

# FCC RADIO TEST REPORT

Applicant..... : Vornado Air LLC  
Address..... : 415 East 13th Street, Andover KS, USA  
Manufacturer..... : NINGBO HOMSTAR ELECTRICAL CO., LTD.  
Address..... : Dawan Village, Shengshan Town, Cixi, Zhejiang, P. R. China  
Factory..... : NINGBO HOMSTAR ELECTRICAL CO., LTD.  
Address..... : Dawan Village, Shengshan Town, Cixi, Zhejiang, P. R. China  
Product Name..... : Remote Control  
Brand Name..... : VORNADO  
Model No. .... : AXL  
FCC ID..... : WOT-AXL  
Measurement Standard..... : 47 CFR FCC Part 15, Subpart C (Section 15.231)  
Receipt Date of Samples..... : November 03, 2023  
Date of Tested..... : November 03, 2023 to November 20, 2023  
Date of Report..... : November 23, 2023

This report shows that above equipment is technically compliant with the requirements of the standards above. All test results in this report apply only to the tested sample(s). Without prior written approval of Dongguan Nore Testing Center Co., Ltd, this report shall not be reproduced except in full.



Prepared by

Rose Hu / Project Engineer



## Table of Contents

|                                                               |    |
|---------------------------------------------------------------|----|
| 1. Summary of Test Result .....                               | 4  |
| 2. General Description of EUT .....                           | 5  |
| 3. Test Channels and Modes Detail.....                        | 7  |
| 4. Configuration of EUT .....                                 | 7  |
| 5. Modification of EUT .....                                  | 7  |
| 6. Description of Support Device .....                        | 7  |
| 7. Test Facility and Location.....                            | 8  |
| 8. Applicable Standards and References .....                  | 9  |
| 9. Deviations and Abnormalities from Standard Conditions..... | 9  |
| 10. Test Conditions.....                                      | 9  |
| 11. Measurement Uncertainty .....                             | 10 |
| 12. Sample Calculations.....                                  | 11 |
| 13. Duty Cycle .....                                          | 12 |
| 14. Test Items and Results.....                               | 13 |
| 14.1 Conducted Emissions Measurement .....                    | 13 |
| 14.2 Radiated Spurious Emissions Measurement .....            | 15 |
| 14.3 20dB Occupied Bandwidth .....                            | 24 |
| 14.4 Transmission time .....                                  | 26 |
| 14.5 Antenna Requirement.....                                 | 28 |
| 15. Test Equipment List.....                                  | 29 |

## Revision History

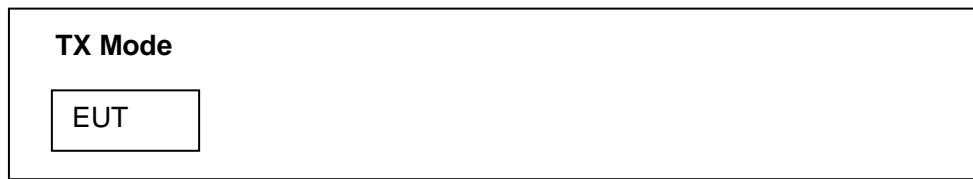
## 1. Summary of Test Result

| FCC Rules           | Description of Test              | Result                        | Remarks |
|---------------------|----------------------------------|-------------------------------|---------|
| §15.207 (a)         | AC Power Line Conducted Emission | N/A <small>see note 2</small> | ---     |
| §15.231(b) & 15.209 | Radiated Spurious Emission       | PASS                          | ---     |
| §15.231(c)          | 20 dB Occupied bandwidth         | PASS                          | ---     |
| §15.231(a)          | Transmission time                | PASS                          | ---     |
| §15.203             | Antenna Requirement              | PASS                          | ---     |

Note: 1. The EUT has been tested as an independent unit. And continual transmitting in maximum power (New batteries were used during test)  
 2. AC Power Conducted Emission is not applicable due to the EUT only can be powered by battery.

## 2. General Description of EUT

| Product Information     |                                                                                                                                |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Product Name:           | Remote Control                                                                                                                 |
| Main Model Name:        | AXL                                                                                                                            |
| Additional Model Name:  | N/A                                                                                                                            |
| Model Difference:       | N/A                                                                                                                            |
| S/N:                    | JZY-RF04J                                                                                                                      |
| Brand Name:             | VORNADO                                                                                                                        |
| Hardware Version:       | JZY-RF04J                                                                                                                      |
| Software Version:       | JZY-RF04J-WL116FC-001_V2.0-4EE0BC                                                                                              |
| Rating:                 | DC 3V from CR2032 battery                                                                                                      |
| Classification:         | Class B                                                                                                                        |
| Typical arrangement:    | Table-top                                                                                                                      |
| I/O Port:               | Refer to the user manual                                                                                                       |
| Accessories Information |                                                                                                                                |
| Adapter:                | N/A                                                                                                                            |
| Cable:                  | N/A                                                                                                                            |
| Other:                  | N/A                                                                                                                            |
| Additional Information  |                                                                                                                                |
| Note:                   | N/A                                                                                                                            |
| Remark:                 | All the information above are provided by the manufacturer. More detailed feature of the EUT please refers to the user manual. |


| Technical Specification  |                                  |
|--------------------------|----------------------------------|
| Declaring the Frequency: | 433.913MHz                       |
| Modulation Type:         | ASK                              |
| Antenna Type:            | PCB antenna                      |
| Antenna Gain:            | 0 dBi (Declared by manufacturer) |
| Number of Channels:      | 1                                |

### 3. Test Channels and Modes Detail

| Mode | Test Frequency (MHz) | Modulation | Data Rate (Mbps) |
|------|----------------------|------------|------------------|
| 1    | TX                   | 433.913MHz | ASK              |

Note: TX mode means that the EUT was programmed to be in continuously transmitting mode.

### 4. Configuration of EUT



### 5. Modification of EUT

No modifications are made to the EUT during all test items.

### 6. Description of Support Device

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| No. | Equipment | Brand | M/N | S/N | Cable Specification | Remarks |
|-----|-----------|-------|-----|-----|---------------------|---------|
| --- | ---       | ---   | --- | --- | ---                 | ---     |

## 7. Test Facility and Location

|                                   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Site                         | : | Dongguan Nore Testing Center Co., Ltd. (Dongguan NTC Co., Ltd.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Accreditations and Authorizations | : | <p>The Laboratory has been assessed and proved to be in compliance with CNAS/CL01</p> <p>Listed by CNAS, August 13, 2018</p> <p>The Certificate Registration Number is L5795.</p> <p>The Certificate is valid until August 13, 2024</p> <p>The Laboratory has been assessed and proved to be in compliance with ISO17025</p> <p>Listed by A2LA, November 01, 2017</p> <p>The Certificate Registration Number is 4429.01</p> <p>Listed by FCC, November 06, 2017</p> <p>Test Firm Registration Number: 907417</p> <p>Listed by Industry Canada, June 08, 2017</p> <p>The Certificate Registration Number. Is 46405-9743A</p> |
| Test Site Location                | : | Building D, Gaosheng Science and Technology Park, Hongtu Road, Nancheng District, Dongguan City, Guangdong Province, China                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

## 8. Applicable Standards and References

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

**Test Standards:**

47 CFR Part 15, Subpart C, 15.231

ANSI C63.10-2013

**References Test Guidance:**

N/A

## 9. Deviations and Abnormalities from Standard Conditions

No additions, deviations and exclusions from the standard.

## 10. Test Conditions

| No. | Test Item                   | Test Mode | Test Voltage | Tested by | Remarks    |
|-----|-----------------------------|-----------|--------------|-----------|------------|
| 1.  | AC Power Conducted Emission | ---       | ---          | ---       | ---        |
| 2.  | Radiated Emission           | 1         | DC 3V        | Sean      | See note 1 |
| 3.  | 20 dB Occupied bandwidth    | 1         | DC 3V        | Sean      | See note 1 |
| 4.  | Transmission time           | 1         | DC 3V        | Sean      | See note 1 |
| 5.  | Antenna Requirement         | ---       | ---          | ---       | ---        |

**Note:**

1. The testing climatic conditions for temperature, humidity, and atmospheric pressure are within: 15~35°C, 30~70%, 86~106kPa
2. As the EUT can be operated multiple positions, all X,Y,Z axis were considered during the test and only the worst case X was recorded.

