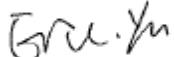


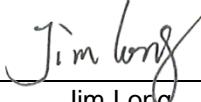
FCC TEST REPORT

Product Name: SNES Wireless Dongle
Trade Mark: INSIGNIA™
Model No.: NS-GSNESWLC18
Report Number: 170920005RFC-2
Test Standards: FCC 47 CFR Part 15 Subpart C , Section 15.249
FCC ID: WP85F02007
Test Result: PASS
Date of Issue: September 28, 2017


Prepared for:

The ZEN Factory Group (Asia)
House 23, Hibiscus Path, Westwood, Palm Springs, yuen Long,
NT,Hong Kong

Prepared by:


Shenzhen UnionTrust Quality and Technology Co., Ltd.
16/F, Block A, Building 6, Baoneng Science and Technology Park,
Qingxiang Road No.1, Longhua New District, Shenzhen, China
TEL: +86-755-2823 0888
FAX: +86-755-2823 0886

Tested by:

Eric Yu
Engineer

Reviewed by:

Jim Long
Senior Supervisor

Approved by:

Billy Li
Technical Director

Date: September 28, 2017

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China
Tel: +86-755-28230888 Fax: +86-755-28230886 E-mail: info@uttlab.com

[Http://www.uttlab.com](http://www.uttlab.com)

Version

Version No.	Date	Description
V1.0	September 28, 2017	Original

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China
Tel: +86-755-28230888

Fax: +86-755-28230886

E-mail: info@uttlab.com

[Http://www.uttlab.com](http://www.uttlab.com)

CONTENTS

1. GENERAL INFORMATION	4
1.1 CLIENT INFORMATION	4
1.2 EUT INFORMATION	4
1.2.1 GENERAL DESCRIPTION OF EUT	4
1.2.2 DESCRIPTION OF ACCESSORIES.....	4
1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD.....	4
1.4 OTHER INFORMATION.....	4
1.5 DESCRIPTION OF SUPPORT UNITS	5
1.6 TEST LOCATION.....	5
1.7 TEST FACILITY.....	5
1.8 DEVIATION FROM STANDARDS	5
1.9 ABNORMALITIES FROM STANDARD CONDITIONS.....	6
1.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER	6
1.11 MEASUREMENT UNCERTAINTY	6
2. TEST SUMMARY	7
3. EQUIPMENT LIST	8
4. TEST CONFIGURATION	9
4.1 ENVIRONMENTAL CONDITIONS FOR TESTING	9
4.1.1 NORMAL OR EXTREME TEST CONDITIONS	9
4.1.2 RECORD OF NORMAL ENVIRONMENT.....	9
4.2 TEST CHANNELS	9
4.3 EUT TEST STATUS	9
4.4 TEST SETUP	9
4.4.1 FOR RADIATED EMISSIONS TEST SETUP	9
4.4.2 FOR CONDUCTED EMISSIONS TEST SETUP	10
4.4.3 FOR CONDUCTED EMISSIONS TEST SETUP	10
4.5 SYSTEM TEST CONFIGURATION	11
4.6 DUTY CYCLE	12
5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION	13
5.1 REFERENCE DOCUMENTS FOR TESTING	13
5.2 ANTENNA REQUIREMENT	13
5.3 RADIATED EMISSION.....	13
5.4 RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	17
5.5 20DB OCCUPIED BANDWIDTH	19
5.6 CONDUCTED EMISSION	20
APPENDIX 1 PHOTOS OF TEST SETUP	23

1. GENERAL INFORMATION

1.1 CLIENT INFORMATION

Applicant:	The ZEN Factory Group (Asia)
Address of Applicant:	House 23, Hibiscus Path, Westwood, Palm Springs, yuen Long, NT,Hong Kong

1.2 EUT INFORMATION

1.2.1 General Description of EUT

Product Name:	SNES Wireless Dongle
Model No.:	NS-GSNESWLC18
EUT Supports Function:	General 2.4GHz Technique
Power Supply:	The transmitter unit is supplied by DC 5V from USB port
Sample Received Date:	September 22, 2017
Sample Tested Date:	September 22, 2017 to September 29, 2017
Note:	N/A

1.2.2 Description of Accessories

Voltage	
Rated Voltage:	USB 5.0 Vdc

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

Frequency Range:	2425 MHz to 2470 MHz	
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)	
Type of Modulation:	GFSK	
Number of Channels:	3 (2425MHz, 2450MHz, 2475MHz)	
Antenna Type:	PCB Antenna	
Antenna Gain:	-1 dBi	
Maximum Field Strength:	93.51 dB _P V/m	
Normal Test Voltage:	Transmitter unit:	5.0 Vdc

