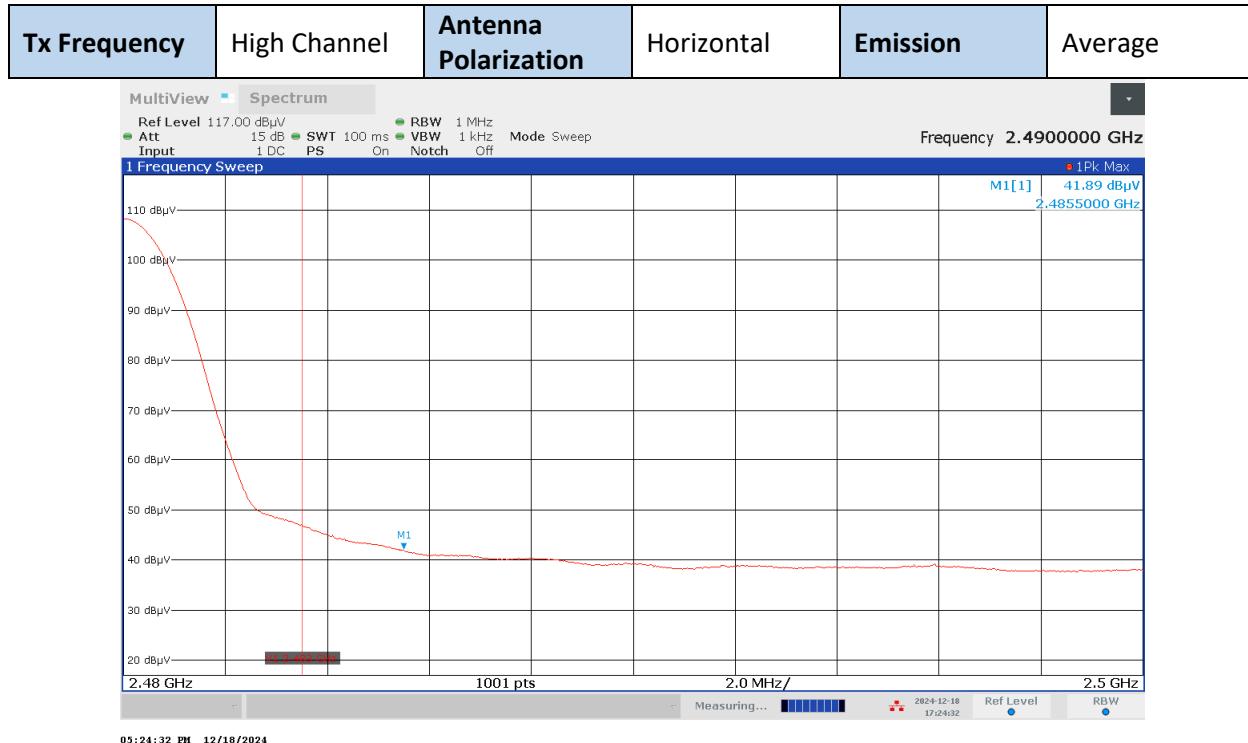

| Tx Frequency | Low Channel | Antenna Polarization | Horizontal | Emission | Average |
|--------------|-------------|----------------------|------------|----------|---------|
|--------------|-------------|----------------------|------------|----------|---------|



