

Radio Test Report

FCC Part 90 and RSS-119 (406.1 MHz to 430 MHz and 450 MHz to 470 MHz)

Model: R2Lite UHF

COMPANY: Topcon Positioning Systems
 7400 National Dr.
 Livermore, CA 94550

TEST SITE(S): National Technical Systems - Silicon Valley
 41039 Boyce Road.
 Fremont, CA. 94538-2435

REPORT DATE: August 14, 2015

REISSUE DATE: November 18, 2015

FINAL TEST DATES: July 16, 20, 21, 23, 24 and 27, 2015

TOTAL NUMBER OF PAGES: 57

**PROGRAM MGR /
TECHNICAL REVIEWER:**

**QUALITY ASSURANCE DELEGATE /
FINAL REPORT PREPARER:**

Deniz Demirci
 Senior Wireless / EMC Engineer

David Guidotti
 Senior Technical Writer

National Technical Systems - Silicon Valley is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	August 14, 2015	First release	
1	October 26, 2015	Added 6.25 kHz channel spacing modes of operation. Removed 25 kHz channel spacing modes of operation.	Deniz Demirci
2	November 18, 2015	Antenna gain information corrected. Added clarification for spurious emission and bandwidth measurements.	Deniz Demirci

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	5
STATEMENT OF COMPLIANCE	5
DEVIATIONS FROM THE STANDARDS	5
TEST RESULTS	6
FCC PART 90 AND RSS-119	6
EXTREME CONDITIONS	7
MEASUREMENT UNCERTAINTIES	7
EQUIPMENT UNDER TEST (EUT) DETAILS	8
GENERAL	8
OTHER EUT DETAILS	8
ENCLOSURE	8
MODIFICATIONS	8
SUPPORT EQUIPMENT	8
EUT INTERFACE PORTS	8
EUT OPERATION	8
TESTING	9
GENERAL INFORMATION	9
RF PORT MEASUREMENT PROCEDURES	10
OUTPUT POWER	10
BANDWIDTH MEASUREMENTS	10
CONDUCTED SPURIOUS EMISSIONS	10
TRANSMITTER MASK MEASUREMENTS	11
FREQUENCY STABILITY	11
TRANSIENT FREQUENCY BEHAVIOR	11
RADIATED EMISSIONS MEASUREMENTS	12
INSTRUMENTATION	13
FILTERS/ATTENUATORS	13
ANTENNAS	13
ANTENNA MAST AND EQUIPMENT TURNTABLE	13
SAMPLE CALCULATIONS	14
SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS	14
SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH	14
SAMPLE CALCULATIONS - RADIATED POWER	15
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	16
APPENDIX B TEST DATA	18
END OF REPORT	57

SCOPE

Tests have been performed on the Topcon Positioning Systems model R2Lite UHF, pursuant to the relevant requirements of the following standard(s) in order to obtain device certification against the regulatory requirements of the Federal Communications Commission and Industry Canada.

- Code of Federal Regulations (CFR) Title 47 Part 2
- RSS-Gen Issue 4, November 2014
- CFR 47 Part 90 (Private Land Mobile Radio Service)
- RSS-119, Issue 12, May 2015 (Land Mobile and Fixed Radio Transmitters and Receivers Operating the Frequency Range 27.41 to 960 MHz)

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in National Technical Systems - Silicon Valley test procedures:

ANSI TIA-603-C August 17, 2004

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Topcon Positioning Systems model R2Lite UHF and therefore apply only to the tested sample. The sample was selected and prepared by Ferdinand Riodique of Topcon Positioning Systems.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, the device requires certification. Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

Testing was performed only on radio module model R2Lite UHF

STATEMENT OF COMPLIANCE

The tested sample of Topcon Positioning Systems radio module model R2Lite UHF complied with the requirements of the standards and frequency bands declared in the scope of this test report.

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS
FCC Part 90 and RSS-119

FCC	Canada	Description	Measured	Limit	Result
Transmitter Modulation, output power and other characteristics					
§2.1033 (c) (5)	RSS-119	Frequency range(s)	406.1 - 430 MHz 450 - 470 MHz	406.1 - 430 MHz 450 - 470 MHz	Pass
§2.1033 (c) (6) §2.1033 (c) (7) § 2.1046 § 90.205	RSS-119	RF power output at the antenna terminals	30 - 30.5 dBm	Determined at the time of licensing for each host unit.	Pass
§2.1033 (c) (4) § 2.1047 § 90.210		Emission types			
§ 2.1049 § 90.209	RSS-GEN 6.6 RSS-119	Emission mask	Mask E and Mask D	Emissions within Mask E Emissions within Mask D	Pass
§ 90.214	RSS-119	Occupied Bandwidth	2.55 kHz 11.1 kHz	6 kHz 11.25 kHz	Pass
Transmitter spurious emissions					
§ 2.1051 § 2.1057	RSS-119	At the antenna terminals	-37.3 dBm @ 817.227 MHz (-17.3 dB)	-20 dBm (Mask D as worst case)	Pass
§ 2.1053 § 2.1057	RSS-119	Field strength	-38.5 dBm @ 1350.16 MHz (-18.5 dB)	-20 dBm (Mask D as worst case)	Pass
Other details					
§ 2.1055 § 90.213	RSS-119	Frequency stability	0.4 ppm	0.5 ppm	Pass
§ 2.1093	RSS-102	RF Exposure	See separate exhibit		
§2.1033 (c) (8)	Final radio frequency amplifying circuit's dc voltages and currents for normal operation over the power range		See operational description exhibit		
-	Antenna Gain		2.5 dBi.		
Notes: None					

EXTREME CONDITIONS

Frequency stability is determined over extremes of temperature and voltage.

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor ($k=2$) and were calculated in accordance with NAMAS document NIS 81 and M3003.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF frequency	Hz	25 to 7,000 MHz	1.7×10^{-7}
RF power, conducted	dBm	25 to 7,000 MHz	± 0.52 dB
Conducted emission of transmitter	dBm	25 to 40,000 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 40,000 MHz	± 2.5 dB
Radiated emission (field strength)	dB μ V/m	25 to 1,000 MHz 1 to 40 GHz	± 3.6 dB ± 6.0 dB

EQUIPMENT UNDER TEST (EUT) DETAILS
GENERAL

The Topcon Positioning Systems model R2Lite UHF is a UHF Transceiver module. Since the EUT is a module, the EUT was treated as tabletop equipment during testing. The electrical rating is 4.2 VDC, 4 Amps.

Manufacturer	Model	Description	Serial Numbers	FCC ID / IC
Topcon	R2Lite UHF	UHF transceiver	F005414470018 F005414470019	FCC ID: WR4-R2LITEUHF IC: 6050B-R2LITEUHF

OTHER EUT DETAILS

The EUT is a licensed radio module. Antenna gain and height will be determined with a host unit during licensing. Declared maximum antenna gain is 2.5 dBi

ENCLOSURE

The EUT is a radio module, The module enclosure is primarily constructed of manganese zinc alloy. It measures approximately 106 mm wide by 55 mm cm deep by 12 mm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at National Technical Systems - Silicon Valley.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Manufacturer	Model	Description	Serial Number	FCC ID / IC
Topcon	-	Test bed	-	-
HP	6024A	AC/DC power supply	SV Asset# 3004	-
Dell	Inspiron 2200	Laptop	SV Asset # 1754	-

Note: The computer was used to configure the radio via serial port. It was not connected during the radiated emission tests.

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

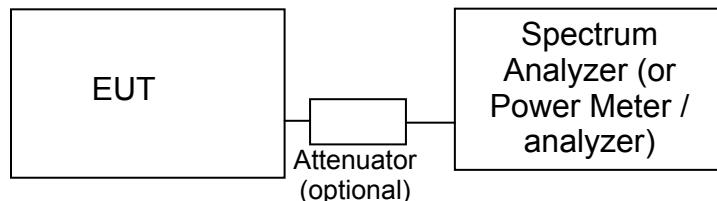
Port	Connected To	Description	Cable(s) Shielded or Unshielded	Length(m)
DC power	AC/DC power supply	DC power cable	Unshielded.	1.0
Serial over USB	Laptop	USB	Shielded	1.2

EUT OPERATION

During emissions testing the UHF radio was configured to transmit at rated power with frequencies and modulations indicated in each run.

TESTING**GENERAL INFORMATION**

Antenna port measurements were taken at the National Technical Systems - Silicon Valley test site located at 41039 Boyce Road, Fremont, CA 94538-2435.


Radiated spurious emissions measurements were taken at the National Technical Systems - Silicon Valley Anechoic Chambers listed below. The sites conform to the requirements of ANSI C63.4: 2014 *American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz* and CISPR 16-1-4:2007 - *Specification for radio disturbance and immunity measuring apparatus and methods Part 1-4: Radio disturbance and immunity measuring apparatus Ancillary equipment Radiated disturbances*. They are on file with the FCC and industry Canada.

Site	Designation / Registration Numbers		Location
	FCC	Canada	
Chamber 3	US0027	IC 2845B-3	
Chamber 4	US0027	IC 2845B-4	
Chamber 5	US0027	IC 2845B-5	
Chamber 7	US0027	IC 2845B-7	41039 Boyce Road Fremont, CA 94538-2435

Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements.

RF PORT MEASUREMENT PROCEDURES

Conducted measurements are performed with the EUT's rf input/output connected to the input of a spectrum analyzer, power meter or modulation analyzer. When required an attenuator, filter and/or dc block is placed between the EUT and the spectrum analyzer to avoid overloading the front end of the measurement device. Measurements are corrected for the insertion loss of the attenuators and cables inserted between the rf port of the EUT and the measurement equipment.

Test Configuration for Antenna Port Measurements

For devices with an integral antenna the output power and spurious emissions are measured as a field strength at a test distance of (typically) 3m and then converted to an eirp using a substitution measurement (refer to RADIATED EMISSIONS MEASUREMENTS). All other measurements are made as detailed below but with the test equipment connected to a measurement antenna directed at the EUT.

OUTPUT POWER

Output power is measured using a power meter and an average sensor head, a spectrum analyzer or a power meter and peak power sensor head as required by the relevant rule part(s). Where necessary measurements are gated to ensure power is only measured over periods that the device is transmitting.

BANDWIDTH MEASUREMENTS

The 99% bandwidth is measured using the methods detailed in ANSI C63.10 and RSS-GEN with RBW 1% to 5% of the OBW and $VBW \geq 3 \times RBW$.

CONDUCTED SPURIOUS EMISSIONS

Initial scans are made using a peak detector ($VBW \geq 3 \times RBW$) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode measurements). For transmitter measurements the appropriate detector (average, peak, normal, sample, quasi-peak) is used when making measurements for licensed devices.

TRANSMITTER MASK MEASUREMENTS

The transmitter mask measurements are made using resolution bandwidths as specified in the pertinent rule part(s). Where narrower bandwidths are used the measurement is corrected to account for the reduced bandwidth by either using the adjacent channel power function of the spectrum analyzer to sum the power across the required measurement bandwidth. The frequency span of the analyzer is set to ensure the fundamental signal and all significant sidebands are displayed.

The top of the mask may be set by the total output power of the signal, the power of the unmodulated signal or the peak value of the signal in the reference bandwidth being used for the mask measurement.

FREQUENCY STABILITY

The EUT is placed inside a temperature chamber with all support and test equipment located outside of the chamber. The temperature is varied across the specified frequency range in 10 degree increments with frequency measurements made at each temperature step. The EUT is allowed enough time to stabilize at each temperature variation.

The spectrum analyzer is configured to give a 5- or 6-digit display for the marker-frequency function. The spectrum analyzer's built-in frequency counter is used to measure the maximum deviation of the fundamental frequency at each temperature. Where possible the device is set to transmit an unmodulated signal. Where this is not possible the frequency drift is determined by finding a stable point on the signal (e.g. the null at the centre of an OFDM signal) or by calculating a centre frequency based on the upper and lower XdB points (where X is typically 6dB or 10dB) on the signal's skirts.

TRANSIENT FREQUENCY BEHAVIOR:

The TIA/EIA 603 procedure is used to determine compliance with transient frequency timing requirements as the radio is keyed on and off.

The EUTs rf output is connected via a combiner/splitter to the test receiver/spectrum analyzer and to a diode detector. The test receiver or spectrum analyzer video output is connected to an oscilloscope, which is triggered by the output from the diode detector.

Plots showing Ton, T1, and T2 are made when turning on the transmitter and showing T3 when turning off the transmitter.

RADIATED EMISSIONS MEASUREMENTS

Transmitter radiated spurious emissions are initially measured as a field strength. The eirp or erp limit as specified in the relevant rule part(s) is converted to a field strength at the test distance and the emissions from the EUT are then compared to that limit. Emissions within 20 dB of this limit are subjected to a substitution measurement.

All radiated emissions measurements are performed in two phases. A preliminary scan of emissions is conducted in an anechoic chamber during which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed across the complete frequency range of interest and at each operating frequency identified in the reference standard. One or more of these is with the antenna polarized vertically while the one or more of these are with the antenna polarized horizontally. Initial scans are made using a peak detector ($VBW \geq 3xRBW$) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode).

During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. For transmitter spurious emissions, where the limit is expressed as an effective radiated power, the eirp or erp is converted to a field strength limit.

Final measurements are made in a semi-anechoic chamber at the significant frequencies observed during the preliminary scan(s) using the same process of rotating the EUT and raising/lowering the measurement antenna to find the highest level of the emission.

For transmitter spurious emissions, the radiated power of all emissions within 20 dB of the calculated field strength limit are determined using a substitution measurement. The substitution measurement is made by replacing the EUT with an antenna of known gain (typically a dipole antenna or a double-ridged horn antenna), connected to a signal source. The output power of the signal generator is adjusted until the maximum field strength from the substitution antenna is similar to the field strength recorded from the EUT. The erp of the EUT is then calculated.

INSTRUMENTATION

An EMI receiver as specified in CISPR 16-1-1 is used for radiated emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 7000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary.

For measurements above the frequency range of the receivers and for all conducted measurements a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis.

Measurement bandwidths for the test instruments are set in accordance with the requirements of the standards referenced in this document.

Software control is used to correct the measurements for transducer factors (e.g. antenna) and the insertion loss of cables, attenuators and other series elements to obtain the final measurement value. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are exported in a graphic and/or tabular format, as appropriate.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the EUT antenna port or receiving antenna and the test receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A combination of biconical, log periodic or bi-log antennas are used to cover the range from 30 MHz to 1000 MHz. Tuned dipole antennas are used over the entire 25 to 1000 MHz frequency range as the reference antenna for substitution measurements.

Above 1000 MHz, a dual-ridge guide horn antenna or octave horn antenna are used as reference and measurement antennas.

The antenna calibration factors are included in site factors that are programmed into the test receivers and instrument control software when measuring the radiated field strength.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height.

Table mounted devices are placed on a non-conductive table at a height of 80 centimeters above the floor. The EUT is positioned on a motorized turntable to allow it to be rotated during testing to determine the angle with the highest level of emissions.

SAMPLE CALCULATIONS

SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS

Measurements are compared directly to the conducted emissions specification limit (decibel form). The calculation is as follows:

$$R_f - S = M$$

where:

R_f = Measured value in dBm

S = Specification Limit in dBm

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH

Measurements of radiated field strength are compared directly to the specification limit (decibel form). The receiver and/or control software corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor is used when measurements are made at a test distance that is different to the specified limit distance by using the following formula:

$$F_d = 20 * \text{LOG10} (D_m / D_s)$$

where:

F_d = Distance Factor in dB

D_m = Measurement Distance in meters

D_s = Specification Distance in meters

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_f + F_d$$

and

$$M = R_c - L_s$$

where:

R_f = Receiver Reading in $\text{dB}\mu\text{V/m}$

F_d = Distance Factor in dB

R_c = Corrected Reading in $\text{dB}\mu\text{V/m}$

L_s = Specification Limit in $\text{dB}\mu\text{V/m}$

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS -RADIATED POWER

The erp/eirp limits for transmitter spurious measurements are converted to a field strength in free space using the following formula:

$$E = \frac{\sqrt{30} P G}{d}$$

where:

E = Field Strength in V/m
P = Power in Watts
G = Gain of isotropic antenna (numeric gain) = 1
D = measurement distance in meters

The field strength limit is then converted to decibel form (dB μ V/m) and the margin of a given emission peak relative to the limit is calculated (refer to *SAMPLE CALCULATIONS -RADIATED FIELD STRENGTH*).

When substitution measurements are required (all signals with less than 20 dB of margin relative to the calculated field strength limit) the eirp of the spurious emission is calculated using:

$$P_{EUT} = P_S - (E_S - E_{EUT})$$

and

$$P_S = G + P_{in}$$

where:

P_S = effective isotropic radiated power of the substitution antenna (dBm)
P_{in} = power input to the substitution antenna (dBm)
G = gain of the substitution antenna (dBi)
E_S = field strength the substitution antenna (dBm) at eirp P_S
E_{EUT} = field strength measured from the EUT

Where necessary the effective isotropic radiated power is converted to effective radiated power by subtracting the gain of a dipole (2.2 dBi) from the eirp value.