1.4 OTHER INFORMATION

Test RF Channel Lists		
Lowest(L)	Middle(M)	Highest(H)
2425MHz	2450 MHz	2470 MHz

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested independently

1) Support Equipment

Description	Manufacturer	Model No.	Serial Number	Supplied by
NES Main engine	N/A	OEE101118772	PZ16084	Applicant

2) Support Cable

Cable No.	Description	Connector	Length	Supplied by
1	Antenna Cable	SMA	0.30 Meter	UnionTrust

1.6 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China 518109
Telephone: +86 (0) 755 2823 0888
Fax: +86 (0) 755 2823 0886

1.7 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

IC-Registration No.: 21600-1

The 3m Semi-anechoic chamber of Shenzhen UnionTrust Quality and Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 21600-1.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC Accredited Lab.

Designation Number: CN1194
Test Firm Registration Number: 259480

1.8 DEVIATION FROM STANDARDS

None.

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China
Tel: +86-755-28230888
Fax: +86-755-28230886
E-mail: info@uttlab.com
[Http://www.uttlab.com](http://www.uttlab.com)

1.9 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.11 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Measurement Uncertainty
1	Conducted emission 9KHz-150KHz	±3.8 dB
2	Conducted emission 150KHz-30MHz	±3.4 dB
3	Radiated emission 9KHz-30MHz	±4.9 dB
4	Radiated emission 30MHz-1GHz	±4.7 dB
5	Radiated emission 1GHz-18GHz	±5.1 dB
6	Radiated emission 18GHz-26GHz	±5.2 dB
7	Radiated emission 26GHz-40GHz	±5.2 dB

2. TEST SUMMARY

FCC 47 CFR Part 15 Subpart C , Section 15.249 Test Cases			
Test Item	Test Requirement	Test Method	Result
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203	ANSI C63.10-2013	PASS
Conducted Emission	FCC 47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Radiated Emission	FCC 47 CFR Part 15 Subpart C Section 15.249 (a)/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	FCC 47 CFR Part 15 Subpart C Section 15.249(a)/15.205	ANSI C63.10-2013	PASS
20dB Occupied Bandwidth	FCC 47 CFR Part 15 Subpart C Section 15.215 (c)	ANSI C63.10-2013	PASS

3. EQUIPMENT LIST

Radiated Emission Test Equipment List							
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)	
<input checked="" type="checkbox"/>	3M Chamber & Accessory Equipment	ETS-LINDGREN	3M	N/A	Dec. 20, 2015	Dec. 19, 2018	
<input checked="" type="checkbox"/>	Receiver	R&S	ESIB26	100114	Dec. 22, 2016	Dec. 22, 2017	
<input type="checkbox"/>	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Dec. 22, 2016	Dec. 22, 2017	
<input type="checkbox"/>	Loop Antenna	ETS-LINDGREN	6502	00202525	Jun. 24, 2015	Jun. 23, 2018	
<input checked="" type="checkbox"/>	Broadband Antenna	ETS-LINDGREN	3142E	00201566	Jul. 24, 2015	Jul. 23, 2018	
<input checked="" type="checkbox"/>	Preamplifier	HP	8447F	2805A02960	Dec. 22, 2016	Dec. 22, 2017	
<input type="checkbox"/>	Broadband Antenna (Pre-amplifier)	ETS-LINDGREN	3142E-PA	00201891	Dec. 30, 2016	Dec. 30, 2017	
<input type="checkbox"/>	Horn Antenna	ETS-LINDGREN	3117	00164202	Jul. 24, 2015	Jul. 23, 2018	
<input checked="" type="checkbox"/>	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201874	Dec. 30, 2016	Dec. 30, 2017	
<input type="checkbox"/>	Horn Antenna	ETS-LINDGREN	3116C	00200180	Jul. 28, 2015	Jul. 27, 2018	
<input type="checkbox"/>	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3116C-PA	00202652	Jul. 29, 2015	Jul. 28, 2018	
<input checked="" type="checkbox"/>	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A	
<input checked="" type="checkbox"/>	Band Rejection Filter (2400MHz~2500MHz)	Micro-Tronics	BRM50702	G248	Jun. 21, 2017	Jun. 20, 2018	
<input type="checkbox"/>	Band Rejection Filter (5150MHz~5880MHz)	Micro-Tronics	BRM50716	G1868	Jun. 15, 2017	Jun. 14, 2018	
<input checked="" type="checkbox"/>	Test Software	Audix	e3	Software Version: 9.160323			