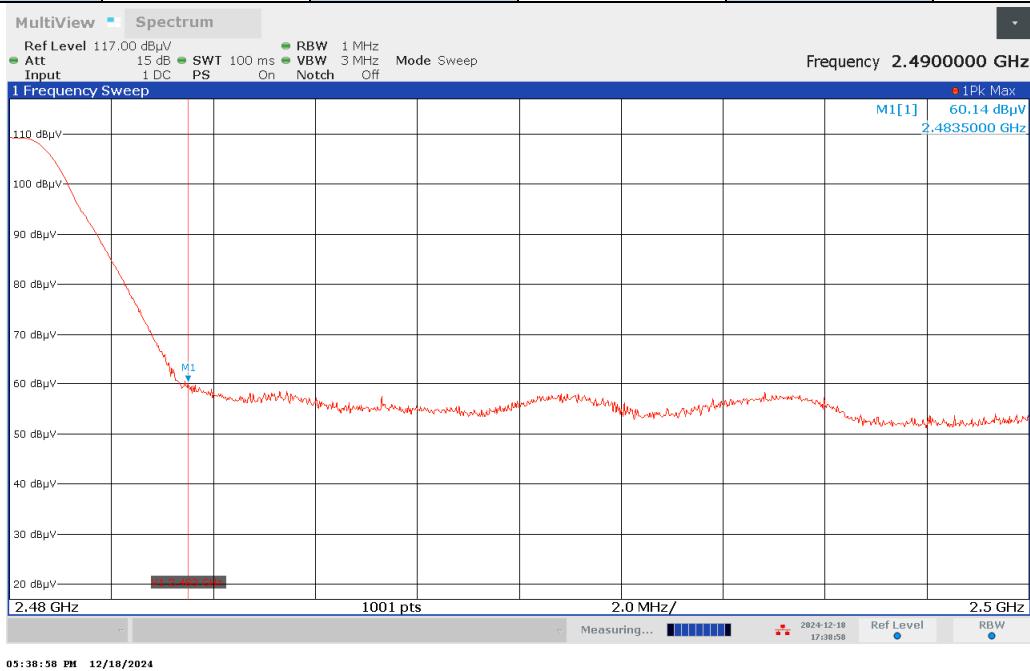

| Tx Frequency | Low Channel | Antenna Polarization | Vertical | Emission | Peak |
|--------------|-------------|----------------------|----------|----------|------|
|--------------|-------------|----------------------|----------|----------|------|



| Tx Frequency | Low Channel | Antenna Polarization | Vertical | Emission | Average |
|--------------|-------------|----------------------|----------|----------|---------|
|--------------|-------------|----------------------|----------|----------|---------|