## 11. Measurement Uncertainty

| No. | Test Item              | Frequency      | Uncertainty | Remarks |
|-----|------------------------|----------------|-------------|---------|
| 1.  | Conducted Emission     | 150KHz ~ 30MHz | ±2.52 dB    | ---     |
| 2.  | Radiated Emission Test | 9kHz ~ 30MHz   | ±5.66 dB    | ---     |
|     |                        | 30MHz ~ 1GHz   | ±5.66 dB    | ---     |
|     |                        | 1GHz ~ 18GHz   | ±5.19 dB    | ---     |
|     |                        | 18GHz ~ 40GHz  | ±5.19 dB    |         |

**Note:**

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.
2. The measurement uncertainty levels above are estimated and calculated according to CISPR 16-4-2.
3. The conformity assessment statement in this report is based solely on the test results, measurement uncertainty is excluded.

## 12. Sample Calculations

| Conducted Emission |                         |                        |                       |                 |              |          |
|--------------------|-------------------------|------------------------|-----------------------|-----------------|--------------|----------|
| Freq.<br>(MHz)     | Reading Level<br>(dBuV) | Correct Factor<br>(dB) | Measurement<br>(dBuV) | Limit<br>(dBuV) | Over<br>(dB) | Detector |
| 0.1900             | 30.10                   | 10.60                  | 40.70                 | 79.00           | -38.30       | QP       |

Where,

Freq. = Emission frequency in MHz  
 Reading Level = Spectrum Analyzer/Receiver Reading  
 Corrector Factor = Insertion loss of LISN + Cable Loss + RF Switching Unit attenuation  
 Measurement = Reading + Corrector Factor  
 Limit = Limit stated in standard  
 Margin = Measurement - Limit  
 Detector = Reading for Quasi-Peak / Average / Peak

| Radiated Spurious Emissions |                         |                          |                         |                   |              |          |
|-----------------------------|-------------------------|--------------------------|-------------------------|-------------------|--------------|----------|
| Freq.<br>(MHz)              | Reading Level<br>(dBuV) | Correct Factor<br>(dB/m) | Measurement<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>(dB) | Detector |
| 633.3400                    | 6.82                    | 27.73                    | 34.55                   | 46.00             | -11.45       | QP       |

Where,

Freq. = Emission frequency in MHz  
 Reading Level = Spectrum Analyzer/Receiver Reading  
 Corrector Factor = Antenna Factor + Cable Loss - Pre-amplifier  
 Measurement = Reading + Corrector Factor  
 Limit = Limit stated in standard  
 Over = Margin, which calculated by Measurement - Limit  
 Detector = Reading for Quasi-Peak / Average / Peak

Note: For all conducted test items, the spectrum analyzer offset or transducer is derived from RF cable loss and attenuator factor. The offset or transducer is equal to the RF cable loss plus attenuator factor.

## 13. Duty Cycle

| Frequency<br>MHz | TP time<br>(ms) | Ton time (Total)<br>(ms) | Duty cycle | AV Factor |
|------------------|-----------------|--------------------------|------------|-----------|
| 433.913          | 50.52           | 13.62                    | 26.95%     | -11.38    |

### Test Photo

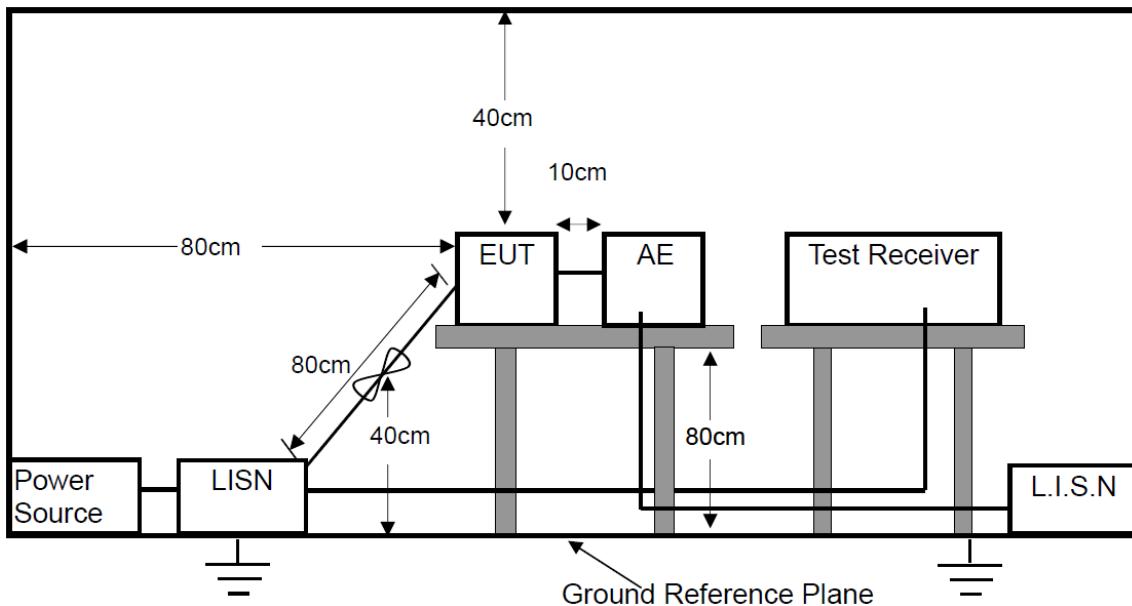
| TP time                                                                               | Ton 1 time                                                                         | Ton 2 time                                                                         | --- |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----|
|      |  |  | --- |
| Note: Duty Cycle = (Total Ton time / TP time) x 100%                                  |                                                                                    |                                                                                    |     |
| Total Ton time = Ton 1 x n1 + Ton 2 x n2 + .... + Ton n x n = 0.42*21 + 1.2*4=13.62ms |                                                                                    |                                                                                    |     |
| AV Factor = 20log(Duty Cycle).                                                        |                                                                                    |                                                                                    |     |

## 14. Test Items and Results

## 14.1 Conducted Emissions Measurement

## LIMIT

According to the requirements of FCC PART 15.207, the limits are as follows:


| Frequency (MHz) | Quasi-peak | Average  |
|-----------------|------------|----------|
| 0.15 to 0.5     | 66 to 56   | 56 to 46 |
| 0.5 to 5        | 56         | 46       |
| 5 to 30         | 60         | 50       |

Note: 1. If the limits for the average detector are met when using the quasi-peak detector, then the limits for the measurements with the average detector are considered to be met.

2. The lower limit shall apply at the transition frequencies.

3. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5MHz.

## BLOCK DIAGRAM OF TEST SETUP



---

## TEST PROCEDURES

- a. The EUT was placed on a wooden table 0.8m height from the metal ground plan and 0.4m from the conducting wall of the shielding room and it was kept at 0.8m from any other grounded conducting surface.
- b. All I/O cables and support devices were positioned as per ANSI C63.10.
- c. Connect mains power port of the EUT to a line impedance stabilization network (LISN).
- d. Connect all support devices to the other LISN and AAN, if needed.
- e. Scan the frequency range from 150KHz to 30MHz at both sides of AC line for maximum conducted interference checking and record the test data.