Conducted Emission Test Equipment List							
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)	
<input checked="" type="checkbox"/>	Receiver	R&S	ESR7	1316.3003K07-101181-K3	Dec. 22, 2016	Dec. 22, 2017	
<input checked="" type="checkbox"/>	Pulse Limiter	R&S	ESH3-Z2	0357.8810.54	Dec. 22, 2016	Dec. 22, 2017	
<input checked="" type="checkbox"/>	LISN	R&S	ESH2-Z5	860014/024	Dec. 22, 2016	Dec. 22, 2017	
<input type="checkbox"/>	LISN	ETS-Lindgren	3816/2SH	00201088	Aug. 24, 2016	Aug. 23, 2017	
<input checked="" type="checkbox"/>	Test Software	Audix	e3	Software Version: 9.160323			

Conducted RF test Equipment List						
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
<input checked="" type="checkbox"/>	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Dec. 22, 2016	Dec. 22, 2017
<input type="checkbox"/>	Receiver	R&S	ESR7	1316.3003K07-101181-K3	Dec. 22, 2016	Dec. 22, 2017
<input type="checkbox"/>	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430035	Dec. 22, 2016	Dec. 22, 2017
<input type="checkbox"/>	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430023	Dec. 22, 2016	Dec. 22, 2017

4. TEST CONFIGURATION

4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

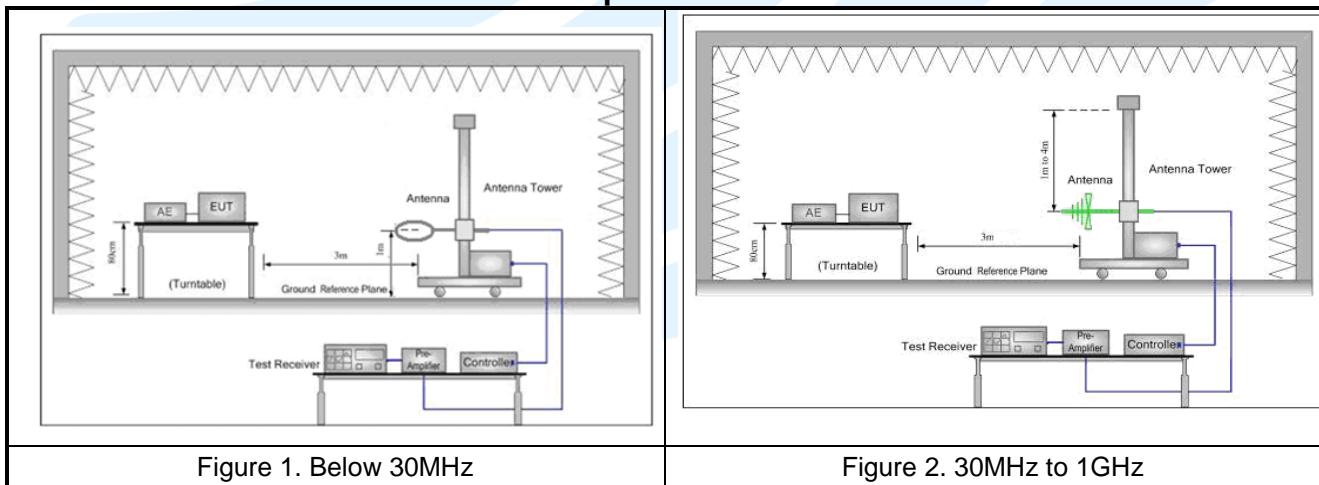
4.1.1 Normal or Extreme Test Conditions

Environment Parameter	Selected Values During Tests		
Test Condition	Ambient		
	Temperature (°C)	Voltage (V)	Relative Humidity (%)
NT/NV	+15 to +35	3.0	20 to 75
Remark: 1) NV: Normal Voltage; NT: Normal Temperature			

4.1.2 Record of Normal Environment

Test Item	Temperature (°C)	Relative Humidity (%)	Pressure (Kpa)	Tested by
Conducted Emission	N/A	N/A	N/A	N/A
Radiated Emission	21.7	66	101.2	Tony Kang
Restricted bands around fundamental frequency (Radiated Emission)	21.7	66	101.2	Tony Kang
20dB Occupied Bandwidth	21.7	66	101.2	Tony Kang