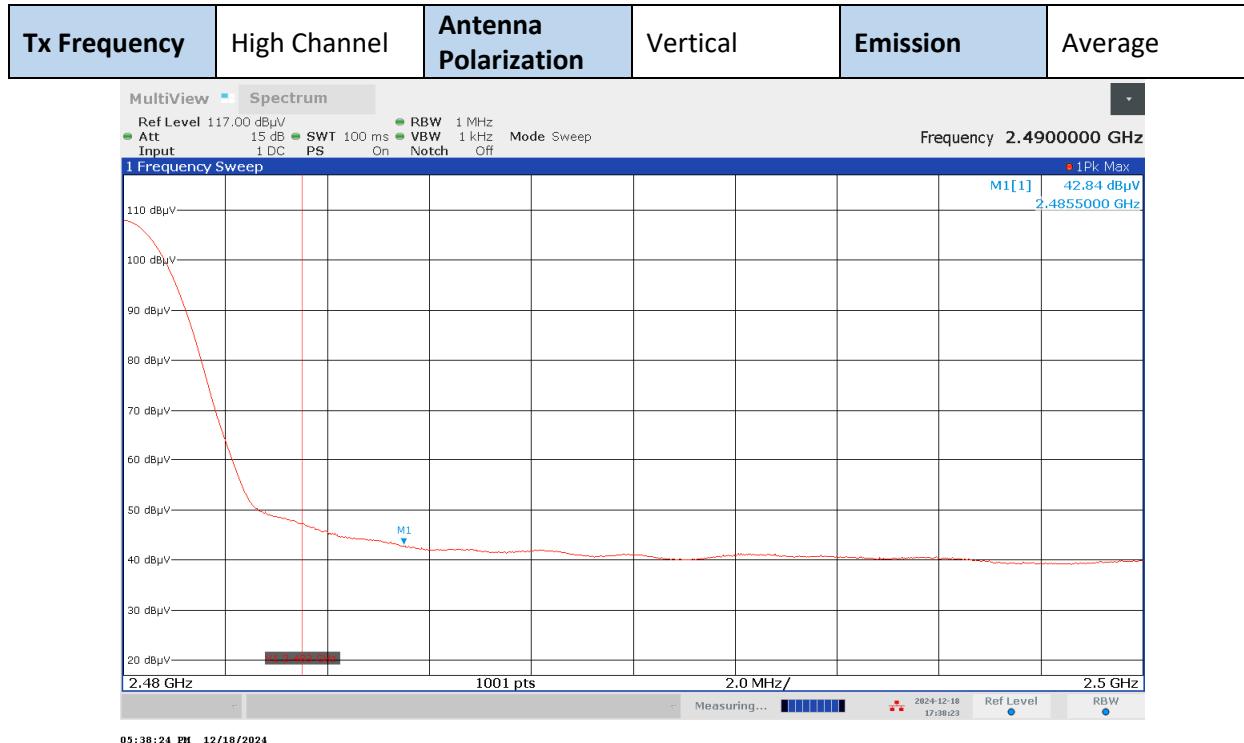



| Tx Frequency | High Channel | Antenna Polarization | Horizontal | Emission | Peak |
|--------------|--------------|----------------------|------------|----------|------|
|--------------|--------------|----------------------|------------|----------|------|




| Tx Frequency | High Channel | Antenna Polarization | Horizontal | Emission | Average (Integration Method) |
|--------------|--------------|----------------------|------------|----------|------------------------------|
|--------------|--------------|----------------------|------------|----------|------------------------------|






| Tx Frequency | High Channel | Antenna Polarization | Vertical | Emission | Peak |
|--------------|--------------|----------------------|----------|----------|------|
|--------------|--------------|----------------------|----------|----------|------|



| Tx Frequency | High Channel | Antenna Polarization | Vertical | Emission | Average (Integration Method) |
|--------------|--------------|----------------------|----------|----------|------------------------------|
|--------------|--------------|----------------------|----------|----------|------------------------------|





#### 4.2.3.2. Final Measurements

| Frequency (MHz)              | Detector | Antenna Polarity | Reading (dBμV) | Antenna Factor (dB/m) | Cable Factor (dB) | Attenuator (dB) | Pre-Amp Gain (dB) | Emission Level (dBμV/m) | Limit (dBμV/m) | Margin (dB) | Test Result |
|------------------------------|----------|------------------|----------------|-----------------------|-------------------|-----------------|-------------------|-------------------------|----------------|-------------|-------------|
| Low Channel<br>BLE - 1 MBPS  |          |                  |                |                       |                   |                 |                   |                         |                |             |             |
| BLE - 1 MBPS                 |          |                  |                |                       |                   |                 |                   |                         |                |             |             |
| 2390                         | PEAK     | Horz             | 58.2           | 32.4                  | 6.8               | 10.0            | -41.6             | 65.9                    | 74.0           | 8.1         | Pass        |
| 2390                         | AVG      | Horz             | 41.5           | 32.4                  | 6.8               | 10.0            | -41.6             | 49.2                    | 54.0           | 4.8         | Pass        |
| 2390                         | PEAK     | Vert             | 56.7           | 32.4                  | 6.8               | 10.0            | -41.6             | 64.3                    | 74.0           | 9.7         | Pass        |
| 2390                         | AVG      | Vert             | 40.8           | 32.4                  | 6.8               | 10.0            | -41.6             | 48.4                    | 54.0           | 5.6         | Pass        |
| High Channel<br>BLE - 1 MBPS |          |                  |                |                       |                   |                 |                   |                         |                |             |             |
| 2483.6                       | PEAK     | Horz             | 59.5           | 32.6                  | 6.9               | 10.0            | -41.7             | 67.2                    | 74.0           | 6.8         | Pass        |
| 2484                         | AVG      | Horz             | 42.7           | 32.6                  | 6.9               | 10.0            | -41.7             | 50.4                    | 54.0           | 3.6         | Pass        |
| 2483.6                       | PEAK     | Vert             | 60.1           | 32.6                  | 6.9               | 10.0            | -41.7             | 67.9                    | 74.0           | 6.1         | Pass        |
| 2484                         | AVG      | Vert             | 43.1           | 32.6                  | 6.9               | 10.0            | -41.7             | 50.8                    | 54.0           | 3.2         | Pass        |
| 2485.5                       | AVG      | Horz             | 41.9           | 32.6                  | 6.9               | 10.0            | -41.7             | 49.6                    | 54.0           | 4.4         | Pass        |
| 2485.5                       | AVG      | Vert             | 42.7           | 32.6                  | 6.9               | 10.0            | -41.7             | 50.5                    | 54.0           | 3.5         | Pass        |

