

Report Number: TRA-066060-47-06B
Issue: B

Report on the Radio Testing of an
Elatec GmbH
TWN4 Palon Compact S M LEGIC
With Respect to Specifications
FCC 47CFR 15.225

Test Date: 5th November 2024 - 12th December 2024

Tested by: D Winstanley, S Hodgkinson, S Garwell

Written by: D Winstanley
Radio Senior Test Engineer

Approved by: J Charters
Lab Manager

Date: 18th February 2025

Disclaimers:

- [1] This document may be reproduced only in its entirety and without change
- [2] The results contained in this document relate only to the item(s) tested

RF914 10

1 Revision Record

<i>Issue</i>	<i>Issue Date</i>	<i>Revision History</i>
A	7th January 2025	Original
B	18th February 2025	Typographical Corrections

2 Summary

Test Report Number: TRA-066060-47-06B

Works Order Number: TRA-066060-00

Purpose of Test: USA: Testing of Radio Frequency Equipment per The Relevant Authorization Procedure of Chapter 47 of CFR (Code of Federal Regulations) Part 2, Subpart J.

Test Specification: 47CFR15.225

Equipment Under Test (EUT): TWN4 Palon Compact S M LEGIC

FCC Identifier: WP5TWN4F24

EUT Serial Number: R2024289057

MANUFACTURER: Elatec GmbH

ADDRESS: Zeppelinstraße 1
82178 Puchheim
Germany

CLIENT CONTACT: Birgit Bachl
+49 89 552 9961 0
b.bachl@elatec.com

AGENT: Element Materials Technology Straubing GmbH

AGENT ADDRESS: Gustav-Hertz-Str. 35
Straubing
94315
Germany

AGENT CONTACT: Katja Frankl
+49 9421 56868-0
katja.frankl@element.com

ORDER NUMBER: DE05100186PO

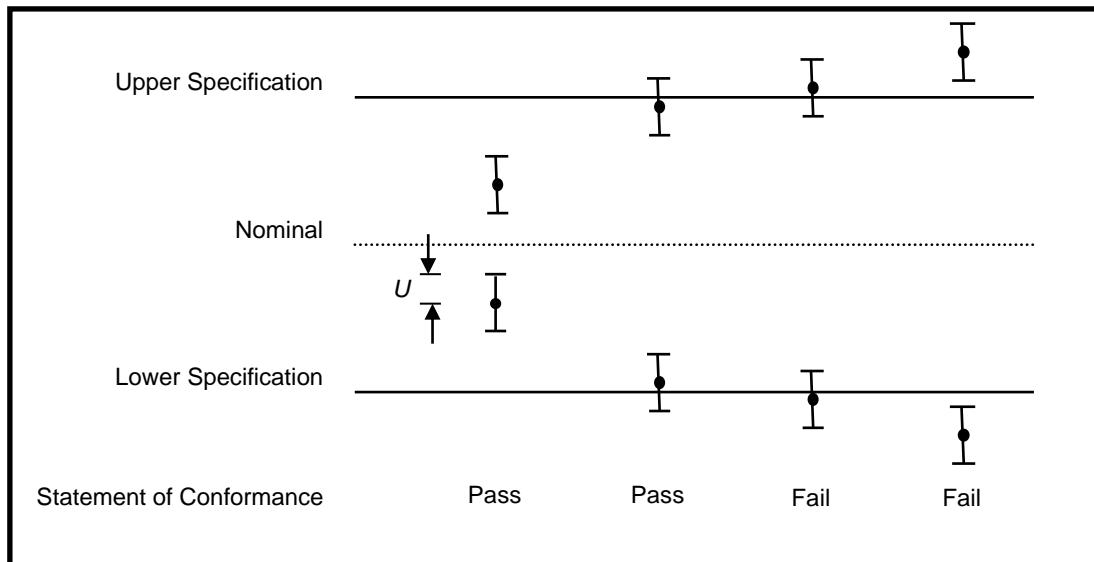
Test Date: 5th November 2024 - 12th December 2024

Tested By: D Winstanley, S Hodgkinson, S Garwell
Element

2.1 Test Summary

Test Method and Description	Requirement Clause 47CFR15	Applicable to this Equipment	Result / Note
Radiated Spurious Emissions, Below 30 MHz	15.225(d)	<input checked="" type="checkbox"/>	Pass
Radiated Spurious Emissions	15.209	<input checked="" type="checkbox"/>	Pass
AC Power Line Conducted Emissions	15.207	<input checked="" type="checkbox"/>	Pass
Occupied Bandwidth	15.215(c)	<input checked="" type="checkbox"/>	Pass
Field Strength of Fundamental	15.225(a), (b) and (c)	<input checked="" type="checkbox"/>	Pass
Frequency Stability	15.225(e)	<input checked="" type="checkbox"/>	Pass

General Notes:


The results contained in this report relate only to the items tested, in the condition at time of test, and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set up and exercised using the configurations, modes of operation and arrangements defined in this report only. Any modifications made are identified in Section 8 of this report.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 5.2 of this test report (Deviations from Test Standards).

The decision rule for compliance is not inherent within this specification and compliance is based on the customer requesting a simple acceptance rule based on understanding and acceptance of Elements Measurement Uncertainty values.

Graphical Representation of a Pass / Fail Binary Statement - Simple Acceptance

● = Measured value

U = 95 % expanded measurement uncertainty

3 Contents

1	Revision Record	2
2	Summary	3
2.1	Test Summary	4
3	Contents	5
4	Introduction	7
5	Test Specifications	8
5.1	Normative References	8
5.2	Deviations from Test Standards	8
6	Glossary of Terms	9
7	Equipment Under Test	10
7.1	EUT Identification	10
7.2	System Equipment	10
7.3	EUT Mode of Operation	10
7.3.1	Transmission	10
7.4	EUT Radio Parameters	10
7.4.1	General	10
7.4.2	Antennas	10
7.5	EUT Description	10
8	Modifications	11
9	EUT Test Setup	12
9.1	Block Diagram	12
9.2	General Set-up Photograph	13
9.3	Measurement Software	13
10	General Technical Parameters	14
10.1	Normal Conditions	14
11	Radiated emissions below 30 MHz	15
11.1	Definitions	15
11.2	Test Parameters	15
11.3	Test Limit	16
11.4	Test Method	16
11.5	Test Set-up Photograph	17
11.6	Test Equipment	17
11.7	Test Results	18
12	Radiated emissions	19
12.1	Definitions	19
12.2	Test Parameters	19
12.3	Test Limit	19
12.4	Test Method	20
12.5	Test Set-up Photograph	21
12.6	Test Equipment	21
12.7	Test Results	22
13	AC power-line conducted emissions	25
13.1	Definition	25
13.2	Test Parameters	25
13.3	Test Limit	25
13.4	Test Method	26
13.5	Test Set-up Photograph	26
13.6	Test Equipment	26
13.7	Test Results	27
14	Occupied Bandwidth	30
14.1	Definition	30
14.2	Test Parameters	30
14.3	Test Limit	30
14.4	Test Method	31
14.5	Test Equipment	31
14.6	Test Results	31
15	Transmitter output power (fundamental radiated emission)	32
15.1	Definition	32
15.2	Test Parameters	32
15.3	Test Limit	32
15.4	Test Method	33
15.5	Test Equipment	33
15.6	Test Results	34
16	Frequency stability	35
16.1	Definition	35
16.2	Test Parameters	35
16.3	Test Limit	35

16.4	Test Method.....	35
16.5	Test Equipment.....	36
16.6	Test Results.....	36
17	Measurement Uncertainty.....	37
18	RF Exposure.....	40

4 Introduction

This report TRA-066060-47-06B presents the results of the Radio testing on an Elatec GmbH, TWN4 Palon Compact S M LEGIC to specification 47CFR15 Radio Frequency Devices.

The testing was carried out for Elatec GmbH by Element, at the address detailed below.

<input checked="" type="checkbox"/>	Element Skelmersdale	<input type="checkbox"/>	Element Surrey Hills
	Unit 1		Unit 15 B
	Pendle Place		Henley Business Park
	Skelmersdale		Pirbright Road
	West Lancashire		Normandy
	WN8 9PN		Guildford
	UK		GU3 2DX
			UK

This report details the configuration of the equipment, the test methods used and any relevant modifications where appropriate.

All test and measurement equipment under the control of the laboratory and requiring calibration is subject to an established programme and procedures to control and maintain measurement standards. The quality management system meets the principles of ISO 9001, and has quality control procedures for monitoring the validity of tests undertaken. Records and sufficient detail are retained to establish an audit trail of calibration records relating to its test results for a defined period. Under control of the established calibration programme, key quantities or values of the test & measurement instrumentation are within specification and comply with the relevant traceable internationally recognised and appropriate standard specifications, which are ISO/IEC 17025:2017 accredited calibrated as such where these properties have a significant effect on results. Participation in inter-laboratory comparisons and proficiency testing ensures satisfactory correlation of results conform to Elements own procedures, as well as statistical techniques for analysis of test data providing the appropriate confidence in measurements.

FCC Site Listing:

The test laboratory is accredited for the above sites under the following US-UK MRA, Designation numbers.

Element Surrey Hills	UK2027
Element Skelmersdale	UK2020

The test site requirements of ANSI C63.4-2014 are met up to 1 GHz.

The test site SVSWR requirements of CISPR 16-1-4:2010 are met over the frequency range 1 GHz to 18 GHz.

5 Test Specifications

5.1 *Normative References*

- FCC 47 CFR Ch. I – Part 15 – Radio Frequency Devices
- ANSI C63.10-2013 – American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
- ANSI C63.4-2014 – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
- KDB 174176 D01 Line Conducted FAQ v01r01 - AC Power-Line Conducted Emissions Frequently Asked Questions

5.2 *Deviations from Test Standards*

There were no deviations from the test standard.