Appendix A Test Equipment Calibration Data

<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	<u>Asset #</u>	<u>Calibrated</u>	<u>Cal Due</u>
Antenna port measurements, 16-Jul-15					
Fluke	Mulitmeter, True RMS	111	1480	3/30/2015	3/30/2016
Rohde & Schwarz	Power Meter, Single Channel, +1795+1796	NRVS	1534	7/31/2014	7/31/2015
Rohde & Schwarz	Power Sensor 100 uW - 2 Watts (w/ 20 dB pad, SN BJ5155)	NRV-Z32	1536	1/15/2015	1/15/2016
Agilent Technologies	3Hz -44GHz PSA Spectrum Analyzer	E4446A	2796	3/31/2015	3/31/2016
Agilent Technologies	PSG, Vector Signal Generator, (250kHz - 20MHz)	E8267D	3011	1/8/2015	1/8/2016
Radiated Emissions, 30 - 5,000 MHz and Substitution Measurements, 21-Jul-15					
Filtek	Filter, 1 GHz High Pass	HP12/1000-5BA	957	5/11/2015	5/11/2016
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	9/20/2014	9/20/2015
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	12/20/2014	12/20/2015
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1549	6/2/2015	6/2/2017
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	6/27/2014	6/27/2016
Agilent Technologies	PSG, Vector Signal Generator, (250kHz - 20GHz)	E8267C	1877	6/16/2015	6/16/2016
Compliance Design	Tuned Dipole Antenna	Roberts (400-1000MHz)	1896	1/2/2014	1/2/2016
EMCO	Antenna, Horn, 1-18 GHz	3115	2733	11/18/2014	11/18/2016
Antenna Port Measurements , 23-Jul-15					
Filtek	Filter, 1 GHz High Pass	HP12/1000-5BA	957	5/11/2015	5/11/2016
Fluke	Mulitmeter, True RMS	111	1480	3/30/2015	3/30/2016
Rohde & Schwarz	Power Meter, Single Channel, +1795+1796	NRVS	1534	7/20/2015	7/20/2016
Rohde & Schwarz	Power Sensor 100 uW - 2 Watts (w/ 20 dB pad, SN BJ5155)	NRV-Z32	1536	1/15/2015	1/15/2016
Watlow	Temp Chamber (w/ F4 Watlow Controller)	F4	2170	7/14/2015	7/14/2016
Agilent Technologies	3Hz -44GHz PSA Spectrum Analyzer	E4446A	2796	3/31/2015	3/31/2016
Agilent Technologies	PSG, Vector Signal Generator, (250kHz - 20MHz)	E8267D	3011	1/8/2015	1/8/2016
Transient frequency behavior, 24-Jul-15					
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	12/20/2014	12/20/2015
Tektronix	500MHz, 2CH, 5GS/s Scope	TDS5052B	2118	10/30/2014	10/30/2015
Rohde & Schwarz	signal generator 100KHz-12.75GHz	SMB 100A	3002	NA	NA

Antenna port measurements, 13-Oct-15

<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	<u>Asset #</u>	<u>Calibrated</u>	<u>Cal Due</u>
NTS	NTS Mask Software (rev 3.8)	N/A	0		N/A
NTS	NTS Capture Analyzer Software (rev 3.8)	N/A	0		N/A
Rohde & Schwarz	Power Meter, Single Channel, +1795+1796	NRVS	1534	7/20/2015	7/20/2016
Rohde & Schwarz	Peak Power Sensor 100 uW - 2 Watts (w/ 20 dB pad, SN BJ5155)	NRV-Z32	1536	1/15/2015	1/15/2016
Agilent Technologies	3Hz -44GHz PSA Spectrum Analyzer	E4446A	2796	3/31/2015	3/31/2016

National Technical Systems - Silicon Valley

Project number J96648
Report Date: August 14, 2015 Reissue Date: November 18, 2015

Appendix B Test Data

T97391 Pages 19 – 56

EMC Test Data

Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
		Account Manager:	Deepa Shetty
Contact:	Ferdinand Riodique		-
Emissions Standard(s):	FCC Part 90, RSS-119 Issue 12, EN 300 113-2,	Class:	B
Immunity Standard(s):	-	Environment:	

EMC Test Data

For The

Topcon Positioning Systems

Model

R2Lite UHF

Date of Last Test: 10/13/2015

Radio Test Data

Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
Contact:	Ferdinand Riodique	Account Manager:	Deepa Shetty
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A

FCC Part 90 and RSS 119 Issue 12

Power, Occupied Bandwidth, Frequency Stability and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Frequency range of operation is 406.1 - 430 MHz and 450 - 470 MHz

General Test Configuration

With the exception of the radiated spurious emissions tests, all measurements are made with the EUT's rf port connected to the measurement instrument via an attenuator or dc-block if necessary. All amplitude measurements are adjusted to account for the attenuation between EUT and measuring instrument. For frequency stability measurements the EUT was place inside an environmental chamber.

Radiated measurements are made with the EUT located on a non-conductive table, 3m from the measurement antenna.

Ambient Conditions: Temperature: 20-21 °C
Rel. Humidity: 30-35 %

Summary of Results

Run #	Spacing	Data Rate	Test Performed	Limit	Pass / Fail	Result / Margin
1	-	-	Output Power	(30 W) Within 1 dB of mnfc rated pwr	Pass	30 - 30.5 dBm
2	-	-	Spectral Mask	Ch spacing:6.25, Mask E Ch spacing:12.5, Mask D	Pass	Within limits
3	-	-	Channel spacing, Occupied Bandwidth, Authorized bandwidth	Ch spacing: 6.25, 6 Ch spacing:12.5, 11.25	Pass	2.46 kHz, 2.55 kHz 4.97 kHz, 11.1 kHz
4	-	-	Tx Unwanted Emissions (conducted)	-20 dBm, (D) -25 dBm, (E)	Pass	-37.3 dBm @ 817.227 MHz (-12.3 dB)
5	-	-	Tx Unwanted Emissions (radiated)	-20 dBm, (D) -25 dBm, (E)	Pass	-38.5 dBm @ 1350.16 MHz (-13.5 dB)
6	-	-	Transient Frequency Behaviour	FCC Part 90 and Table 17 of RSS-119	Pass	Within limits
7	-	-	Frequency Stability	Ch spacing:12.5, 1.5 ppm Ch spacing:6.25, 0.5 ppm	Pass	0.4 ppm

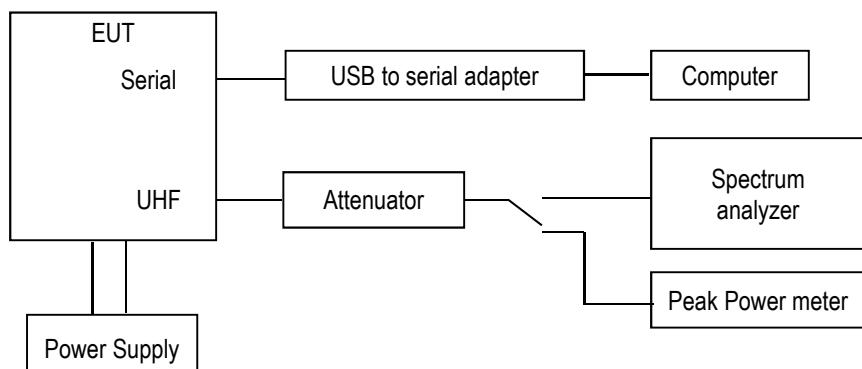
Modifications Made During Testing

No modifications were made during testing.

Deviations From The Standard

No deviations were made from the requirements of the standard

Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
		Account Manager:	Deepa Shetty
Contact:	Ferdinand Riodique		
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A


Run #1: Output Power

Date: 7/16/2015 Engineer: Deniz Demirci Location: FT Lab #4b
Cable Loss: 0.2 dB Attenuator: 20.0 dB Total Loss: 20.2 dB
Cable ID(s): Custom Attenuator IDs: Asset #1878

Power Setting ²	Frequency (MHz)	Output Power		Antenna Gain (dBi)	Result	EIRP	
		(dBm) ¹	mW			dBm	W
30 dBm	406.11250	30.5	1122.0	2.5	Pass	33.0	1.995
30 dBm	418.00000	30.3	1071.5	2.5	Pass	32.8	1.905
30 dBm	429.98750	30.1	1023.3	2.5	Pass	32.6	1.820
30 dBm	450.01250	30.2	1047.1	2.5	Pass	32.7	1.862
30 dBm	460.00000	30.2	1047.1	2.5	Pass	32.7	1.862
30 dBm	469.98750	30.0	1000.0	2.5	Pass	32.5	1.778

Note 1: Output power measured using a peak power meter

Note 2: Power setting - the maximum power setting of 30 dBm was set with the control software during testing

Conducted RF measurements setup

Radio Test Data

Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
		Account Manager:	Deepa Shetty
Contact:	Ferdinand Riodique		
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A

Run #2: Spectral Mask, Mask E and D

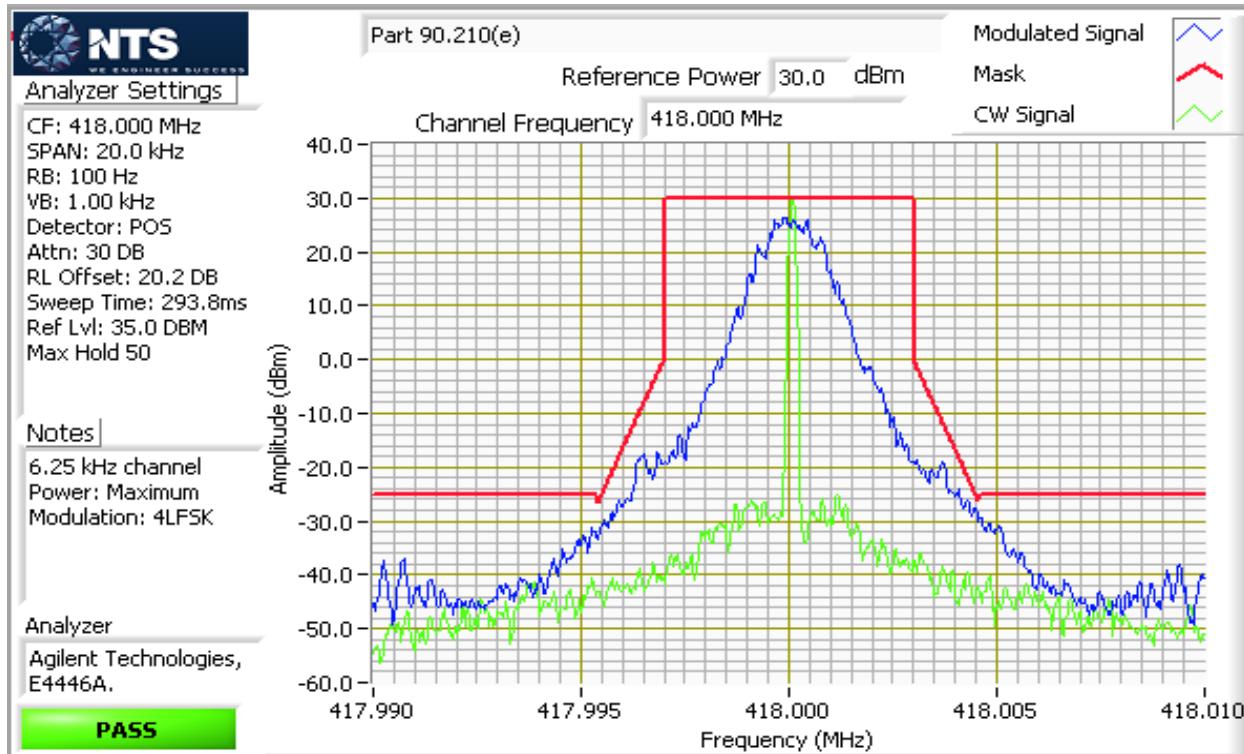
Date: 10/13/2015

Engineer: Deniz Demirci

Location: FT Lab #4b

406.1 - 430 MHz band

Power setting	Data rate	Channel plan	Modulation	Frequency (MHz)	Emission mask	Result
30 dBm	4800	6.25 kHz	4LFSK	418.0000	E	Pass
30 dBm	4800	12.5 kHz	GMSK	418.0000	D	Pass
30 dBm	9600	12.5 kHz	4LFSK	418.0000	D	Pass
30 dBm	19200	12.5 kHz	DQPSK	418.0000	D	Pass

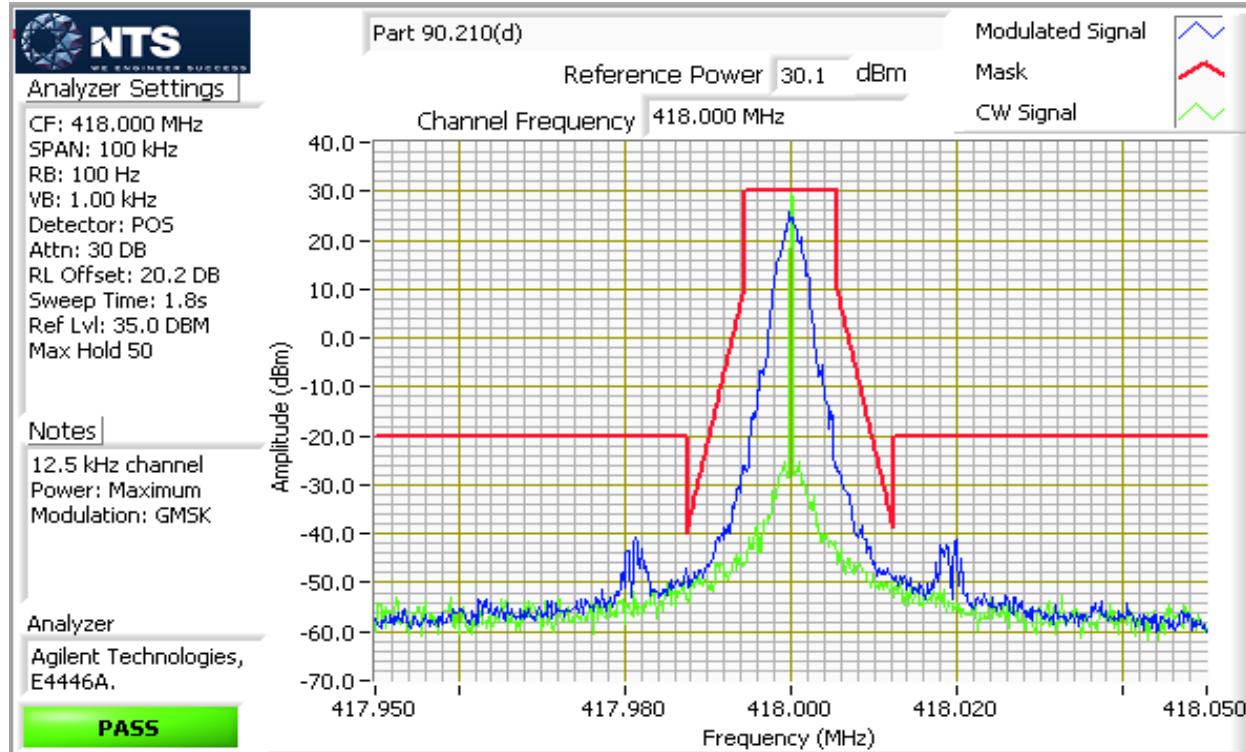

450 - 470 MHz band

Power setting	Data rate	Channel plan	Modulation	Frequency (MHz)	Emission mask	Result
30 dBm	4800	6.25 kHz	4LFSK	460.0000	E	Pass
30 dBm	4800	12.5 kHz	GMSK	460.0000	D	Pass
30 dBm	9600	12.5 kHz	4LFSK	460.0000	D	Pass
30 dBm	19200	12.5 kHz	DQPSK	460.0000	D	Pass

Note 1: Power setting - the software power setting used during testing, included for reference only.

Note 2: An unmodulated carrier power was measured to determine the reference power level for each spectral mask measurement.

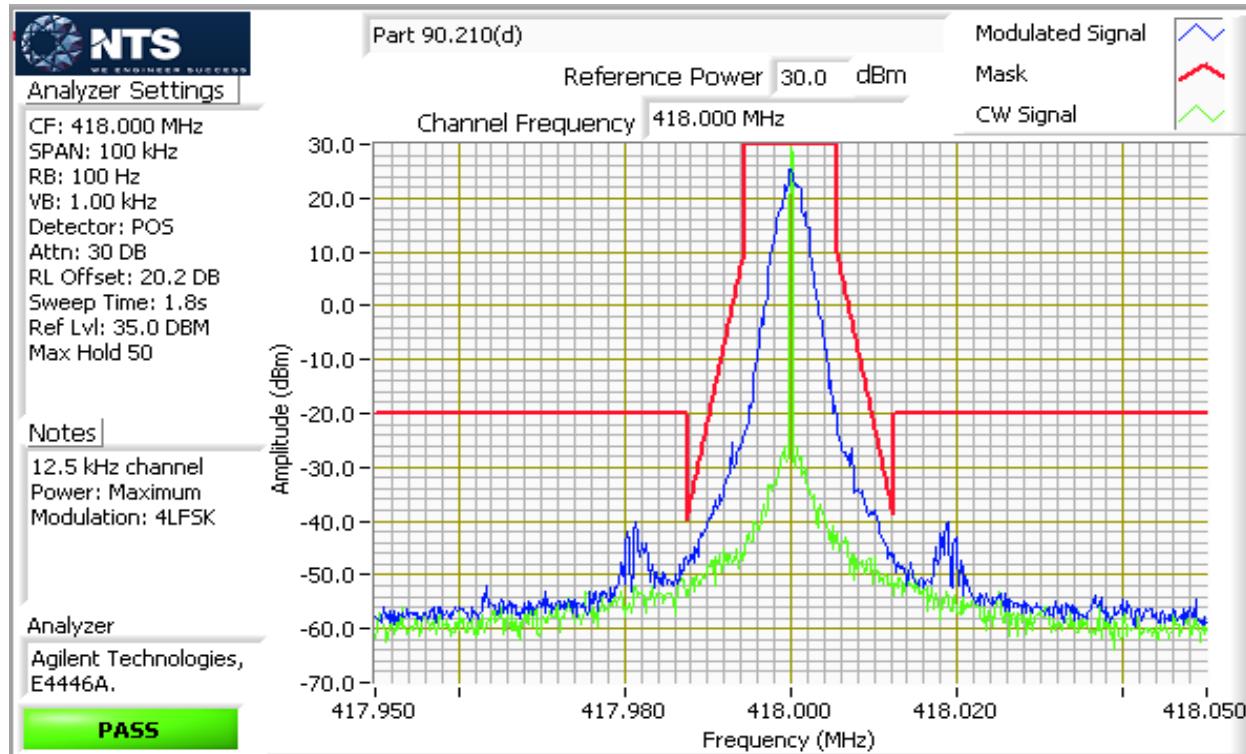
Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
Contact:		Account Manager:	Deepa Shetty
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A