4.2 TEST CHANNELS

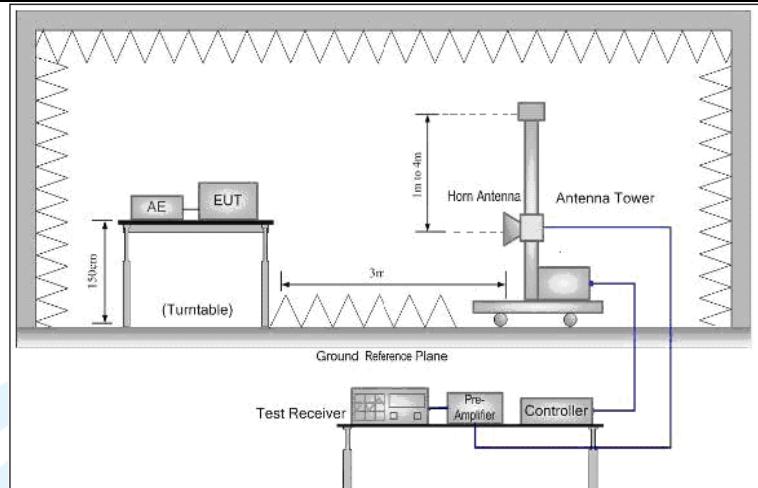
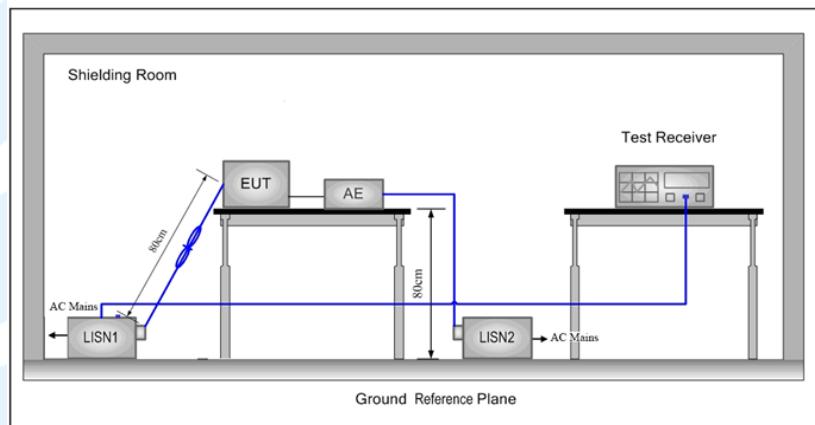

Type of Modulation	Tx/Rx Frequency	Test RF Channel Lists		
		Lowest(L)	Middle(M)	Highest(H)
GFSK	2425 MHz to 2470 MHz	2425MHz	2450 MHz	2470 MHz

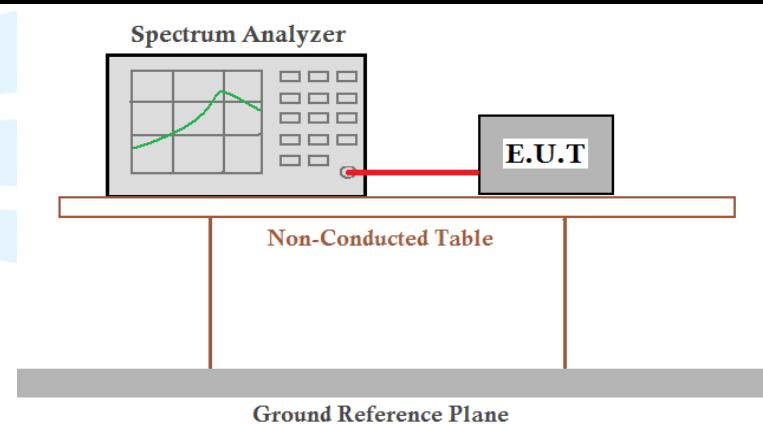
4.3 EUT TEST STATUS

Modulation Mode	Tx Function	Description
GFSK	1Tx	Keep the EUT in continuously transmitting with modulation test single.

