

FCC TEST REPORT

Test report On Behalf of Autel Intelligent Tech. Corp., Ltd. For

AUTOMMOTIVE DIAGNOSTICS & ANALYSIS SYSTEM Model No.: MaxiSys MS908S II, MaxiSys MS908S Pro II, MaxiSys MS908CV II

FCC ID: WQ8-MS908S2122

Prepared For: Autel Intelligent Tech. Corp., Ltd.

7th-8th, 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd. Xili, Nanshan, Shenzhen,

518055 China

Shenzhen HUAK Testing Technology Co., Ltd. Prepared By:

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Feb. 09, 2022 ~ Feb. 17, 2022 **Date of Test:**

Feb. 17, 2022 **Date of Report:**

HK2202090302-3E Report Number:

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEST RESULT CERTIFICATION

Applicant's name Autel Intelligent Tech. Corp., Ltd.

7th-8th, 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd. Xili,

Nanshan, Shenzhen, 518055 China

Manufacture's Name: Autel Intelligent Tech. Corp., Ltd.

7th-8th, 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd. Xili,

Nanshan, Shenzhen, 518055 China

Product description

Standards..

Trade Mark: Autel

Product name....... AUTOMMOTIVE DIAGNOSTICS & ANALYSIS SYSTEM

MaxiSys MS908S II, MaxiSys MS908S Pro II, MaxiSys

Model and/or type reference : MS908CV II

FCC Rules and Regulations Part 15 Subpart E Section 15.407

ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Date (s) of performance of tests...... Feb. 09, 2022 ~ Feb. 17, 2022

Date of Issue Feb. 17, 2022

Test Result..... Pass

Testing Engineer

(Gary Qian)

Technical Manager

(Eden Hu)

Authorized Signatory:

HOWE IN

(Jason Zhou)

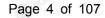

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TABLE OF CONTENTS

1.	TEST RESULT SUMMARY	
	1.1. TEST PROCEDURES AND RESULTS	5
	1.2. INFORMATION OF THE TEST LABORATORY	5
	1.3. MEASUREMENT UNCERTAINTY	6
2.		7
	2.1. GENERAL DESCRIPTION OF EUT	7
	2.2. OPERATION FREQUENCY EACH OF CHANNEL	
	2.3. OPERATION OF EUT DURING TESTING	
	2.4. DESCRIPTION OF TEST SETUP	9
3.	GENERA INFORMATION	10
	3.1. TEST ENVIRONMENT AND MODE	10
	3.2. DESCRIPTION OF SUPPORT UNITS	11
4.	TEST RESULTS AND MEASUREMENT DATA	12
	4.1. CONDUCTED EMISSION	
	4.2. MAXIMUM CONDUCTED OUTPUT POWER	16
	4.3. 6DB EMISSION BANDWIDTH	
	4.4. 26DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH	
	4.5. POWER SPECTRAL DENSITY	33
	4.6. BAND EDGE	47
	4.7. SPURIOUS EMISSION	84
	4.8. FREQUENCY STABILITY MEASUREMENT	102
	4.9. ANTENNA REQUIREMENT	104
5.	4.9. ANTENNA REQUIREMENT PHOTOGRAPHS OF TEST SETUP	105
o cinic		407

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

** Modified History **

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Feb. 17, 2022	Jason Zhou
UAK TE	WAK IT	THE WALLE	THE HUAKTE
9	9	9	(3)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

1. TEST RESULT SUMMARY

1.1. TEST PROCEDURES AND RESULTS

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Maximum Conducted Output Power	§15.407(a)	PASS
6dB Emission Bandwidth	§15.407(e)	PASS
26dB Emission Bandwidth & 99% Occupied Bandwidth	§15.407(a)	N/A
Power Spectral Density	§15.407(a)	PASS
Band edge	§15.407(b)/15.209/15.205	PASS
Radiated Emission	§15.407(b)/15.209/15.205	PASS
Frequency Stability	§15.407(g)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. INFORMATION OF THE TEST LABORATORY

Shenzhen HUAK Testing Technology Co., Ltd.

Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01.

FCC Designation Number is CN1229.

Canada IC CAB identifier is CN0045.

CNAS Registration Number is L9589.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

1.3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
_{NG} 1	Conducted Emission	±2.71dB
2	RF power, conducted	±0.37dB
3 (Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.90dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2. EUT DESCRIPTION

2.1. GENERAL DESCRIPTION OF EUT

Equipment	AUTOMMOTIVE DIAGNOSTICS & ANALYSIS SYSTEM
Model Name	MaxiSys MS908S II
Series Model	MaxiSys MS908S Pro II, MaxiSys MS908CV II
Trade Mark	Autel
Model Difference	All model's the function, software and electric circuit are the same, only with a product color and model named different. Test sample model: MaxiSys MS908S II
FCC ID	WQ8-MS908S2122
Operation Frequency	IEEE 802.11a/n/ac(HT20)5.745GHz-5.825GHz IEEE 802.11n/ac(HT40)5.755GHz-5.795GHz IEEE 802.11ac(HT80) 5.775GHz
Modulation Technology	IEEE 802.11a/n/ac
Modulation Type	CCK/OFDM/DBPSK/DAPSK
Antenna Type	Internal Antenna
Antenna Gain	Antenna 1:4.2dBi Antenna 2:3.4dBi MIMO: 6.829dBi
Power Source	DC 12V from adapter or DC 3.7V from battery
Power Supply	DC 12V from adapter or DC 3.7V from battery
Hardware Version:	DV2122_MAIN_V3
Software Version:	V01.23.00

Note:

The EUT incorporates a MIMO function. Physically, it provides two completed transmitte rs and receivers(2T2R), two transmit signals are completely correlated, then, Direction gain=GANT + Array Gain(Array Gain=10 log(2) dB for power spectral density; Array Gain =0 for power measurement).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2.2. OPERATION FREQUENCY EACH OF CHANNEL

802.11a/802.11n(HT20) 802.11ac(HT20)		802.11n(HT40)/ 802.11ac(HT40)		802.11ac(HT80)	
Channel	Frequency	Channel	Frequency	Channel	Frequency
149	5745	151	5755	155	5775
153	5765	159	5790	ESTING	
157	5785		ang MY	N Dr.	G NG
161	5805	NY TESTING	MAKTESI	NY TEST	WAX TEST
165	5825	O HO	0	O HO	0

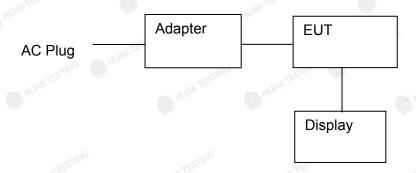
Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

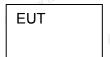
2.3. OPERATION OF EUT DURING TESTING

Band IV (5725 - 5850 MHz)					
F	For 802.11a/n (HT20)/ac (HT20)				
Channel Number	(hannel Frequency (MHz)				
149	5745				
157	Mid Mid	5785			
165	High	5825			

For 802.11n (HT40)/ac (HT40)				
Channel Number	Channel	Frequency (MHz)		
151	Low	5755		
159	High	5795		


	For 802.11ac (HT80)				
Channel Number	Channel	Frequency (MHz)			
155		5775			

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.