## TEST RESULTS

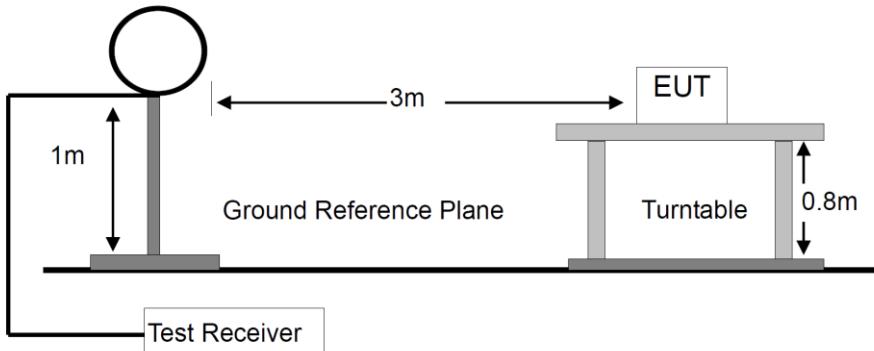
Not Applicable.

## 14.2 Radiated Spurious Emissions Measurement

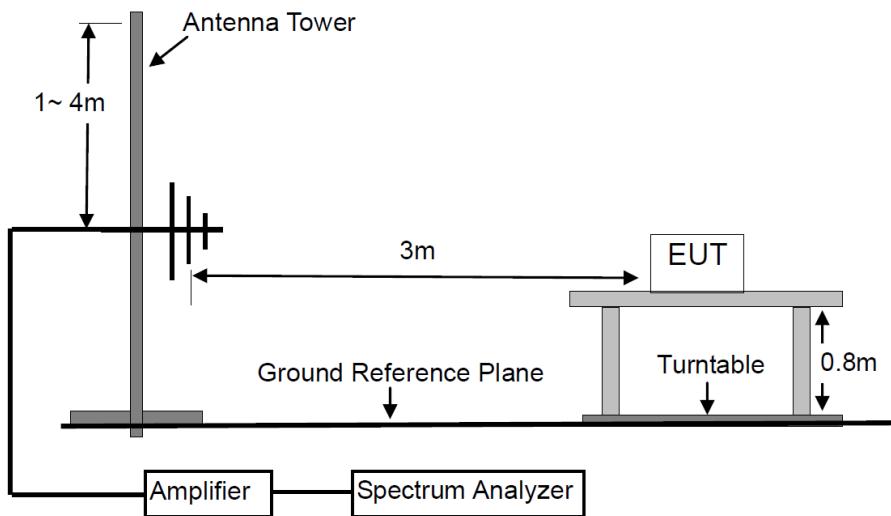
### LIMIT

| Frequency range<br>MHz | Distance Meters | Field Strengths Limit (15.209) |
|------------------------|-----------------|--------------------------------|
|                        |                 | $\mu\text{V/m}$                |
| 0.009 ~ 0.490          | 300             | 2400/F(kHz)                    |
| 0.490 ~ 1.705          | 30              | 24000/F(kHz)                   |
| 1.705 ~ 30             | 30              | 30                             |
| 30 ~ 88                | 3               | 100                            |
| 88 ~ 216               | 3               | 150                            |
| 216 ~ 960              | 3               | 200                            |
| Above 960              | 3               | 500                            |

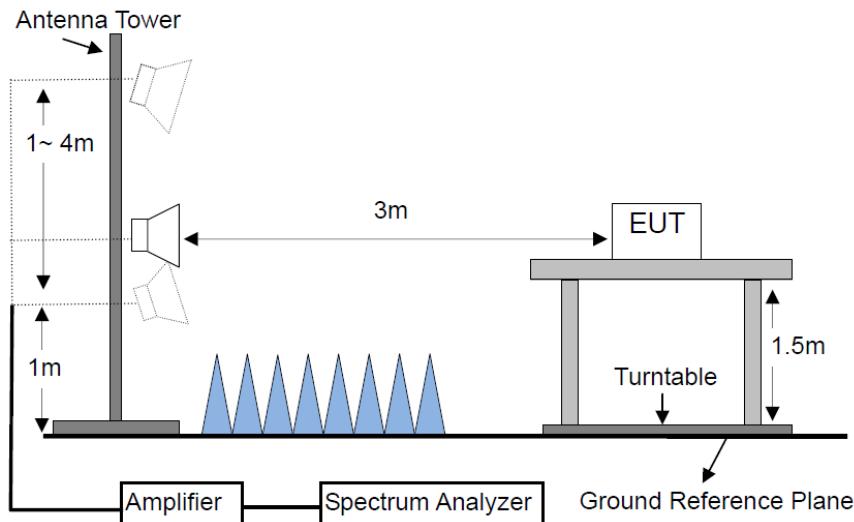
Remark: (1) Emission level (dB) $\mu\text{V}$  = 20 log Emission level  $\mu\text{V/m}$   
(2) The smaller limit shall apply at the cross point between two frequency bands.  
(3) As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.  
(4) The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.  
(5) §15.247(d) specifies that emissions which fall in the restricted bands, as defined in §15.205 comply with radiated emission limits specified in §15.209.


According to 15.231(b), the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

| Fundamental frequency (MHz) | Field strength of fundamental (microvolts/ meter) | spurious emissions (microvolts/meter) |
|-----------------------------|---------------------------------------------------|---------------------------------------|
| 40.66 - 40.70               | 2250                                              | 225                                   |
| 70 - 130                    | 1250                                              | 125                                   |
| 130 - 174                   | 1250 to 3750*                                     | 125 to 375*                           |
| 174 - 260                   | 3750                                              | 375                                   |
| 260 - 470                   | 3750 to 12500*                                    | 375 to 1250*                          |
| Above 470                   | 12500                                             | 1250                                  |


Remark: (1) \* Linear interpolations  
 (2) Emission level (dB) $\mu$ V = 20 log Emission level  $\mu$ V/m.  
 (3) The smaller limit shall apply at the cross point between two frequency bands.

## BLOCK DIAGRAM OF TEST SETUP


For Radiated Emission below 30MHz



For Radiated Emission 30-1000MHz



For Radiated Emission Above 1000MHz.



---

## TEST PROCEDURES

- a. Below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi- anechoic chamber room.

- b. For the radiated emission test above 1GHz:

The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter full anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to peak detect function and specified bandwidth with maximum hold mode.
- f. A Quasi-peak measurement was then made for that frequency point for below 1GHz test. PK and AV for above 1GHz emission test.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

| Frequency Band<br>(MHz) | Detector | Resolution Bandwidth | Video Bandwidth |
|-------------------------|----------|----------------------|-----------------|
| 30 to 1000              | QP       | 120 kHz              | 300 kHz         |
| Above 1000              | Peak     | 1 MHz                | 3 MHz           |
|                         | Average  | 1 MHz                | 10 Hz           |

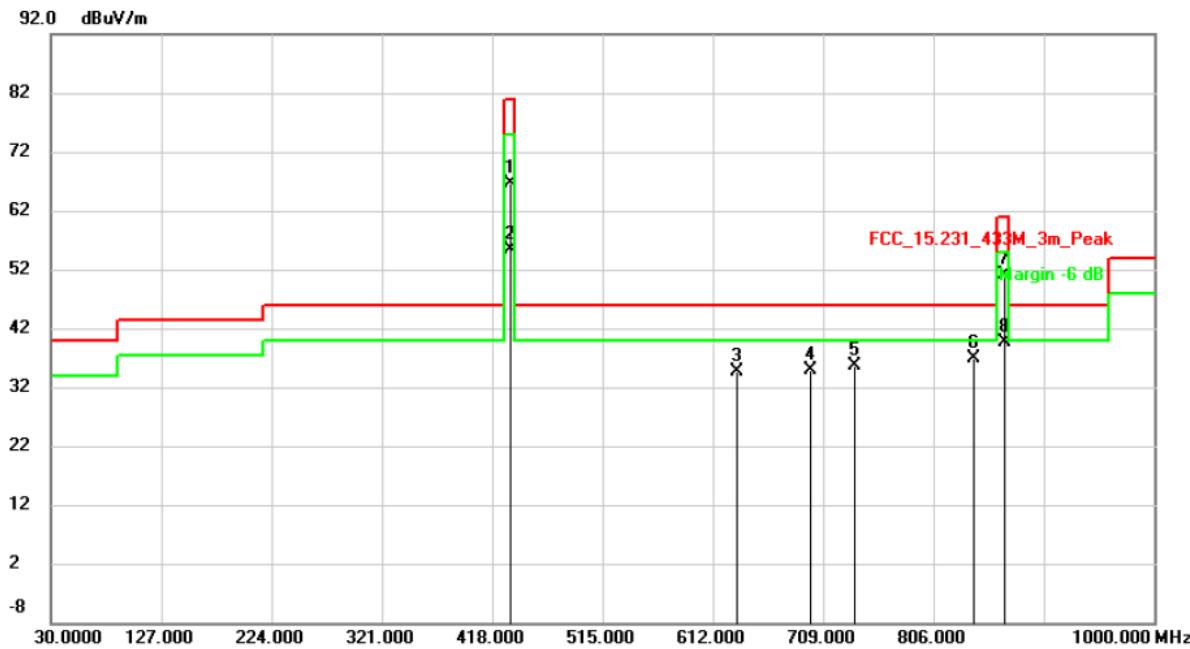
## TEST RESULTS

PASS

Please refer to the following pages.