4.4 TEST SETUP

4.4.1 For Radiated Emissions test setup


Figure 3. Above 1GHz

4.4.2 For Conducted Emissions test setup

Figure 3. Conducted Emissions setup

4.4.3 For Conducted Emissions test setup

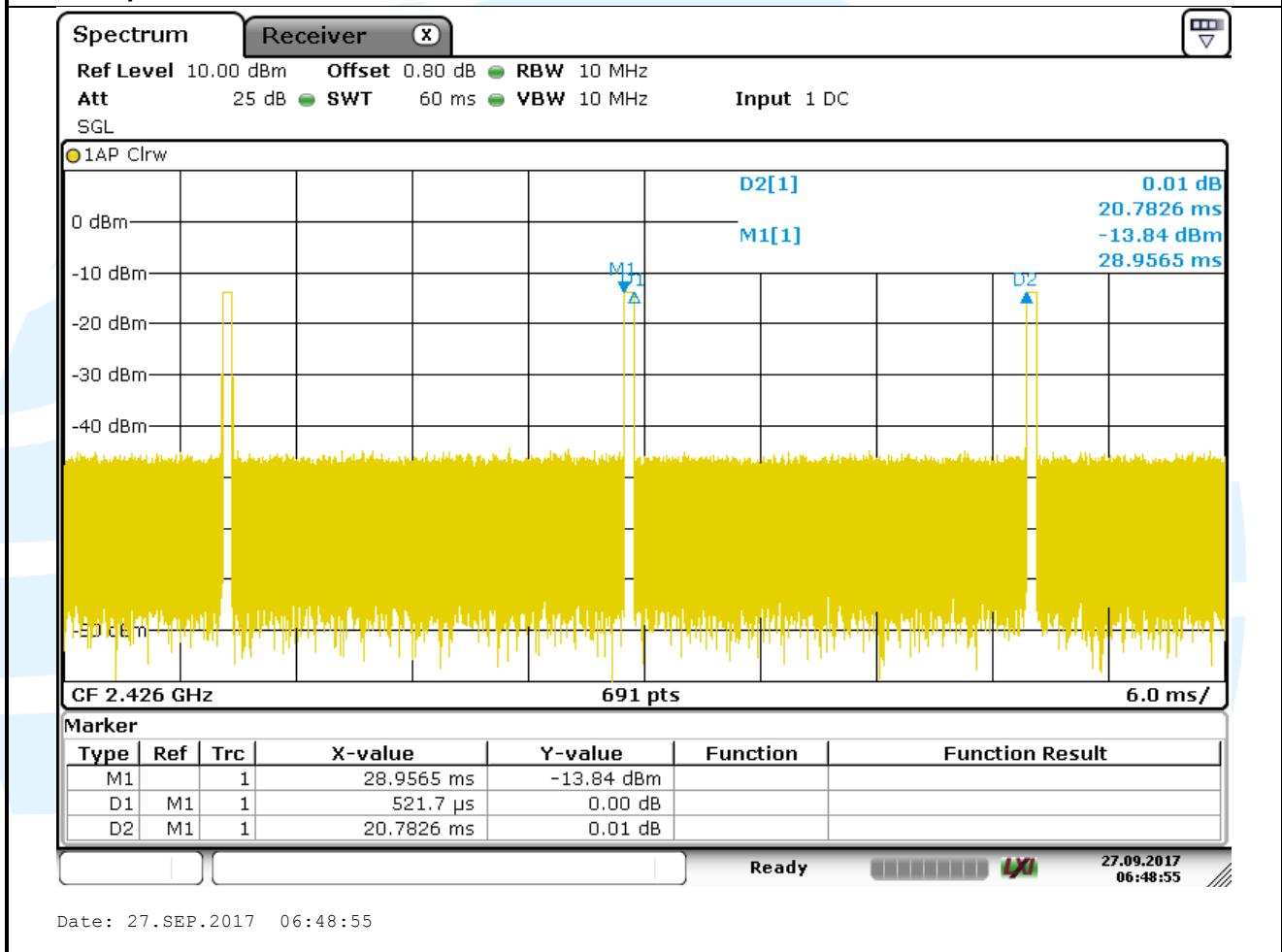
4.5 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by 2X1.5Vdc battery. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in (see table below) orientation.

Frequency	Mode	Antenna Port	Worst-case axis positioning
Above 1GHz	1TX	Chain 0	Y axis

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.


Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4.6 DUTY CYCLE

Type of Modulation	On Time (msec)	Period (msec)	Duty Cycle (factor)	Duty Cycle (%)	Average Factor (dB)
GFSK	0.5217	20.7826	16.078	2.467	-32.2

Remark:

- 1) Duty cycle= On Time/ Period;
- 2) Duty Cycle factor = $10 * \log(1/ \text{Duty cycle})$;
- 3) Average factor = $20 \log_{10} \text{Duty Cycle}$.