Emission mask E for 6.25 kHz channel spacing (4LFSK)

Radio Test Data

Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
		Account Manager:	Deepa Shetty
Contact:	Ferdinand Riodique		
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A

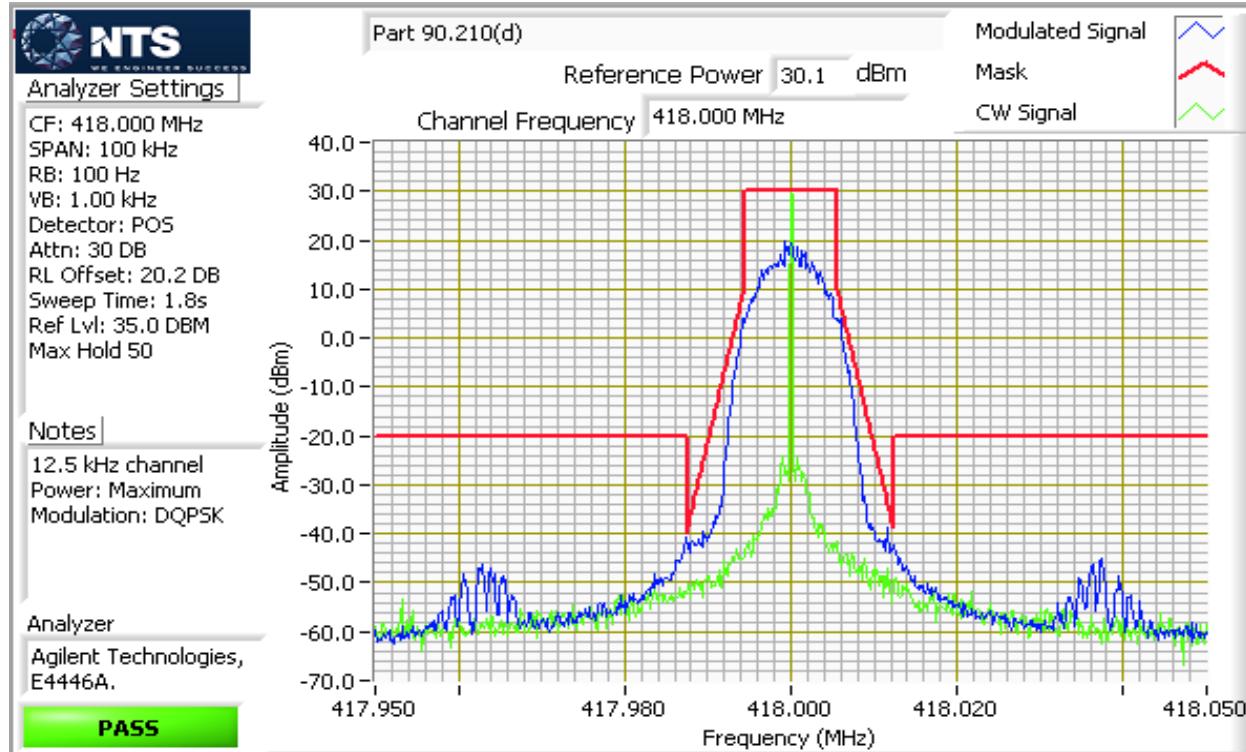
Emission mask D for 12.5 kHz channel spacing (GMSK)



Radio Test Data

Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
		Account Manager:	Deepa Shetty
Contact:	Ferdinand Riodique		
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A

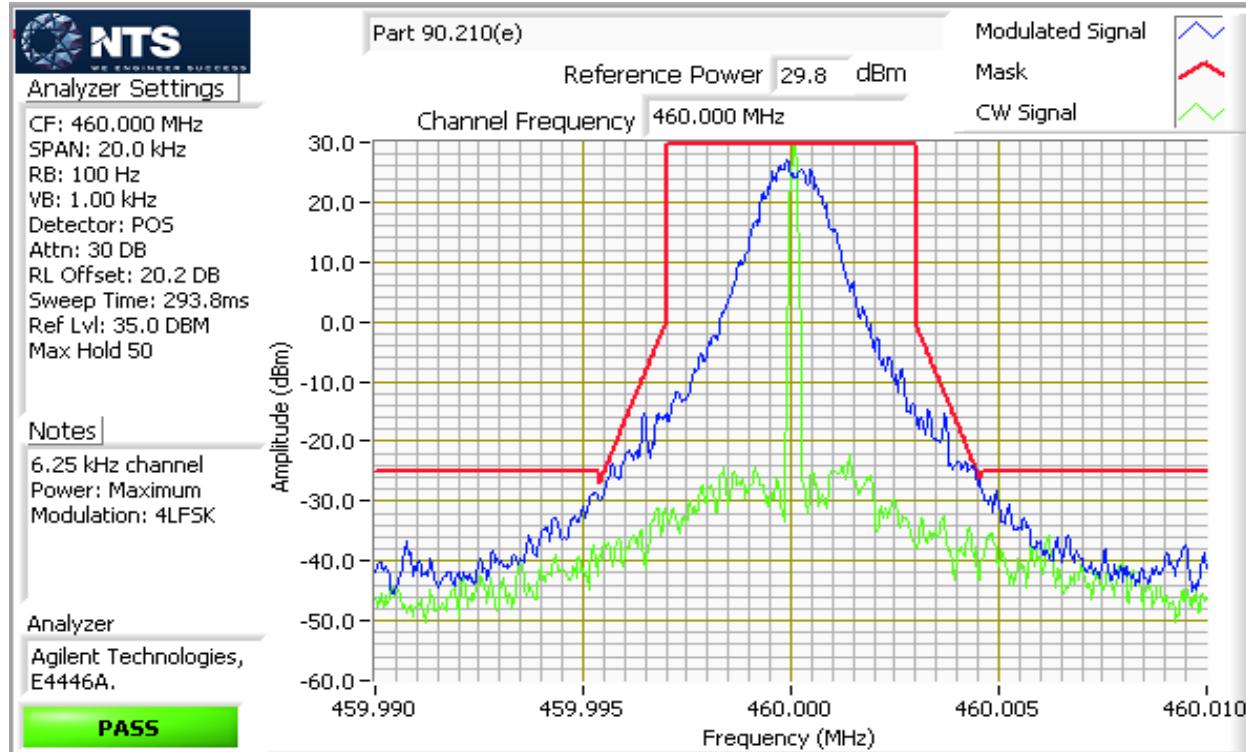
Emission mask D for 12.5 kHz channel spacing (4LFSK)



Radio Test Data

Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
		Account Manager:	Deepa Shetty
Contact:	Ferdinand Riodique		
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A

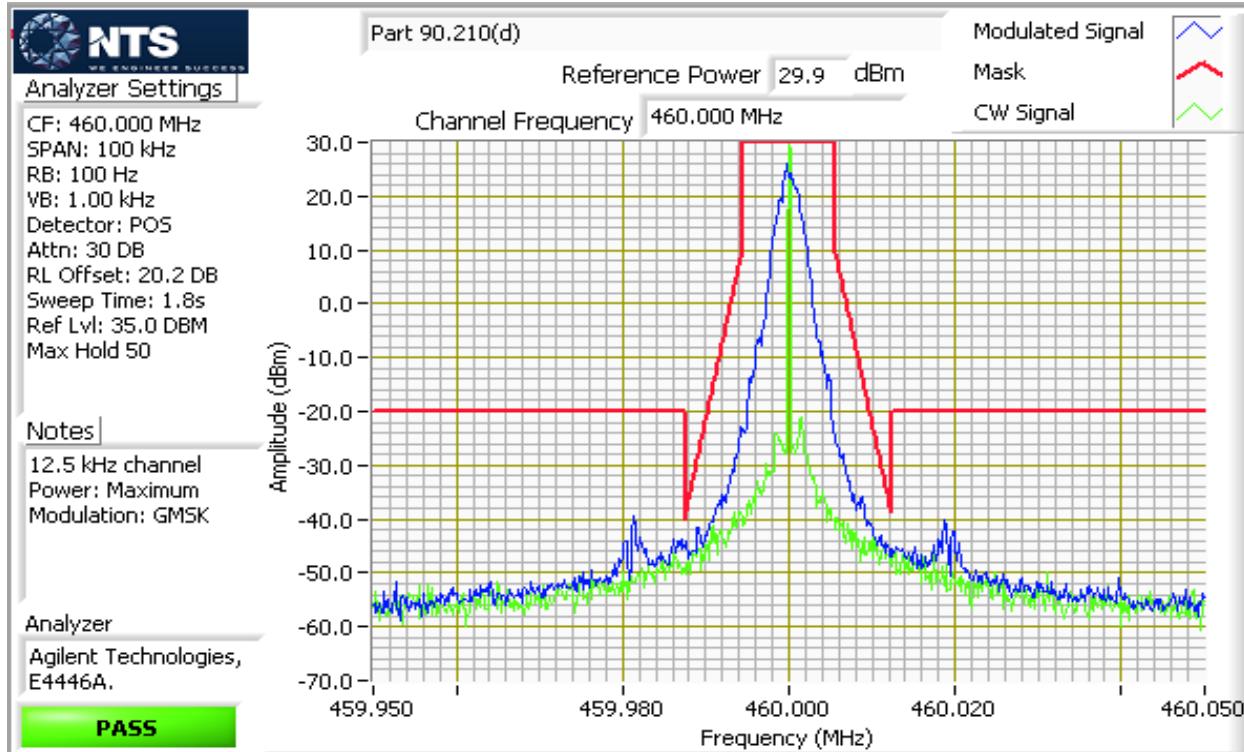
Emission mask D for 12.5 kHz channel spacing (DQPSK)

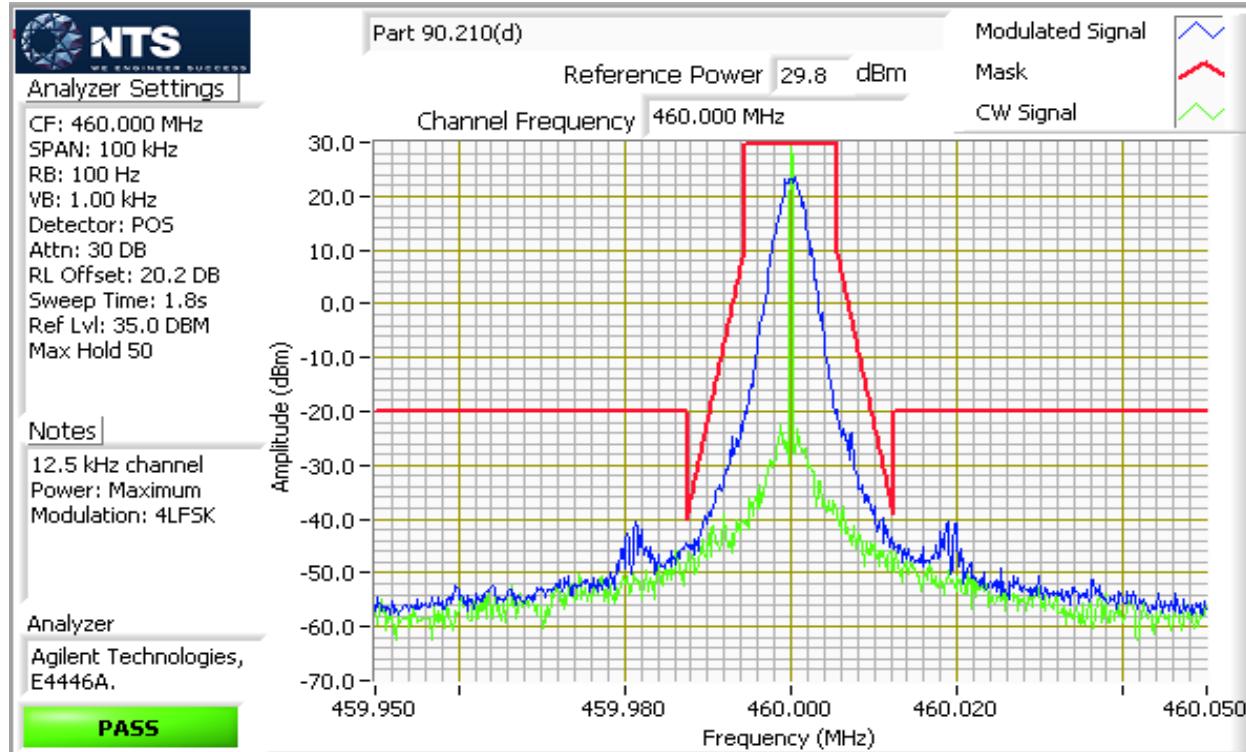


Radio Test Data

Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
		Account Manager:	Deepa Shetty
Contact:	Ferdinand Riodique		
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A

Emission mask E for 6.25 kHz kHz channel spacing (4LFSK)

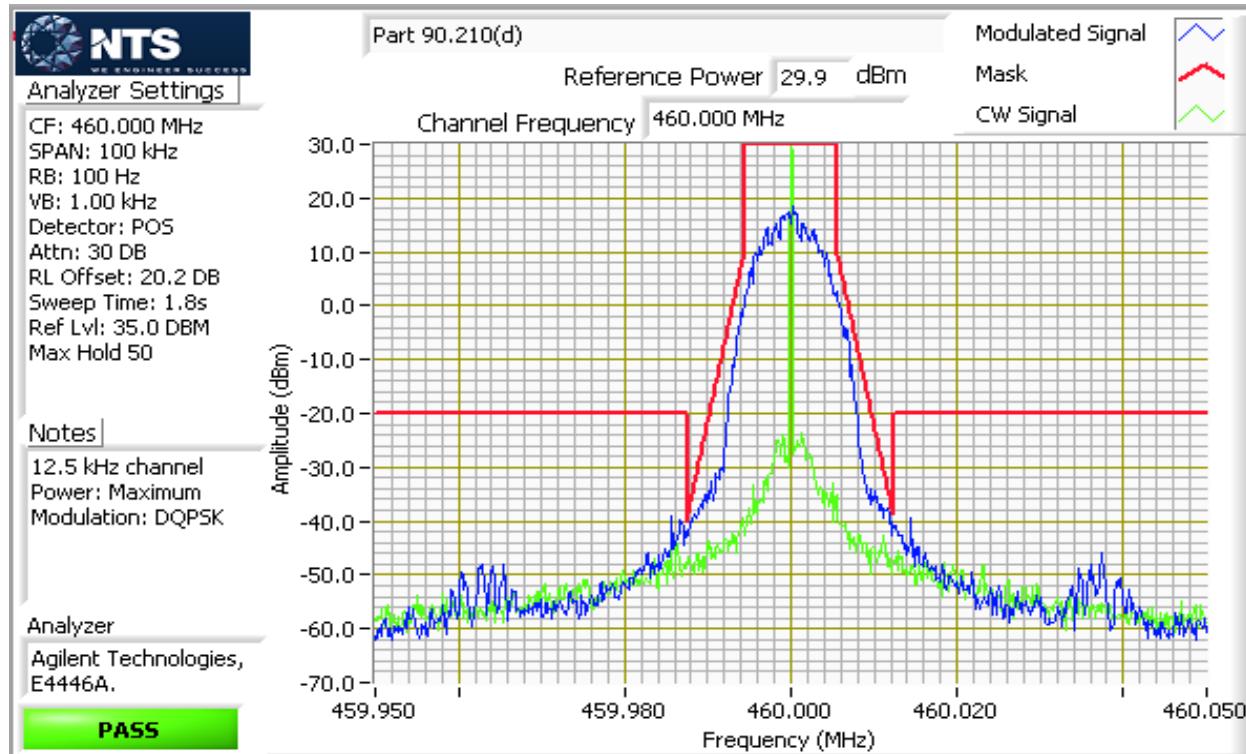



Radio Test Data

Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
		Account Manager:	Deepa Shetty
Contact:	Ferdinand Riodique		
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A

Emission mask D for 12.5 kHz channel spacing (GMSK)

Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
Contact:		Account Manager:	Deepa Shetty
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A


Emission mask D for 12.5 kHz channel spacing (4LFSK)

Radio Test Data

Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
		Account Manager:	Deepa Shetty
Contact:	Ferdinand Riodique		
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A

Emission mask D for 12.5 kHz channel spacing (DQPSK)

Radio Test Data

Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
		Account Manager:	Deepa Shetty
Contact:	Ferdinand Riodique		
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A