AVG = Peak + AV Factor,

where Peak is the measurement peak level, and AV Factor is calculated by duty cycle, details see section 13 of the report.


Sample calculation, Peak=66.71dBuV/m, AV Factor= -11.38dB, then AVG=66.71+(-11.38)=55.33dBuV/m.

|                          |                        |
|--------------------------|------------------------|
| M/N: AXL                 | Testing Voltage: DC 3V |
| Polarization: Horizontal | Detector: QP           |
| Test Mode: TX            | Distance: 3m           |

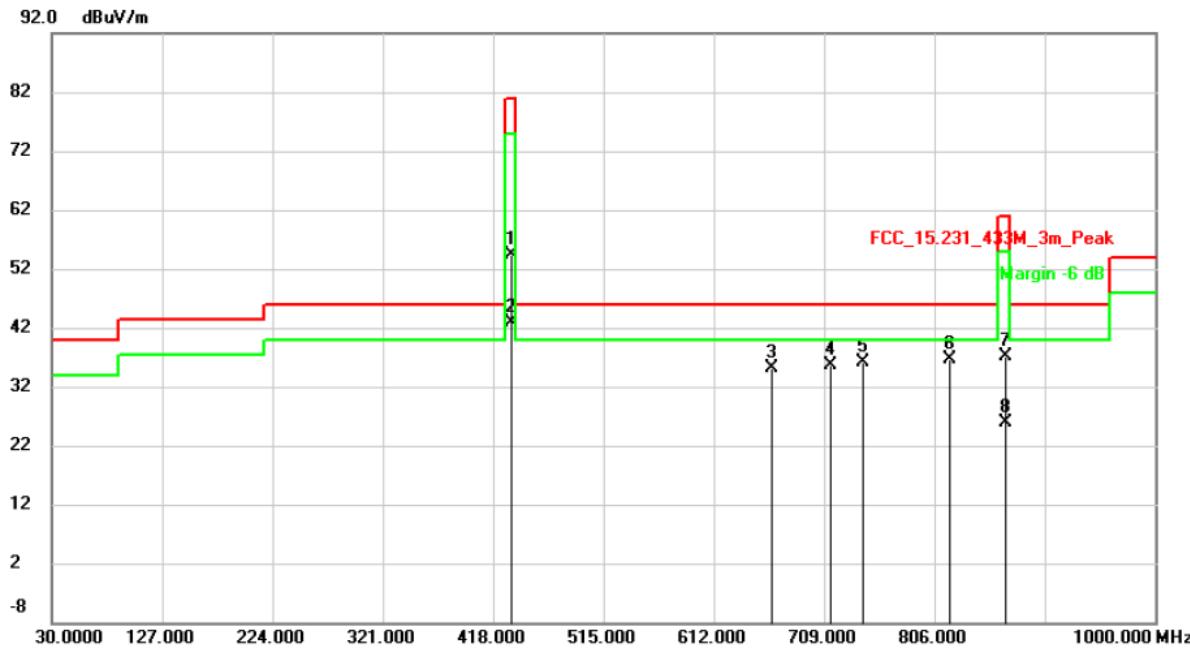
## Radiated Emission Measurement

Date: 2023/11/6

Time: 19:01:12

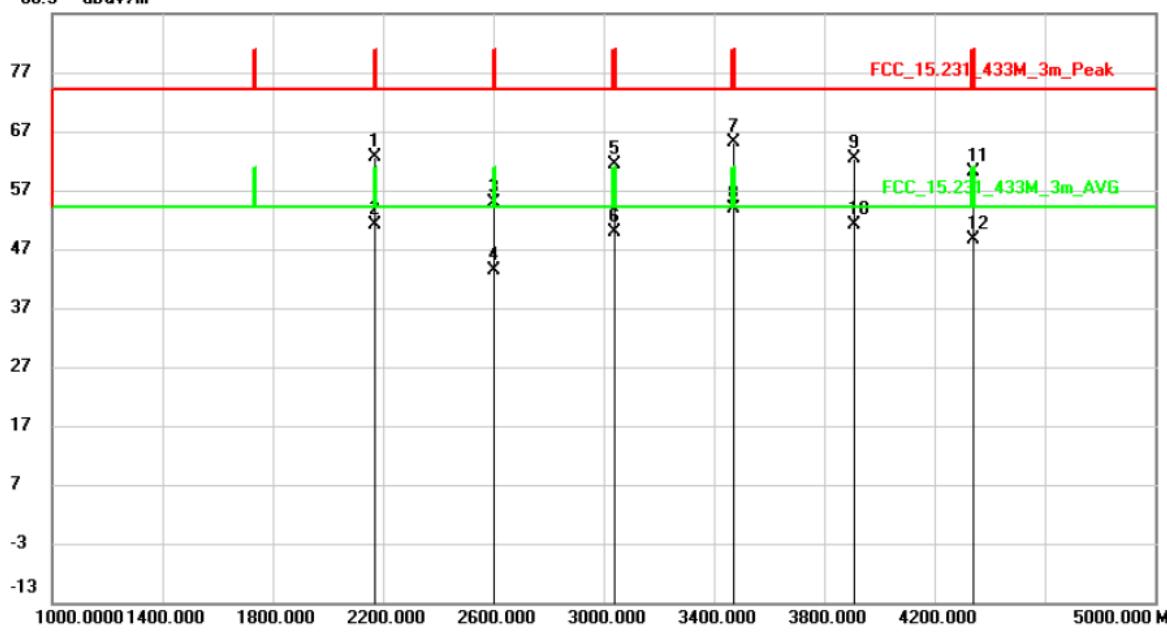


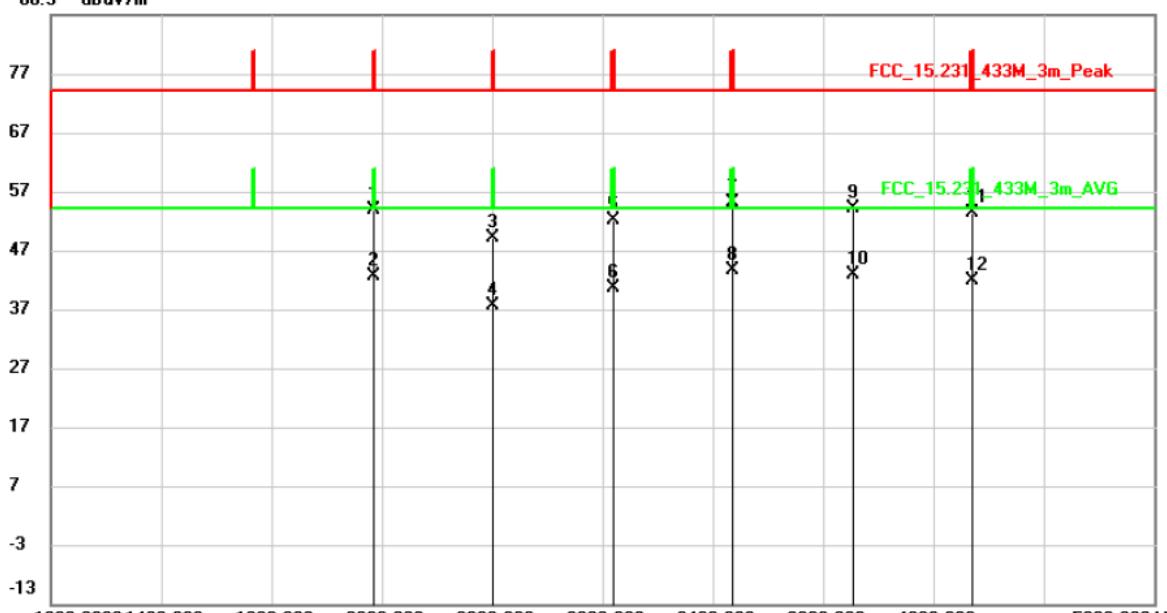
| No. | Mk.        | Freq. | Reading Level | Correct Factor | Measure-<br>ment | Limit  | Over   |          |         |
|-----|------------|-------|---------------|----------------|------------------|--------|--------|----------|---------|
|     |            | MHz   | dBuV          | dB/m           | dBuV/m           | dBuV/m | dB     | Detector | Comment |
| 1   | 433.9130   | 42.49 | 24.22         | 66.71          |                  |        |        |          | peak    |
| 2   | 433.9130   |       |               |                | 55.33            | 80.80  | -25.47 | AVG      |         |
| 3   | 633.3400   | 6.82  | 27.73         | 34.55          | 46.00            | 46.00  | -11.45 | QP       |         |
| 4   | 697.3600   | 6.03  | 28.87         | 34.90          | 46.00            | 46.00  | -11.10 | QP       |         |
| 5   | 737.1300   | 6.27  | 29.46         | 35.73          | 46.00            | 46.00  | -10.27 | QP       |         |
| 6   | * 841.8900 | 5.75  | 31.13         | 36.88          | 46.00            | 46.00  | -9.12  | QP       |         |
| 7   | 867.8260   | 19.57 | 31.50         | 51.07          |                  |        |        |          | peak    |
| 8   | 867.8260   |       |               | 39.69          | 60.80            | 60.80  | -21.11 | AVG      |         |


**Note:** Below 30MHz, the emissions are lower than 20dB below the allowable limit.

|                        |                        |
|------------------------|------------------------|
| M/N: AXL               | Testing Voltage: DC 3V |
| Polarization: Vertical | Detector: QP           |
| Test Mode: TX          | Distance: 3m           |

## Radiated Emission Measurement


Date: 2023/11/6


Time: 19:08:07



| No. | Mk. | Freq.    | Reading Level | Correct Factor | Measure-<br>ment | Limit  | Over   |          |         |
|-----|-----|----------|---------------|----------------|------------------|--------|--------|----------|---------|
|     |     | MHz      | dBuV          | dB/m           | dBuV/m           | dBuV/m | dB     | Detector | Comment |
| 1   |     | 433.9130 | 31.16         | 23.22          | 54.38            |        |        |          | peak    |
| 2   |     | 433.9130 |               |                | 43.00            | 80.80  | -37.80 | AVG      |         |
| 3   |     | 663.4099 | 6.79          | 28.23          | 35.02            | 46.00  | -10.98 | QP       |         |
| 4   |     | 714.8200 | 6.39          | 29.16          | 35.55            | 46.00  | -10.45 | QP       |         |
| 5   |     | 742.9500 | 6.48          | 29.54          | 36.02            | 46.00  | -9.98  | QP       |         |
| 6   | *   | 819.5800 | 5.87          | 30.71          | 36.58            | 46.00  | -9.42  | QP       |         |
| 7   |     | 867.8260 | 5.72          | 31.50          | 37.22            |        |        |          | peak    |
| 8   |     | 867.8260 |               |                | 25.84            | 60.80  | -34.96 | AVG      |         |