2.4. DESCRIPTION OF TEST SETUP

Operation of EUT during conducted testing and radiation below 1GHz testing:

Operation of EUT during radiation above 1GHz testing:

Adapter information

Model: GME36E-120300FDR Input: 100-240V~50-60Hz 1.2A

Output:12V 3A, 36.0W

Display information Model: 24PFF3661/T3

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

3. GENERA INFORMATION

3.1. TEST ENVIRONMENT AND MODE

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 100%)

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

1100 110101 00001				
Mode	Data rate			
802.11a	6 Mbps			
802.11n(HT20)	MCS0			
802.11n(HT40)	MCS0 MCS0			
802.11ac(HT20)/ac(HT40)/ac(HT80)	MCS0			
Final Test Mode:				

Operation mode:

Keep the EUT in continuous transmitting with modulation

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.co

3.2. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	IS I HUAK TESTI	I STING	I HUMETESTIN	1 STING

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEST RESULTS AND MEASUREMENT DATA

CONDUCTED EMISSION

4.1.1. Test Specification

TING	TING	NG C	TING CTIL		
Test Requirement:	FCC Part15 C Section	15.207	HUAKTE		
Test Method:	ANSI C63.10:2013	STAG			
Frequency Range:	150 kHz to 30 MHz	MUAN IS	LOK TESTING		
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	e=auto		
	Frequency range	Limit (dBuV)		
	(MHz)	Quasi-peak	Áverage		
Limits:	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	TESTING	NG TES	ral TEST		
	Referen	ce Plane			
	1.0	LISN			
	40cm	80cm			
	E.U.T AC pow	Filter	– AC power		
Test Setup:	2.5.1	EMI			
rest octup.	Test table/Insulation plane	Receiver			
	Remark: E.U.T: Equipment Under Test				
	LISN: Line Impedence Stabilization I Test table height=0.8m	Network			
Test Mode:	TX Mode	- Our	anie Sum		
rest wode.	TES .	TES'	MY TESTI		
	1. The E.U.T and simu				
	power through a line	- A.Ca.			
	(L.I.S.N.). This pro				
	impedance for the m	(N.) (N.)			
	2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH				
	coupling impedance	-675			
Test Procedure:	refer to the block		•		
	photographs).	diagram of the	test setup and		
	3. Both sides of A.C.	line are checke	ad for maximum		
	conducted interferer				
	emission, the relative				
	the interface cables		-1 P - 1 P -		
	ANSI C63.10: 2013	- 1 DV-	1.00		
Test Result:	PASS	TING	1987		
	45°	45**			

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Report No.: HK2202090302-3E

4.1.2. Test Instruments

400 T 1 600		V207 / /	48(375)	VOW 7	62573)				
Conducted Emission Shielding Room Test Site (843)									
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due				
Receiver	R&S	ESCI 7	HKE-010	Dec. 09, 2021	Dec. 08, 2022				
LISN	R&S	ENV216	HKE-002	Dec. 09, 2021	Dec. 08, 2022				
Coax cable (9KHz-30MHz)	Times	381806-002	N/A	Dec. 09, 2021	Dec. 08, 2022				
Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	N/A	N/A				

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

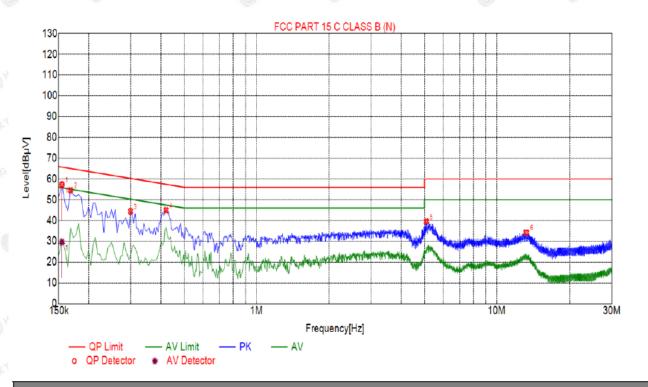
4.1.3. Test data

All the test modes completed for test. only the worst result was reported as below:

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Sus	Suspected List											
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре				
1	0.1500	59.26	20.03	66.00	6.74	39.23	PK	L				
2	0.1815	53.09	20.06	64.42	11.33	33.03	PK	L				
3	0.4245	45.19	20.04	57.36	12.17	25.15	PK	L				
4	4.0065	39.45	20.25	56.00	16.55	19.20	PK	L				
5	5.3070	36.38	20.26	60.00	23.62	16.12	PK	L				
6	12.9885	33.78	19.97	60.00	26.22	13.81	PK	L				

9	Final Data List											
	NO.	Freq. [MHz]	Correction factor[dB]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	QP Reading [dBμV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	AV Reading [dBμV]	Туре
3	1	0.1500	20.03	58.39	66.00	7.61	38.36	33.55	56.00	22.45	13.52	L


Remark: Margin = Limit – Level

Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

of 107 Report No.: HK2202090302-3E

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Sus	Suspected List											
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре				
1	0.1545	57.33	20.03	65.75	8.42	37.30	PK	N				
2	0.1680	54.59	20.01	65.06	10.47	34.58	PK	N				
3	0.2985	44.40	20.04	60.28	15.88	24.36	PK	N				
4	0.4200	44.94	20.04	57.45	12.51	24.90	PK	N				
5	5.0910	39.52	20.26	60.00	20.48	19.26	PK	N				
6	13.2180	34.22	19.96	60.00	25.78	14.26	PK	N				

	Final Data List											
	NO.	Freq. [MHz]	Correction factor[dB]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	QP Reading [dBμV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	AV Reading [dBμV]	Туре
8	1	0.1545	20.03	57.31	65.75	8.44	37.28	29.56	55.75	26.19	9.53	N

Remark: Margin = Limit – Level

Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.2. MAXIMUM CONDUCTED OUTPUT POWER