Run #3: Signal Bandwidth

Date: 10/13/2015

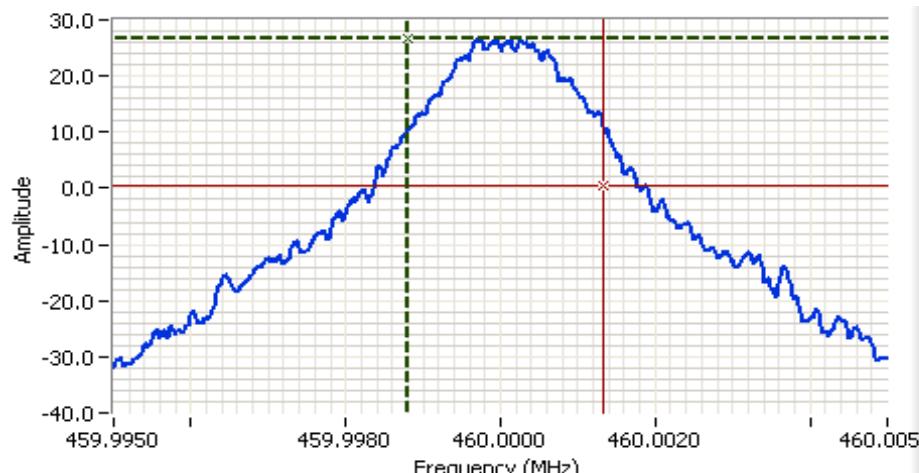
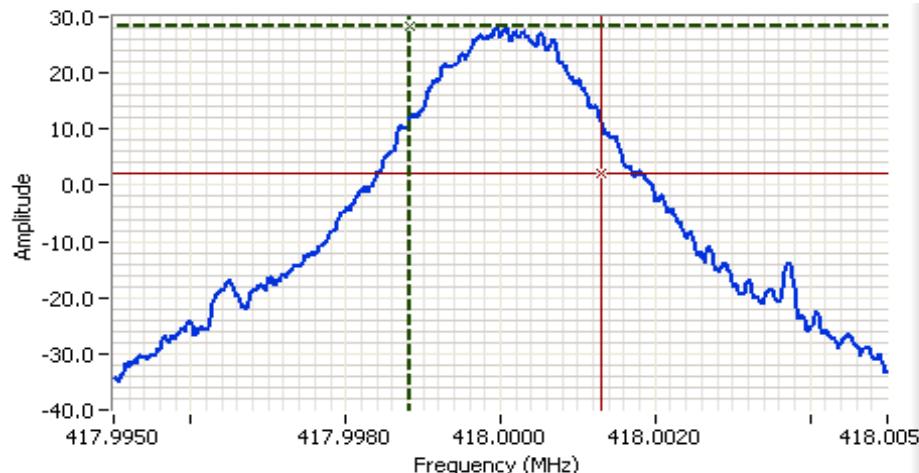
Engineer: Deniz Demirci

Location: FT Lab #4b

406.1 - 430 MHz band

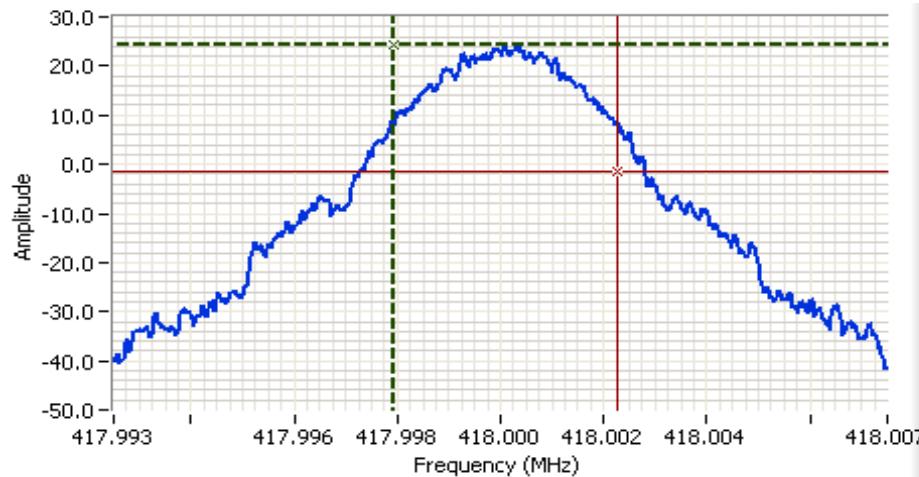
Power setting	Data rate	Channel plan	Modulation	Frequency MHz	RB (Hz)	Bandwidth (kHz)		Authorized bandwidth
						26 dB	99%	
30 dBm	4800	6.25 kHz	4LFSK	418.0000	100		2.46	6 kHz
30 dBm	4800	12.5 kHz	GMSK	418.0000	100		4.34	11.25 kHz
30 dBm	9600	12.5 kHz	4LFSK	418.0000	100		4.87	11.25 kHz
30 dBm	19200	12.5 kHz	DQPSK	418.0000	150		10.90	11.25 kHz

450-470 MHz band



Power setting	Data rate	Channel plan	Modulation	Frequency MHz	RB (Hz)	Bandwidth (kHz)		Authorized bandwidth
						26 dB	99%	
30 dBm	4800	6.25 kHz	4LFSK	460.0000	100		2.55	6 kHz
30 dBm	4800	12.5 kHz	GMSK	460.0000	100		4.34	11.25 kHz
30 dBm	9600	12.5 kHz	4LFSK	460.0000	100		4.97	11.25 kHz
30 dBm	19200	12.5 kHz	DQPSK	460.0000	150		11.10	11.25 kHz

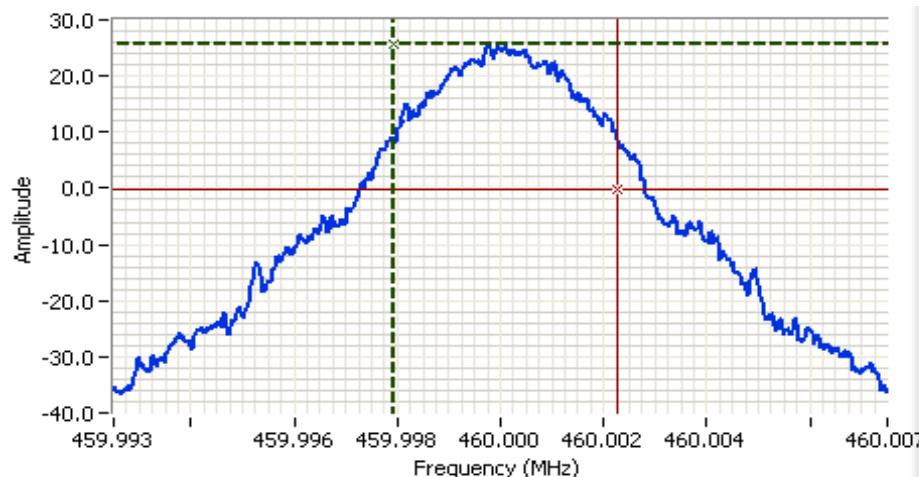
Note 1: 99% bandwidth measured in accordance with ANSI C63.10 and RSS GEN, with RBW 1% to 5% of the OBW and VB \geq 3xRBW

Radio Test Data


Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
Contact:	Ferdinand Riodique	Account Manager:	Deepa Shetty
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A

Radio Test Data

Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
Contact:	Ferdinand Riodique	Account Manager:	Deepa Shetty
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A



Analyzer Settings

Agilent Technologies, E4446A
CF: 418.000 MHz
SPAN: 15.0 kHz
RB: 100 Hz
VB: 300 Hz
Detector: POS
Attn: 30 dB
RL Offset: 20.2 dB
Sweep Time: 202.6ms
Ref Lvl: 35.0 dBm

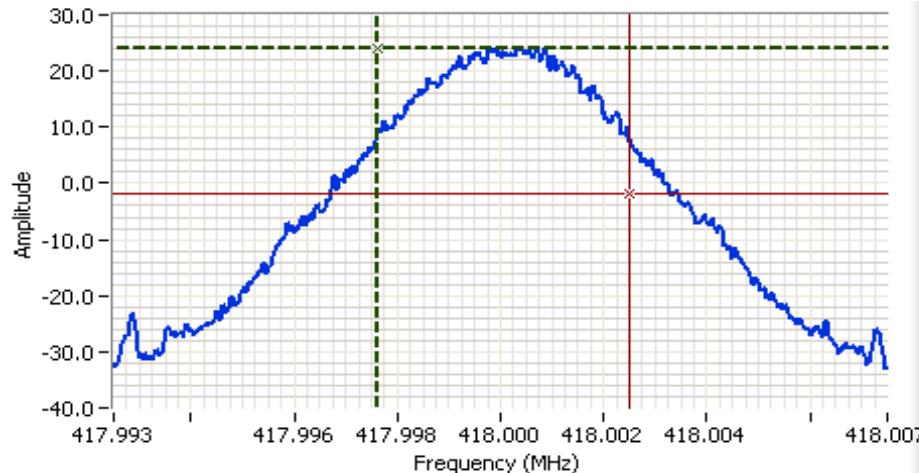
Comments

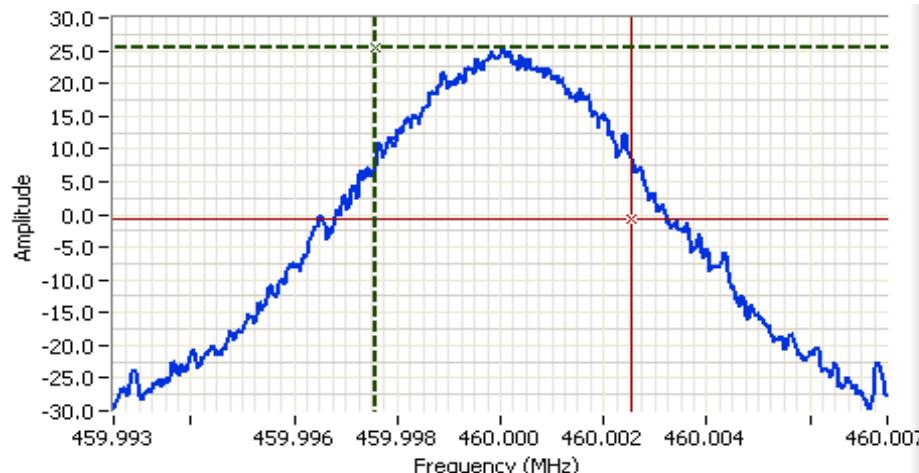
99% power BW: 4.34 kHz
11.25 kHz channel spacing
Modulation: GMSK

Analyzer Settings

Agilent Technologies, E4446A
CF: 460.000 MHz
SPAN: 15.0 kHz
RB: 100 Hz
VB: 300 Hz
Detector: POS
Attn: 30 dB
RL Offset: 20.2 dB
Sweep Time: 202.6ms
Ref Lvl: 35.0 dBm

Comments


99% BW: 4.34 kHz
11.25 kHz channel spacing
Modulation: GMSK

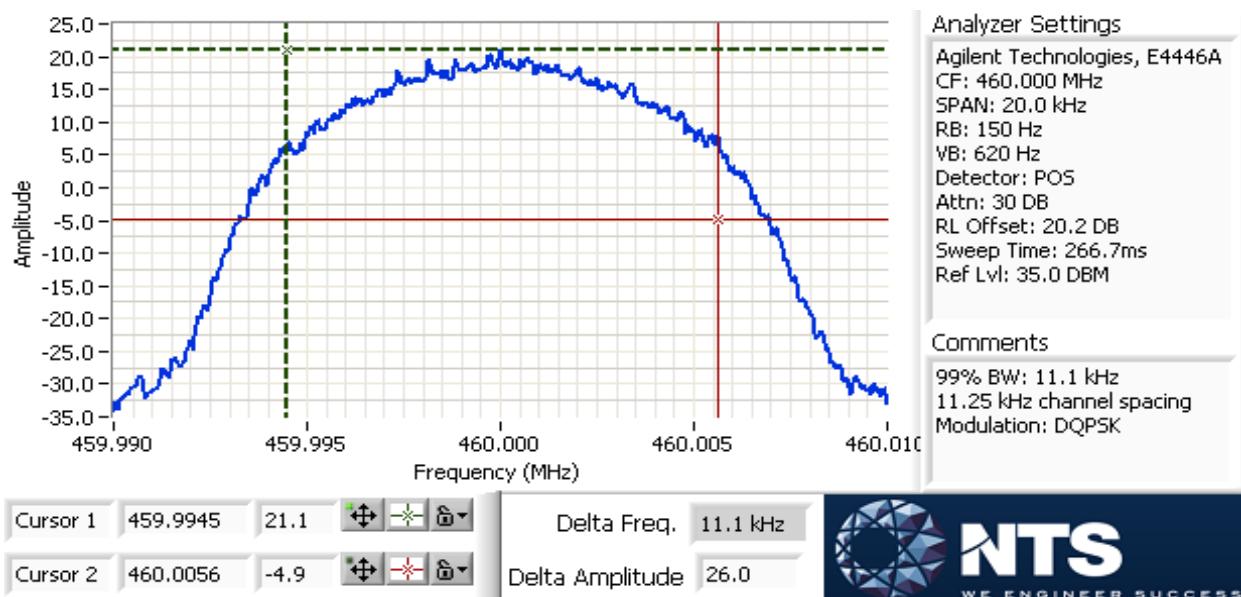
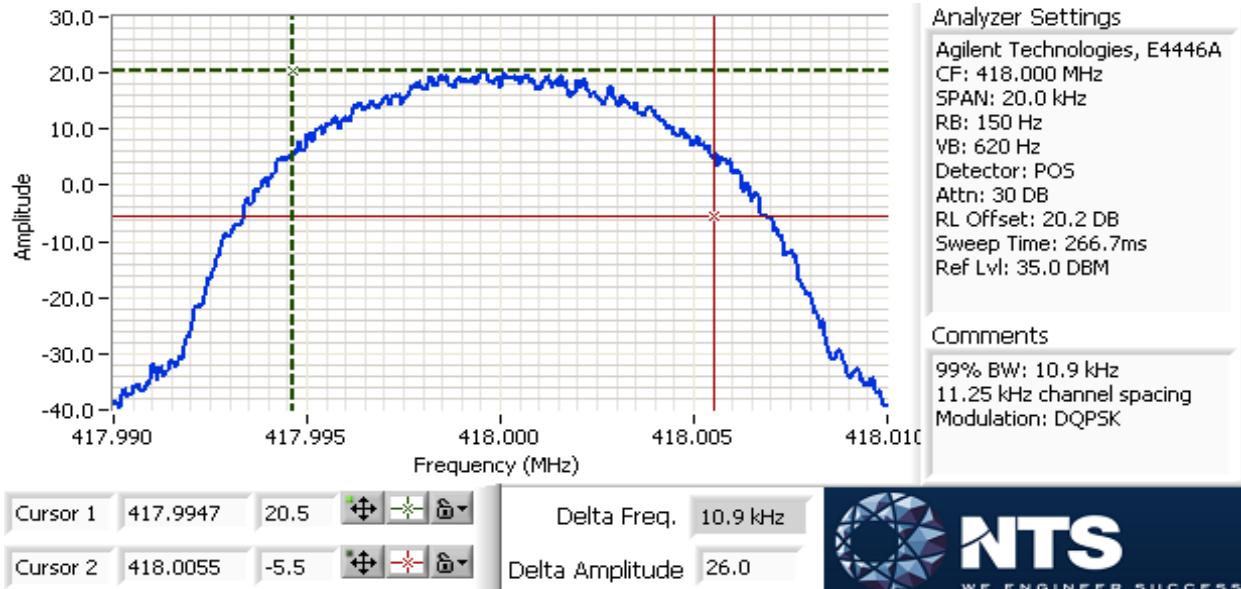

Radio Test Data

Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
Contact:	Ferdinand Riodique	Account Manager:	Deepa Shetty
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A

Analyzer Settings
Agilent Technologies, E4446A
CF: 418.000 MHz
SPAN: 15.0 kHz
RB: 100 Hz
VB: 300 Hz
Detector: POS
Attn: 30 dB
RL Offset: 20.2 dB
Sweep Time: 202.6ms
Ref Lvl: 35.0 dBm

Comments
99% BW: 4.87 kHz
11.25 kHz channel spacing
Modulation: 4LFSK

Analyzer Settings
Agilent Technologies, E4446A
CF: 460.000 MHz
SPAN: 15.0 kHz
RB: 100 Hz
VB: 300 Hz
Detector: POS
Attn: 30 dB
RL Offset: 20.2 dB
Sweep Time: 202.6ms
Ref Lvl: 35.0 dBm



Comments
99% BW: 4.97 kHz
11.25 kHz channel spacing
Modulation: 4LFSK

Radio Test Data

Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
Contact:		Account Manager:	Deepa Shetty
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A

Radio Test Data

Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
Contact:	Ferdinand Riodique	Account Manager:	Deepa Shetty
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A

Run #4: Out of Band Spurious Emissions, Conducted

Date of Test: 7/27/2015

Config. Used: 1

Test Engineer: Deniz Demirci

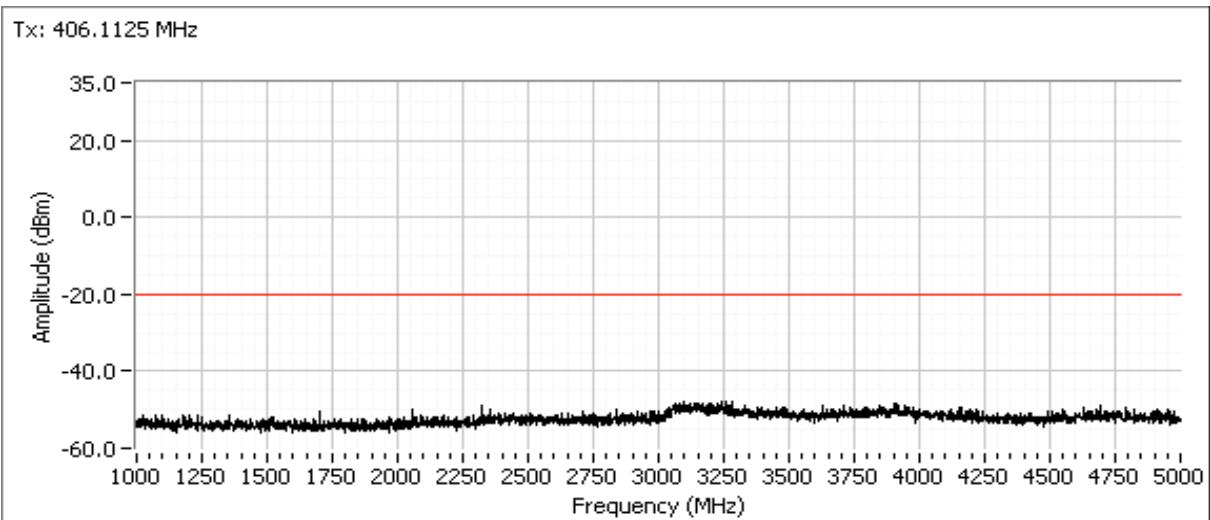
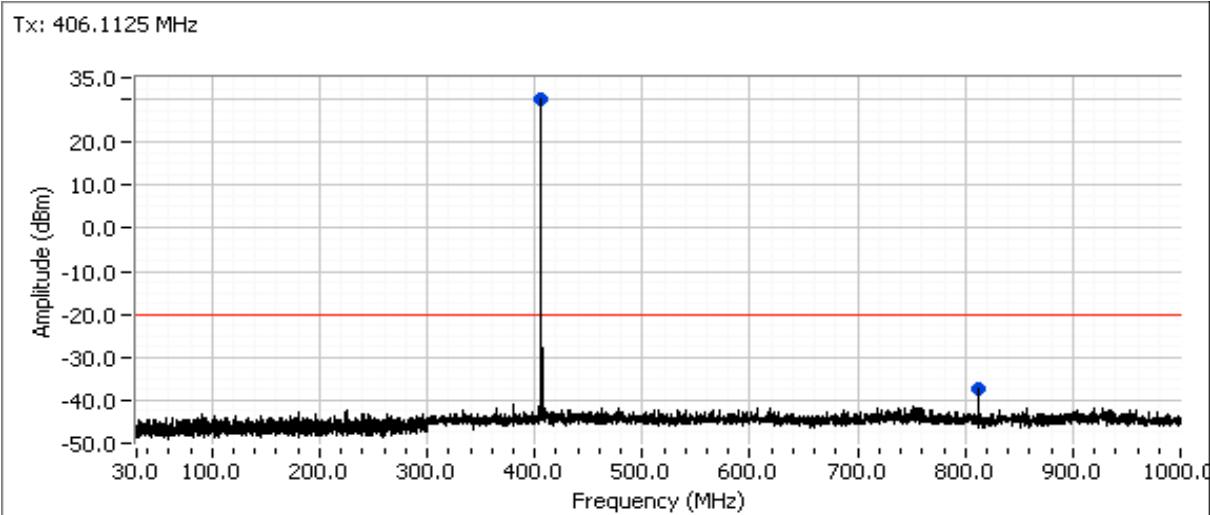
Config Change: None