**Note:** Below 30MHz, the emissions are lower than 20dB below the allowable limit.

| M/N: AXL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Testing Voltage: DC 3V |          |               |                |                  |                |                  |          |         |  |  |  |     |      |      |        |        |    |          |         |   |  |          |       |       |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |    |   |          |  |  |       |       |       |     |  |    |  |          |       |      |       |  |  |      |  |    |  |          |  |  |       |       |        |     |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|---------------|----------------|------------------|----------------|------------------|----------|---------|--|--|--|-----|------|------|--------|--------|----|----------|---------|---|--|----------|-------|-------|-------|--|--|------|--|---|--|----------|--|--|-------|-------|-------|-----|--|---|--|----------|-------|------|-------|--|--|------|--|---|--|----------|--|--|-------|-------|--------|-----|--|---|--|----------|-------|------|-------|--|--|------|--|---|--|----------|--|--|-------|-------|--------|-----|--|---|--|----------|-------|------|-------|--|--|------|--|---|--|----------|--|--|-------|-------|-------|-----|--|---|--|----------|-------|------|-------|--|--|------|--|----|---|----------|--|--|-------|-------|-------|-----|--|----|--|----------|-------|------|-------|--|--|------|--|----|--|----------|--|--|-------|-------|--------|-----|--|
| Polarization: Horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Detector: Peak & AVG   |          |               |                |                  |                |                  |          |         |  |  |  |     |      |      |        |        |    |          |         |   |  |          |       |       |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |    |   |          |  |  |       |       |       |     |  |    |  |          |       |      |       |  |  |      |  |    |  |          |  |  |       |       |        |     |  |
| Test Mode: TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Distance: 3m           |          |               |                |                  |                |                  |          |         |  |  |  |     |      |      |        |        |    |          |         |   |  |          |       |       |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |    |   |          |  |  |       |       |       |     |  |    |  |          |       |      |       |  |  |      |  |    |  |          |  |  |       |       |        |     |  |
| <b>Radiated Emission Measurement</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |          |               |                |                  |                |                  |          |         |  |  |  |     |      |      |        |        |    |          |         |   |  |          |       |       |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |    |   |          |  |  |       |       |       |     |  |    |  |          |       |      |       |  |  |      |  |    |  |          |  |  |       |       |        |     |  |
| Date: 2023/11/6 <span style="float: right;">Time: 19:18:27</span>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |          |               |                |                  |                |                  |          |         |  |  |  |     |      |      |        |        |    |          |         |   |  |          |       |       |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |    |   |          |  |  |       |       |       |     |  |    |  |          |       |      |       |  |  |      |  |    |  |          |  |  |       |       |        |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |          |               |                |                  |                |                  |          |         |  |  |  |     |      |      |        |        |    |          |         |   |  |          |       |       |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |    |   |          |  |  |       |       |       |     |  |    |  |          |       |      |       |  |  |      |  |    |  |          |  |  |       |       |        |     |  |
| <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th>No.</th> <th>Mk.</th> <th>Freq.</th> <th>Reading Level</th> <th>Correct Factor</th> <th>Measure-<br/>ment</th> <th>Limit</th> <th>Over</th> <th></th> </tr> <tr> <th></th> <th></th> <th>MHz</th> <th>dBuV</th> <th>dB/m</th> <th>dBuV/m</th> <th>dBuV/m</th> <th>dB</th> <th>Detector</th> <th>Comment</th> </tr> </thead> <tbody> <tr> <td>1</td> <td></td> <td>2169.565</td> <td>62.95</td> <td>-0.47</td> <td>62.48</td> <td></td> <td></td> <td>peak</td> <td></td> </tr> <tr> <td>2</td> <td></td> <td>2169.565</td> <td></td> <td></td> <td>51.10</td> <td>60.80</td> <td>-9.70</td> <td>AVG</td> <td></td> </tr> <tr> <td>3</td> <td></td> <td>2603.478</td> <td>53.94</td> <td>0.77</td> <td>54.71</td> <td></td> <td></td> <td>peak</td> <td></td> </tr> <tr> <td>4</td> <td></td> <td>2603.478</td> <td></td> <td></td> <td>43.33</td> <td>60.80</td> <td>-17.47</td> <td>AVG</td> <td></td> </tr> <tr> <td>5</td> <td></td> <td>3037.391</td> <td>59.39</td> <td>1.85</td> <td>61.24</td> <td></td> <td></td> <td>peak</td> <td></td> </tr> <tr> <td>6</td> <td></td> <td>3037.391</td> <td></td> <td></td> <td>49.86</td> <td>60.80</td> <td>-10.94</td> <td>AVG</td> <td></td> </tr> <tr> <td>7</td> <td></td> <td>3471.304</td> <td>62.36</td> <td>2.68</td> <td>65.04</td> <td></td> <td></td> <td>peak</td> <td></td> </tr> <tr> <td>8</td> <td></td> <td>3471.304</td> <td></td> <td></td> <td>53.66</td> <td>60.80</td> <td>-7.14</td> <td>AVG</td> <td></td> </tr> <tr> <td>9</td> <td></td> <td>3905.217</td> <td>58.54</td> <td>3.75</td> <td>62.29</td> <td></td> <td></td> <td>peak</td> <td></td> </tr> <tr> <td>10</td> <td>*</td> <td>3905.217</td> <td></td> <td></td> <td>50.91</td> <td>54.00</td> <td>-3.09</td> <td>AVG</td> <td></td> </tr> <tr> <td>11</td> <td></td> <td>4339.130</td> <td>55.26</td> <td>4.75</td> <td>60.01</td> <td></td> <td></td> <td>peak</td> <td></td> </tr> <tr> <td>12</td> <td></td> <td>4339.130</td> <td></td> <td></td> <td>48.63</td> <td>60.80</td> <td>-12.17</td> <td>AVG</td> <td></td> </tr> </tbody> </table> |                        | No.      | Mk.           | Freq.          | Reading Level    | Correct Factor | Measure-<br>ment | Limit    | Over    |  |  |  | MHz | dBuV | dB/m | dBuV/m | dBuV/m | dB | Detector | Comment | 1 |  | 2169.565 | 62.95 | -0.47 | 62.48 |  |  | peak |  | 2 |  | 2169.565 |  |  | 51.10 | 60.80 | -9.70 | AVG |  | 3 |  | 2603.478 | 53.94 | 0.77 | 54.71 |  |  | peak |  | 4 |  | 2603.478 |  |  | 43.33 | 60.80 | -17.47 | AVG |  | 5 |  | 3037.391 | 59.39 | 1.85 | 61.24 |  |  | peak |  | 6 |  | 3037.391 |  |  | 49.86 | 60.80 | -10.94 | AVG |  | 7 |  | 3471.304 | 62.36 | 2.68 | 65.04 |  |  | peak |  | 8 |  | 3471.304 |  |  | 53.66 | 60.80 | -7.14 | AVG |  | 9 |  | 3905.217 | 58.54 | 3.75 | 62.29 |  |  | peak |  | 10 | * | 3905.217 |  |  | 50.91 | 54.00 | -3.09 | AVG |  | 11 |  | 4339.130 | 55.26 | 4.75 | 60.01 |  |  | peak |  | 12 |  | 4339.130 |  |  | 48.63 | 60.80 | -12.17 | AVG |  |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mk.                    | Freq.    | Reading Level | Correct Factor | Measure-<br>ment | Limit          | Over             |          |         |  |  |  |     |      |      |        |        |    |          |         |   |  |          |       |       |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |    |   |          |  |  |       |       |       |     |  |    |  |          |       |      |       |  |  |      |  |    |  |          |  |  |       |       |        |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | MHz      | dBuV          | dB/m           | dBuV/m           | dBuV/m         | dB               | Detector | Comment |  |  |  |     |      |      |        |        |    |          |         |   |  |          |       |       |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |    |   |          |  |  |       |       |       |     |  |    |  |          |       |      |       |  |  |      |  |    |  |          |  |  |       |       |        |     |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | 2169.565 | 62.95         | -0.47          | 62.48            |                |                  | peak     |         |  |  |  |     |      |      |        |        |    |          |         |   |  |          |       |       |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |    |   |          |  |  |       |       |       |     |  |    |  |          |       |      |       |  |  |      |  |    |  |          |  |  |       |       |        |     |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | 2169.565 |               |                | 51.10            | 60.80          | -9.70            | AVG      |         |  |  |  |     |      |      |        |        |    |          |         |   |  |          |       |       |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |    |   |          |  |  |       |       |       |     |  |    |  |          |       |      |       |  |  |      |  |    |  |          |  |  |       |       |        |     |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | 2603.478 | 53.94         | 0.77           | 54.71            |                |                  | peak     |         |  |  |  |     |      |      |        |        |    |          |         |   |  |          |       |       |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |    |   |          |  |  |       |       |       |     |  |    |  |          |       |      |       |  |  |      |  |    |  |          |  |  |       |       |        |     |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | 2603.478 |               |                | 43.33            | 60.80          | -17.47           | AVG      |         |  |  |  |     |      |      |        |        |    |          |         |   |  |          |       |       |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |    |   |          |  |  |       |       |       |     |  |    |  |          |       |      |       |  |  |      |  |    |  |          |  |  |       |       |        |     |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | 3037.391 | 59.39         | 1.85           | 61.24            |                |                  | peak     |         |  |  |  |     |      |      |        |        |    |          |         |   |  |          |       |       |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |    |   |          |  |  |       |       |       |     |  |    |  |          |       |      |       |  |  |      |  |    |  |          |  |  |       |       |        |     |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | 3037.391 |               |                | 49.86            | 60.80          | -10.94           | AVG      |         |  |  |  |     |      |      |        |        |    |          |         |   |  |          |       |       |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |    |   |          |  |  |       |       |       |     |  |    |  |          |       |      |       |  |  |      |  |    |  |          |  |  |       |       |        |     |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | 3471.304 | 62.36         | 2.68           | 65.04            |                |                  | peak     |         |  |  |  |     |      |      |        |        |    |          |         |   |  |          |       |       |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |    |   |          |  |  |       |       |       |     |  |    |  |          |       |      |       |  |  |      |  |    |  |          |  |  |       |       |        |     |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | 3471.304 |               |                | 53.66            | 60.80          | -7.14            | AVG      |         |  |  |  |     |      |      |        |        |    |          |         |   |  |          |       |       |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |    |   |          |  |  |       |       |       |     |  |    |  |          |       |      |       |  |  |      |  |    |  |          |  |  |       |       |        |     |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | 3905.217 | 58.54         | 3.75           | 62.29            |                |                  | peak     |         |  |  |  |     |      |      |        |        |    |          |         |   |  |          |       |       |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |    |   |          |  |  |       |       |       |     |  |    |  |          |       |      |       |  |  |      |  |    |  |          |  |  |       |       |        |     |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                      | 3905.217 |               |                | 50.91            | 54.00          | -3.09            | AVG      |         |  |  |  |     |      |      |        |        |    |          |         |   |  |          |       |       |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |    |   |          |  |  |       |       |       |     |  |    |  |          |       |      |       |  |  |      |  |    |  |          |  |  |       |       |        |     |  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | 4339.130 | 55.26         | 4.75           | 60.01            |                |                  | peak     |         |  |  |  |     |      |      |        |        |    |          |         |   |  |          |       |       |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |    |   |          |  |  |       |       |       |     |  |    |  |          |       |      |       |  |  |      |  |    |  |          |  |  |       |       |        |     |  |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | 4339.130 |               |                | 48.63            | 60.80          | -12.17           | AVG      |         |  |  |  |     |      |      |        |        |    |          |         |   |  |          |       |       |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |        |     |  |   |  |          |       |      |       |  |  |      |  |   |  |          |  |  |       |       |       |     |  |   |  |          |       |      |       |  |  |      |  |    |   |          |  |  |       |       |       |     |  |    |  |          |       |      |       |  |  |      |  |    |  |          |  |  |       |       |        |     |  |