#### 4.2.4 Test Equipment List

| Equipment ID | Description             | Manufacturer       | Model    | Calibration Date | Calibration Due |
|--------------|-------------------------|--------------------|----------|------------------|-----------------|
| EQ_EMC_58    | EMI Receiver            | Rohde & Schwarz    | ESW 44   | Mar 1, 2024      | Mar 1, 2026     |
| EQ_EMC_60    | Horn Antenna            | ETS Lindgren       | 3117     | Apr 9, 2024      | Apr 9, 2026     |
| EQ_EMC_75    | RF Cable >1GHz          | MegaPhase          | EMC2     | NCR              | NCR             |
| EQ_EMC_115   | 10 dB Attenuator SMA    | Fairview Microwave | SA18E-10 | NCR              | NCR             |
| EQ_EMC_42    | Preamplifier 1GHz-18GHz | Com-Power          | PAM-118A | Jan 17, 2024     | Jan 17, 2026    |

### 4.3 Power Line Conducted Emissions

Test Date: February 7, 2025  
Temperature (°C) 20.7  
Relative Humidity (%) 10.9  
Barometric Pressure (kPa) 98.0

Initials: MX

The conducted emission test is to measure radio-frequency (RF) signals and noise emitted from electrical and electronic devices in the frequency range of 150kHz to 30MHz.

#### 4.3.1 Limits

Base Standard(s): FCC Subpart B 15.207 and RSS-GEN Section 8.8.

| Frequency Range (MHz) | Coupling Device | Detector Type / Bandwidth | Limit (dB $\mu$ V) |
|-----------------------|-----------------|---------------------------|--------------------|
| 0.15 to 0.50          | LISN            | Quasi-Peak / 9kHz         | 66 to 56*          |
| 0.50 to 5             |                 |                           | 56                 |
| 5 to 30               |                 |                           | 60                 |
| 0.15 to 0.50          | LISN            | Average / 9kHz            | 56 to 46*          |
| 0.50 to 5             |                 |                           | 46                 |
| 5 to 30               |                 |                           | 50                 |

\* Decreases linearly with the logarithm of the frequency

As per ANSI C63.4 Section 4.2, if the Peak or Quasi-Peak detector measurements do not exceed the Average limits, then the DUT is considered to have passed the requirements.

#### 4.3.2 Test Procedure

Tested according to ANSI C63.10 Section 6.2.

Conducted emissions were measured on the DUT's power port via an Artificial Mains Network (AMN), also known as Line Impedance Stabilization Network (LISN), and maximum conducted emissions are checked on all the DUT's AC lines in the frequency range of 150kHz to 30MHz. All other support equipment were powered via another LISN. The LISNs provide 50Ω/50 $\mu$ H of coupling impedance for the measuring receiver.

To determine the emission characteristics of the DUT, the conducted emission scans were made using a Peak detector and the results were recorded in graphical form.

For each suspected emission, final measurements of the DUT conducted emissions were made with the Quasi-Peak or Average detector as defined in the limits table above.

For Table-Top Equipment, the device under test is configured on a 0.8m high non-conductive table above the reference ground plane and 0.4m away from the vertical reference ground plane.