4.2.1. Test Specification

Test Requirement:	FCC Part15 E Section	on 15.407(a)
Test Method:	KDB789033 D02 Ge Rules v02.r01 Section	eneral UNII Test Procedures New on E
Limit:	Frequency Band (MHz)	Limit MAKTESTING
	5725-5850	1 W
Test Setup:		THIS MANUTESTING
	Power meter	EUT HUAN TESTI
Test Mode:	Transmitting mode w	vith modulation
Test Procedure:	KDB789033 D02 Rules v02r01 Se 2. The RF output of meter by RF cab compensated to 3. Set to the maximu EUT transmit cor	EUT was connected to the power le and attenuator. The path loss was the results for each measurement. um power setting and enable the ntinuously. ducted output power and record the
Test Result:	PASS	
Remark:	+10log(1/x) X is duty	ower= measurement power / cycle=1, so 10log(1/1)=0 ower= measurement power

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.2.2. Test Instruments

	RF Test Room									
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due					
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 09, 2021	Dec. 08, 2022					
Power meter	Agilent	E4419B	HKE-085	Dec. 09, 2021	Dec. 08, 2022					
Power Sensor	Agilent	E9300A	HKE-086	Dec. 09, 2021	Dec. 08, 2022					
RF cable	Times	1-40G	HKE-034	Dec. 09, 2021	Dec. 08, 2022					
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 09, 2021	Dec. 08, 2022					

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.2.3. Test Data

	Co	nfiguration Band	V (5725 - 5850 MHz)	
Mode	Test channel	Maximum Output P	FCC Limit	Result	
	onamici	Antenna port 1	Antenna port 2	(dBm)	
11a	CH149	13.46	15.55	30	PASS
11a	CH157	13.91	15.53	30	PASS
11a	CH165	15.01	16.20	30	PASS
11n(HT20)	CH149	13.48	15.67	30	PASS
11n(HT20)	CH157	14.00	15.54	30	PASS
11n(HT20)	CH165	15.02	16.19	30	PASS
11n(HT40)	CH151	13.83	15.85	30	PASS
11n(HT40)	CH159	14.25	15.77	30	PASS
11ac(HT20)	CH149	13.47	15.64	30	PASS
11ac(HT20)	CH157	13.95	15.58	30	PASS
11ac(HT20)	CH165	15.02	16.19 MANAGE	30	PASS
11ac(HT40)	CH151	13.76	15.81	30	PASS
11ac(HT40)	CH159	14.22	15.74	30	PASS
11ac(HT80)	CH155	14.30	16.03	30	PASS

	Co	nfiguration Band IV (5725 - 5850 Ml	Hz)	
Mode	Test	Test Output Power (dBm)		Result
	onamio.	MIMO	(dBm)	
11n(HT20)	CH149	17.72	30	PASS
11n(HT20)	CH157	17.85	30	PASS
11n(HT20)	CH165	18.65	30	PASS
11n(HT40)	CH151	17.97	30	PASS
11n(HT40)	CH159	18.09	30	PASS
11ac(HT20)	CH149	17.70	30	PASS
11ac(HT20)	CH157	17.85	30	PASS
11ac(HT20)	CH165	18.65	30	PASS
11ac(HT40)	CH151	17.92	30	PASS
11ac(HT40)	CH159	18.06	30	PASS
11ac(HT80)	CH155	18.26	30	PASS

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.3. 6DB EMISSION BANDWIDTH

4.3.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407(e)					
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v01r04 Section C					
Limit:	>500kHz					
Test Setup:	Spectrum Analyzer EUT					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v01r04 Section C. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. 					
Test Result:	PASS					

4.3.2. Test Instruments

RF Test Room									
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due				
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 09, 2021	Dec. 08, 2022				
RF cable	Times	1-40G	HKE-034	Dec. 09, 2021	Dec. 08, 2022				
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 09, 2021	Dec. 08, 2022				