6 Glossary of Terms

§	denotes a section reference from the standard, not this document
AC	Alternating Current
ANSI	American National Standards Institute
BW	bandwidth
C	Celsius
CFR	Code of Federal Regulations
CW	Continuous Wave
dB	decibel
dBm	dB relative to 1 milliwatt
DC	Direct Current
DSSS	Direct Sequence Spread Spectrum
EUT	Equipment Under Test
e.i.r.p.	Equivalent Isotropically Radiated Power
e.r.p.	Effective Radiated Power
FCC	Federal Communications Commission
FHSS	Frequency Hopping Spread Spectrum
Hz	hertz
IC	Industry Canada (now ISED)
ISED	Innovation, Science and Economic Development Canada
ITU	International Telecommunication Union
LBT	Listen Before Talk
m	metre
max	maximum
MIMO	Multiple Input and Multiple Output
min	minimum
MRA	Mutual Recognition Agreement
N/A	Not Applicable
PCB	Printed Circuit Board
PDF	Portable Document Format
Pt-mpt	Point-to-multipoint
Pt-pt	Point-to-point
RF	Radio Frequency
RH	Relative Humidity
RMS	Root Mean Square
Rx	receiver
s	second
SISO	Single Input and Single Output
SVSWR	Site Voltage Standing Wave Ratio
Tx	transmitter
UKAS	United Kingdom Accreditation Service
V	volt
W	watt
Ω	ohm

7 Equipment Under Test

7.1 EUT Identification

- Name: TWN4 Palon Compact S M LEGIC
- Serial Number: R2024289057
- Model Number: EL20232
- Software Revision: B1.08/NKD4.81/CONT2.02/PIB (Beta 1)
- Build Level / Revision Number: A

7.2 System Equipment

Equipment listed below forms part of the overall test setup and is required for equipment functionality and/or monitoring during testing. The compliance levels achieved in this report relate only to the EUT and not items given in the following list.

- *Test Laptop*

7.3 EUT Mode of Operation

7.3.1 Transmission

The mode of operation for Transmitter tests was as follows...

The EUT was programmed via a test laptop using client supplied software (ApprovalCommander200). The EUT was tested reading / searching for an RFID tag as specified.

7.4 EUT Radio Parameters

7.4.1 General

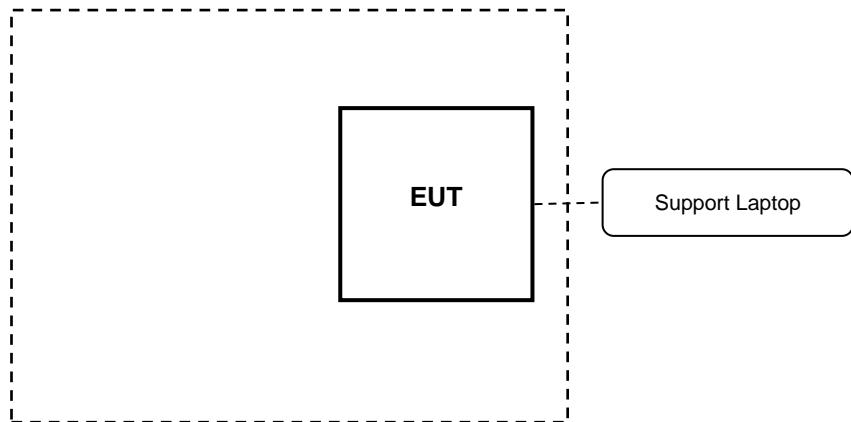
Frequency of Operation:	13.56 MHz
Modulation Type:	ASK
Occupied Channel Bandwidth:	N/A
Channel Spacing:	N/A
Nominal Supply Voltage:	5 Vdc via USB

7.4.2 Antennas

Type:	Inductive Loop
Length / Diameter:	41mm x 38mm
Number of Turns:	3
Mounting:	PCB Antenna

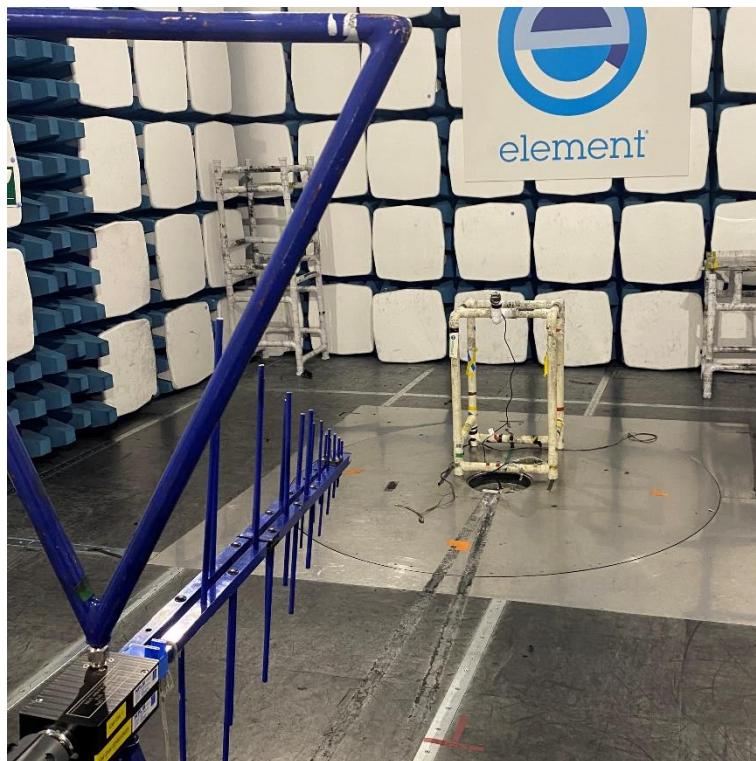
7.5 EUT Description

The EUT is a RFID reader/writer module with Bluetooth low energy.


8 Modifications

No modifications were performed during this assessment.

9 EUT Test Setup


9.1 *Block Diagram*

The following diagram shows basic EUT interconnections with cable type and cable lengths identified:

9.2 General Set-up Photograph

The following photograph shows basic EUT set-up:

9.3 Measurement Software

Where applicable, the following software was used to perform measurements contained within this report.

Element Emissions R5 (See Note)

Note:

The version of the Element software used is recorded in the results sheets contained within this report.

10 General Technical Parameters

10.1 *Normal Conditions*

The EUT was tested under the normal environmental conditions of the test laboratory, except where otherwise stated. The normal power source applied was 5 Vdc via USB.

11 Radiated emissions below 30 MHz

11.1 Definitions

Out-of-band emissions

Emissions on a frequency or frequencies immediately outside the necessary bandwidth which result from the modulation process, but exclude spurious emissions.

Spurious emissions

Emissions on a frequency or frequencies which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

Restricted bands

A frequency band in which intentional radiators are permitted to radiate only spurious emissions but not fundamental signals.

11.2 Test Parameters

Test Location:	Element Skelmersdale
Test Chamber:	Chamber 3
Test Standard and Clause:	ANSI C63.10-2013, Clause 6.4
Frequencies Measured:	13.56 MHz
Deviations From Standard:	None
Measurement Distance and Site	REF910 (SAR), 3m.
EUT Height:	1 m
Measurement Antenna and Height:	60 cm shielded loop; 1 m
Measurement BW:	9 kHz to 150 kHz: 200 Hz; 150 kHz to 30 MHz: 9 kHz
Measurement Detector:	9 kHz to 90 kHz and 110 kHz to 490 kHz: Average, RMS Other frequencies below 30 MHz: Quasi-peak.

Environmental Conditions (Normal Environment)

Temperature: 23 °C	+15 °C to +35 °C (as declared)
Humidity: 45 % RH	20 % RH to 75 % RH (as declared)
Supply: 5.0 V dc	

11.3 Test Limit

Emissions from license-exempt transmitters shall comply with the field strength limits shown in the table below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

General Field Strength Limits for License-Exempt Transmitters at Frequencies Below 30 MHz

Frequency, f (kHz)	Field Strength	Measurement Distance (m)
9 to 490	2,400 / 377.f (μ A/m) 2,400 / f (μ V/m)	300
490 to 1,750	24,000 / 377.f (μ A/m) 24,000 / f (μ V/m)	30
1,750 to 30,000	30 (μ V/m)	30

n.b. Devices operated pursuant to §15.225 are exempt from complying with the restricted band requirements for the 13.36–13.41 MHz band only.

11.4 Test Method

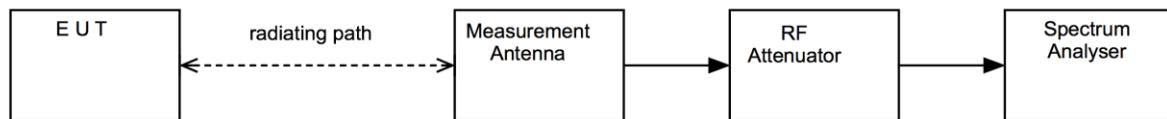
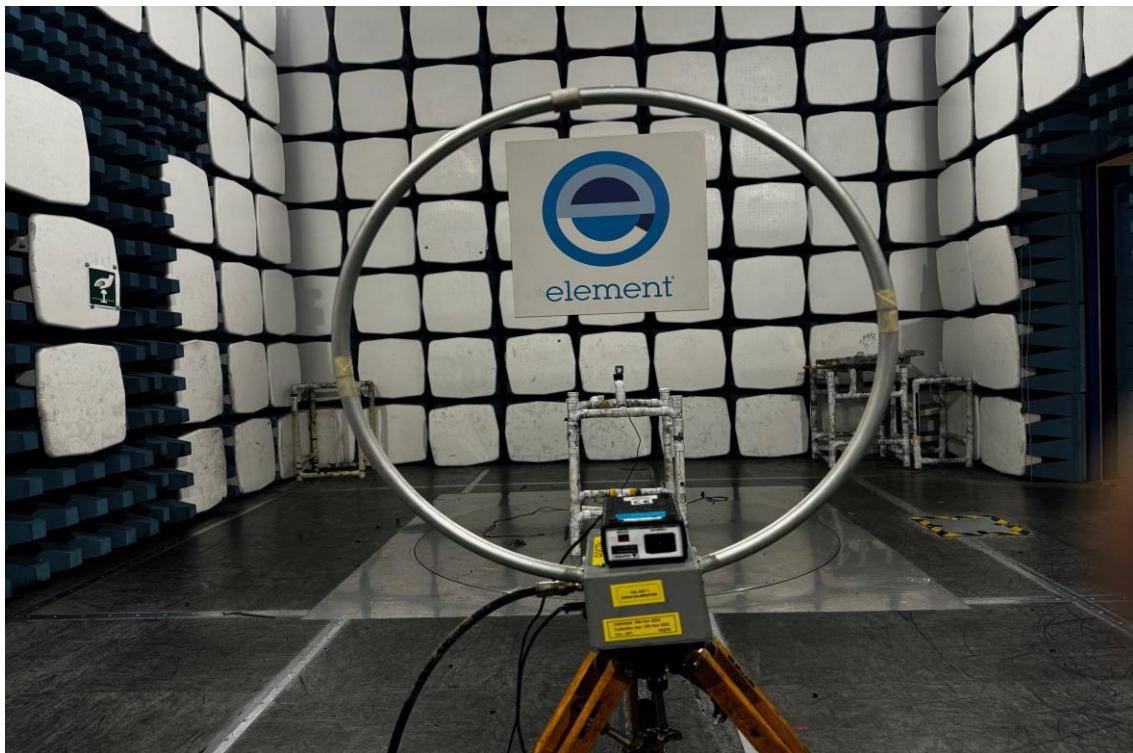
With the EUT setup as per section 9 of this report and connected as per Figure i, the EUT fundamental frequency was maximised by rotating the EUT through 360°, in three orthogonal planes, and adjusting the measurement antenna azimuth.