The test plot as follows

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION

5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title
1	FCC 47 CFR Part 15	Radio Frequency Devices
2	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices

5.2 ANTENNA REQUIREMENT

Standard Requirement
15.203 Requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.
EUT Antenna:
Antenna in the interior of the equipment and no consideration of replacement. The gain of the antenna is 0 dBi.

5.3 RADIATED EMISSION

Test Requirement: FCC 47 CFR Part 15.209 and 15.249

Test Method: ANSI C63.10-2013 Section 6.6.4.3

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009 MHz-0.090 MHz	Peak	10 kHz	30 KHz	Peak
0.009 MHz-0.090 MHz	Average	10 kHz	30 KHz	Average
0.090 MHz-0.110 MHz	Quasi-peak	10 kHz	30 KHz	Quasi-peak
0.110 MHz-0.490 MHz	Peak	10 kHz	30 KHz	Peak
0.110 MHz-0.490 MHz	Average	10 kHz	30 KHz	Average
0.490 MHz -30 MHz	Quasi-peak	10 kHz	30 kHz	Quasi-peak
30 MHz-1 GHz	Quasi-peak	100 kHz	300 KHz	Quasi-peak
Above 1 GHz	Peak	1 MHz	3 MHz	Peak
	Peak	1 MHz	10 Hz	Average

Limits:

Spurious Emissions

Frequency	Field strength (microvolt/meter)	Limit (dB μ V/m)	Remark	Measurement distance (m)
0.009 MHz-0.490 MHz	2400/F(kHz)	--	--	300
0.490 MHz-1.705 MHz	24000/F(kHz)	--	--	30
1.705 MHz-30 MHz	30	--	--	30
30 MHz-88 MHz	100	40.0	Quasi-peak	3
88 MHz-216 MHz	150	43.5	Quasi-peak	3
216 MHz-960 MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1 GHz	500	54.0	Average	3

Field strength of the fundamental signal

Frequency	Limit (dB μ V/m @3m)	Remark
2400 MHz-2483.5 MHz	94.0	Average
	114.0	Peak

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China
Tel: +86-755-28230888 Fax: +86-755-28230886 E-mail: info@uttlab.com

[Http://www.uttlab.com](http://www.uttlab.com)

Remark:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Test Setup: Refer to section 4.4.1 for details.

Test Procedures:1. From 30 MHz to 1GHz test procedure as below:

- 1) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

2. Above 1GHz test procedure as below:

- 1) Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- 2) Test the EUT in the lowest channel ,middle channel, the Highest channel
- 3) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the Y axis positioning which it is worse case.
- 4) Repeat above procedures until all frequencies measured was complete.

Equipment Used: Refer to section 3 for details.

Test Result: Pass

The measurement data as follows:

Field Strength of the Fundamental Signal					
Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Antenna Polaxis	Pass/Fail
Lowest Channel					
61.31	94.00	-32.69	Average	Horizontal	Pass
93.51	114.00	-20.49	Peak	Horizontal	Pass
57.26	94.00	-36.74	Average	Vertical	Pass
89.46	114.00	-24.54	Peak	Vertical	Pass
Middle Channel					
57.98	94.00	-36.02	Average	Horizontal	Pass
90.18	114.00	-23.82	Peak	Horizontal	Pass
59.10	94.00	-34.90	Average	Vertical	Pass
91.30	114.00	-22.70	Peak	Vertical	Pass
Highest Channel					
56.19	94.00	-37.81	Average	Horizontal	Pass
88.39	114.00	-25.61	Peak	Horizontal	Pass
57.88	94.00	-36.12	Average	Vertical	Pass
90.08	114.00	-23.92	Peak	Vertical	Pass

Radiated Emission Test Data (9 KHz ~ 30 MHz):

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

Radiated Emission Test Data (Above 18 GHz):

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

BELOW 1GHz WORST-CASE DATA
Middle Channel: Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Correction factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	107.7854	47.06	-17.96	29.10	43.50	-14.40	QP
2	176.2748	44.66	-16.07	28.59	43.50	-14.91	QP
3*	615.7744	39.72	-4.01	35.71	46.00	-10.29	QP

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Correction factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1*	47.7028	55.87	-19.77	36.10	40.00	-3.90	QP
2	56.4662	56.18	-20.18	36.00	40.00	-4.00	QP
3	65.9067	53.64	-19.82	33.82	40.00	-6.18	QP

1GHz ~ 18GHz WORST-CASE DATA:
Lowest Channel:

No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	4850.00	54.22	74.00	-19.78	Peak	Horizontal
2	4850.00	22.02	54.00	-31.98	Average	Horizontal
3	7275.00	56.85	74.00	-17.15	Peak	Horizontal
4	7275.00	24.65	54.00	-29.35	Average	Horizontal
5	4850.00	55.22	74.00	-18.78	Peak	Vertical
6	4850.00	23.02	54.00	-30.98	Average	Vertical
7	7275.00	61.65	74.00	-12.35	Peak	Vertical
8	7275.00	29.45	54.00	-24.55	Average	Vertical

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
2. The other emission levels were very low against the limit.
3. Margin value = Emission level – Limit value.
4. Average value = Peak value – Average Factor value.