Test Location: Ft Lab# 4a

EUT Voltage: 4.2 Vdc

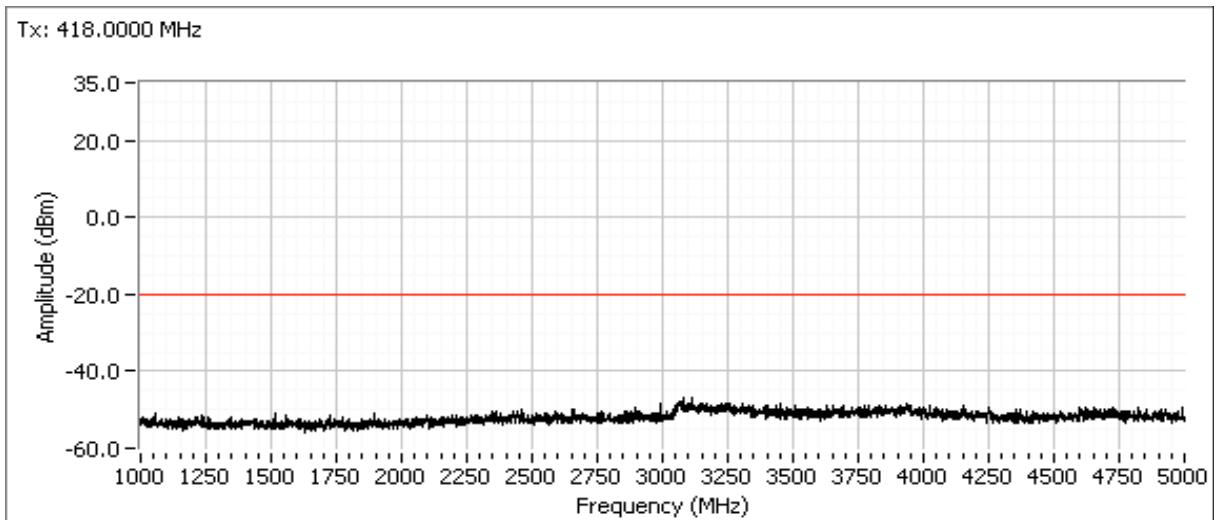
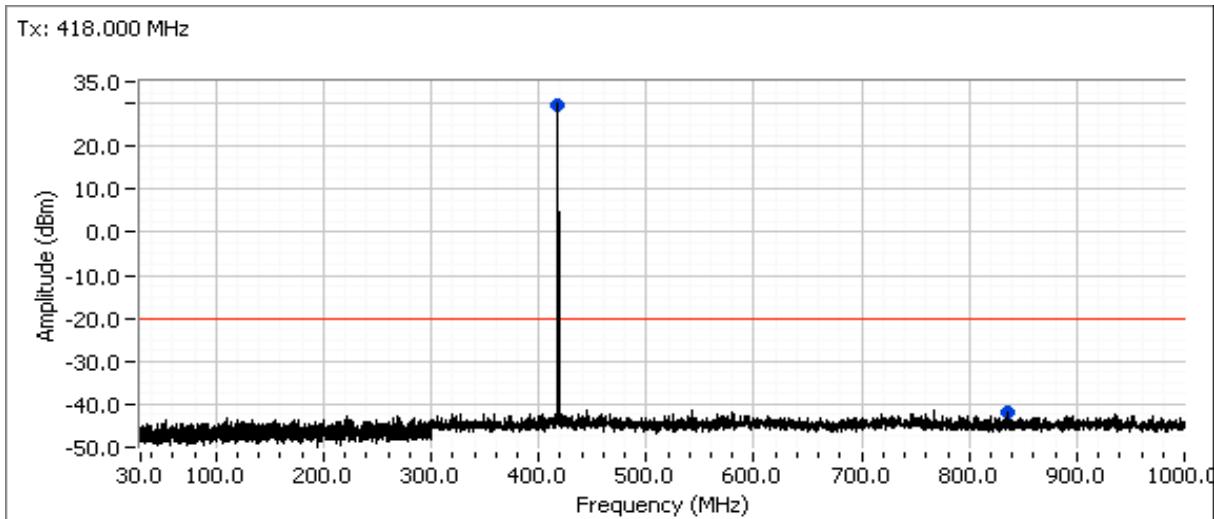
The limit is taken from FCC Part 90.210 Mask E (-25 dBm) as a worst case limit.

Frequency	Level	Port	FCC Part 90, RSS-119	Detector	Channel frequency	Comments	Channel
MHz	dBm		Limit	Margin	Pk/QP/Avg	MHz	MHz
406.114	30.0	RF Port	-	-	Peak	406.1125	Carrier
812.227	-37.3	RF Port	-25.0	-12.3	Peak	406.1125	Note 3
417.999	29.9	RF Port	-	-	Peak	418.0000	Carrier
835.992	-41.8	RF Port	-25.0	-16.8	Peak	418.0000	Note 3
429.990	29.9	RF Port	-	-	Peak	429.9875	Carrier
859.919	-43.6	RF Port	-25.0	-18.6	Peak	429.9875	Note 3
450.013	29.9	RF Port	-	-	Peak	450.0125	Carrier
900.040	-41.4	RF Port	-25.0	-16.4	Peak	450.0125	Note 3
460.020	29.7	RF Port	-	-	Peak	460.0000	Carrier
919.998	-40.4	RF Port	-25.0	-15.4	Peak	460.0000	Note 3
469.923	29.2	RF Port	-	-	Peak	469.9875	Carrier
940.002	-40.1	RF Port	-25.0	-15.1	Peak	469.9875	Note 3

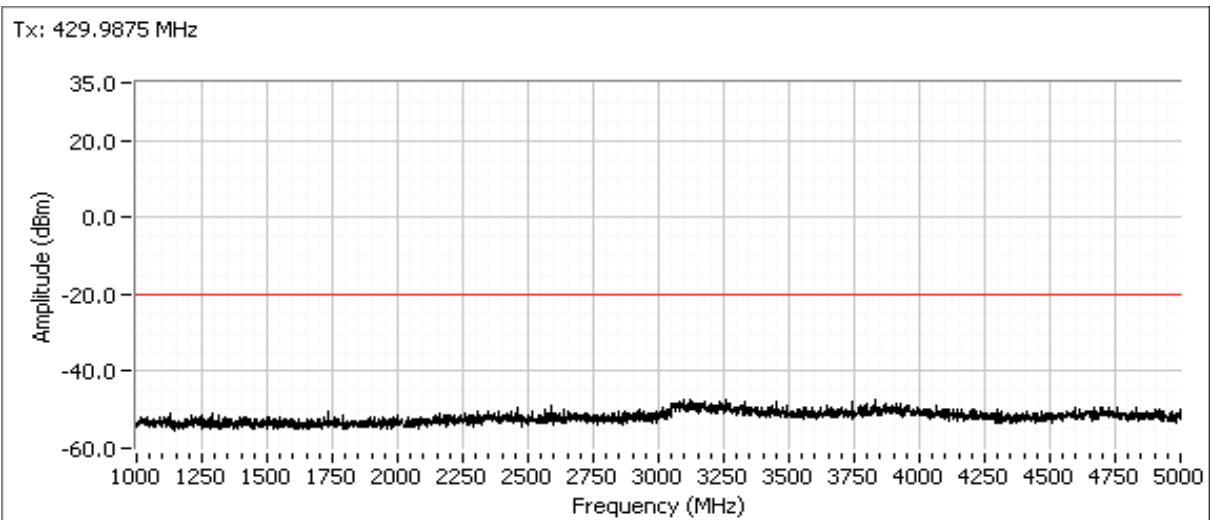
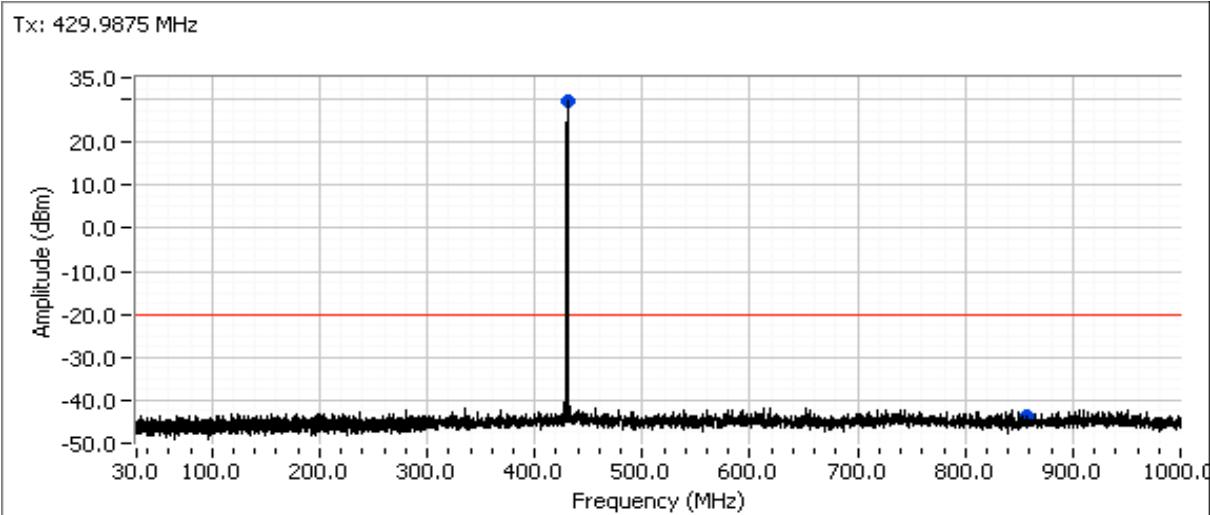


Note 1: The limits shown on the graphs are -20 dBm. The limits are corrected as -25 dBm on the result table.

Note 2: EUT was set to transmit an un-modulated carrier with power setting of 1 watt during the spurious emission tests.

Note 3: Spurious emission scans and final measurements were performed with peak detector, RBW: 100 kHz, VBW: 300 kHz for below 1 GHz measurements and RBW: 1 MHz, VBW: 3 MHz for above 1 GHz measurements.

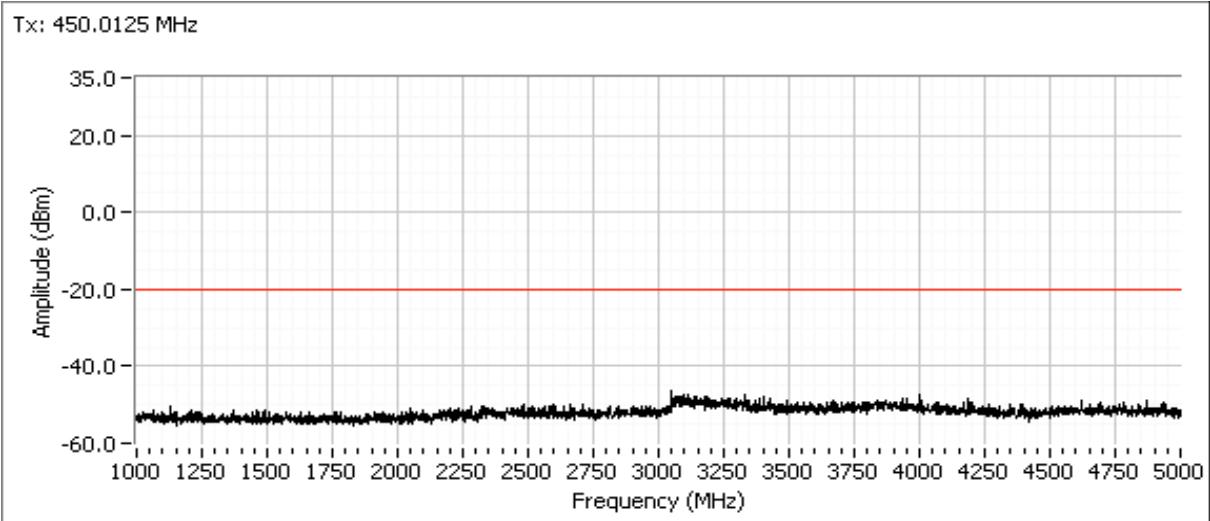
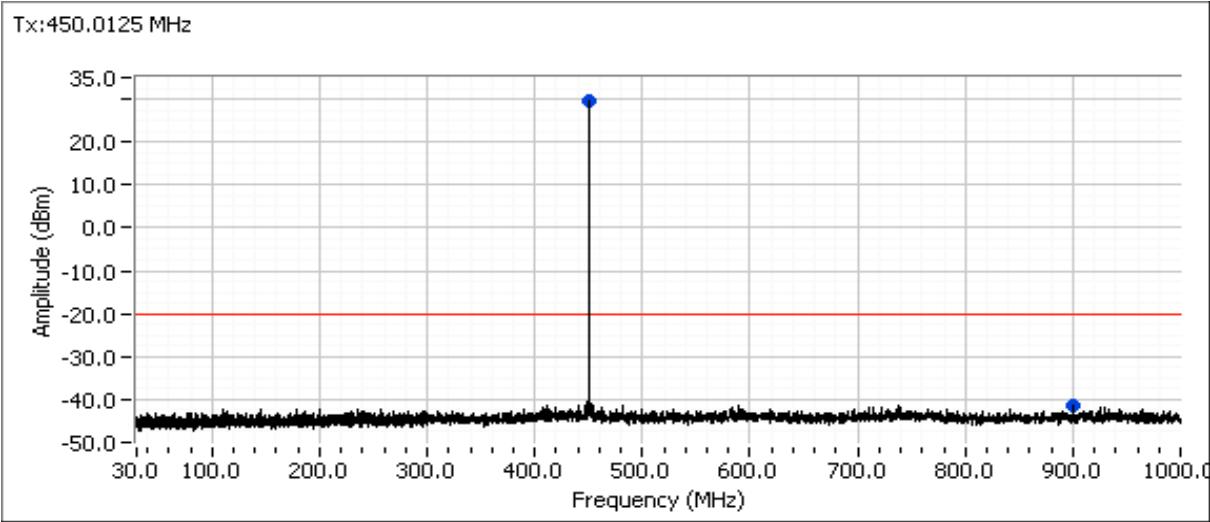


Radio Test Data

Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
		Account Manager:	Deepa Shetty
Contact:	Ferdinand Riodique		
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A