| M/N: AXL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Testing Voltage: DC 3V |          |               |                |                  |                |                  |         |      |  |  |  |     |      |      |        |    |          |         |   |  |          |       |       |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |    |   |          |  |  |       |       |        |     |    |  |          |       |      |       |  |      |  |    |  |          |  |  |       |       |        |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|---------------|----------------|------------------|----------------|------------------|---------|------|--|--|--|-----|------|------|--------|----|----------|---------|---|--|----------|-------|-------|-------|--|------|--|---|--|----------|--|--|-------|-------|--------|-----|---|--|----------|-------|------|-------|--|------|--|---|--|----------|--|--|-------|-------|--------|-----|---|--|----------|-------|------|-------|--|------|--|---|--|----------|--|--|-------|-------|--------|-----|---|--|----------|-------|------|-------|--|------|--|---|--|----------|--|--|-------|-------|--------|-----|---|--|----------|-------|------|-------|--|------|--|----|---|----------|--|--|-------|-------|--------|-----|----|--|----------|-------|------|-------|--|------|--|----|--|----------|--|--|-------|-------|--------|-----|
| Polarization: Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Detector: Peak & AVG   |          |               |                |                  |                |                  |         |      |  |  |  |     |      |      |        |    |          |         |   |  |          |       |       |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |    |   |          |  |  |       |       |        |     |    |  |          |       |      |       |  |      |  |    |  |          |  |  |       |       |        |     |
| Test Mode: TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Distance: 3m           |          |               |                |                  |                |                  |         |      |  |  |  |     |      |      |        |    |          |         |   |  |          |       |       |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |    |   |          |  |  |       |       |        |     |    |  |          |       |      |       |  |      |  |    |  |          |  |  |       |       |        |     |
| <b>Radiated Emission Measurement</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |          |               |                |                  |                |                  |         |      |  |  |  |     |      |      |        |    |          |         |   |  |          |       |       |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |    |   |          |  |  |       |       |        |     |    |  |          |       |      |       |  |      |  |    |  |          |  |  |       |       |        |     |
| Date: 2023/11/6 <span style="float: right;">Time: 19:25:47</span>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |          |               |                |                  |                |                  |         |      |  |  |  |     |      |      |        |    |          |         |   |  |          |       |       |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |    |   |          |  |  |       |       |        |     |    |  |          |       |      |       |  |      |  |    |  |          |  |  |       |       |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |          |               |                |                  |                |                  |         |      |  |  |  |     |      |      |        |    |          |         |   |  |          |       |       |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |    |   |          |  |  |       |       |        |     |    |  |          |       |      |       |  |      |  |    |  |          |  |  |       |       |        |     |
| <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th>No.</th> <th>Mk.</th> <th>Freq.</th> <th>Reading Level</th> <th>Correct Factor</th> <th>Measure-<br/>ment</th> <th>Limit</th> <th>Over</th> <th></th> </tr> <tr> <th></th> <th></th> <th>MHz</th> <th>dBuV</th> <th>dB/m</th> <th>dBuV/m</th> <th>dB</th> <th>Detector</th> <th>Comment</th> </tr> </thead> <tbody> <tr> <td>1</td> <td></td> <td>2169.565</td> <td>54.29</td> <td>-0.47</td> <td>53.82</td> <td></td> <td>peak</td> <td></td> </tr> <tr> <td>2</td> <td></td> <td>2169.565</td> <td></td> <td></td> <td>42.44</td> <td>60.80</td> <td>-18.36</td> <td>AVG</td> </tr> <tr> <td>3</td> <td></td> <td>2603.478</td> <td>48.15</td> <td>0.77</td> <td>48.92</td> <td></td> <td>peak</td> <td></td> </tr> <tr> <td>4</td> <td></td> <td>2603.478</td> <td></td> <td></td> <td>37.54</td> <td>60.80</td> <td>-23.26</td> <td>AVG</td> </tr> <tr> <td>5</td> <td></td> <td>3037.391</td> <td>50.18</td> <td>1.85</td> <td>52.03</td> <td></td> <td>peak</td> <td></td> </tr> <tr> <td>6</td> <td></td> <td>3037.391</td> <td></td> <td></td> <td>40.65</td> <td>60.80</td> <td>-20.15</td> <td>AVG</td> </tr> <tr> <td>7</td> <td></td> <td>3471.304</td> <td>52.23</td> <td>2.68</td> <td>54.91</td> <td></td> <td>peak</td> <td></td> </tr> <tr> <td>8</td> <td></td> <td>3471.304</td> <td></td> <td></td> <td>43.53</td> <td>60.80</td> <td>-17.27</td> <td>AVG</td> </tr> <tr> <td>9</td> <td></td> <td>3905.217</td> <td>50.35</td> <td>3.75</td> <td>54.10</td> <td></td> <td>peak</td> <td></td> </tr> <tr> <td>10</td> <td>*</td> <td>3905.217</td> <td></td> <td></td> <td>42.72</td> <td>54.00</td> <td>-11.28</td> <td>AVG</td> </tr> <tr> <td>11</td> <td></td> <td>4339.130</td> <td>48.49</td> <td>4.75</td> <td>53.24</td> <td></td> <td>peak</td> <td></td> </tr> <tr> <td>12</td> <td></td> <td>4339.130</td> <td></td> <td></td> <td>41.86</td> <td>60.80</td> <td>-18.94</td> <td>AVG</td> </tr> </tbody> </table> |                        | No.      | Mk.           | Freq.          | Reading Level    | Correct Factor | Measure-<br>ment | Limit   | Over |  |  |  | MHz | dBuV | dB/m | dBuV/m | dB | Detector | Comment | 1 |  | 2169.565 | 54.29 | -0.47 | 53.82 |  | peak |  | 2 |  | 2169.565 |  |  | 42.44 | 60.80 | -18.36 | AVG | 3 |  | 2603.478 | 48.15 | 0.77 | 48.92 |  | peak |  | 4 |  | 2603.478 |  |  | 37.54 | 60.80 | -23.26 | AVG | 5 |  | 3037.391 | 50.18 | 1.85 | 52.03 |  | peak |  | 6 |  | 3037.391 |  |  | 40.65 | 60.80 | -20.15 | AVG | 7 |  | 3471.304 | 52.23 | 2.68 | 54.91 |  | peak |  | 8 |  | 3471.304 |  |  | 43.53 | 60.80 | -17.27 | AVG | 9 |  | 3905.217 | 50.35 | 3.75 | 54.10 |  | peak |  | 10 | * | 3905.217 |  |  | 42.72 | 54.00 | -11.28 | AVG | 11 |  | 4339.130 | 48.49 | 4.75 | 53.24 |  | peak |  | 12 |  | 4339.130 |  |  | 41.86 | 60.80 | -18.94 | AVG |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mk.                    | Freq.    | Reading Level | Correct Factor | Measure-<br>ment | Limit          | Over             |         |      |  |  |  |     |      |      |        |    |          |         |   |  |          |       |       |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |    |   |          |  |  |       |       |        |     |    |  |          |       |      |       |  |      |  |    |  |          |  |  |       |       |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        | MHz      | dBuV          | dB/m           | dBuV/m           | dB             | Detector         | Comment |      |  |  |  |     |      |      |        |    |          |         |   |  |          |       |       |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |    |   |          |  |  |       |       |        |     |    |  |          |       |      |       |  |      |  |    |  |          |  |  |       |       |        |     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | 2169.565 | 54.29         | -0.47          | 53.82            |                | peak             |         |      |  |  |  |     |      |      |        |    |          |         |   |  |          |       |       |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |    |   |          |  |  |       |       |        |     |    |  |          |       |      |       |  |      |  |    |  |          |  |  |       |       |        |     |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | 2169.565 |               |                | 42.44            | 60.80          | -18.36           | AVG     |      |  |  |  |     |      |      |        |    |          |         |   |  |          |       |       |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |    |   |          |  |  |       |       |        |     |    |  |          |       |      |       |  |      |  |    |  |          |  |  |       |       |        |     |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | 2603.478 | 48.15         | 0.77           | 48.92            |                | peak             |         |      |  |  |  |     |      |      |        |    |          |         |   |  |          |       |       |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |    |   |          |  |  |       |       |        |     |    |  |          |       |      |       |  |      |  |    |  |          |  |  |       |       |        |     |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | 2603.478 |               |                | 37.54            | 60.80          | -23.26           | AVG     |      |  |  |  |     |      |      |        |    |          |         |   |  |          |       |       |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |    |   |          |  |  |       |       |        |     |    |  |          |       |      |       |  |      |  |    |  |          |  |  |       |       |        |     |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | 3037.391 | 50.18         | 1.85           | 52.03            |                | peak             |         |      |  |  |  |     |      |      |        |    |          |         |   |  |          |       |       |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |    |   |          |  |  |       |       |        |     |    |  |          |       |      |       |  |      |  |    |  |          |  |  |       |       |        |     |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | 3037.391 |               |                | 40.65            | 60.80          | -20.15           | AVG     |      |  |  |  |     |      |      |        |    |          |         |   |  |          |       |       |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |    |   |          |  |  |       |       |        |     |    |  |          |       |      |       |  |      |  |    |  |          |  |  |       |       |        |     |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | 3471.304 | 52.23         | 2.68           | 54.91            |                | peak             |         |      |  |  |  |     |      |      |        |    |          |         |   |  |          |       |       |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |    |   |          |  |  |       |       |        |     |    |  |          |       |      |       |  |      |  |    |  |          |  |  |       |       |        |     |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | 3471.304 |               |                | 43.53            | 60.80          | -17.27           | AVG     |      |  |  |  |     |      |      |        |    |          |         |   |  |          |       |       |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |    |   |          |  |  |       |       |        |     |    |  |          |       |      |       |  |      |  |    |  |          |  |  |       |       |        |     |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | 3905.217 | 50.35         | 3.75           | 54.10            |                | peak             |         |      |  |  |  |     |      |      |        |    |          |         |   |  |          |       |       |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |    |   |          |  |  |       |       |        |     |    |  |          |       |      |       |  |      |  |    |  |          |  |  |       |       |        |     |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *                      | 3905.217 |               |                | 42.72            | 54.00          | -11.28           | AVG     |      |  |  |  |     |      |      |        |    |          |         |   |  |          |       |       |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |    |   |          |  |  |       |       |        |     |    |  |          |       |      |       |  |      |  |    |  |          |  |  |       |       |        |     |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | 4339.130 | 48.49         | 4.75           | 53.24            |                | peak             |         |      |  |  |  |     |      |      |        |    |          |         |   |  |          |       |       |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |    |   |          |  |  |       |       |        |     |    |  |          |       |      |       |  |      |  |    |  |          |  |  |       |       |        |     |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | 4339.130 |               |                | 41.86            | 60.80          | -18.94           | AVG     |      |  |  |  |     |      |      |        |    |          |         |   |  |          |       |       |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |   |  |          |  |  |       |       |        |     |   |  |          |       |      |       |  |      |  |    |   |          |  |  |       |       |        |     |    |  |          |       |      |       |  |      |  |    |  |          |  |  |       |       |        |     |