#### 4.3.3 Setup Diagram

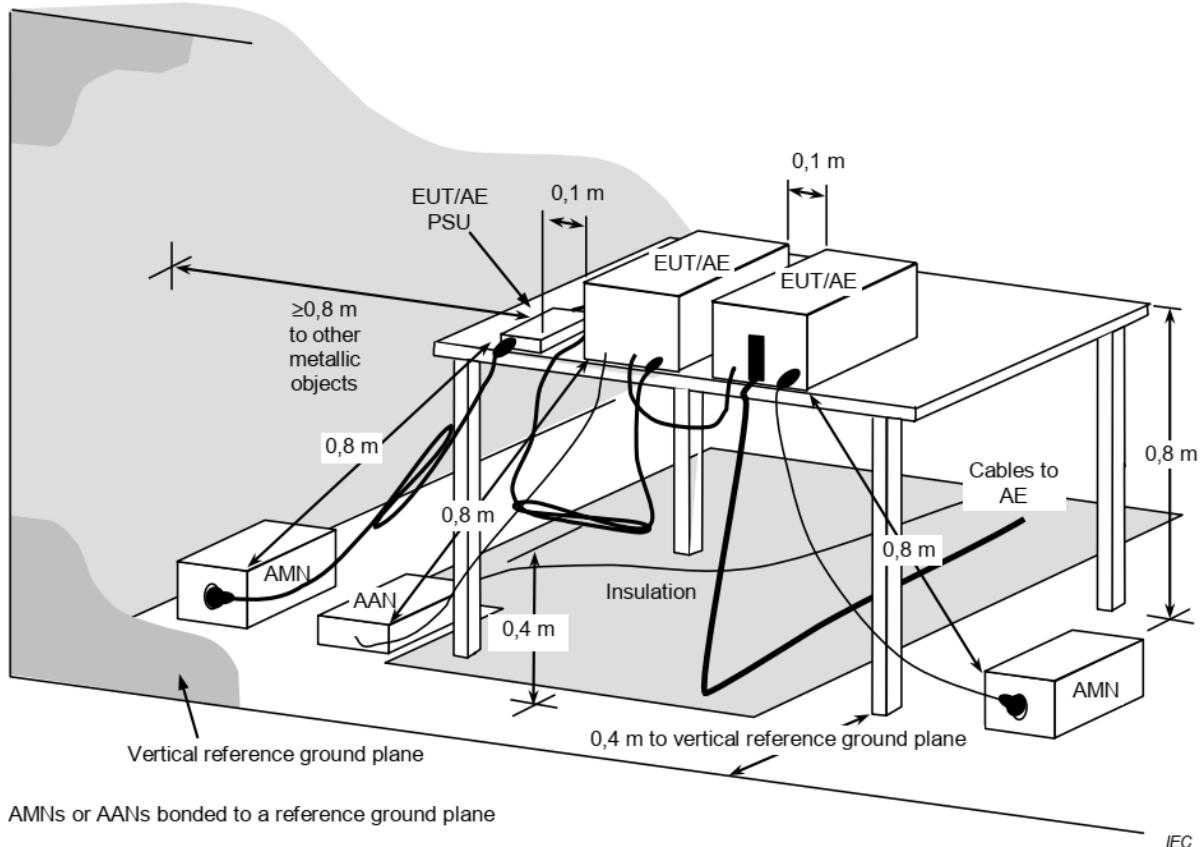