Radiated electromagnetic emissions from the EUT are checked first by preview scans. Preview scans for all spectrum and modulation characteristics are checked, using a peak detector and where applicable worst-case determined for function, operation, orientation, etc. for both vertical and horizontal polarisations. Pre-scan plots are shown with a peak detector and 9 kHz RBW.

If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.10 are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed, (see EUT setup photographs for more detail).

Emissions between 9 kHz and 30 MHz are measured using a calibrated 60cm active loop antenna. Pre-amplifiers and filters are used where required. Care is taken to ensure that test receiver resolution bandwidth, video bandwidth and detector type(s) meet the regulatory requirements.

Power values measured on the test receiver / analyzer are converted to field strength, FS, in μ V/m at the regulatory distance, using:

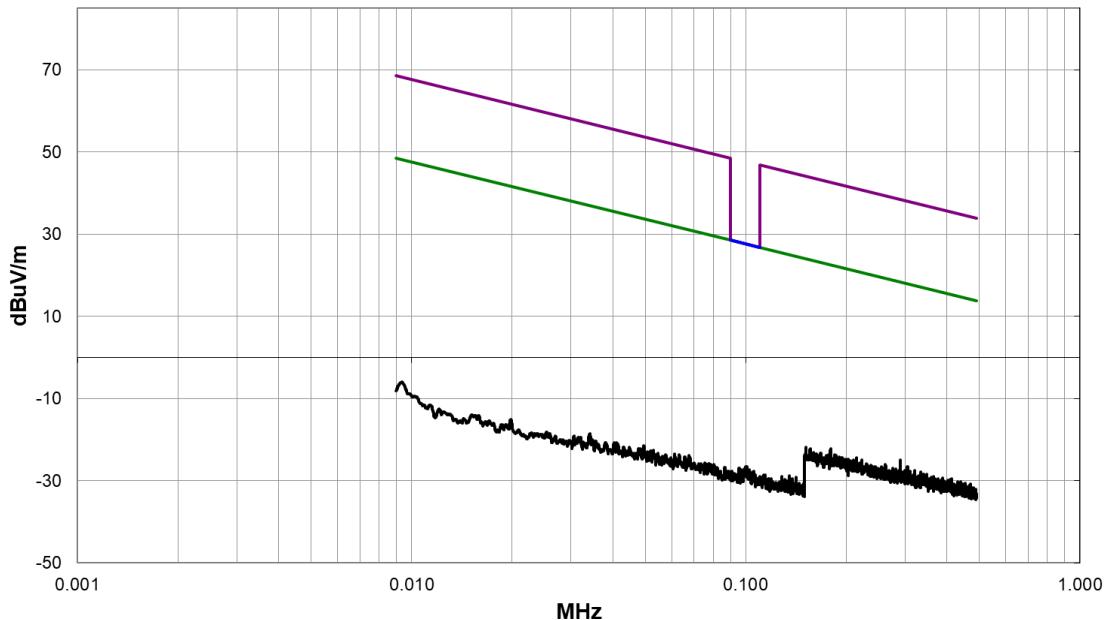


$$FS = 10 (PR - CF) / 20$$

Where,

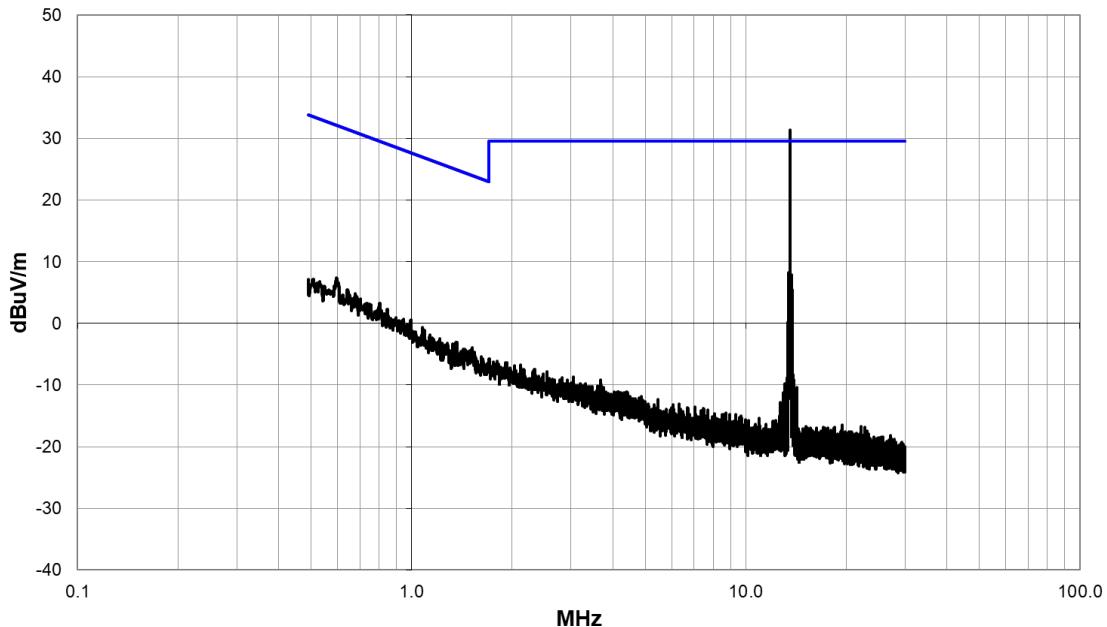
PR is the power recorded on the receiver / spectrum analyzer in $dB\mu$ V and includes any cable loss, antenna factor and pre-amplifier gain;
CF is the distance extrapolation factor in dB (where measurement distance different to limit distance);

Per FCC 47CFR15.31(f)(2), an extrapolation factor of 40 dB per decade was used for measurements at distances closer than specified.

This field strength value is then compared with the regulatory limit.


Figure i Test Setup**11.5 Test Set-up Photograph****11.6 Test Equipment**

Equipment Type	Manufacturer	Equipment Description	Element No	Due For Calibration
6502	EMCO	Active Loop Antenna	R0079	2025-11-09
FSU50	R&S	Spectrum Analyser	U544	2024-12-16


11.7 Test Results

Frequency: 13.56 MHz; Modulation: ASK; Power Setting: Default – With TAG

9 kHz-490 kHz

490 kHz- 30 MHz

Note: the emission at 13.56 MHz is the fundamental

Modulation: ASK; Power setting: Default						
Emission Frequency (MHz)	Receiver Level (dB μ V/m)	Measurement Distance (m)	Limit Distance (m)	Extrapolation Factor (dB)	Field Strength (μ V/m)	Result
No significant emissions within 20 dB of the limit						Pass

12 Radiated emissions

12.1 Definitions

Out-of-band emissions

Emissions on a frequency or frequencies immediately outside the necessary bandwidth which result from the modulation process but exclude spurious emissions.

Spurious emissions

Emissions on a frequency or frequencies which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

Restricted bands

A frequency band in which intentional radiators are permitted to radiate only spurious emissions but not fundamental signals.

12.2 Test Parameters

Test Location:	Element Skelmersdale
Test Chamber:	REF910
Test Standard and Clause:	ANSI C63.10-2013, Clause 6.5
Frequencies Measured:	13.56 MHz
Deviations From Standard:	None
Measurement BW:	30 MHz to 300 MHz: 120 kHz
Measurement Detector:	Quasi-peak

Environmental Conditions (Normal Environment)

Temperature: 22 °C	+15 °C to +35 °C (as declared)
Humidity: 50 % RH	20 % RH to 75 % RH (as declared)
Supply: 5V dc	

12.3 Test Limit

Emissions from license-exempt transmitters shall comply with the field strength limits shown in the table below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

General Field Strength Limits for License-Exempt Transmitters at Frequencies above 30 MHz

Frequency (MHz)	Field Strength (µV/m at 3 m)
30 to 88	100
88 to 216	150
216 to 960	200
Above 960	500

12.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure ii, the emissions from the EUT were measured on a spectrum analyzer / EMI receiver.

Radiated electromagnetic emissions from the EUT are checked first by preview scans. Preview scans for all spectrum and modulation characteristics are checked, using a peak detector and where applicable worst-case determined for function, operation, orientation, etc. for both vertical and horizontal polarisations. Pre-scan plots are shown with a peak detector and 100 kHz RBW.

If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.10 are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed, (see EUT setup photographs for more detail).

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. Emissions above 1 GHz are characterized using standard gain horn antennas. Pre-amplifiers and filters are used where required. Care is taken to ensure that test receiver resolution bandwidth, video bandwidth and detector type(s) meet the regulatory requirements.

For both horizontal and vertical polarizations, the EUT is then rotated through 360 degrees in azimuth until the highest emission is detected. At the previously determined azimuth the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected, this maximum value is recorded.