5.4 RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY

Test Requirement: FCC 47 CFR Part 15.209 and 15.205

Test Method: ANSI C63.10-2013

Limits:

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

Frequency	Limit (dB μ V/m @3m)	Remark
30 MHz-88 MHz	40.0	Quasi-peak Value
88 MHz-216 MHz	43.5	Quasi-peak Value
216 MHz-960 MHz	46.0	Quasi-peak Value
960 MHz-1 GHz	54.0	Quasi-peak Value
Above 1 GHz	54.0	Average Value
	74.0	Peak Value

Test Setup: Refer to section 4.4.1 for details.

Test Procedures:

Radiated band edge measurements at 2390 MHz and 2483.5 MHz were made with the unit transmitting in the low end of the channel range and the high end closest to the restricted bands respectively. The emissions were made on the 966 Semi-Chamber. Use (resolution bandwidth (RBW) = 1 MHz, video bandwidth (VBW) = 3 MHz for peak levels and RBW = 1 MHz and VBW = 10 Hz or 1/T for average levels).

1. Use radiated spurious emission test procedure described in clause 5.3. The transmitter output (antenna port) was connected to the test receiver.
2. Set the PK and AV limit line.
3. Record the fundamental emission and emissions out of the band-edge.
4. Determine band-edge compliance as required.

Equipment Used: Refer to section 3 for details.

Test Result: Pass

The measurement data as follows:

Test Channel:		Lowest Channel	Ant. Polar. :		Horizontal
Frequency (MHz)	Peak level (dBuv/m)	Peak Limit (dBuv/m)	AV level (dBuv/m)	AV Limit (dBuv/m)	Conclusion
2400	67.15	74	34.95	54	Pass

Test Channel:		Lowest Channel	Ant. Polar. :		Vertical
Frequency (MHz)	Peak level (dBuv/m)	Peak Limit (dBuv/m)	AV level (dBuv/m)	AV Limit (dBuv/m)	Conclusion
2400	59.98	74	27.78	54	Pass

Test Channel:		Highest Channel	Ant. Polar. :		Horizontal
Frequency (MHz)	Peak level (dBuv/m)	Peak Limit (dBuv/m)	AV level (dBuv/m)	AV Limit (dBuv/m)	Conclusion
2483.5	54.40	74	22.20	54	Pass

REMARKS:

1. Average value =Peak value – Average Factor value.

5.5 20DB OCCUPIED BANDWIDTH

Test Requirement: FCC 47 CFR Part 15.215

Test Method: ANSI C63.10-2013

Test Setup: Refer to section 4.4.3 for details.

Limits: N/A

Equipment Used: Refer to section 3 for details.

Test Result: Pass

The measurement procedure shall be as follows:

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

- a) Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel
- b) RBW \geq 1% of the 20 dB bandwidth
- c) VBW \geq RBW
- d) Sweep = auto;
- e) Detector function = peak
- f) Trace = max hold
- g) All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down bandwidth of the emission.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Result: Pass

The measurement data as follows:

Test Channel	20 dB Bandwidth (MHz)
Lowest	1.1505
Middle	0.9624
Highest	0.9768

5.6 CONDUCTED EMISSION

Test Requirement: FCC 47 CFR Part 15.207

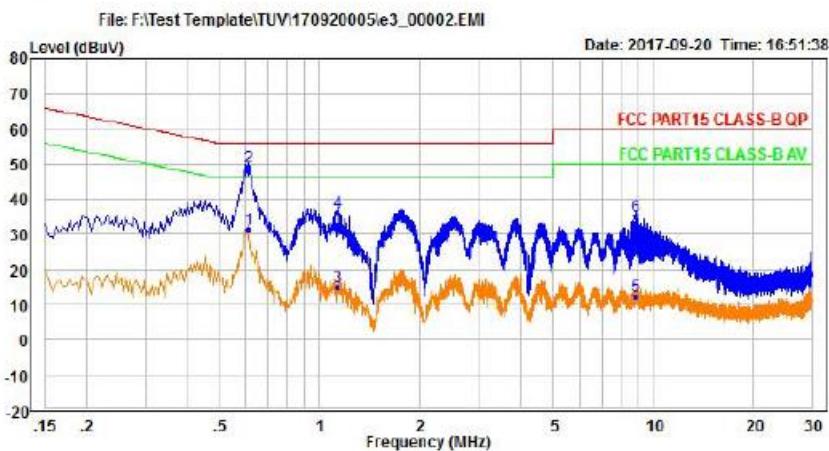
Test Method: ANSI C63.10-2013 Section 6.2