## 14.3 20dB Occupied Bandwidth

### LIMIT

According to 15.231(C), the bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70MHz and below 900MHz.

$$\text{Limit} = 433.913\text{MHz} \times 0.25\% = 1084.7825 \text{ KHz}$$

### BLOCK DIAGRAM OF TEST SETUP



### TEST PROCEDURES

1. The output port (antenna) from the transmitter was connected to an attenuator and then to the input of the RF Spectrum analyzer.
2. Spectrum analyzer set the corresponding parameters for measurement and record the tested data

## TEST RESULTS

PASS

Please refer to the following table.

| Frequency (MHz) | 20 dB Bandwidth (KHz) | Limit (KHz) | Result |
|-----------------|-----------------------|-------------|--------|
| 433.913         | 55.06                 | 1084.7825   | PASS   |

### Test Photo



## 14.4 Transmission time

### LIMIT

15.231 (a) (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

15.231(a) (2) A transmitter activated automatically shall cease transmission within 5seconds after activation.

15.231(e), under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of transmission but in no case less than 10 seconds.

### BLOCK DIAGRAM OF TEST SETUP



### TEST PROCEDURES

1. The output port (antenna) from the transmitter was connected to an attenuator and then to the input of the RF Spectrum analyzer.
2. Spectrum analyzer set the corresponding parameters for measurement and record the tested data.


### TEST RESULTS

PASS

Please refer to the following table.

| Frequency (MHz) | Transmission time (sec) | Limit (sec) | Result |
|-----------------|-------------------------|-------------|--------|
| 433.913         | 0.3                     | <5          | PASS   |

## Test Photo



---

## 14.5 Antenna Requirement

### STANDARD APPLICABLE

According to of FCC part 15C section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

### ANTENNA CONNECTED CONSTRUCTION

The antenna is PCB antenna that no antenna other than furnished by the responsible party shall be used with the device, and the best case gain of the antenna is 0dBi, Therefore, the antenna is consider meet the requirement.

## 15. Test Equipment List

| Item | Equipment                      | Manufacturer                            | Model No.           | Serial No.        | Last Cal.     | Cal. Interval |
|------|--------------------------------|-----------------------------------------|---------------------|-------------------|---------------|---------------|
| 1.   | Test Receiver                  | Rohde & Schwarz                         | ESCI7               | 100837            | Mar. 13, 2023 | 1 Year        |
| 2.   | Antenna                        | Schwarzbeck                             | VULB9162            | 9162-010          | Mar. 23, 2022 | 2 Year        |
| 3.   | Spectrum Analyzer              | Rohde & Schwarz                         | FSU26               | 200409/026        | Mar. 13, 2023 | 1 Year        |
| 4.   | Spectrum Analyzer              | Keysight                                | N9020A              | MY54200831        | Mar. 13, 2023 | 1 Year        |
| 5.   | Spectrum Analyzer              | Rohde & Schwarz                         | FSV40               | 101094            | Mar. 13, 2023 | 1 Year        |
| 6.   | Horn Antenna                   | Schwarzbeck                             | BBHA9170            | 9170-172          | Mar. 23, 2022 | 2 Year        |
| 7.   | Power Sensor                   | DARE                                    | RPR3006W            | 15I00041SNO<br>64 | Mar. 13, 2023 | 1 Year        |
| 8.   | Horn Antenna                   | COM-Power                               | AH-118              | 071078            | Mar. 23, 2022 | 2 Year        |
| 9.   | Pre-Amplifier                  | HP                                      | HP 8449B            | 3008A00964        | Mar. 13, 2023 | 1 Year        |
| 10.  | Pre-Amplifier                  | HP                                      | HP 8447D            | 1145A00203        | Mar. 13, 2023 | 1 Year        |
| 11.  | Loop Antenna                   | Schwarzbeck                             | FMZB 1513           | 1513-272          | Mar. 23, 2022 | 2 Year        |
| 12.  | Test Receiver                  | Rohde & Schwarz                         | ESCI                | 101152            | Mar. 13, 2023 | 1 Year        |
| 13.  | L.I.S.N                        | Rohde & Schwarz                         | ENV 216             | 101317            | Mar. 13, 2023 | 1 Year        |
| 14.  | RF Switching Unit              | Compliance<br>Direction Systems<br>Inc. | RSU-M2              | 38311             | Mar. 13, 2023 | 1 Year        |
| 15.  | Temporary antenna<br>connector | TESCOM                                  | SS402               | N/A               | N/A           | N/A           |
| 16.  | Test Software                  | EZ                                      | EZ_EMC<br>NTC-3A1.1 | N/A               | N/A           | N/A           |

Note: For photographs of EUT and measurement, please refer to appendix in separate documents.

---End---