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

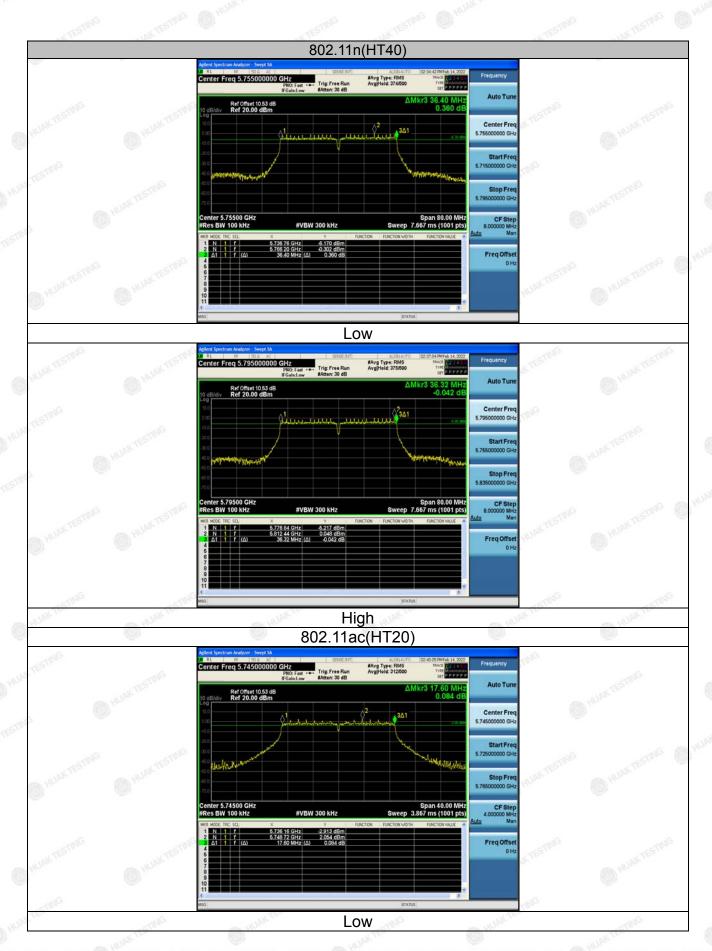
4.3.3. Test data

ANT 1

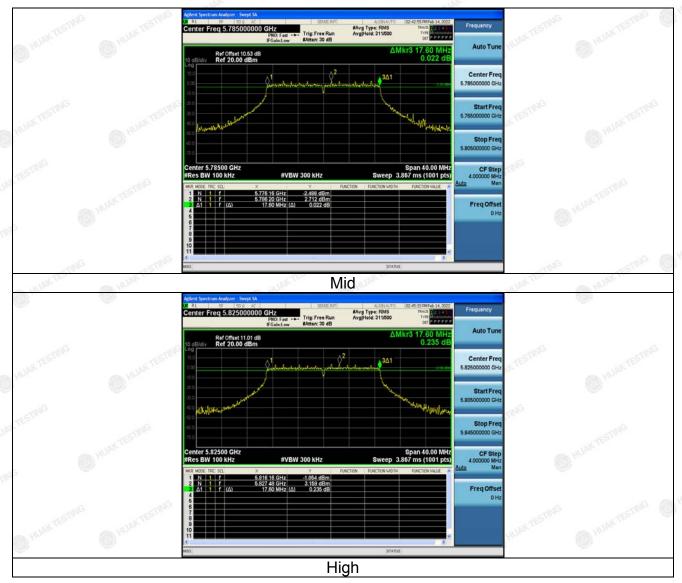
Band IV (5725	5 - 5850 MHz)					
Mode	Test channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)	Result PASS	
11a	CH149	5745	16.400	0.5		
11a	CH157	5785	16.400	0.5	PASS	
11a , , , , , ,	CH165	5825	16.400	0.5	PASS	
11n(HT20)	CH149	5745	17.600	0.5	PASS	
11n(HT20)	CH157	5785	17.600	0.5	PASS	
11n(HT20)	CH165	5825	17.600	0.5	PASS	
11n(HT40)	CH151	5755	36.400	0.5	PASS	
11n(HT40)	CH159	5795	36.320	0.5	PASS	
11ac(HT20)	CH149	5745	17.600	0.5	PASS	
11ac(HT20)	CH157	5785	17.600	0.5	PASS	
11ac(HT20)	CH165	5825	17.600	0.5	PASS	
11ac(HT40)	CH151	5755	36.320	0.5	PASS	
11ac(HT40)	CH159	5795	36.320	0.5	PASS	
11ac(HT80)	CH155	5775	76.000	0.5	PASS	

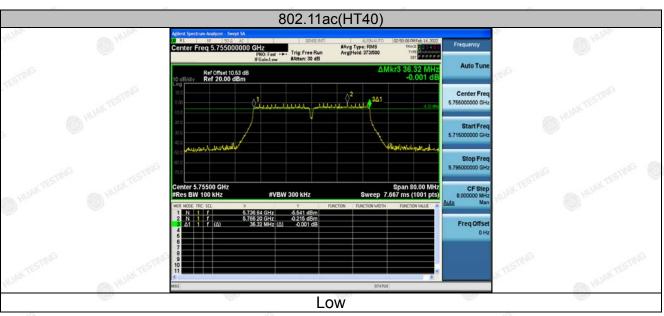
Test plots as follows:

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


High



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

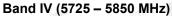
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

802.11ac(HT80)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

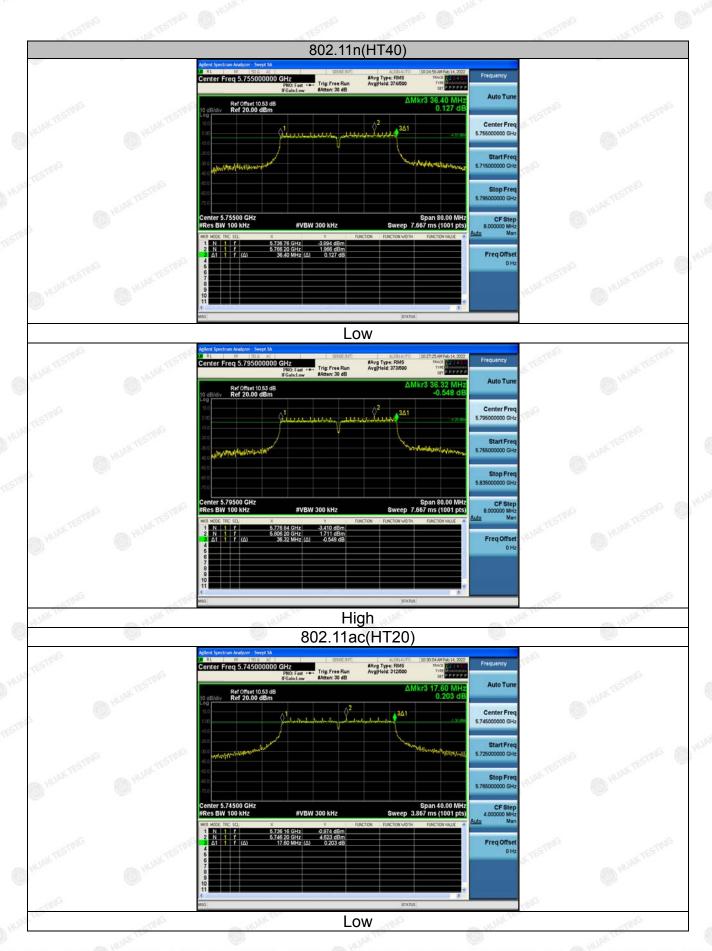
this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