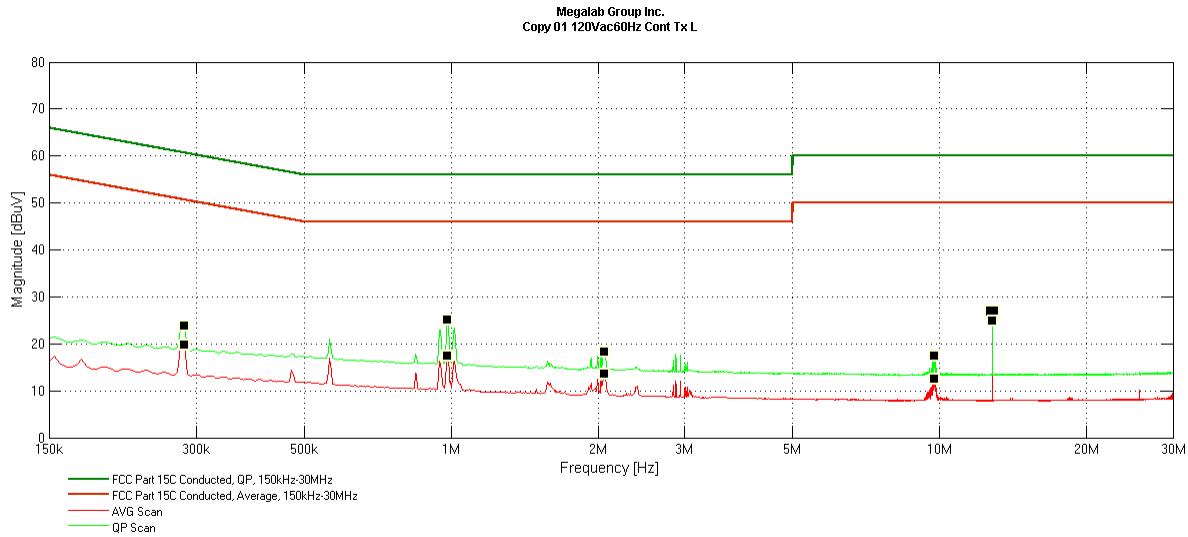
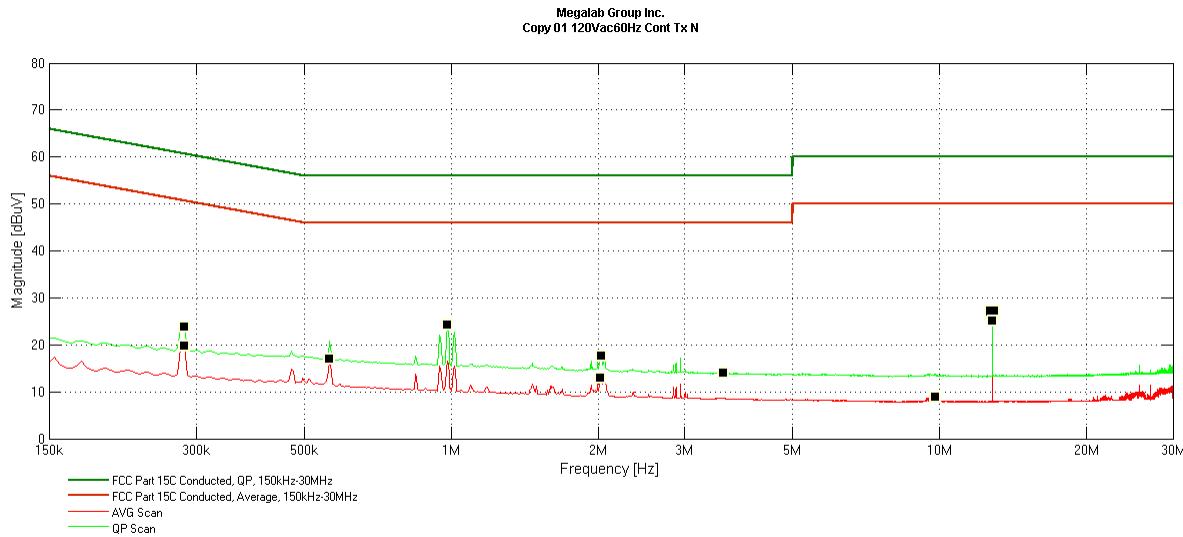