Power values measured on the test receiver / analyzer are converted to field strength, FS, in dB μ V/m at the regulatory distance, using:

$$FS = PR + CL + AF - CF$$

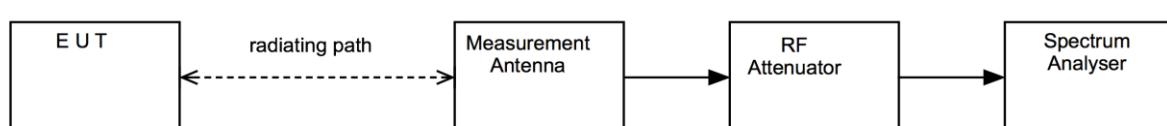
Factor = CL + AF - CF

Where,

PR is the power recorded on the receiver / spectrum analyzer in dB μ V;

CL is the cable loss in dB;

AF is the test antenna factor in dB/m;


PA is the pre-amplifier gain in dB (where used);

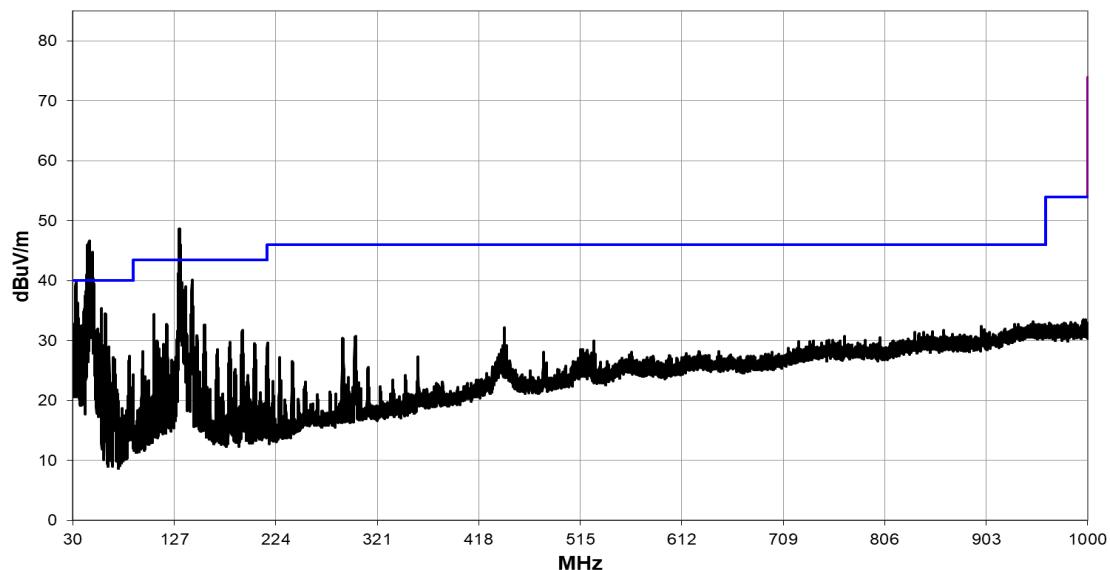
DC is the duty correction factor in dB (where used, e.g. harmonics of pulsed fundamental);

CF is the distance factor in dB (where measurement distance is different to limit distance);

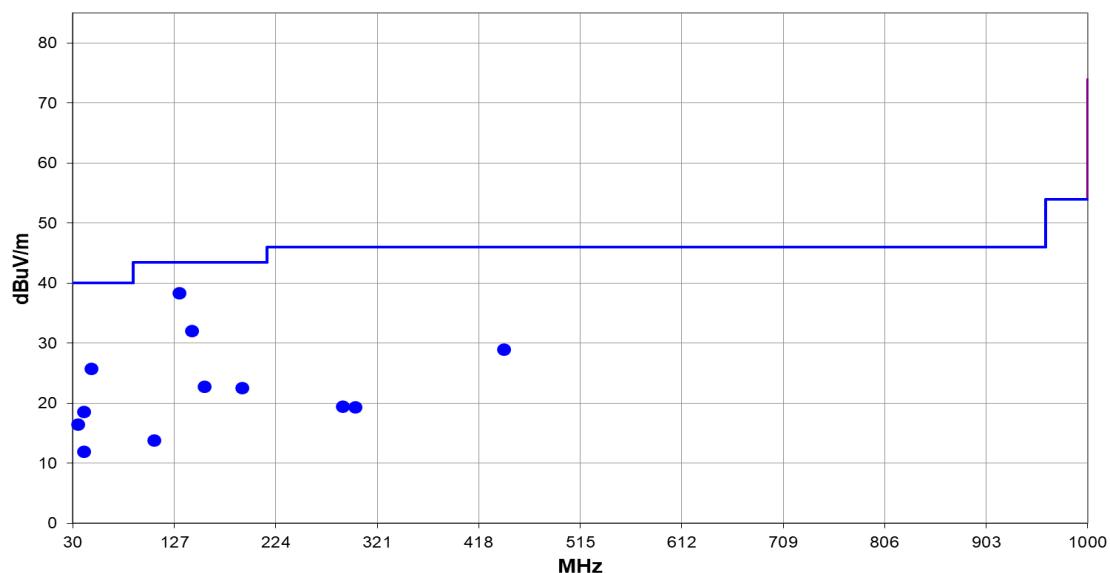
This field strength value is then compared with the regulatory limit.

Figure ii Test Setup

12.5 Test Set-up Photograph

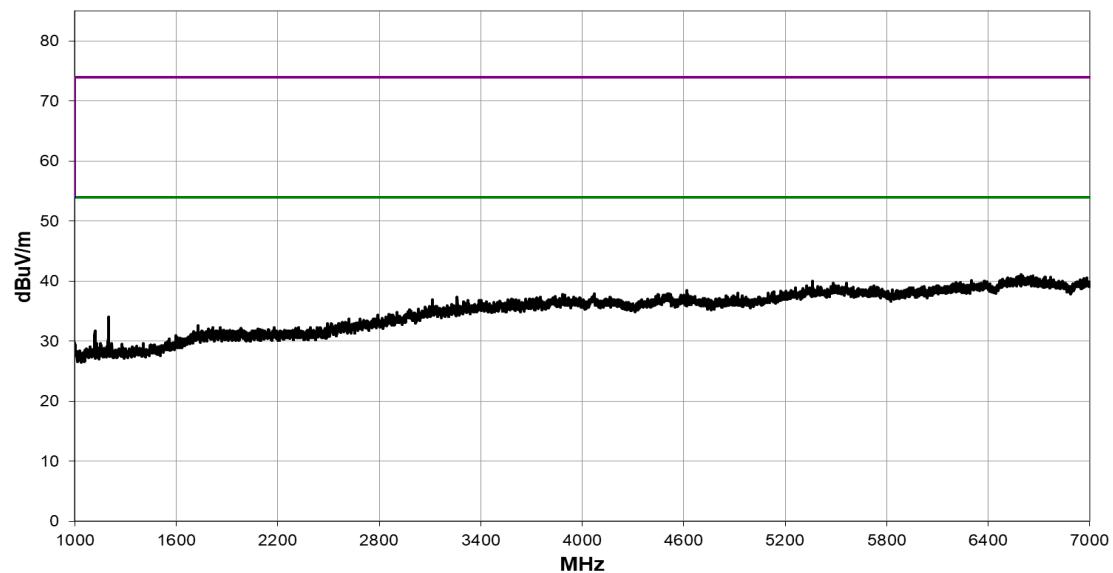


12.6 Test Equipment

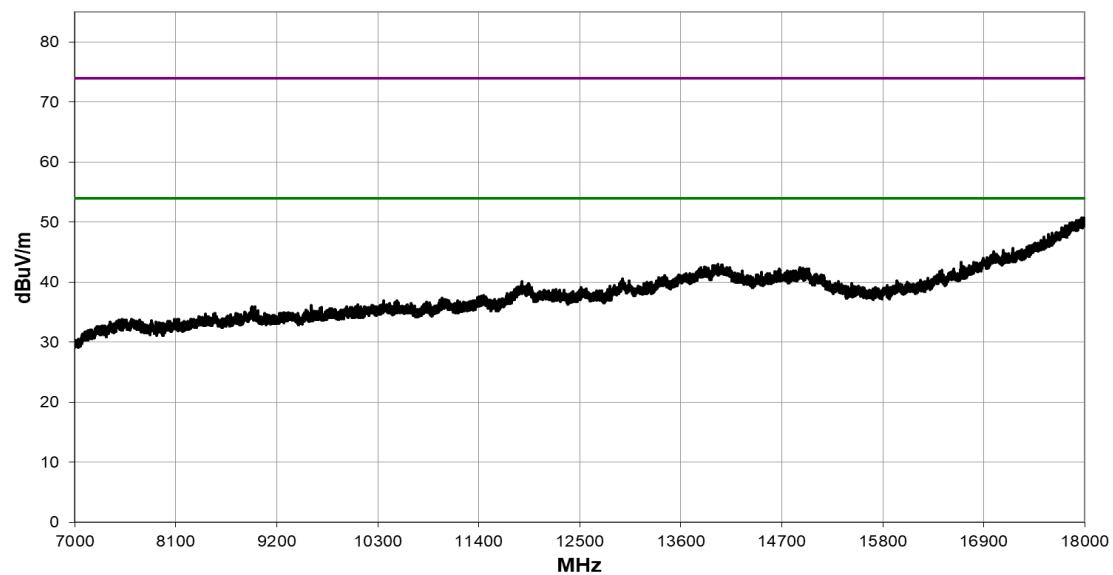

Equipment Type	Manufacturer	Equipment Description	Element No	Due For Calibration
6201-69	Watkins Johnson	PreAmp	U372	2025-03-15
CBL611/A	Chase	Bilog	U191	2025-08-11
FSU50	R&S	Spectrum Analyser	U544	2024-12-16
8449B	Agilent	Pre Amp	U457	2025-01-26
3115	EMCO	1-18GHz Horn	U223	2026-01-17

12.7 Test Results

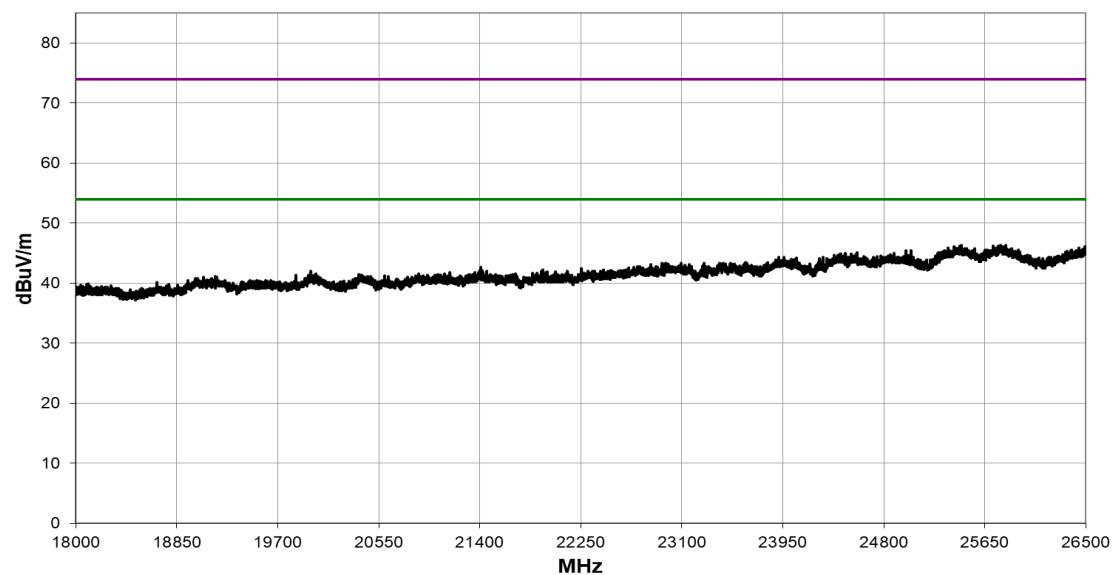
30 MHz-1 GHz



30 MHz-1 GHz Maximisation



Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
132.085	47.7	-9.4	1.0	135.0	3.0	0.0	Vert	QP	0.0	38.3	43.5	-5.2
144.063	41.8	-9.8	1.0	225.0	3.0	0.0	Vert	QP	0.0	32.0	43.5	-11.5
47.819	38.5	-12.8	1.0	315.0	3.0	0.0	Vert	QP	0.0	25.7	40.0	-14.3
442.366	31.6	-2.7	2.0	225.1	3.0	0.0	Horz	QP	0.0	28.9	46.0	-17.1
156.062	33.3	-10.6	1.0	315.1	3.0	0.0	Vert	QP	0.0	22.7	43.5	-20.8
192.041	34.4	-11.9	1.0	-0.1	3.0	0.0	Vert	QP	0.0	22.5	43.5	-21.0


1 GHz-7 GHz

7 GHz-18 GHz

18 GHz-26.5 GHz

13 AC power-line conducted emissions

13.1 Definition

Line-to-ground radio-noise voltage that is conducted from all of the EUT current-carrying power input terminals that are directly (or indirectly via separate transformers or power supplies) connected to a public power network.