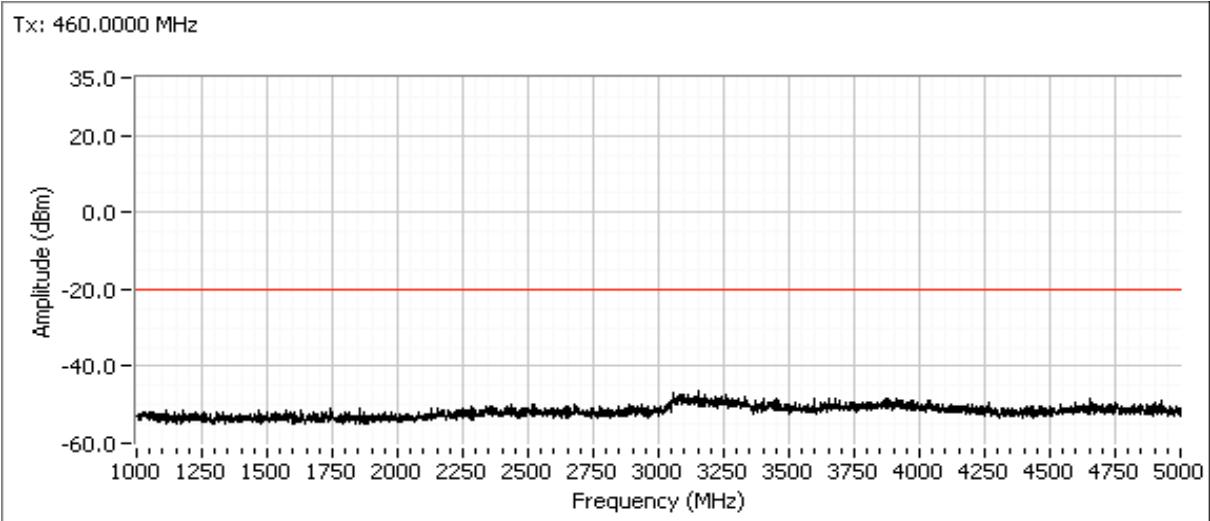
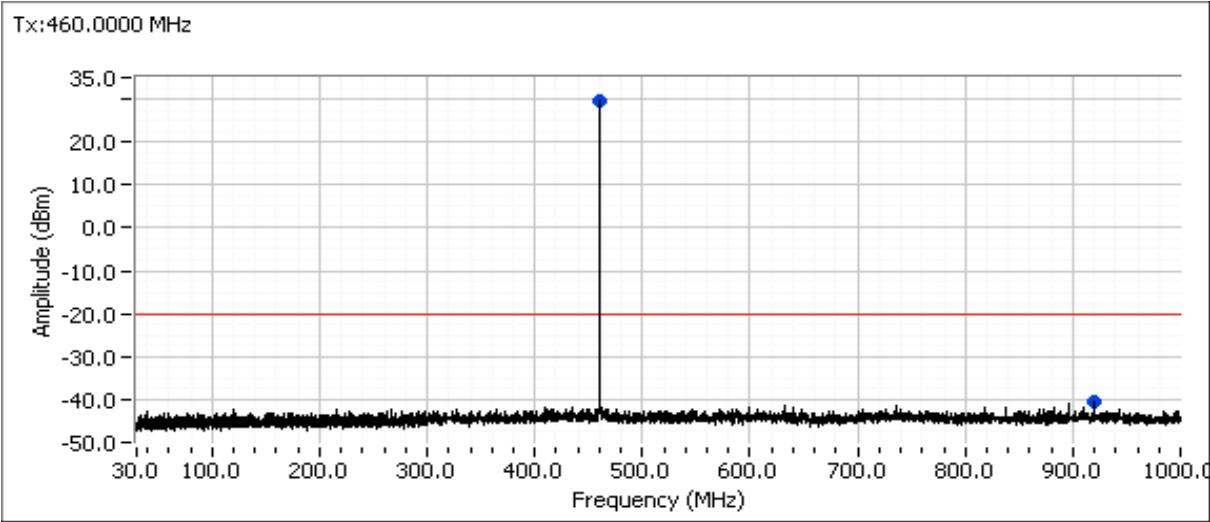



Radio Test Data

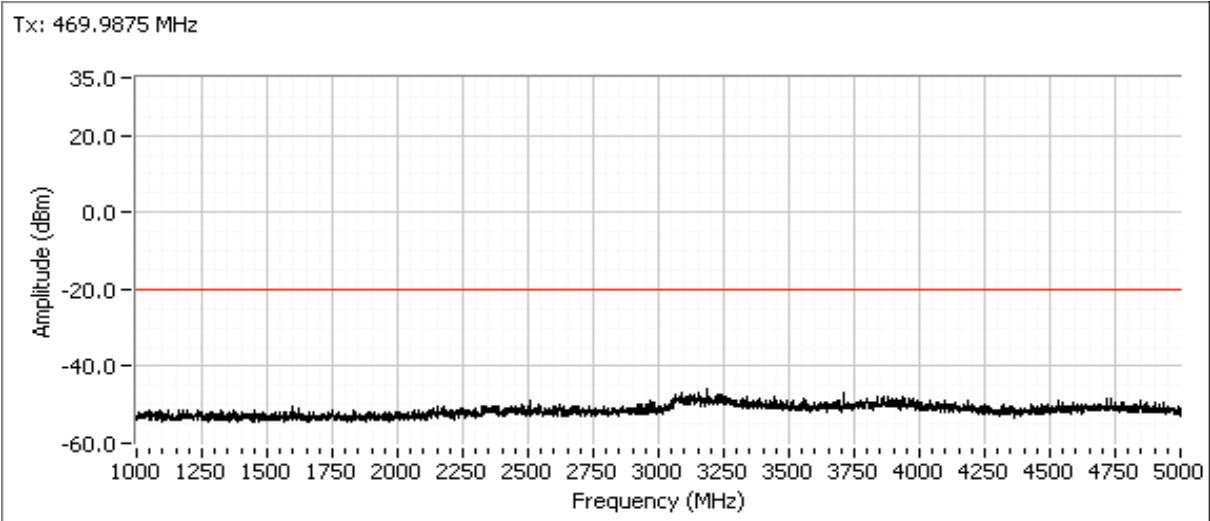
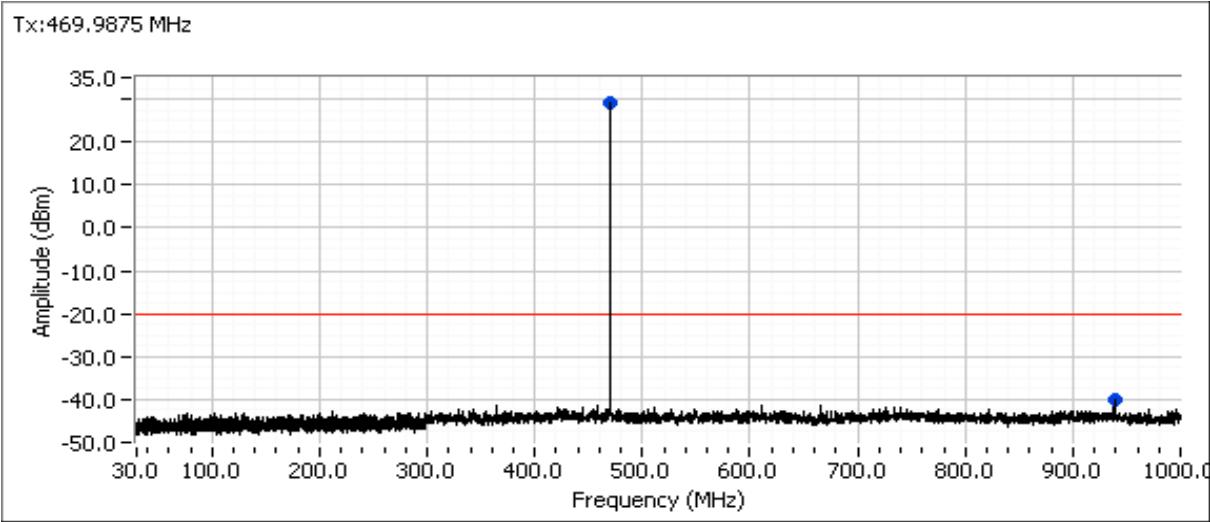
Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
		Account Manager:	Deepa Shetty
Contact:	Ferdinand Riodique		
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A

Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
		Account Manager:	Deepa Shetty
Contact:	Ferdinand Riodique		
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A



Radio Test Data

Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
		Account Manager:	Deepa Shetty
Contact:	Ferdinand Riodique		
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A



Radio Test Data

Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
		Account Manager:	Deepa Shetty
Contact:	Ferdinand Riodique		
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A

Radio Test Data

Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
		Account Manager:	Deepa Shetty
Contact:	Ferdinand Riodique		
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A

Radio Test Data

Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
		Account Manager:	Deepa Shetty
Contact:	Ferdinand Riodique		
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A

Run #5: Out of Band Spurious Emissions, Radiated

Run #5a - Preliminary measurements

Date of Test: 7/20/2015 and 7/21/2015

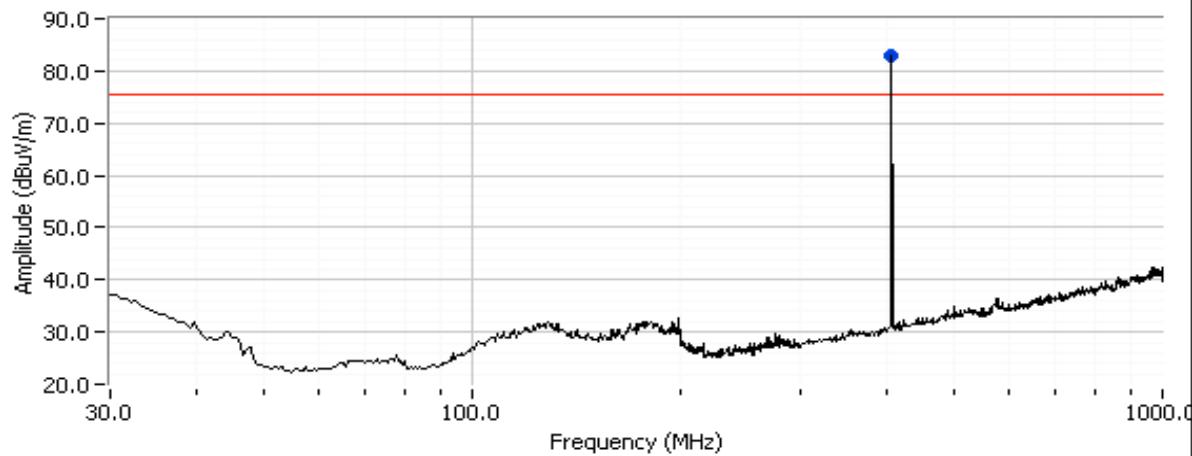
Config. Used: 1

Test Engineer: Deniz Demirci

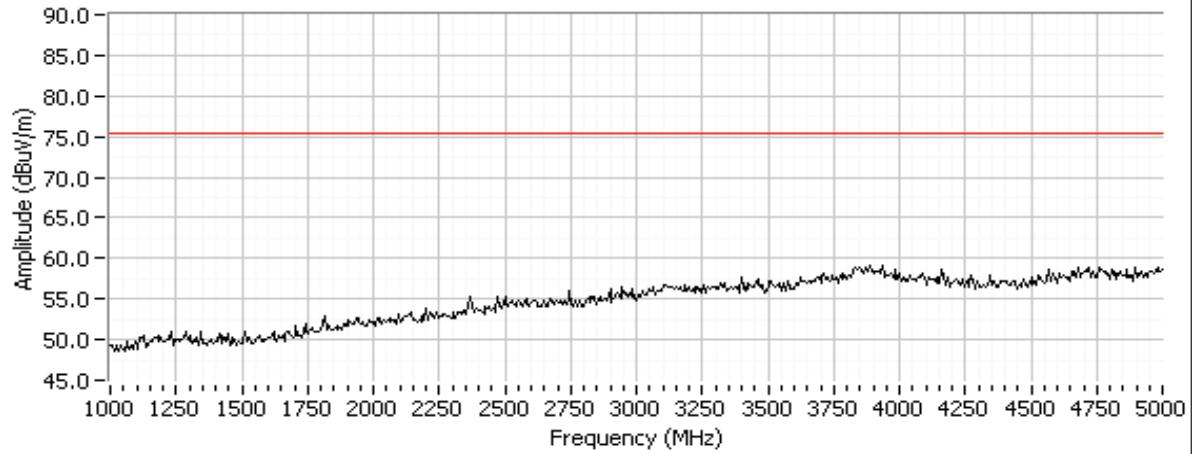
Config Change: None

Test Location: Ft Ch# 7

EUT Voltage: 4.2 Vdc

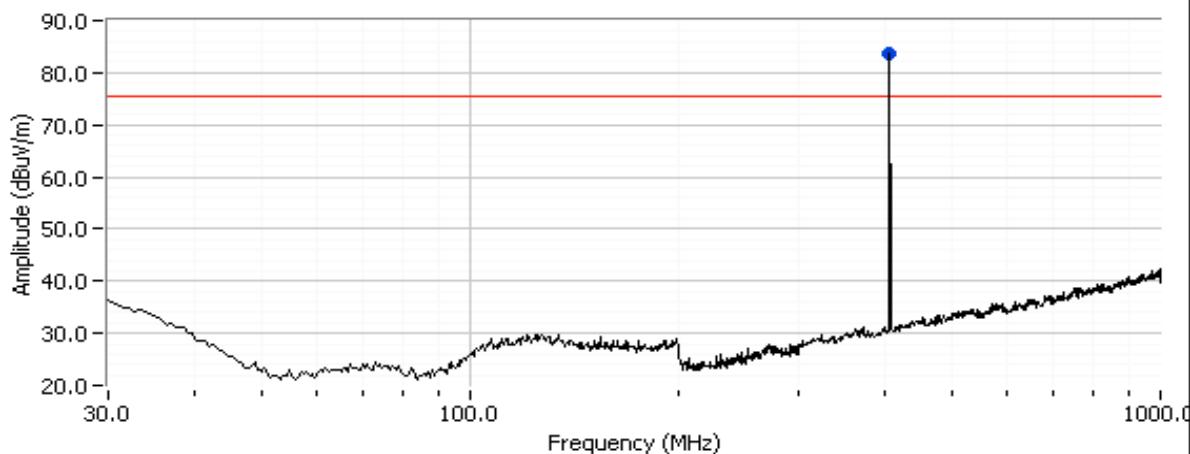

The limit is taken from FCC Part 90.210 Mask E as worst case limit. (Plots show Mask D limits)

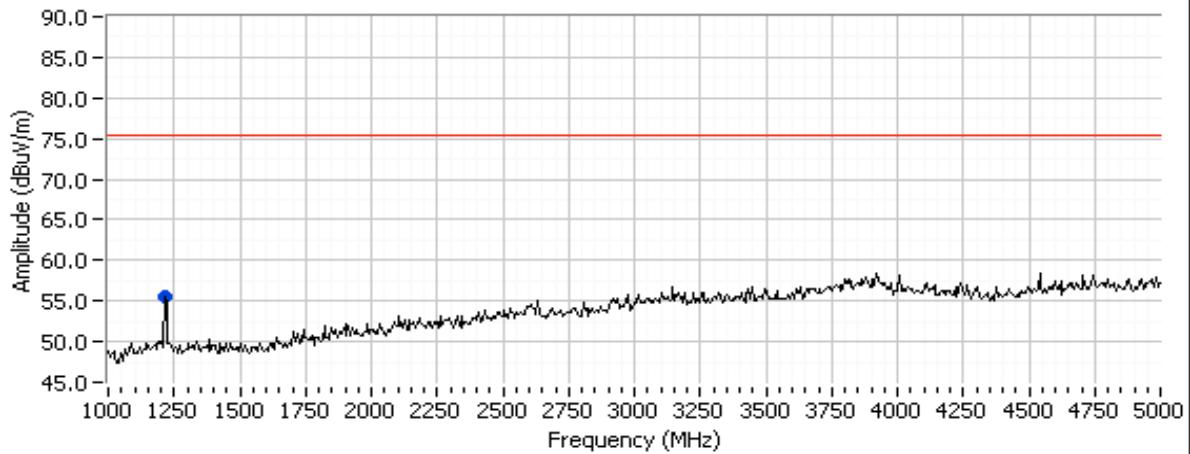
Frequency	Level	Pol	FCC Part 90, RSS-119	Detector	Azimuth	Height	Comments	Channel	Orientation
MHz	dB μ V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
406.113	83.1	H	-	-	PK	140	1.0	Carrier	406.1125 Flat
406.112	84.2	V	-	-	PK	135	1.3	Carrier	406.1125 Side
1218.360	59.0	V	70.3	-11.3	PK	20	1.0	Note 5	406.1125 Side
406.122	78.2	H	-	-	PK	187	1.9	Carrier	406.1125 Upright
418.007	82.4	V	-	-	PK	220	1.1	Carrier	418.0000 Side
836.009	43.1	V	70.3	-27.2	PK	341	1.0	Note 5	418.0000 Side
1253.960	57.5	V	70.3	-12.8	PK	34	1.5	Note 5	418.0000 Side
429.988	81.4	V	-	-	PK	327	1.2	Carrier	429.9875 Side
859.980	42.5	V	70.3	-27.8	PK	5	1.0	Note 5	429.9875 Side
1290.130	59.9	V	70.3	-10.4	PK	49	1.0	Note 5	429.9875 Side
450.011	80.7	V	-	-	PK	248	1.0	Carrier	450.0125 Side
900.007	42.2	V	70.3	-28.1	PK	179	1.2	Note 5	450.0125 Side
1350.160	60.2	V	70.3	-10.1	PK	58	1.0	Note 5	450.0125 Side
460.002	79.2	V	-	-	PK	243	1.0	Carrier	460.0000 Side
920.003	45.8	V	70.3	-24.5	PK	69	1.0	Note 5	460.0000 Side
469.994	78.4	V	-	-	PK	246	1.0	Carrier	469.9875 Side
939.979	48.2	V	70.3	-22.1	PK	206	1.0	Note 5	469.9875 Side


Note 1:	The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free space propagation equation: $E=\sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane. The erp or eirp for all signals with less than 20 dB of margin relative to this field strength limit is determined using substitution measurements.
Note 2:	Measurements are made with the antenna port terminated.
Note 3:	EUT was set to transmit an un-modulated carrier with power setting of 1 watt during the spurious emission tests.
Note 4:	EUT was pre-scanned in all 3 orientations. Pre-scan results show EUT side orientation has the highest spurious emission. Final measurements were taken with EUT side orientation.
Note 5:	Spurious emission scans and final measurements were performed with peak detector, RBW: 100 kHz, VBW: 300 kHz for below 1 GHz measurements and RBW: 1 MHz, VBW: 3 MHz for above 1 GHz measurements.

Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
		Account Manager:	Deepa Shetty
Contact:	Ferdinand Riodique		
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A

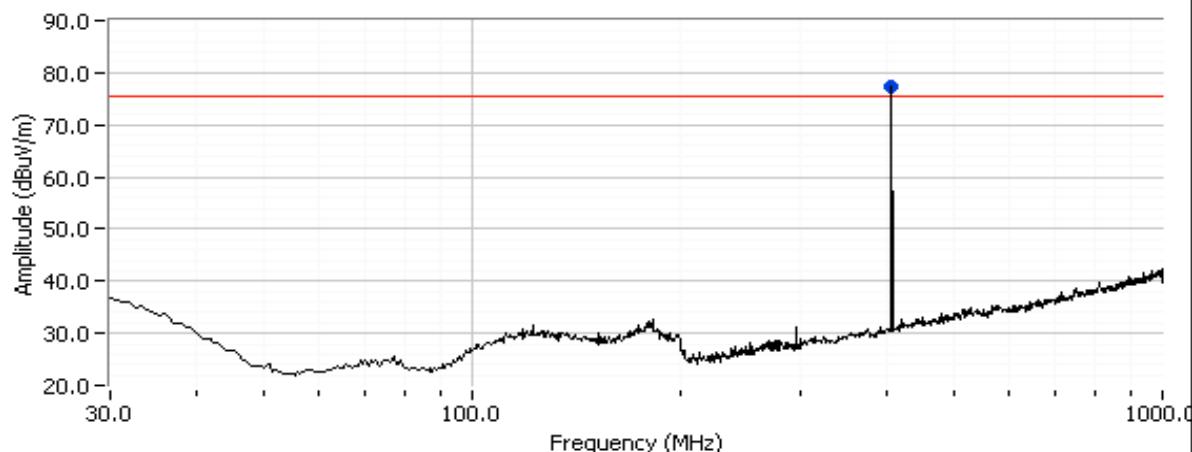
Tx: 406.1125 MHz, EUT flat on the table

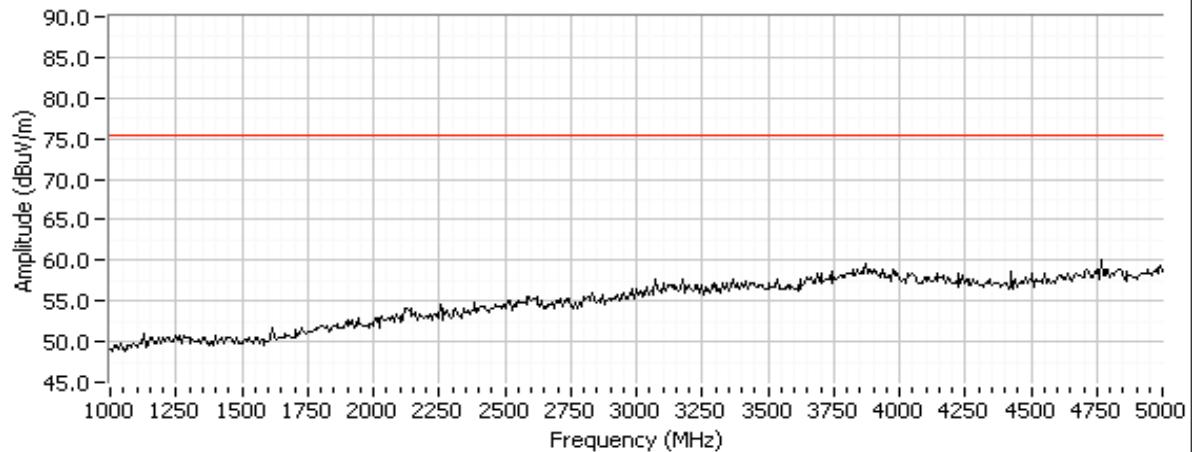

Tx: 406.1125 MHz, EUT flat on the table


Radio Test Data

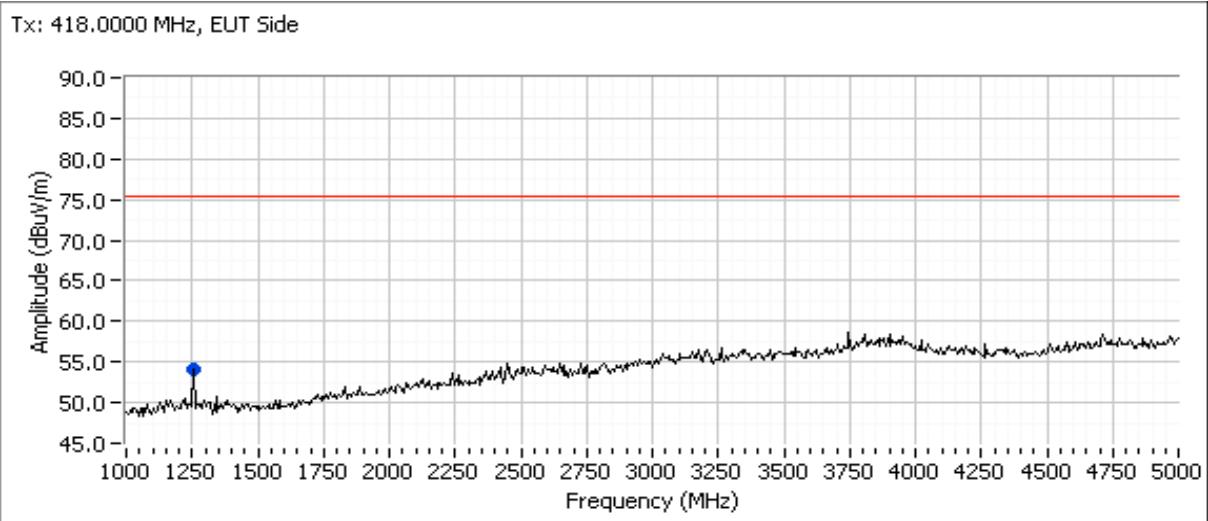
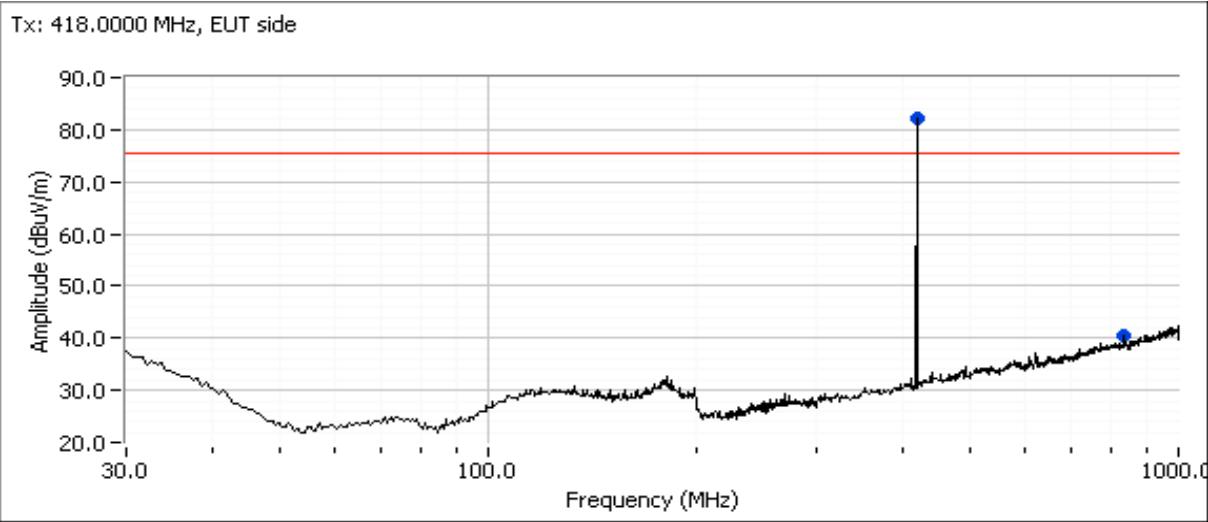
Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
		Account Manager:	Deepa Shetty
Contact:	Ferdinand Riodique		
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A

Tx: 406.1125 MHz, EUT side

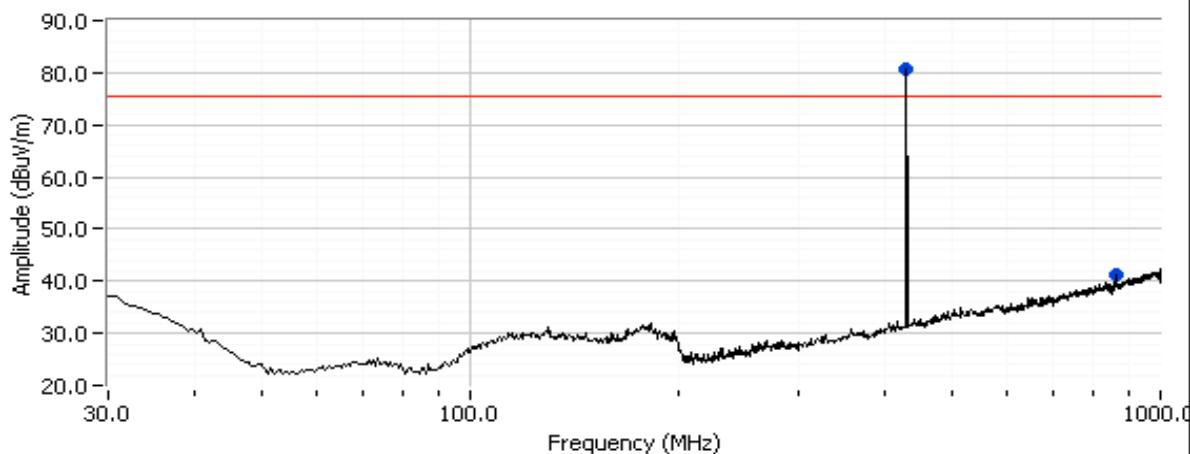

Tx: 406.1125 MHz, EUT Side


Radio Test Data

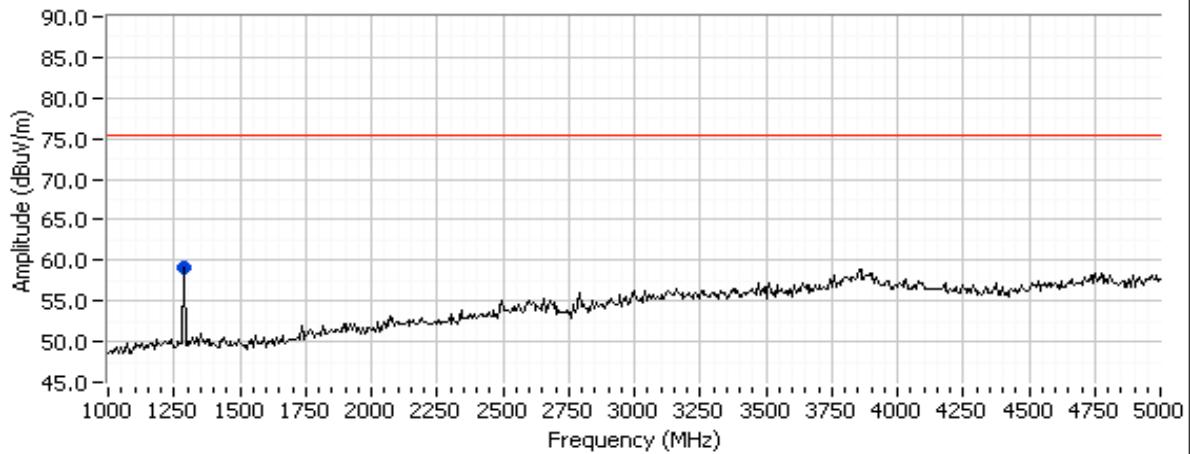
Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
		Account Manager:	Deepa Shetty
Contact:	Ferdinand Riodique		
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A



Tx: 406.1125 MHz, EUT upright

Tx: 406.1125 MHz, EUT upright

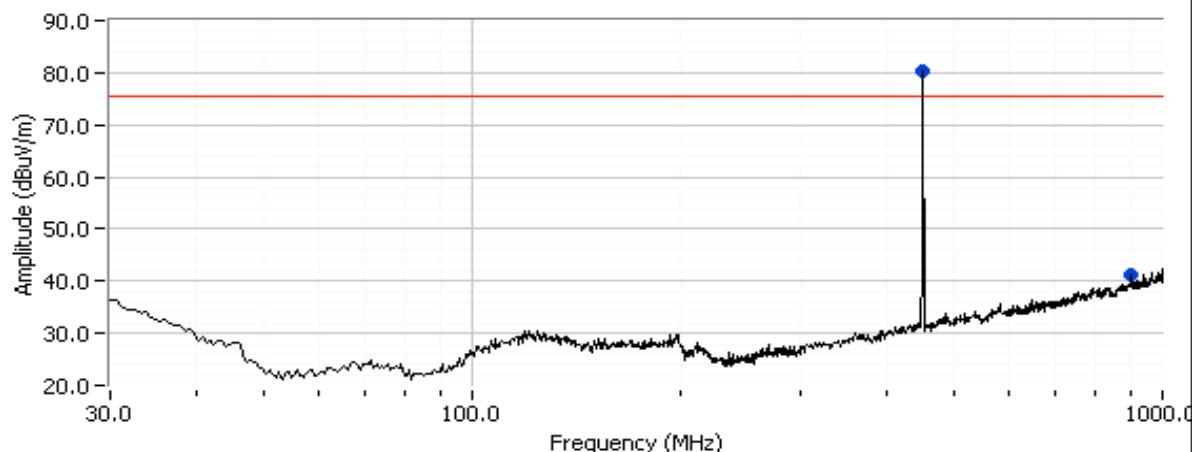


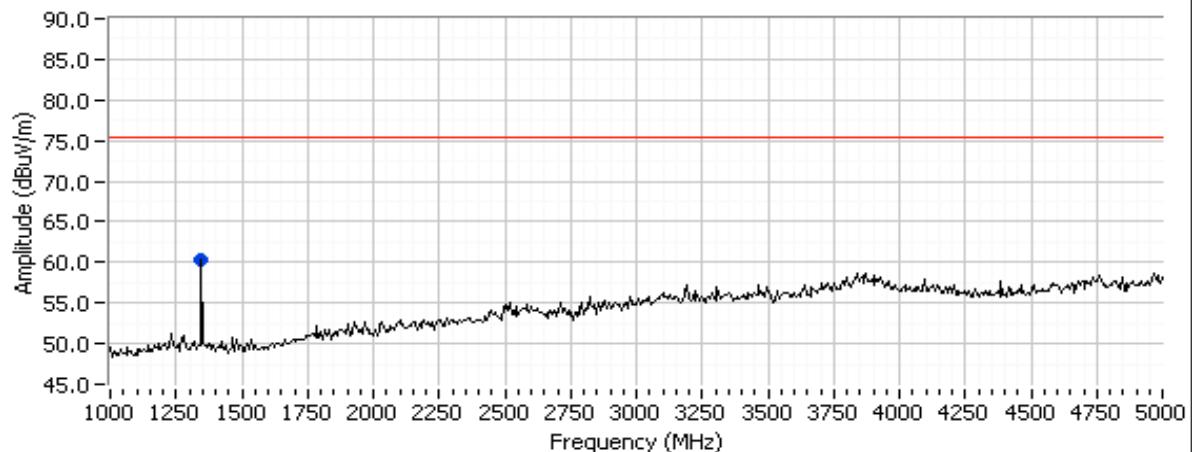
Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
		Account Manager:	Deepa Shetty
Contact:	Ferdinand Riodique		
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A



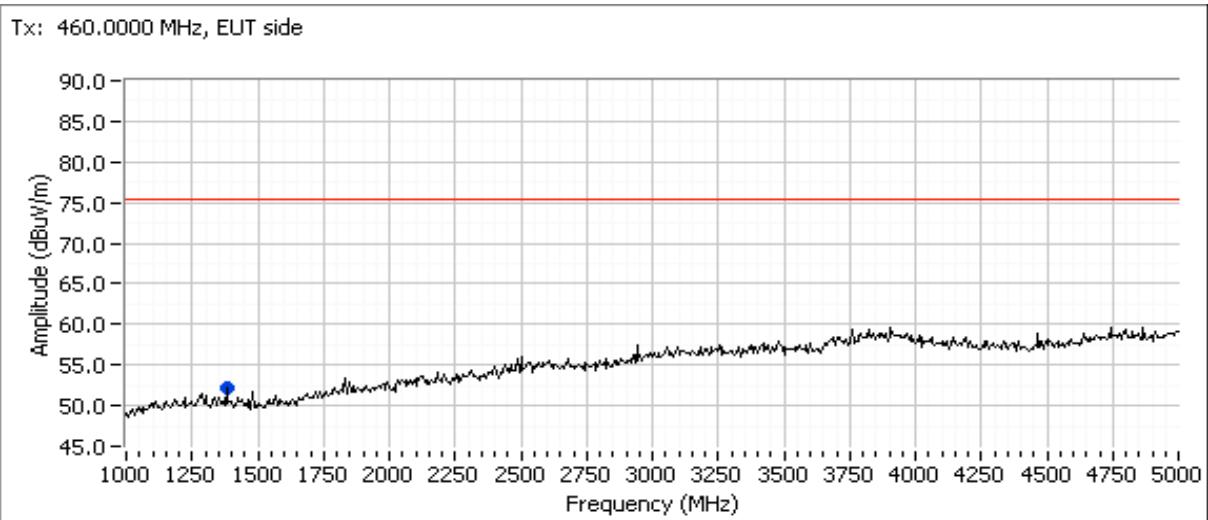
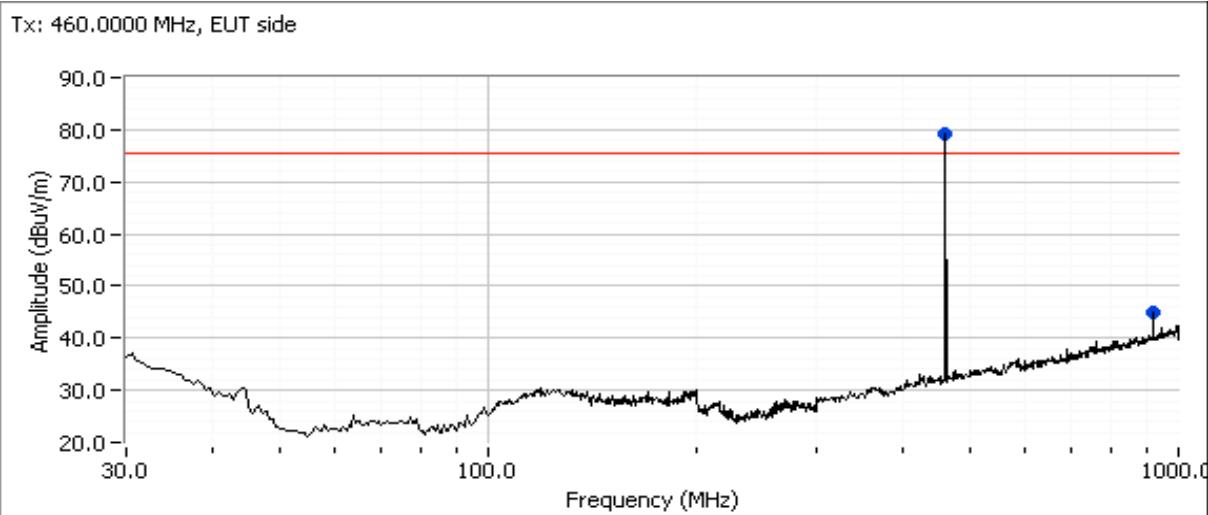
Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
		Account Manager:	Deepa Shetty
Contact:	Ferdinand Riodique		
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A