Limits:

Frequency range (MHz)	Limits (dB(μV))	
	Quasi-peak	Average
0,15 to 0,50	66 to 56	56 to 46
0,50 to 5	56	46
5 to 30	60	50

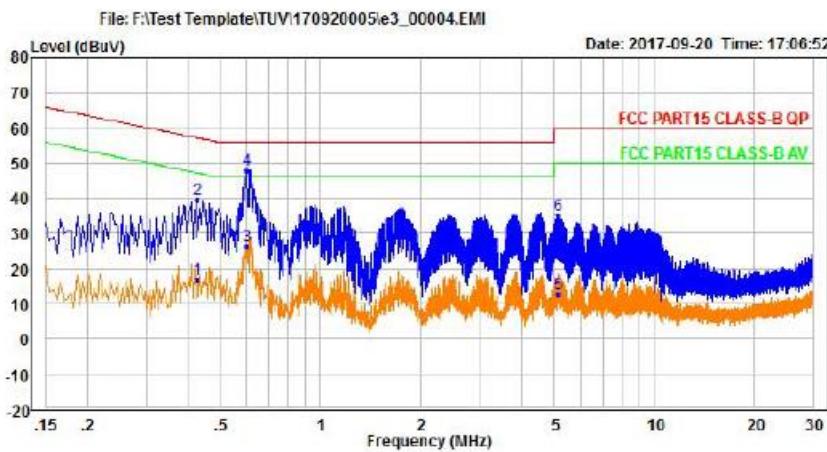
Remark:

1. The lower limit shall apply at the transition frequencies.
2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 to 0.50 MHz.


Test Setup: Refer to section 4.4.2 for details.

Test Procedures:

- 1) The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N.).
- 2) The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.
- 3) For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.


Equipment Used: Refer to section 3 for details.

Test Result: Refer to below plots

UnionTrust

Condition : Neutral
Temp.(C)/Hum.(%): 25.4(C) / 45%
Press : 99.36kPa
Product : SNES wireless controuer
Model No. : NS-GSNESWLC18
Power Rating : 120V/60Hz
Test Engineer : Bessy Xu
Test Mode :
Remark :

Freq	Read	LISN	Cable	Aux	Limit	Over	Remark
	Level	Factor	Loss	Factor			
MHz	dBuV	dB	dB	dB	dBuV	dBuV	dB
1 AV	0.610	20.8	0.4	0.1	9.9	31.2	46.0 -14.8 Average
2 PP	0.610	38.7	0.4	0.1	9.9	49.1	56.0 -6.9 QP
3	1.134	4.6	0.4	0.1	9.9	15.0	46.0 -31.0 Average
4	1.134	25.8	0.4	0.1	9.9	36.2	56.0 -19.8 QP
5	8.861	1.3	0.9	0.2	9.9	12.3	50.0 -37.7 Average
6	8.861	24.1	0.9	0.2	9.9	35.1	60.0 -24.9 QP

UnionTrust

Condition : Line
Temp.(C)/Hum.(%): 25.4(C) / 45%
Press : 99.36kPa
Product : SNES wireless controller
Model No. : NS-GSNESWLC18
Power Rating : 120V/60Hz
Test Engineer : Bessy Xu
Test Mode :
Remark :

Freq	Read	LISN	Cable	Aux	Limit	Over	Remark
	MHz	Level	Factor	Loss			
1	0.426	6.6	0.5	0.1	9.9	17.1	47.3 -30.2 Average
2	0.426	29.3	0.5	0.1	9.9	39.8	57.3 -17.5 QP
3 AV	0.598	16.2	0.2	0.1	9.9	26.4	46.0 -19.6 Average
4 PP	0.598	38.1	0.2	0.1	9.9	48.3	56.0 -7.7 QP
5	5.146	2.3	0.5	0.1	9.9	12.8	50.0 -37.2 Average
6	5.146	24.6	0.5	0.1	9.9	35.1	60.0 -24.9 QP