13.2 Test Parameters

Test Location:	Element Skelmersdale
Test Chamber:	Transient Lab (U390)
Test Standard and Clause:	ANSI C63.10-2013, Clause 6.2
EUT Channels / Frequencies Measured:	13.56 MHz
EUT Channel Bandwidths:	Wideband
EUT Modulation:	ASK
Deviations From Standard:	None
Measurement BW:	9 kHz
Measurement Detectors:	Quasi-Peak and Average, RMS

Environmental Conditions (Normal Environment)

Temperature: 16 °C	+15 °C to +35 °C (as declared)
Humidity: 39 % RH	20 % RH to 75 % RH (as declared)

13.3 Test Limit

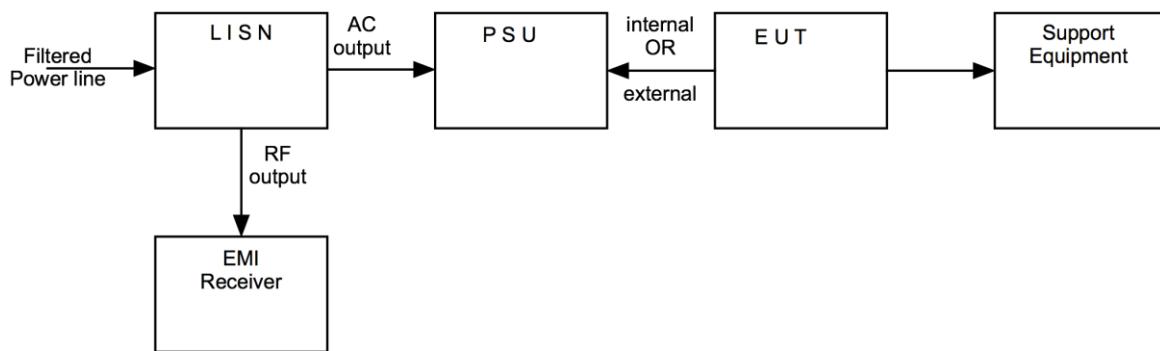
A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz, shall not exceed the limits in Table 3.

Table 3 – AC Power Line Conducted Emission Limits

Frequency (MHz)	Conducted limit (dB _u V)	
	Quasi-Peak	Average ^{**}
0.15 to 0.5	66 to 56 [*]	56 to 46 [*]
0.5 to 5	56	46
5 to 30	60	50

^{*}The level decreases linearly with the logarithm of the frequency.

^{**}A linear average detector is required.

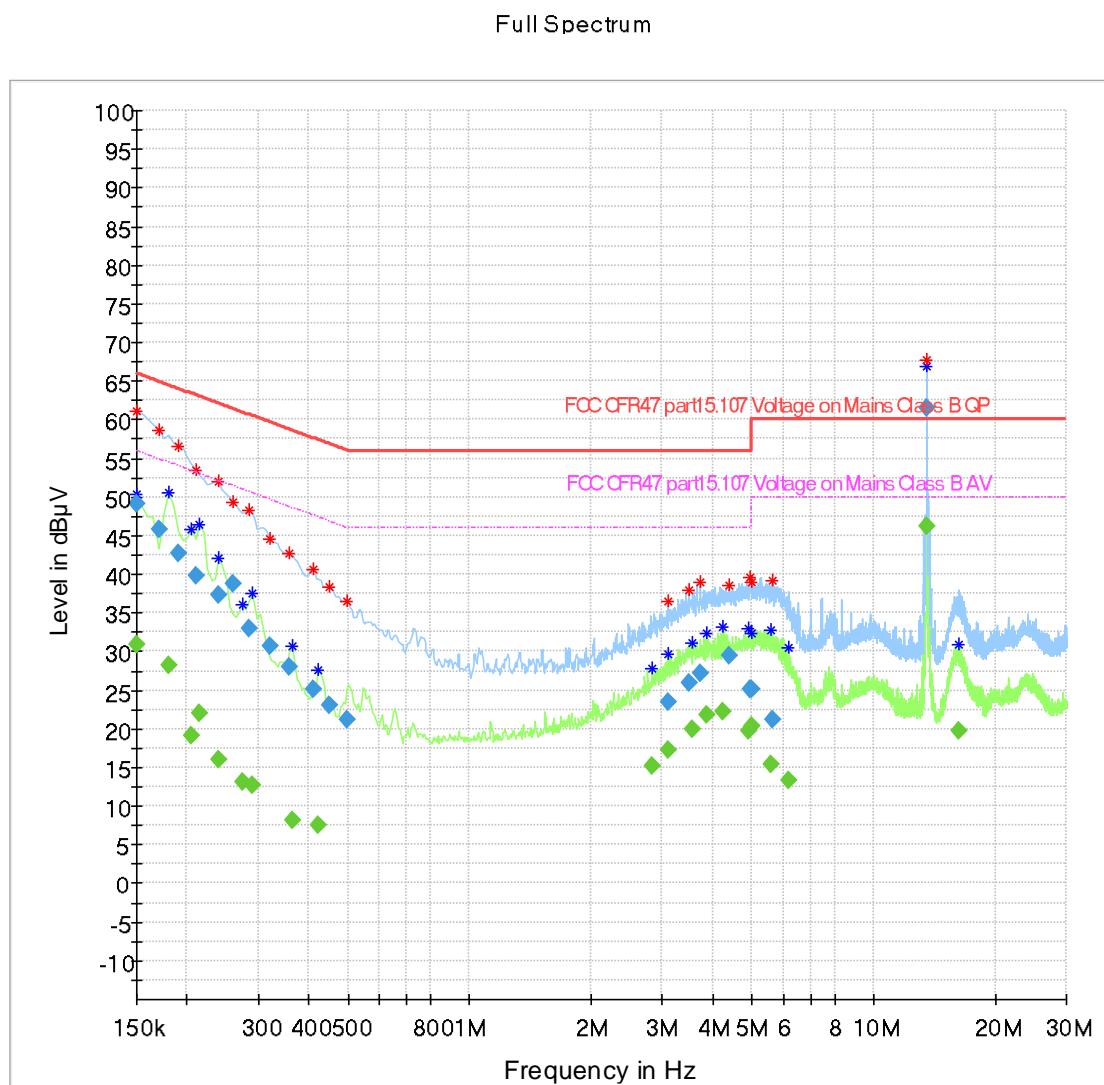

13.4 Test Method

With the EUT setup in a screened room, as per section 9 of this report and connected as per Figure ii, the power line emissions were measured on a spectrum analyzer / EMI receiver.

AC power line conducted emissions from the EUT are checked first by preview scans with peak and average detectors covering both live and neutral lines. A spectrum analyzer is used to determine if any periodic emissions are present.

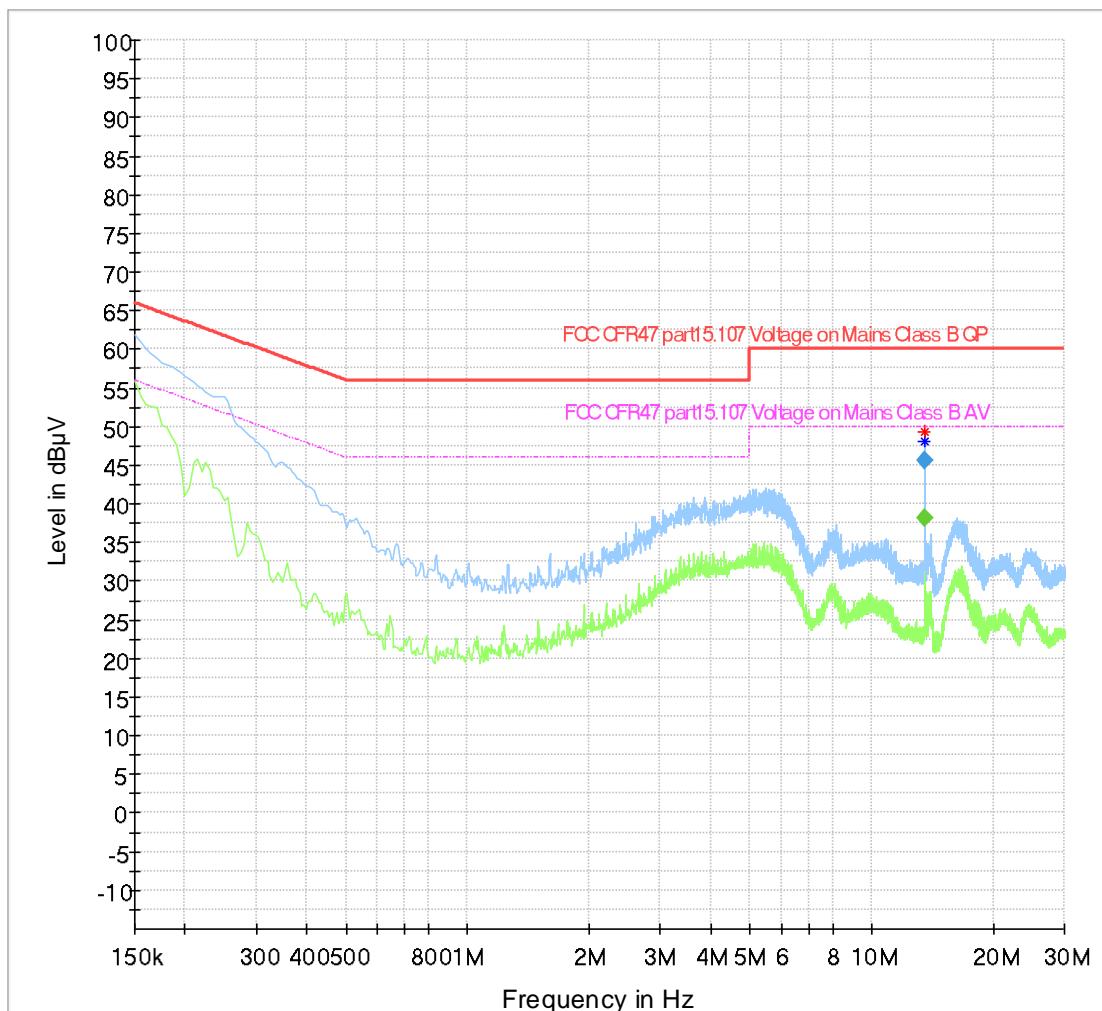
Formal measurements using the correct detector(s) and bandwidth are made on frequencies identified from the preview scans. Final measurements were performed with EUT set at its maximum duty in transmit and receive modes.