Tx: 429.9875 MHz, EUT side

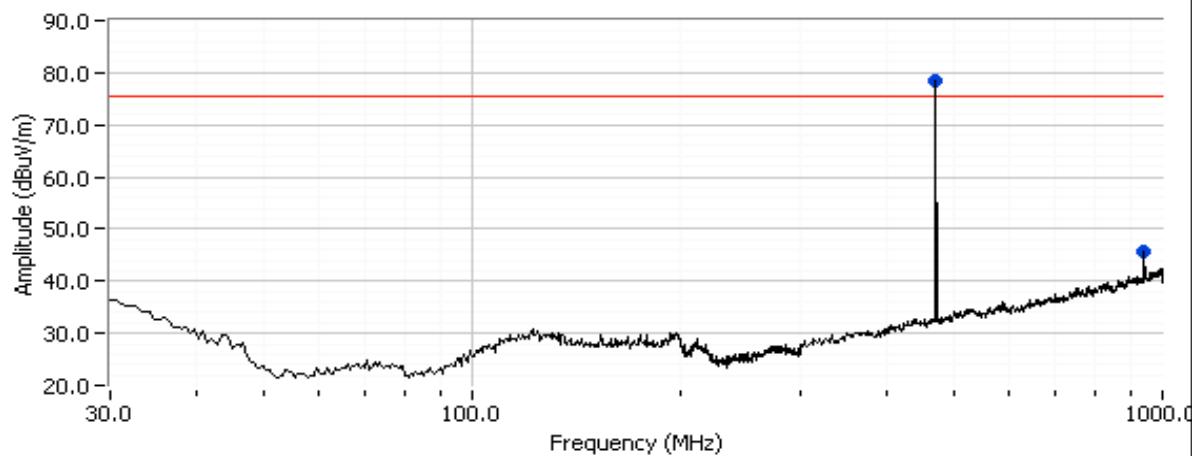

Tx: 429.9875 MHz, EUT Side


Radio Test Data

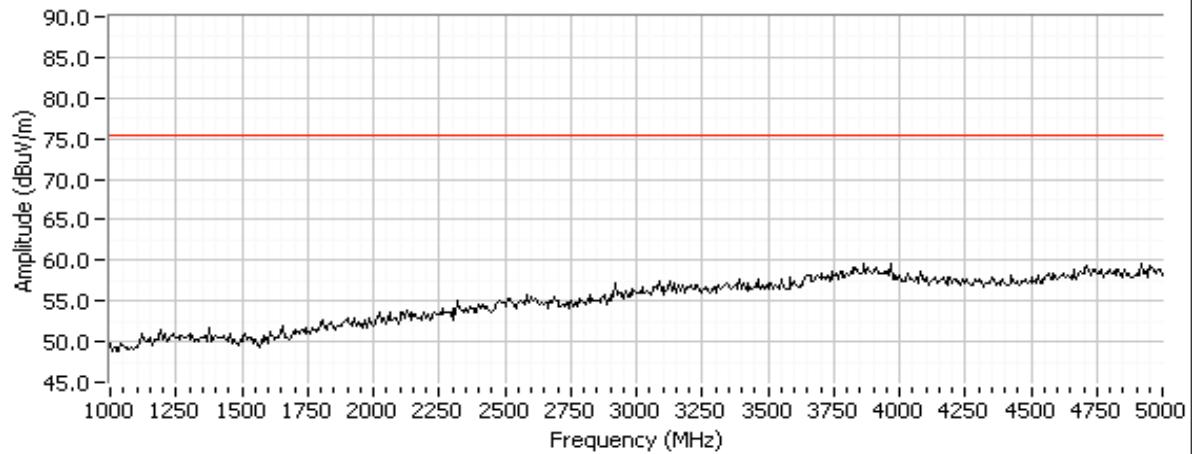
Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
		Account Manager:	Deepa Shetty
Contact:	Ferdinand Riodique		
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A



Tx: 450.0125 MHz, EUT side

Tx:450.0125 MHz, EUT Side



Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
		Account Manager:	Deepa Shetty
Contact:	Ferdinand Riodique		
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A



Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
		Account Manager:	Deepa Shetty
Contact:	Ferdinand Riodique		
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A

Tx: 469.9875 MHz, EUT side

Tx: 469.9875 MHz, EUT side

Radio Test Data

Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
		Account Manager:	Deepa Shetty
Contact:	Ferdinand Riodique		
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A

Run #5b: - Substitution Measurements

Horizontal

Frequency MHz	Substitution measurements			Site Factor ⁴	EUT measurements			eirp Limit dBm	erp Limit dBm	Margin dB
	Pin ¹	Gain ²	FS ³		FS ⁵	eirp (dBm)	erp (dBm)			
-									-20.0	#VALUE!

Vertical

Frequency MHz	Substitution measurements			Site Factor ⁴	EUT measurements			eirp Limit dBm	erp Limit dBm	Margin dB
	Pin ¹	Gain ²	FS ³		FS ⁵	eirp (dBm)	erp (dBm)			
836.009	-30.0	1.7	68.4	96.8	43.1	-53.7	-55.9		-25.0	-30.9
859.980	-30.0	1.7	68.6	96.9	42.5	-54.4	-56.6		-25.0	-31.6
900.007	-30.0	1.8	67.9	96.2	42.2	-54.0	-56.2		-25.0	-31.2
920.003	-30.0	1.8	68.1	96.4	45.8	-50.6	-52.8		-25.0	-27.8
1218.360	-30.0	6.5	73.2	96.7	59.0	-37.7	-39.9		-25.0	-14.9
1253.960	-30.0	6.9	73.2	96.3	57.5	-38.8	-41.0		-25.0	-16.0
1290.130	-30.0	7.0	73.3	96.3	59.9	-36.4	-38.6		-25.0	-13.6
1350.160	-30.0	7.4	73.9	96.5	60.2	-36.3	-38.5		-25.0	-13.5

Note 1: Pin is the input power (dBm) to the substitution antenna

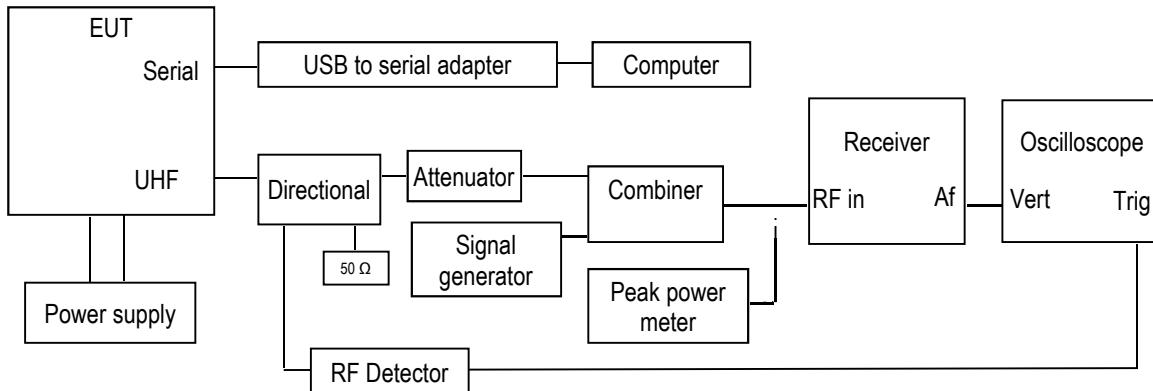
Note 2: Gain is the gain (dBi) for the substitution antenna.

Note 3: FS is the field strength (dBuV/m) measured from the substitution antenna.

Note 4: Site Factor - this is the site factor to convert from a field strength in dBuV/m to an eirp in dBm.

Note 5: EUT field strength as measured during initial run.

Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
		Account Manager:	Deepa Shetty
Contact:	Ferdinand Riodique		
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A


Run #6: Transient Frequency Behaviour

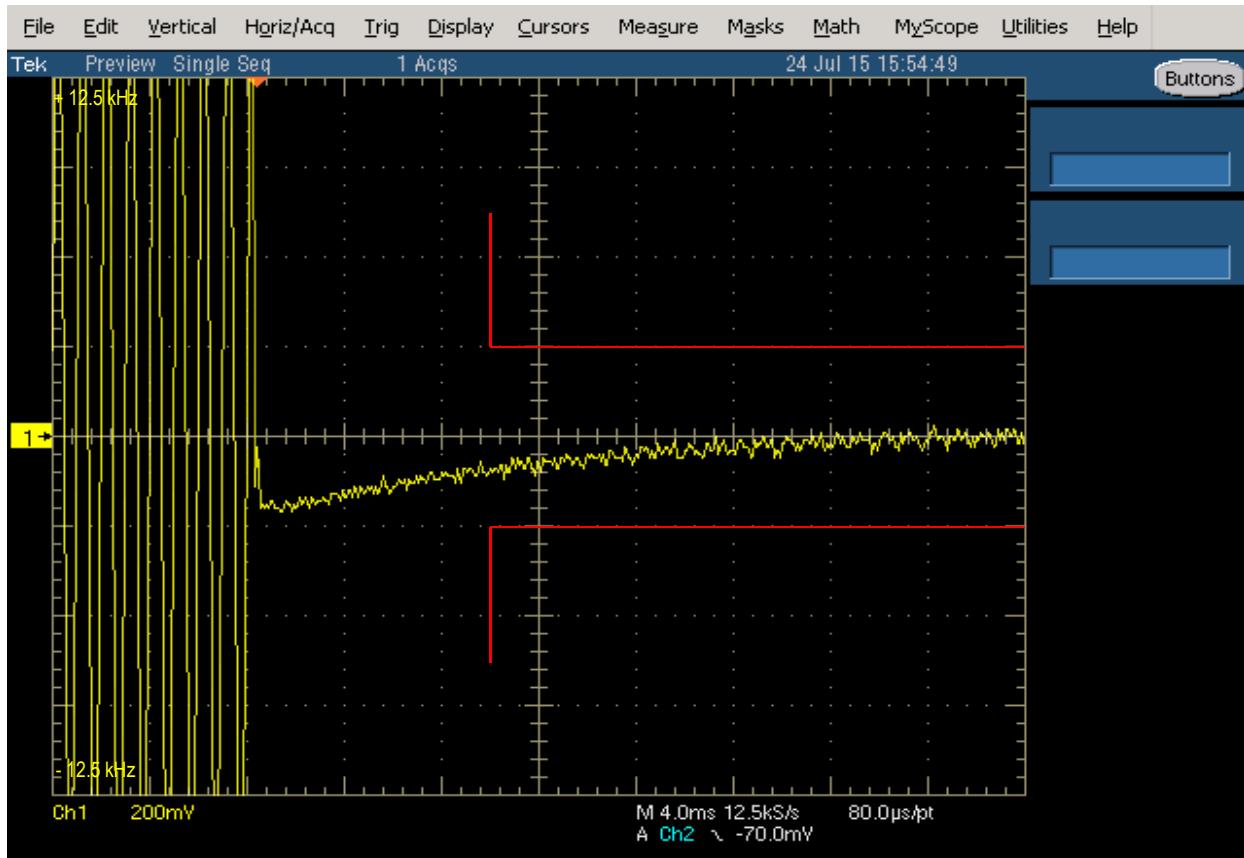
Date of Test: 7/24/2015
Test Engineer: Deniz Demirci
Test Location: FT Lab #4b

Config. Used: 1
Config Change: None
EUT Voltage: 4.2 Vdc nominal

Transient frequency Behaviour measurements setup

Note: The test has been performed with the method given in ANSI / TIA 603-C (2.2.19)

Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
Contact:	Ferdinand Riodique	Account Manager:	Deepa Shetty
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A


Run #6a

Carrier Frequency: 429.9875 MHz

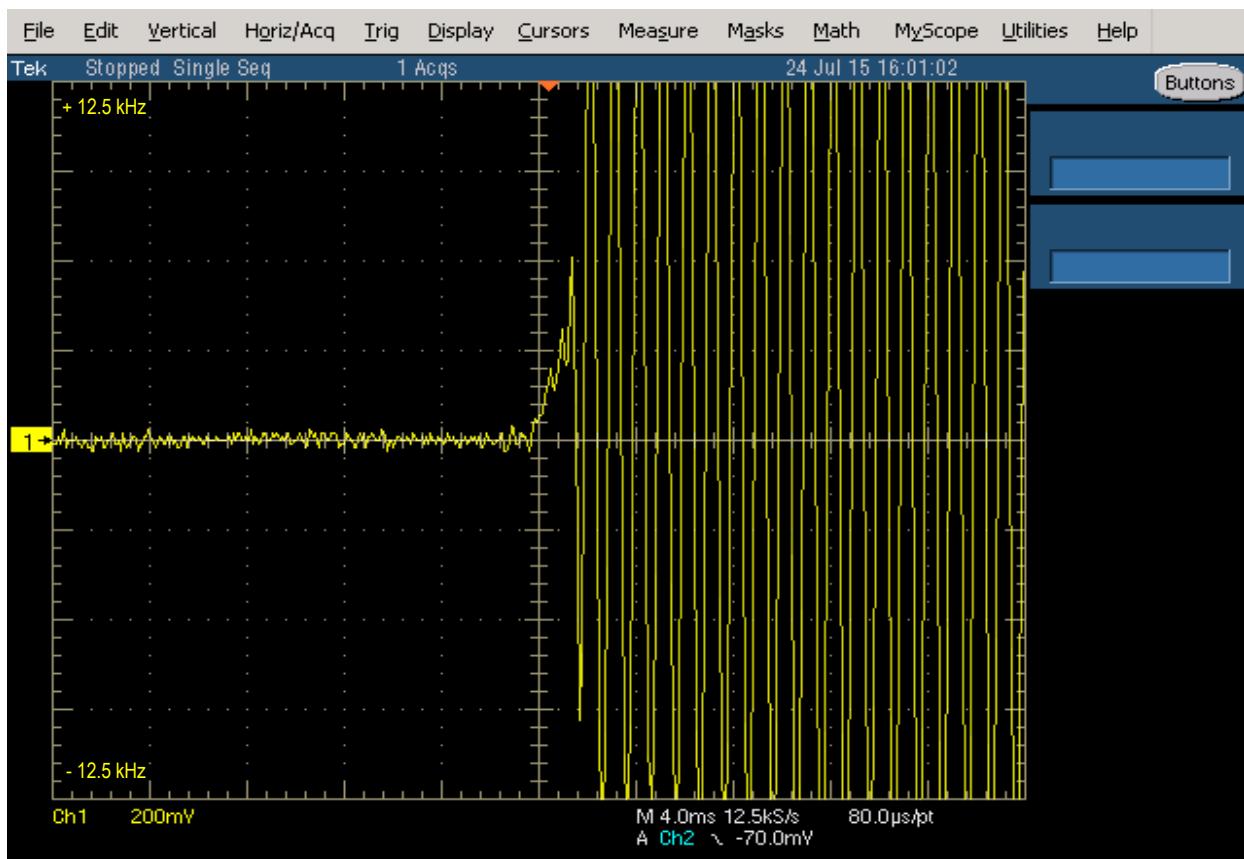
Channel Spacing: 6.25 kHz (worst case)

Modulation: CW

Description: Switch on condition t0, t1, and t2

Radio Test Data

Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
Contact:	Ferdinand Riodique	Account Manager:	Deepa Shetty
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A


Run #6b

Carrier Frequency: 429.9875 MHz

Channel Spacing: 6.25 kHz (worst case)

Modulation: CW

Description: Switch off condition t3 and toff

Radio Test Data

Client:	Topcon Positioning Systems	Job Number:	J96648
Model:	R2Lite UHF	T-Log Number:	T97391
		Account Manager:	Deepa Shetty
Contact:	Ferdinand Riodique		
Standard:	FCC Part 90, RSS-119 Issue 12, EN 300 113-2, AS/NZS 4768.1	Class:	N/A

Run #7: Frequency stability

Date of Test: 7/23/2015
Test Engineer: Deniz Demirci
Test Location: FT Lab #4b

Config. Used: 1
Config Change: None
EUT Voltage: 4.2 Vdc nominal

Temperature (Celsius)	Frequency Measured (MHz)	Drift	
		(Hz)	(ppm)
-30	429.987681	181	0.4
-20	429.987552	52	0.1
-10	429.987514	14	0.0
0	429.987513	13	0.0
10	429.987492	-8	0.0
20	429.987435	-65	0.2
30	429.987434	-66	0.2
40	429.987468	-32	0.1
50	429.987438	-62	0.1
Worst case:	429.987681	181	0.4

Frequency Stability Over Input Voltage
Nominal Voltage is 4.2 Vdc

Voltage (Dc)	Frequency Measured (MHz)	Drift	
		(Hz)	(ppm)
3.57	429.987434	-66	0.2
4.83	429.987426	-74	0.2

End of Report

This page is intentionally blank and
marks the last page of this test report.