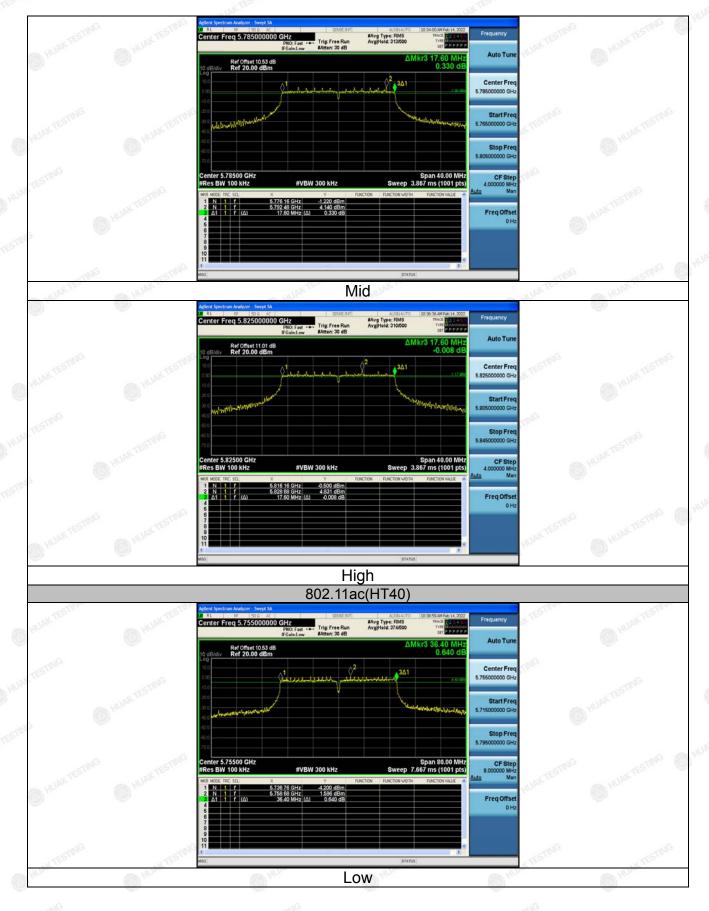

ANT 2

Band IV (5725	5 - 5850 MHz)					
Mode	Test channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)	Result	
11a 🛞	11a CH149		16.320	0.5	PASS	
11a	CH157	5785	16.360	0.5	PASS	
11a	CH161	5825	16.400	0.5	PASS	
11n(HT20)	CH149	5745	17.600	0.5	PASS	
11n(HT20)	CH157	5785	17.600	0.5	PASS	
11n(HT20)	CH161	5825	17.600	0.5	PASS	
11n(HT40)	CH151	5755	36.400	0.5	PASS	
11n(HT40)	CH159	5795	36.320	0.5	PASS	
11ac(HT20)	CH149	5745	17.600	0.5	PASS	
11ac(HT20)	CH157	5785	17.600	0.5	PASS	
11ac(HT20)	CH165	5825	17.600	0.5	PASS	
11ac(HT40)	CH151	5755	36.400	0.5	PASS	
11ac(HT40)	CH159	5795	36.400	0.5	PASS	
11ac(HT80)	CH155	5755	75.680	0.5	PASS	

Test plots as follows:

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.




The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.4. 26DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

4.4.1. Test Specification

Test Requirement:	47 CFR Part 15C Section 15.407 (a)							
Test Method:	KDB789033 D02 General UN Rules v02r01 Section C	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C						
Limit:	No restriction limits	No restriction limits						
Test Setup:	Spectrum Analyzer	EUT	WE WANTESTING					
Test Mode:	Transmitting mode with modulation							
Test Procedure:	Rules v02r01 Section C. 2. Set to the maximum power EUT transmit continuously. 3. Make the measurement wiresolution bandwidth RBV In order to make an accur	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth RBW = 1% EBW, VBW≥3RBW, In order to make an accurate measurement. Measure and record the results in the test report. 						
Test Result:	N/A TETHE N/A							

4.4.2. Test Instruments

RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 09, 2021	Dec. 08, 2022		
RF cable	Times	1-40G	HKE-034	Dec. 09, 2021	Dec. 08, 2022		
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 09, 2021	Dec. 08, 2022		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.4.3. Test Result

N/A

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.5. POWER SPECTRAL DENSITY

4.5.1. Test Specification

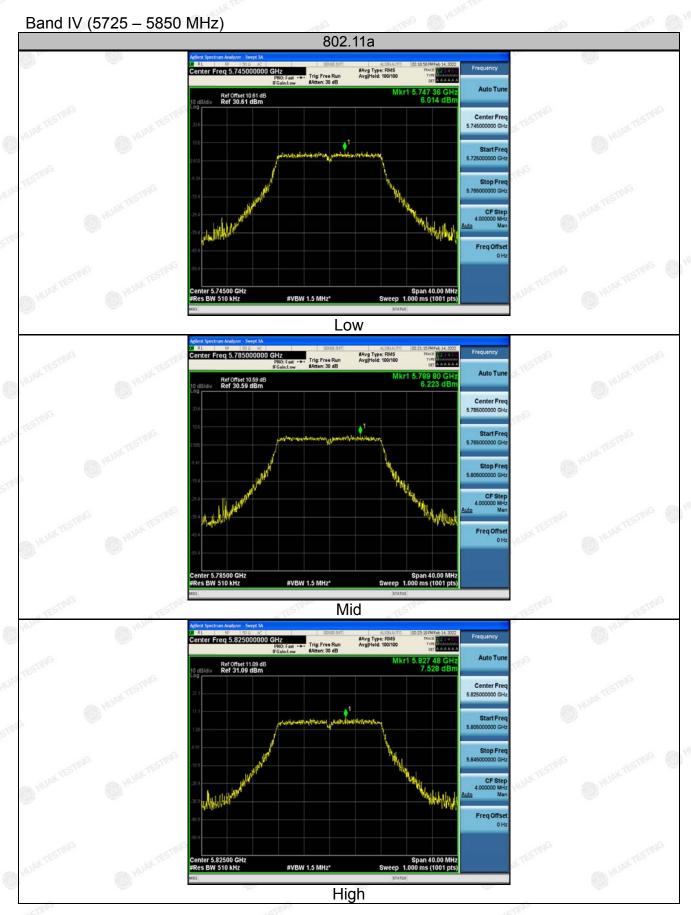
Test Method: KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F Limit: ≤30.00dBm/500KHz for Band IV 5725MHz-5850MHz Test Setup: Test Mode: Transmitting mode with modulation 1. Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. 2. Set RBW = 510KHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS.								
Rules v02r01 Section F Limit: ≤30.00dBm/500KHz for Band IV 5725MHz-5850MHz Test Setup: Fut Test Mode: Transmitting mode with modulation 1. Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. 2. Set RBW = 510KHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS.	Test Requirement:	FCC Part15 E Section 15.407 (a)						
Test Setup: Test Mode: Transmitting mode with modulation 1. Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. 2. Set RBW = 510KHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS.	Test Method:							
Test Setup: Spectrum Analyzer Test Mode: Transmitting mode with modulation 1. Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. 2. Set RBW = 510KHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS.	Limit:	≤30.00dBm/500KHz for Band IV 5725MHz-5850MHz						
 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510KHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. 	Test Setup:	FUT NE TIME						
view the entire emission bandwidth. 2. Set RBW = 510KHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS.	Test Mode:	Transmitting mode with modulation						
4. Use the peak marker function to determine the maximum amplitude level. 5. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment.	Test Procedure:	view the entire emission bandwidth. 2. Set RBW = 510KHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. 3. Allow the sweeps to continue until the trace stabilizes 4. Use the peak marker function to determine the maximum amplitude level. 5. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near						
Test Result: PASS	Test Result:	PASS						