Figure ii Test Setup


13.5 Test Set-up Photograph

13.6 Test Equipment

Equipment Type	Manufacturer	Equipment Description	Element No	Due For Calibration
ENV216	R&S	Lisn	U396	2025-05-16
ESR7	R&S	EMI Receiver	U456	2025-03-08
ESH3-Z2	R&S	Pulse Limiter	U559	2025-02-12


13.7 Test Results

Frequency (MHz)	QuasiPeak (dB μ V)	CAverage (dB μ V)	Limit (dB μ V)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line
0.150000	---	30.93	56.00	25.07	2000.0	9.000	L1
0.150000	49.07	---	66.00	16.93	2000.0	9.000	L1
0.169900	45.78	---	64.97	19.18	2000.0	9.000	L1
0.179850	---	28.17	54.49	26.33	2000.0	9.000	L1
0.189800	42.81	---	64.05	21.24	2000.0	9.000	N
0.204725	---	19.16	53.42	34.25	2000.0	9.000	L1
0.209700	39.90	---	63.22	23.32	2000.0	9.000	N
0.214675	---	21.96	53.02	31.06	2000.0	9.000	L1
0.239550	37.27	---	62.11	24.84	2000.0	9.000	L1
0.239550	---	15.98	52.11	36.13	2000.0	9.000	L1
0.259450	38.87	---	61.45	22.57	2000.0	9.000	N
0.274375	---	13.17	50.98	37.81	2000.0	9.000	L1
0.284325	32.95	---	60.69	27.74	2000.0	9.000	L1
0.289300	---	12.70	50.54	37.85	2000.0	9.000	L1
0.319150	30.69	---	59.73	29.04	2000.0	9.000	N
0.358950	28.12	---	58.75	30.63	2000.0	9.000	N
0.363925	---	8.25	48.64	40.39	2000.0	9.000	L1
0.408700	25.03	---	57.68	32.64	2000.0	9.000	L1
0.423625	---	7.57	47.38	39.81	2000.0	9.000	L1
0.448500	23.08	---	56.90	33.82	2000.0	9.000	L1
0.498250	21.12	---	56.03	34.91	2000.0	9.000	N
2.831525	---	15.27	46.00	30.73	2000.0	9.000	L1
3.100175	23.43	---	56.00	32.57	2000.0	9.000	L1
3.105150	---	17.31	46.00	28.69	2000.0	9.000	L1
3.498175	26.02	---	56.00	29.98	2000.0	9.000	L1
3.547925	---	20.00	46.00	26.00	2000.0	9.000	N
3.727025	27.10	---	56.00	28.90	2000.0	9.000	L1
3.871300	---	21.76	46.00	24.24	2000.0	9.000	N
4.249400	---	22.21	46.00	23.79	2000.0	9.000	L1
4.378750	29.39	---	56.00	26.61	2000.0	9.000	L1
4.911075	---	19.84	46.00	26.16	2000.0	9.000	L1
4.940925	25.23	---	56.00	30.77	2000.0	9.000	L1
4.980725	25.19	---	56.00	30.81	2000.0	9.000	L1
4.990675	---	20.34	46.00	25.66	2000.0	9.000	L1
5.562800	---	15.44	50.00	34.56	2000.0	9.000	L1
5.632450	21.13	---	60.00	38.87	2000.0	9.000	L1
6.164775	---	13.41	50.00	36.59	2000.0	9.000	L1
13.557625	---	46.17	50.00	3.83	2000.0	9.000	N
13.557625	61.48	---	60.00	-1.48	2000.0	9.000	N
16.209300	---	19.76	50.00	30.24	2000.0	9.000	N

Antenna Replaced by load (as per KDB 174176 D01 Line Conducted FAQ)

Full Spectrum

Frequency (MHz)	QuasiPeak (dB μ V)	CAverage (dB μ V)	Limit (dB μ V)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line
13.557625	---	38.10	50.00	11.90	2000.0	9.000	N
13.557625	45.67	---	60.00	14.33	2000.0	9.000	N

14 Occupied Bandwidth

14.1 Definition

Occupied bandwidth

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to 0.5 % of the emitted power. This is also known as the 99 % *emission bandwidth*. For transmitters in which there are multiple carriers, contiguous or non-contiguous in frequency, the occupied bandwidth is to be the sum of the occupied bandwidths of the individual carriers.

20 dB bandwidth

The emission bandwidth (x dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal.

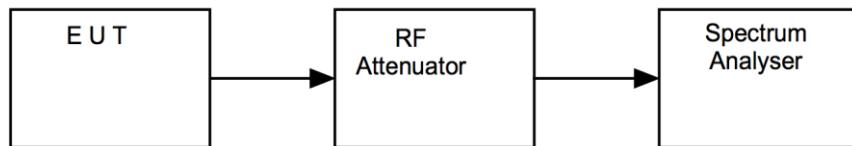
14.2 Test Parameters

Test Location:	Element Skelmersdale
Test Chamber:	Radio Laboratory
Test Standard and Clause:	ANSI C63.10-2013, Clause 6.9
Frequencies Measured:	13.56 MHz
EUT Test Modulations:	ASK
Deviations From Standard:	None
Measurement BW:	10 Hz/20 Hz
(requirement: 1% to 5% OBW)	
Spectrum Analyzer Video BW:	30 Hz/100 Hz
(requirement at least 3x RBW)	
Measurement Span:	1 kHz/3kHz
(requirement 2 to 5 times OBW)	
Measurement Detector:	Peak

Environmental Conditions (Normal Environment)

Temperature: 23 °C	+15 °C to +35 °C (as declared)
Humidity: 41 % RH	20 % RH to 75 % RH (as declared)
Supply: 5 Vdc	

14.3 Test Limit

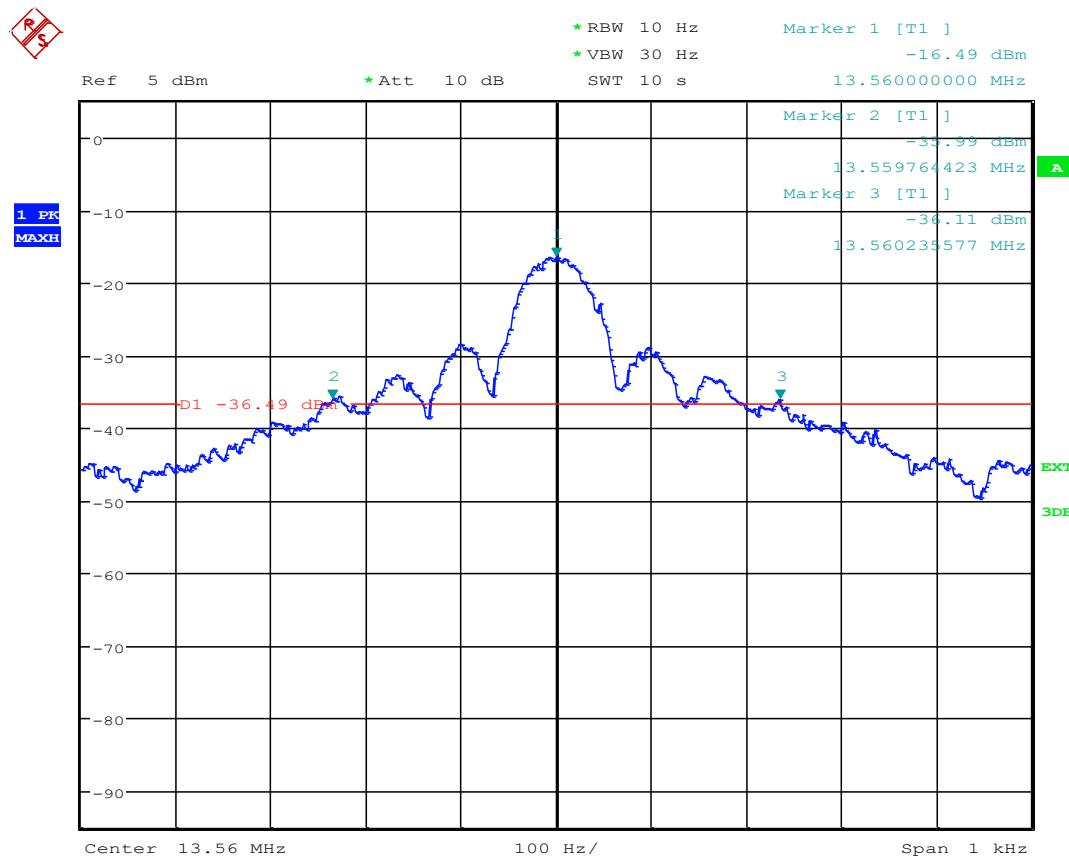

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

14.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure iv, the bandwidth of the EUT was measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

Figure iv Test Setup



14.5 Test Equipment

Equipment Type	Manufacturer	Equipment Description	Element No	Due For Calibration
FSU26	R&S	Spectrum Analyser	REF909	2025-09-24

14.6 Test Results

15.225. Modulation: ASK; Power Setting: Default – With TAG			
Channel Frequency (MHz)	F_L (MHz)	F_H (MHz)	20 dB Bandwidth (Hz)
13.56	13.559764423	13.560235577	471.15

15 Transmitter output power (fundamental radiated emission)

15.1 Definition

The RF power dissipated in the standard output termination when operating under the rated duty cycle selected by the applicant for approval.