Figure 2 – Sample Measurement Arrangement for DUT

#### 4.3.4 Test Results


|                      |                 |              |            |
|----------------------|-----------------|--------------|------------|
| <b>Range:</b>        | 150kHz to 30MHz | <b>DUT</b>   | ECB701/BLE |
| <b>Test Voltage:</b> | 120Vac 60Hz     | <b>Phase</b> | Line       |



Remark: Quasi-Peak and Average Emission Plot

| Line       |                         |                          |                  |                                |                                 |                       |                |                        |                 |             |
|------------|-------------------------|--------------------------|------------------|--------------------------------|---------------------------------|-----------------------|----------------|------------------------|-----------------|-------------|
| Freq (MHz) | QP Reading (dB $\mu$ V) | AVG Reading (dB $\mu$ V) | Corr Factor (dB) | QP Emission Level (dB $\mu$ V) | AVG Emission Level (dB $\mu$ V) | QP Limit (dB $\mu$ V) | QP Margin (dB) | AVG Limit (dB $\mu$ V) | AVG Margin (dB) | Test Result |
| 12.799     | 16.36                   | 14.68                    | 10.22            | 26.57                          | 24.9                            | 60                    | 50             | 33.43                  | 25.1            | Pass        |
| 0.283      | 13.92                   | 9.79                     | 9.94             | 23.86                          | 19.73                           | 60.71                 | 50.71          | 36.86                  | 30.98           | Pass        |
| 0.980      | 15.21                   | 7.39                     | 9.95             | 25.15                          | 17.34                           | 56                    | 46             | 30.85                  | 28.66           | Pass        |
| 2.057      | 8.24                    | 3.63                     | 9.95             | 18.2                           | 13.58                           | 56                    | 46             | 37.8                   | 32.42           | Pass        |
| 9.741      | 7.33                    | 2.45                     | 10.12            | 17.45                          | 12.57                           | 60                    | 50             | 42.55                  | 37.43           | Pass        |
| 12.799     | 16.36                   | 14.68                    | 10.22            | 26.57                          | 24.9                            | 60                    | 50             | 33.43                  | 25.1            | Pass        |

|               |                 |       |            |
|---------------|-----------------|-------|------------|
| Range:        | 150kHz to 30MHz | DUT   | ECB701/BLE |
| Test Voltage: | 120Vac 60Hz     | Phase | Neutral    |



Remark: Peak Emission Plot

| Neutral    |                         |                          |                  |                                |                                 |                       |                |                        |                 |             |
|------------|-------------------------|--------------------------|------------------|--------------------------------|---------------------------------|-----------------------|----------------|------------------------|-----------------|-------------|
| Freq (MHz) | QP Reading (dB $\mu$ V) | AVG Reading (dB $\mu$ V) | Corr Factor (dB) | QP Emission Level (dB $\mu$ V) | AVG Emission Level (dB $\mu$ V) | QP Limit (dB $\mu$ V) | QP Margin (dB) | AVG Limit (dB $\mu$ V) | AVG Margin (dB) | Test Result |
| 12.799     | 16.56                   | 14.85                    | 10.22            | 26.78                          | 25.07                           | 60                    | 50             | 33.22                  | 24.93           | Pass        |
| 0.283      | 13.84                   | 9.77                     | 9.94             | 23.78                          | 19.71                           | 60.71                 | 50.71          | 36.93                  | 31.01           | Pass        |
| 0.980      | 14.24                   | --                       | 9.95             | 24.18                          | --                              | 56                    | --             | 31.82                  | --              | Pass        |
| 2.027      | 7.63                    | --                       | 9.95             | 17.58                          | --                              | 56                    | --             | 38.42                  | --              | Pass        |
| 3.613      | 4.08                    | --                       | 9.99             | 14.07                          | --                              | 56                    | --             | 41.93                  | --              | Pass        |
| 0.563      | --                      | 7.03                     | 9.93             | --                             | 16.96                           | --                    | 46             | --                     | 29.04           | Pass        |
| 2.023      | --                      | 2.9                      | 9.95             | --                             | 12.86                           | --                    | 46             | --                     | 33.14           | Pass        |
| 9.770      | --                      | -1.18                    | 10.12            | --                             | 8.94                            | --                    | 50             | --                     | 41.06           | Pass        |

#### 4.3.5 Test Equipment List

| Equipment ID | Description                 | Manufacturer      | Model          | Calibration Date | Calibration Due |
|--------------|-----------------------------|-------------------|----------------|------------------|-----------------|
| EQ_EMCA_132  | EMI Test Receiver (v6.91.2) | Gauss Instruments | TDEMI X40      | Nov 29, 2023     | Nov 29, 2025    |
| EQ_EMCA_61   | LISN                        | FCC               | 50/250-16-2-01 | Jan 16, 2024     | Jan 16, 2026    |
| EQ_EMCA_44   | Transient Limiter (10dB)    | Com-Power         | LIT-930A       | NCR              | NCR             |
| EQ_EMCA_84   | RF Cable                    | Times Microwave   | LMR-400        | NCR              | NCR             |
| EQ_EMCA_149  | Emission Software RE/CE     | Gauss Instruments | EMI64k v6.31.2 | NCR              | NCR             |

----- End of Test Report -----