4.5.2. Test Instruments

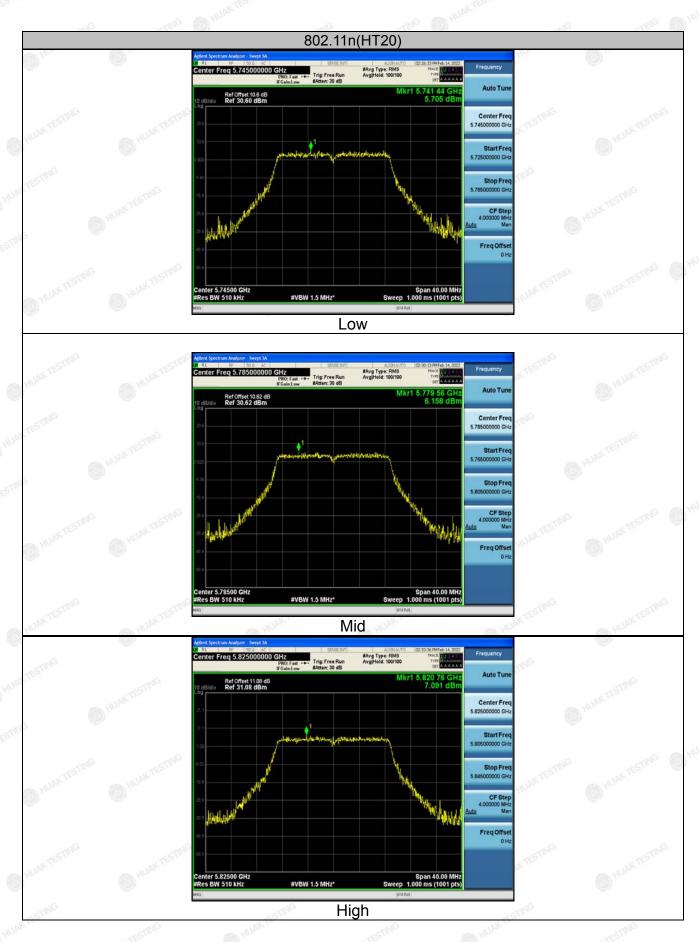
RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 09, 2021	Dec. 08, 2022		
RF cable	Times	1-40G	HKE-034	Dec. 09, 2021	Dec. 08, 2022		
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 09, 2021	Dec. 08, 2022		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

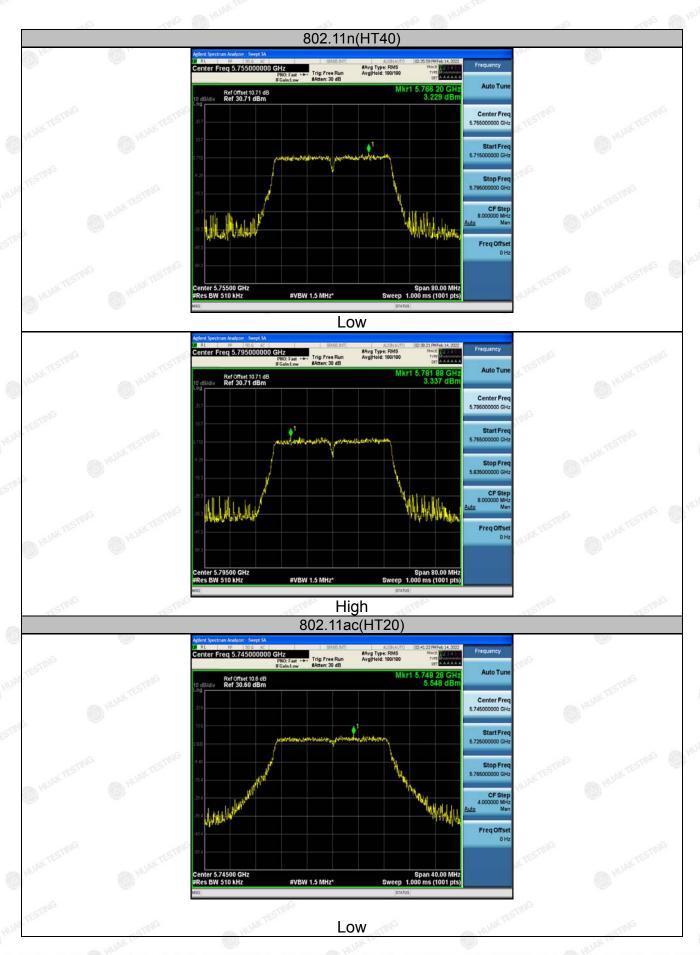
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