15.2 Test Parameters

Test Location:	Element Skelmersdale
Test Chamber:	OATS
Test Antenna:	Active 60cm loop
Test Standard and Clause:	ANSI C63.10-2013, Clause 6.3 / 6.4
Frequencies Measured:	13.56 MHz
Deviations From Standard:	None
Measurement BW:	9 kHz
Spectrum Analyzer Video BW: (requirement at least 3x RBW)	30 kHz
Measurement Detector:	Quasi-peak
Voltage Extreme Environment Test Range:	Mains Power = 85% and 115% of Nominal (FCC only requirement);

Environmental Conditions (Normal Environment)

Temperature: 18 °C	+15 °C to +35 °C (as declared)
Humidity: 40 % RH	20 % RH to 75 % RH (as declared)

15.3 Test Limit

The field strength measured at 30 m shall not exceed the limits in the following table:

Field Strength Limits for License-Exempt Transmitters for Any Application

Frequency range (MHz)	Field strength (µV/m at 30m)	Field strength (dBµV/m at 30m)
13.110 – 13.410	106	40.5
13.410 – 13.553	334	50.5
13.553 – 13.567	15,848	84.0
13.567 – 13.710	334	50.5
13.710 – 14.010	106	40.5

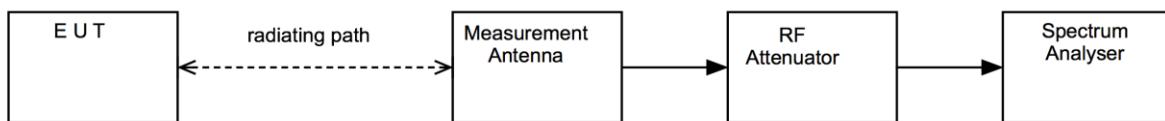
15.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure v, the resolution bandwidth of the spectrum analyser was increased above the EUT occupied bandwidth and the peak emission data noted.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

Power values measured on the test receiver / analyzer are converted to field strength, FS, in $\mu\text{V}/\text{m}$ at the regulatory distance, using:

$$FS = 10^{(PR - CF) / 20}$$

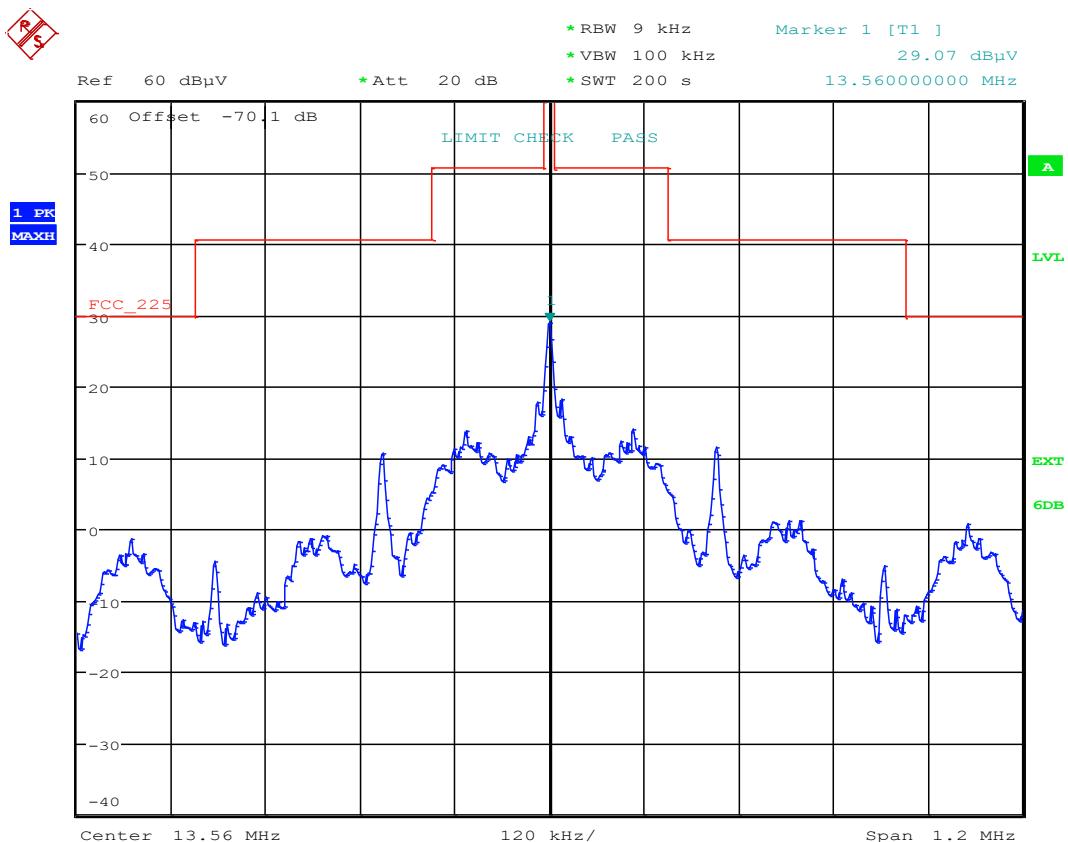

Where,

PR is the power recorded on the receiver / spectrum analyzer in $\text{dB}\mu\text{V}$ and includes any cable loss, antenna factor and pre-amplifier gain;
CF is the distance extrapolation factor in dB (where measurement distance different to limit distance);

Per FCC 47CFR15.31(f)(2), an extrapolation factor of 20 dB per decade was determined from measurements at 3 and 10 metres.

This field strength value is then compared with the regulatory limit.

Figure v Test Setup



15.5 Test Equipment

Equipment Type	Manufacturer	Equipment Description	Element No	Due For Calibration
ESR7	R&S	EMI Receiver	U456	2025-03-08
6502	EMCO	Active Loop Antenna	R0079	2025-11-09

15.6 Test Results

Modulation: ASK; Frequency: 13.56 MHz – With TAG								
Channel Frequency (MHz)	Receiver Level (dB μ V/m)	Measurement Distance (m)	Limit Distance (m)	Extrapolation Factor (dB)	Field Strength (dB μ V/m)	Result (μ V/m)	Limit (μ V/m)	Result
13.56	48.13	10	30	19.08	29.05	28.347	15848	Pass

16 Frequency stability

16.1 Definition

Frequency stability is a measure of frequency drift due to temperature and supply voltage variations, with reference to the frequency measured at an appropriate reference temperature and the rated supply voltage.

16.2 Test Parameters

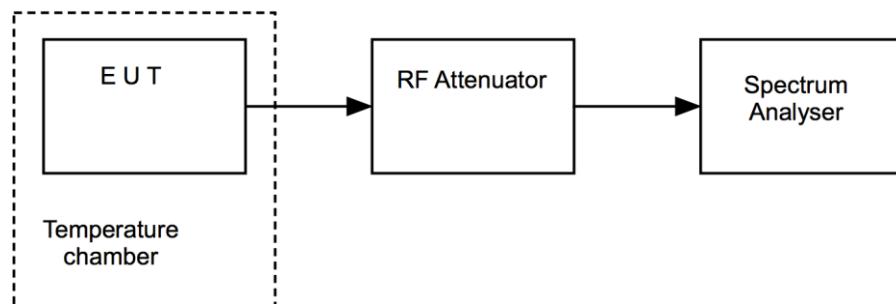
Test Location:	Element Skelmersdale
Test Chamber:	Radio Laboratory
Test Standard and Clause:	ANSI C63.10-2013, Clause 6.8
Frequency Measured:	13.56 MHz
Modulation:	Off
Deviations From Standard:	None
Temperature Extreme Environment Test Range:	-30 to +70 °C
Voltage Extreme Environment Test Range:	Battery: nominal and end point;

Environmental Conditions (Normal Environment)

Temperature: 22 °C	Standard Requirement: +20 °C
Humidity: 40.8 %RH	20 % RH to 75 % RH (as declared)

16.3 Test Limit

Carrier frequency stability shall be maintained to $\pm 0.01\%$ (± 100 ppm).


16.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure v, the frequency was measured under varying conditions of temperature and supply voltage.

The measurements were performed with EUT set in a CW mode of operation.

Per ANSI C63.4, measurements were made, once temperature stabilisation was reached at intervals of zero, two, five and ten minutes after switching on the EUT. Only the worst case results are given.

Figure v Test Setup

16.5 Test Equipment

Equipment Description	Manufacturer	Equipment Type	Element No	Due For Calibration
Spectrum Analyser	R&S	FSU26	REF909	2025-09-24
Power Supply	ISO-Tech	IPS 303A	U747	Use REF976
Multimeter	Agilent	34405a	REF976	2025-01-26
Temperature Chamber	Votsch	VT 4002	U521	Use L426 or U720
Temperature Indicator	Digitron	2000T	U720	2025-06-10

16.6 Test Results

Frequency: 13.56 MHz; Modulation: ASK; Power Setting: Default – Searching for TAG					
Test Environment		Measured Frequency (MHz)	Frequency error (kHz) Limit = $\pm 1.3562\text{kHz}$	Frequency error (PPM) Limit = $\pm 100\text{ PPM}$	Result
+70°C	V _{nominal}	13.559923077	-0.07692	5.67	PASS
+60°C	V _{nominal}	13.559910256	-0.08974	6.62	PASS
+50 °C	V _{nominal}	13.559923077	-0.07692	5.67	PASS
+40 °C	V _{nominal}	13.559955128	-0.04487	3.31	PASS
+30 °C	V _{nominal}	13.560012821	+0.01282	0.95	PASS
+20°C	V _{minimum}	13.560041667	+0.04167	3.07	PASS
	V _{nominal}	13.560051282	N/A	N/A	N/A
	V _{maximum}	13.560054487	+0.05449	4.02	PASS
+10°C	V _{nominal}	13.560076923	+0.07692	5.67	PASS
0 °C	V _{nominal}	13.560102564	+0.10256	7.56	PASS
-10 °C	V _{nominal}	13.560115385	+0.11538	8.51	PASS
-20 °C	V _{nominal}	13.560089744	+0.08974	6.62	PASS
-30°C	V _{nominal}	13.560028846	+0.02885	2.13	PASS

17 Measurement Uncertainty

Radio Testing – General Uncertainty Schedule

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95 % confidence where no required test level exists.