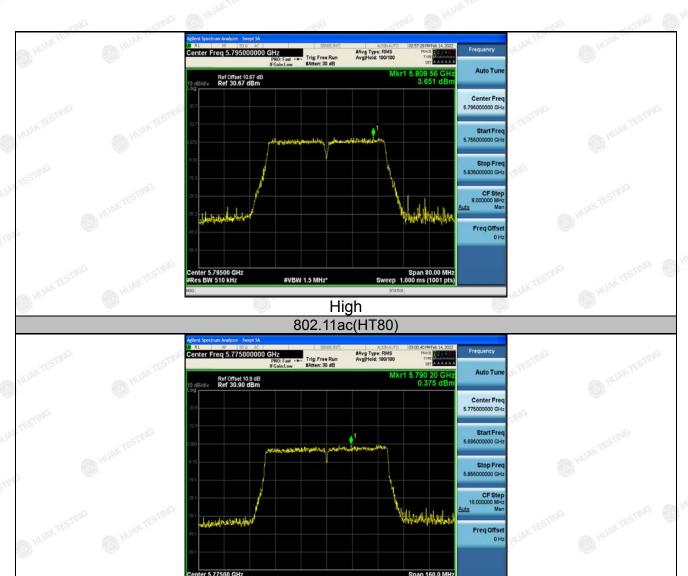

4.5.3. Test data

ANT 1

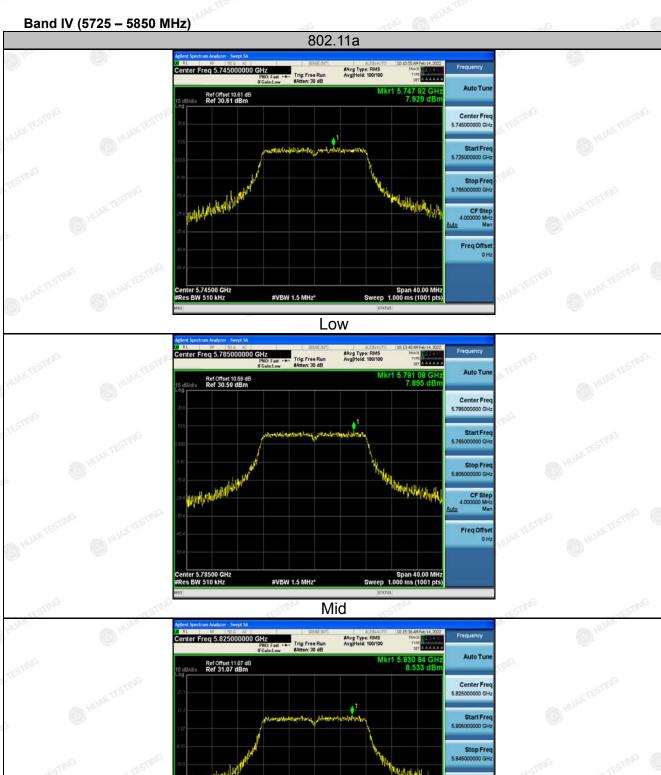

			ANII			
Mode	Test channel	Level [dBm/510kHz]	10log(500/510)	Power Spectral Density(dB m/500kHz)	Limit (dBm/500kHz)	Result
11a	CH149	6.01	-0.086	5.924	30	PASS
11a	CH157	6.22	-0.086	6.134	30	PASS
11a	CH161	7.53	-0.086	7.444	30	PASS
11n(HT20)	CH149	5.71	-0.086	5.624	30	PASS
11n(HT20)	CH157	6.16	-0.086	6.074	30	PASS
11n(HT20)	CH161	7.09	-0.086	7.004	30	PASS
11n(HT40)	CH151	3.23	-0.086	3.144	30	PASS
11n(HT40)	CH159	3.34	-0.086	3.254	30	PASS
11ac(HT20)	CH149	5.55	-0.086	5.464	30	PASS
11ac(HT20)	CH157	6.03	-0.086	5.944	30	PASS
11ac(HT20)	CH161	6.81	-0.086	6.724	30	PASS
11ac(HT40)	CH151	3.49	-0.086	3.404	30	PASS
11ac(HT40)	CH159	3.65	-0.086	3.564	30	PASS
11ac(HT80)	CH155	0.38	-0.086	0.294	30	PASS

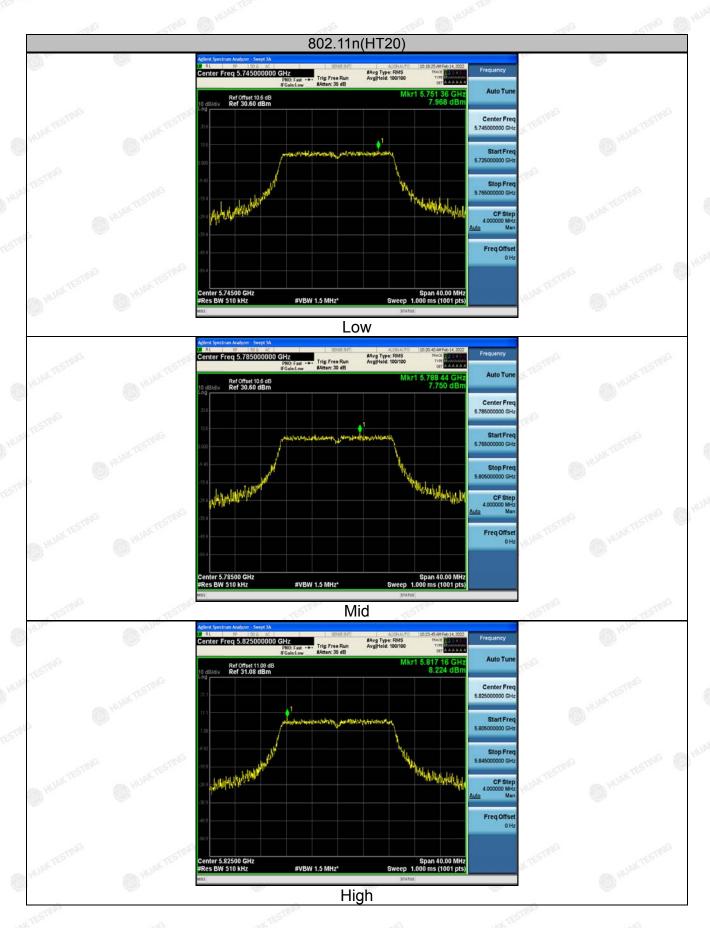
Test plots as follows:


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

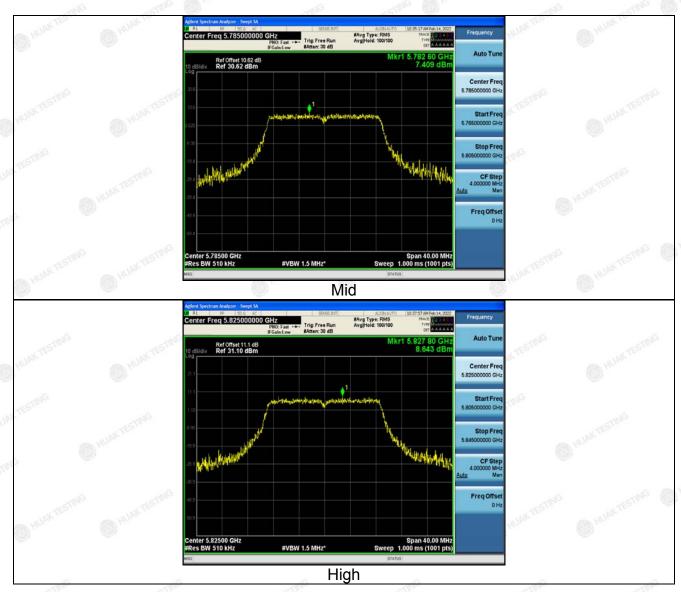



ANT 2

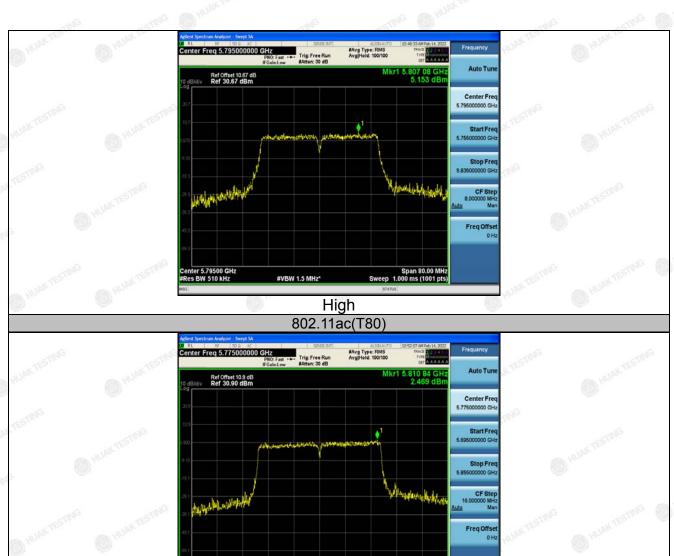
Configuration Band IV (5725 - 5850 MHz)								
Mode	Test channel	Level [dBm/510kHz]	10log(500/5 10)	Power Spectral Density(dB m/500kHz)	Limit (dBm/500kH z)	Result		
11a	CH149	7.93	-0.086	7.844	30	PASS		
11a	CH157	7.9	-0.086	7.814	30	PASS		
11a 🎳	CH161	8.53	-0.086	8.444	30	PASS		
11n(HT20)	CH149	7.97	-0.086	7.884	30	PASS		
11n(HT20)	CH157	7.75	-0.086	7.664	30	PASS		
11n(HT20)	CH161	8.22	-0.086	8.134	30	PASS		
11n(HT40)	CH151	4.71	-0.086	4.624	30	PASS		
11n(HT40)	CH159	4.64	-0.086	4.554	30	PASS		
11ac(HT20)	CH149	8.17	-0.086	8.084	30	PASS		
11ac(HT20)	CH157	7.41	-0.086	7.324	30	PASS		
11ac(HT20)	CH161	8.64	-0.086	8.554	30	PASS		
11ac(HT40)	CH151	5.43	-0.086	5.344	30	PASS		
11ac(HT40)	CH159	5.15	-0.086	5.064	30	PASS		
11ac(HT80)	CH155	2.47	-0.086	2.384	30	PASS		

Test plots as follows:

High




TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com



For MIMO antenna port 1+antenna port 2

Configuration Band IV (5725 - 5850 MHz)

Mode	Test channel	Power Density (dBm/500KHz)	Limit (dBm/500KHz)	Result	
11n(HT20)	CH149	10.00	29.171	PASS	
11n(HT20)	CH157	10.04	29.171	PASS	
11n(HT20)	CH161	10.70	29.171	PASS	
11n(HT40)	CH151	7.04	29.171	PASS	
11n(HT40)	CH159	7.05	29.171	PASS	
11ac(HT20)	CH149	10.06	29.171	PASS	
11ac(HT20)	CH157	9.78	29.171	PASS	
11ac(HT20)	CH161	10.83	29.171	PASS	
11ac(HT40)	CH151	7.58	29.171	PASS	
11ac(HT40)	CH159	7.47	29.171	PASS	
11ac(HT80)	CH155	4.56	29.171	PASS	

Note: 1 According to KDB 662911, Result power = 10log(10^(ant1/10)+10^(ant2/10)). 2. limit=30dBm-(direction gain-6dBi)=29.171dBm

Note: This product supports antenna 1 and antenna 2 launch, but only support 802.11 n/ac for MIMO mode, not support 802.11 a for MIMO mode.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.6. BAND EDGE

4.6.1. Test Specification

Test Requirement:	FCC CFR47 Part 15E Section 15.407				
Test Method:	ANSI C63.10 2013				
Limit:	(1) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. The limit of frequency below 1GHz and which fall in restricted bands should complies 15.209.				
Test Setup:	Ant. feed point 1.5 m Ground Plane Receiver Amp.				
Test Mode:	Transmitting mode with modulation				
	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 				

	700
5. The test-receiver system was se Function and Specified Bandwidth Mode. 6. If the emission level of the EUT i 10dB lower than the limit specified, stopped and the peak values of the reported. Otherwise the emissions 10dB margin would be re-tested on quasi peak or average method as a reported in a data sheet.	with Maximum Hold in peak mode was then testing could be EUT would be that did not have he by one using peak,
PASS	*
	Function and Specified Bandwidth Mode. 6. If the emission level of the EUT i 10dB lower than the limit specified, stopped and the peak values of the reported. Otherwise the emissions 10dB margin would be re-tested or quasi peak or average method as steported in a data sheet.

4.6.2. Test Instruments

Radiated Emission Test Site (966)							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Receiver	R&S	ESRP3	HKE-005	Dec. 09, 2021	Dec. 08, 2022		
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 09, 2021	Dec. 08, 2022		
Preamplifier	EMCI	EMC051845S E	HKE-015	Dec. 09, 2021	Dec. 08, 2022		
Preamplifier	Agilent	83051A	HKE-016	Dec. 09, 2021	Dec. 08, 2022		
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 09, 2021	Dec. 08, 2022		
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Dec. 09, 2021	Dec. 08, 2022		
Horn antenna	Schwarzbeck	9120D	HKE-013	Dec. 09, 2021	Dec. 08, 2022		
Antenna Mast	Keleto	CC-A-4M	N/A	N/A	N/A		
Position controller	Taiwan MF	MF7802	HKE-011	Dec. 09, 2021	Dec. 08, 2022		
Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	N/A		
RF cable (9KHz-1GHz)	Times	381806-001	N/A	N/A	N/A		
Hf antenna	Schwarzbeck	LB-180400-KF	HKE-031	Dec. 09, 2021	Dec. 08, 2022		
RF cable	Tonscend	1-18G	HKE-099	Dec. 09, 2021	Dec. 08, 2022		
RF cable	Times	1-40G	HKE-034	Dec. 09, 2021	Dec. 08, 2022		
Horn Antenna	Schewarzbeck	BBHA 9170	HKE-017	Dec. 09, 2021	Dec. 08, 2022		
Spectrum analyzer	R&S	FSP40	HKE-025	Dec. 09, 2021	Dec. 08, 2022		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.6.3. Test Data

ANT 1

Operation Mode: 802.11a Mode with 5.8G TX CH Low

Horizontal:

450	A Pro	Alle House	All Are	ACC.	Pro-	All House
Frequency Meter Reading		Factor Emission Level		Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	52.68	-2.06	50.62	68.2	-17.58	peak
5700	89.89	-1.96	87.93	105.2	-17.27	peak
5720	94.58	-2.87	91.71	110.8	-19.09	peak
5725	106.71	-2.14	104.57	122.2	-17.63	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turn
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	52.19	-2.06	50.13	68.2	-18.07	peak
5700	89.34	-1.96	87.38	105.2	-17.82	peak
5720	95.28	-2.87	92.41	110.8	-18.39	peak
5725	105.46	-2.14	103.32	122.2	-18.88	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com