Test/Measurement	Budget Number	MU
Conducted RF Power, Power Spectral Density, Adjacent Channel Power and Spurious emissions		
Absolute RF power (via antenna connector) Sampling Power Meter to 8 GHz	MU4001	0.9 dB
Carrier Power and PSD - Spectrum Analysers	MU4004	1.7 dB
Adjacent Channel Power	MU4002	1.9 dB
Transmitter conducted spurious emissions (Including emissions due to intermodulation)	MU4041	0.9 dB
Conducted power and spurious emissions 40 GHz to 50 GHz	MU4042	2.4 dB
Conducted power and spurious emissions 50 GHz to 75 GHz	MU4043	2.5 dB
Conducted power and spurious emissions 75 GHz to 110 GHz	MU4044	2.4 dB
Input and output intermodulation	MU4053	1.6 dB
Radiated RF Power and Spurious emissions ERP and EIRP		
Effective Radiated Power Reverb Chamber	MU4020	3.7 dB
Effective Radiated Power	MU4021	4.7 dB
TRP Emissions 30 MHz to 1 GHz using CBL6111 or CBL6112 Bilog Antenna	MU4046	5.3 dB
TRP Emissions 1 GHz to 18 GHz using HL050 Log Periodic Antenna	MU4047	5.1 dB
TRP Emissions 18 GHz to 26.5 GHz using Standard Gain Horn	MU4048	2.7 dB
TRP Emissions 26.5 GHz to 40 GHz using Standard Gain Horn	MU4049	2.7 dB
In-band (3450-3980 MHz) TRP using CATR_ASH_B2	MU4051	4.1 dB
Cellular Effective radiated RF power in a SAC between 30 MHz to 180 MHz	MU4052	6.3 dB
Cellular Effective radiated RF power in a SAC between 180 MHz to 1 GHz	MU4052	3.5 dB
Cellular Effective radiated RF power in a SAC between 1 GHz and 18 GHz	MU4052	2.8 dB
Cellular Effective radiated RF power in a SAC between 18 GHz to 26 GHz	MU4052	2.8 dB
Cellular Effective radiated RF power in a FAR between 30 MHz to 180 MHz	MU4052	5.4 dB
Cellular Effective radiated RF power in a FAR between 180 MHz to 1 GHz	MU4052	2.9 dB
Cellular Effective radiated RF power in a FAR between 1 GHz and 18 GHz	MU4052	2.6 dB
Cellular Effective radiated RF power in a FAR between 18 GHz to 26 GHz	MU4052	2.7 dB
Spurious Emissions Electric and Magnetic Field		
Radiated Spurious Emissions 30 MHz to 1 GHz (Including emissions due to intermodulation)	MU4037	4.7 dB
Radiated Spurious Emissions 1-18 GHz (Including emissions due to intermodulation)	MU4032	4.5 dB
E Field Emissions 18 GHz to 26 GHz	MU4024	3.2 dB
E Field Emissions 26 GHz to 40 GHz	MU4025	3.3 dB
E Field Emissions 40 GHz to 50 GHz	MU4026	3.5 dB
E Field Emissions 50 GHz to 75 GHz	MU4027	3.6 dB
E Field Emissions 75 GHz to 110 GHz	MU4028	3.6 dB

<i>Test/Measurement</i>	<i>Budget Number</i>	<i>MU</i>
Radiated Magnetic Field Emissions	MU4031	2.3 dB
<i>Frequency Measurements</i>		
Frequency Deviation	MU4022	3.7 kHz
Frequency error using CMTA test set	MU4023	113.441 Hz
Frequency error using GPS locked frequency source	MU4045	0.0413 ppm
<i>Bandwidth/Spectral Mask Measurements</i>		
Channel Bandwidth	MU4005	3.87%
Transmitter Mask Amplitude	MU4039	1.3 dB
Transmitter Mask Frequency	MU4040	2.59%
<i>Time Domain Measurements</i>		
Transmission Time	MU4038	4.40%
<i>Dynamic Frequency Selection (DFS) Parameters</i>		
DFS Analyser - Measurement Time	MU4006	678.984 μs
DFS Generator - Frequency Error	MU4007	91.650 Hz
DFS Threshold Conducted	MU4008	1.3 dB
DFS Threshold Radiated	MU4009	3.2 dB
<i>Receiver Parameters</i>		
EN 300 328 Receiver Blocking	MU4010	1.1 dB
EN 301 893 Receiver Blocking	MU4011	1.1 dB
EN 303 340 Adjacent Channel Selectivity	MU4012	1.1 dB
EN 303 340 Overloading	MU4013	1.1 dB
EN 303 340 Receiver Blocking	MU4014	1.1 dB
EN 303 340 Receiver Sensitivity	MU4015	0.9 dB
EN 303 372-1 Image Rejection	MU4016	1.4 dB
EN 303 372-1 Receiver Blocking	MU4017	1.1 dB
EN 303 372-2 Adjacent Channel Selectivity	MU4018	1.1 dB
EN 303 372-2 Dynamic Range	MU4019	0.9 dB
Receiver Blocking Talk Mode Conducted	MU4033	1.2 dB
Receiver Blocking Talk Mode- radiated	MU4034	3.4 dB
Rx Blocking, listen mode, blocking level	MU4035	3.2 dB
Rx Blocking, listen mode, radiated Threshold Measurement	MU4036	3.4 dB
Adjacent Sub Band Selectivity	MU4003	4.2 dB

Test/Measurement	Budget Number	MU
Rohde & Schwarz TS8997		
Carrier frequency	MU4050	5.2 ppm
RF Output Power	MU4050	1.0 dB
Peak Power	MU4050	0.8 dB
Power Spectral Density	MU4050	1.0 dB
Occupied Channel Bandwidth	MU4050	2.08 %
Transmitter unwanted emissions in-band	MU4050	0.9 dB
Transmitter unwanted emissions in the spurious domain 30 MHz to 1 GHz	MU4050	0.6 dB
Transmitter unwanted emissions in the spurious domain 1 GHz to 12.75 GHz	MU4050	1.8 dB
Receiver Spurious emission 30 MHz to 1 GHz	MU4050	0.6 dB
Receiver Spurious emission 1 GHz to 12.75 GHz	MU4050	1.8 dB
Duty Cycle	MU4050	0.02 %
Tx Sequence	MU4050	0.02 %
Tx Gap	MU4050	0.02 %
Medium Utilisation	MU4050	0.1 %
Accumulated Transmit Time	MU4050	0.01 %
Minimum Frequency Occupation Time	MU4050	0.01 %
Hopping Frequency Separation	MU4050	0.6 %
Receiver blocking (for bit streams)	MU4050	3.0 dB
Channel Access Mechanism / Adaptivity / DFS / Contention Based Protocol	MU4050	1.8 dB

18 RF Exposure

OVERVIEW

Human exposure to RF emissions from mobile devices (47 CFR §2.1091) may be evaluated based on the MPE limits adopted by the FCC for electric and magnetic field strength and/or power density, as appropriate, since exposures are assumed to occur at distances of 20 cm or more from persons. ANSI C95.1:2005 + Amd 1:2010 specifies a minimum separation distance of 20 cm for performing reliable field measurements to determine adherence to MPE limits. If the minimum separation distance between a transmitter and nearby persons is more than 20 cm under normal operating conditions, compliance with MPE limits may be determined at such distance from the transmitter. When applicable, operation instructions and prominent warning labels may be used to alert the exposed persons to maintain a specified distance from the transmitter or to limit their exposure durations and usage conditions to ensure compliance. If the use of warning labels on a transmitter is not effective or desirable, the alternative of performing SAR evaluation with the device at its closest range to persons under normal operating conditions may be used. The field strength and power density limits adopted by the FCC are based on whole-body averaged exposure and the assumption of RF field levels relate most accurately to estimating whole-body averaged SAR. This means some local values of exposures exceeding the stated field strength and power density limits may not necessarily imply non-compliance if the spatial average of spatially averaged RF fields over the exposed portions of a person's body does not exceed the limits.

COMPLIANCE WITH FCC 2.1091

47 CFR §1.1307

“(b)(1) Requirements. (i) With respect to the limits on human exposure to RF provided in §1.1310 of this chapter, applicants to the Commission for the grant or modification of construction permits, licenses or renewals thereof, temporary authorities, equipment authorizations, or any other authorizations for radiofrequency sources must either:

- (A) Determine that they qualify for an exemption pursuant to §1.1307(b)(3);
- (B) Prepare an evaluation of the human exposure to RF radiation pursuant to §1.1310 and include in the application a statement confirming compliance with the limits in §1.1310; or
- (C) Prepare an Environmental Assessment if those RF sources would cause human exposure to levels of RF radiation in excess of the limits in §1.1310.

47 CFR §2.1091

“A mobile device is defined as a transmitting device designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at least 20 centimeters is normally maintained between the RF source's radiating structure(s) and the body of the user or nearby persons. In this context, the term “fixed location” means that the device is physically secured at one location and is not able to be easily moved to another location while transmitting. Transmitting devices designed to be used by consumers or workers that can be easily re-located, such as wireless devices associated with a personal desktop computer, are considered to be mobile devices if they meet the 20-centimeter separation requirement.”

The device will only be used with a separation distance between the antenna and the body of the user or nearby persons as shown in the table below and can therefore be considered a mobile transmitter per 47 CFR 2.1091(b).

COMPLIANCE WITH FCC KDB 447498 D01 General RF Exposure Guidance v06

"KDB 447498 D01 General RF Exposure Guidance v06" provides the procedures, requirements, and authorization policies for mobile and portable devices.

Devices operating in standalone mobile device exposure conditions may contain a single transmitter or multiple transmitters that do not transmit simultaneously are covered in section 7.1.

Devices containing multiple transmitters capable of simultaneous transmissions are covered in section 7.2.

LIMITS

Limits for General Population /Uncontrolled Exposure: 47 CFR 1.1310

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)
0.3 - 1.34	614	1.63	*(100)	30
1.34 - 30	824/f	2.19/f	*(180/f ²)	30
30 - 300	27.5	0.073	0.2	30
300 - 1500			f/1500	30
1500 - 100000			1	30

f = frequency in MHz

* = Plane-wave equivalent power density

POWER DENSITY

The exposure level for the radio is evaluated at a 20 cm distance from the radio's transmitting antenna using the general equation:

$$S = \frac{EIRP}{4\pi R^2} \text{ re - arranged } R = \sqrt{\frac{EIRP}{S 4\pi}}$$

Where: S = power density (mW/cm²)

P = power input to the antenna (mW)

G = numeric power gain relative to an isotropic radiator

R = distance to the center of the radiation of the antenna (20 cm = limit for MPE estimates)

P*G = EIRP

Solving for S, the maximum power density 20 cm from the transmitting antenna is determined. This level is then compared to the applicable limit for the transmit frequency. If limits were not met at the 20 cm boundary the evaluation distance is increased until the limit is met as shown in the table below.

For co-located radios, the ratio of the calculated level to the limit is determined. The ratios for each co-located radio are summed. If the sum is less than or equal to one, then the device is excluded from testing and is deemed compliant.

ASSESSMENT

Frequency (MHz)	Maximum Conducted Power (mW)	Power density at 20cm (S) (mW/cm ²)	Power density limit (S) (mW/cm ²)	Distance (R) cm required to be less than the power density limit
13.56	0.00000241	0.00000000479	0.979	0.0014